WorldWideScience

Sample records for y-12 plant groundwater

  1. Oak Ridge Y-12 Plant groundwater protection program management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  2. Oak Ridge Y-12 Plant groundwater protection program management plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres

  3. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy Y- 12 Plant. These sites are located south of the Y- 12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the CRHR. An overview of the hydrogeologic system in the CRHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater quality in the regime are presented

  4. Y-12 Plant Groundwater Protection Program: Groundwater and surface water sampling and analysis plan for Calendar Year 1998

    International Nuclear Information System (INIS)

    1997-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 1998 at the Department of Energy (DOE) Y-12 Plant. These monitoring activities are managed by the Y-12 Plant Environmental Compliance Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 1998 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. Groundwater and surface water monitoring will be performed during CY 1998 to comply with: (1) requirements specified in Resource Conservation and Recover Act (RCRA) post-closure permits regarding RCRA corrective action monitoring and RCRA detection monitoring; (2) Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous solid waste management facilities; and (3) DOE Order 5400.1 surveillance monitoring and exit pathway monitoring. Data from some of the sampling locations in each regime will be used to meet the requirements of more than one of the monitoring drivers listed above. Modifications to the CY 1998 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected monitoring wells, or wells could be removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  5. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    International Nuclear Information System (INIS)

    1999-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  6. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater and surface-water quality data obtained during the 1991 calendar year at several management facilities associated with the US Department of Energy Y-12 Plant. These sites are southwest of the Y-12 plant complex within the Bear Creek Hydrogeologic Regime (BCHR) which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the BCHR. An overview of the hydrogeologic system in the BCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater and surface-water quality in the regime are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater and surface-water quality monitoring program in the BCHR are presented

  7. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline

  8. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  9. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP)

  10. Sampling and analysis plan for groundwater and surface water monitoring at the Y-12 Plant during calendar year 1995

    International Nuclear Information System (INIS)

    1994-10-01

    This plan provides a description of the groundwater and surface-water quality monitoring activities planned for calendar year (CY) 1995 at the Department of Energy Y-12 Plant. Included in this plan are the monitoring activities managed by the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Other groundwater and surface water monitoring activities (e.g. selected Environmental Restoration Program activities, National Pollution Discharge Elimination System (NPDES) monitoring) not managed through the Y-12 Plant GWPP are not addressed in this report. Several monitoring programs will be implemented in three hydrogeologic regimes: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. For various reasons, modifications to the 1995 monitoring programs may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected wells, or wells could be added to or deleted from the monitoring network. All modifications to the monitoring programs will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  11. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  12. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant

  13. Determination of reference concentrations for inorganic analytes in groundwater at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    Background (or reference) concentrations for inorganics in Y-12 Plant groundwater were determined using a combination of statistical cluster analysis and conventional cumulative probability graphing. Objective was to develop a methodology for setting groundwater reference concentrations that uses all site groundwater data instead of only results of sampling upgradient of groundwater contamination. Y-12 was selected as prototype because the groundwater data set is very large and the data have been consistently collected since 1986. A conceptual framework of groundwater quality at Y-12 was formulated; as a quality check, data were statistically modeled or clustered. Ten hydrochemical regimes or clusters were identified. Six well clusters closely corresponded to the water quality framework and to observed water quality regimes in groundwater at Y-12. Four clusters were associated with nitrate, an S-3 Site contaminant, or with nonspecific contaminants commonly encountered at shallow depths at industrial sites (e.g., road salt). These four clusters were eliminated from the reference data set. Cumulative probability graphs were used within a cluster or group of clusters to distinguish contaminated wells from wells with ambient water quality. Only median values of unfiltered samples were plotted. Outlying data points (assumed to be contaminated samples) were identified and eliminated from the data set. When all outliers for a given inorganic had been identified and deleted from the data set, the reference concentration was set at the one-sided upper tolerance limit on the 95th percentile with 95% confidence. The methodology proved useful in integrating a large amount of data into the Y-12 plant groundwater conceptual framework and in identifying those wells or groups of wells that have monitoring or sample and analysis problems or that may be monitoring site-related contamination

  14. Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  15. Calendar Year 1999 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2000-01-01

    This report contains the calendar year (CY) 1999 groundwater and surface water quality monitoring data that were obtained at the US Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee, in accordance with the applicable requirements of DOE Order 5400.1. Groundwater and surface water quality monitoring for the purposes of DOE Order 5400.1, as defined in the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 1996), includes site surveillance monitoring and exit pathway/perimeter monitoring. Site surveillance monitoring is intended to provide data regarding groundwater/surface water quality in areas that are, or could be, affected by operations at the Y-12 Plant. Exit pathway/perimeter monitoring is intended to provide data regarding groundwater and surface water quality where contaminants from the Y-12 Plant are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR)

  16. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  17. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  18. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTs) associated with the US Department of Energy Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surfacewater quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites and USTs located in the UEFPCHR. An overview of the hydrogeologic system in the UEFPCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data, and detailed descriptions of groundwater quality are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater quality monitoring program in the UEFPCHR are presented

  19. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    International Nuclear Information System (INIS)

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening

  20. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  1. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN

  2. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site at the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy

  3. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors

  4. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  5. Review of passive groundwater remediation systems: Lessons learned Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    One of the proposed solutions for treatment of the contaminated groundwater in the Bear Creek Valley is the installation of a passive treatment system. Such a system would use a reactive media installed in a continuous trench or in a gate as part of a barrier wall and gate system. This report evaluates information on five similar systems [no information was available on two additional systems] and evaluates the shortcomings and the advantages of each. Section 5 provides a short summary of the findings and presents some recommendations on how to avoid some of the common problems encountered with the existing systems

  6. Calendar year 1995 groundwater quality report for the upper east Fork Poplar Creek Hydrogeologic regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN3 89 009 0001. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant

  7. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  8. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  9. Calandar year 1996 annual groundwater monitoring report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The Bear Creek Regime encompasses a portion of Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid) that contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring in the Bear Creek Regime is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). This report contains the information and monitoring data required under the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Bear Creek Hydrogeologic Regime (post-closure permit), as modified and issued by the Tennessee Department of Environment and Conservation (TDEC) in September 1995 (permit no. TNHW-087). In addition to the signed certification statement and the RCRA facility information summarized below, permit condition II.C.6 requires the annual monitoring report to address groundwater monitoring activities at the three RCRA Hazardous Waste Disposal Units (HWDUs) in the Bear Creek Regime that are in post-closure corrective action status (the S-3 Site, the Oil Landfarm, and the Bear Creek Burial Grounds/Walk-In Pits).

  10. Calendar year 1995 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge Tennessee. 1995 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part I consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part I GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1995 Part I GWQR for the East Fork Regime to the TDEC in February 1996. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality

  11. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  12. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year

  13. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    None

    1999-01-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively

  14. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  15. Groundwater quality assessment for the Bear Creek hydrogeologic regime at the Y-12 Plant, 1990: Data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1991-06-01

    This report is a detailed assessment of groundwater quality at several hazardous waste-management facilities associated with the Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The sites are located in an area defined as the Bear Creek Hydrogeologic Regime (BCHR), which is one of three hydrogeologic regimes that have been defined at the Y-12 Plant in an effort to unify and coordinate site-specific monitoring activities for planning and reporting purposes. Section 2.0 contains background information regarding the monitored sites and a discussion of the program objectives. An overview of the complex hydrogeologic system in the BCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1990 assessment data, a review of groundwater geochemistry and background water quality, detailed descriptions of groundwater contaminant plumes, and a discussion regarding the quality of groundwater and surface water exiting the BCHR are presented in Section 4.0. Findings of the 1990 assessment program are summarized in Section 5.0. Modification to the assessment monitoring program proposed for 1991 are in Section 6.0, and a list of references (Section 7.0) concludes the report. 20 refs., 23 figs., 12 tabs

  16. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant: Data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1991-06-01

    This report is a detailed assessment of groundwater quality at several hazardous waste-management facilities associated with the Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The sites are located in an area defined as the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three hydrogeologic regimes that have been established at the Y-12 Plant in an effort to unify and coordinate site-specific monitoring activities for planning and reporting purposes. Section 2.0 contains background information and a discussion of the 1990 program objectives. An overview of the complex hydrogeologic system in the UEFPCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1990 assessment data, a review of groundwater geochemistry and background water quality, detailed descriptions of groundwater contaminant plumes, and a discussion regarding the quality of groundwater exiting the UEFPCHR are presented in Section 4.0. Findings of the 1990 assessment program are summarized in Section 5.0. Modifications to the assessment monitoring program proposed for 1991 are presented in Section 6.0, and a list of references (Section 7.0) concludes the report. 20 refs., 23 figs., 10 tabs

  17. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    None

    1999-01-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively

  18. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  19. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    International Nuclear Information System (INIS)

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included

  20. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  1. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater monitoring data obtained during calendar year (CY) 1995 from monitoring wells and springs located at or near several hazardous and non-hazardous waste management facilities associated with the Y-12 Plant. These sites are within the boundaries of the Chestnut Ridge Hydrogeologic Regime, which is one of three hydrogeologic regimes defined for the purposes of the Y-12 Plant Groundwater Protection Program (GWPP). The objectives of the GWPP are to provide the monitoring data necessary for compliance with applicable federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. corporate policy. The following evaluation of the data is organized into background regulatory information and site descriptions, an overview of the hydrogeologic framework, a summary of the CY 1995 groundwater monitoring programs and associated sampling and analysis activities, analysis and interpretation of the data for inorganic, organic, and radiological analytes, a summary of conclusions and recommendations, and a list of cited references. Appendix A contains supporting maps, cross sections, diagrams, and graphs; data tables and summaries are in Appendix B. Detailed descriptions of the data screening and evaluation criteria are included in Appendix C

  2. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of the U.S. Department of Energy (DOE) Y-12 Plant (Figure 1). Groundwater monitoring is performed at several hazardous and nonhazardous waste management facilities located in the regime per the requirements of applicable operating/post closure permits and governing state/federal regulations and guidelines, including DOE Order 5400.1A - General Environmental Protection Program. Applicable provisions of DOE Order 5400.1A require evaluation of available monitoring data with regard to: (1) groundwater quality in areas that are, or could be, affected by Y-12 Plant operations, (2) the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) long-term trends in groundwater quality at the Y-12 Plant. This report presents the results of these DOE Order 5400.1A evaluations based on available data for the network of monitoring wells and springs in the Chestnut Ridge Regime sampled during calendar year (CY) 1998. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively

  3. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    none

    1999-09-01

    The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of the U.S. Department of Energy (DOE) Y-12 Plant (Figure 1). Groundwater monitoring is performed at several hazardous and nonhazardous waste management facilities located in the regime per the requirements of applicable operating/post closure permits and governing state/federal regulations and guidelines, including DOE Order 5400.1A - General Environmental Protection Program. Applicable provisions of DOE Order 5400.1A require evaluation of available monitoring data with regard to: (1) groundwater quality in areas that are, or could be, affected by Y-12 Plant operations, (2) the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) long-term trends in groundwater quality at the Y-12 Plant. This report presents the results of these DOE Order 5400.1A evaluations based on available data for the network of monitoring wells and springs in the Chestnut Ridge Regime sampled during calendar year (CY) 1998. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  4. Annual report of 1995 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Kerr Hollow Quarry (KHQ) and the Chestnut Ridge Sediment Disposal Basin (CRSDB) are inactive waste management sites located at the Oak Ridge Y-12 Plant. The KHQ and CRSDB are regulated as treatment, storage, or disposal (TSD) facilities under the Resource Conservation and Recovery Act (RCRA). The facilities were granted interim status in calendar year (CY) 1986 under Tennessee Department of Environment and Conservation (TDEC) Hazardous Waste Management Rule 1200-1-11-.05. Historical environmental monitoring data and baseline characterization under interim status indicated that releases of contaminants to groundwater had not occurred; thus, the detection monitoring was implemented at the sites until either clean closure was completed or post-closure permits were issued. The CRSDB was closed in Cy 1989 under a TDEC-approved RCRA closure plan. A revised RCRA PCPA for the CRSDB was submitted by DOE personnel to TDEC staff in September 1994. A final post-closure permit was issued by the TDEC on September 18, 1995. Closure activities at KHQ under RCRA were completed in October 1993. The Record of Decision will also incorporate requirements of the RCRA post-closure permit once it is issued by the TDEC

  5. Calendar Year 1997 Annual Groundwater Monitoring Report For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation Wd Recovery Act (RCRA) post-closure permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) at the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. Issued by the Tennessee Department of Environment and Conservation (TDEC), the PCP defines the RCRA post-closure corrective action monitoring requirements for the portion of the groundwater contaminant plume that has migrated into the East Fork Regime ftom the S-3 Ponds, a closed RCW-regulated former surface impoundment located in Bear Creek Valley near the west end of the Y-12 Plant. In addition to the RCIL4 post-closure corrective action monitoring results, this report contains the groundwater and surface water monitoring data obtained during CY 1997 to fulfill requirements of DOE Order 5400.1.

  6. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters

  7. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters.

  8. Y-12 Plant Decontamination and Decommissioning Program

    International Nuclear Information System (INIS)

    1992-01-01

    The Decontamination and Decommissioning (D and D) Program at the Oak Ridge Y-12 Plant is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide Y-12 the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER program. The D and D Program provides collective management of sites within the Plant which are in need of decontamination and decommissioning efforts, prioritizes those areas in terms of health, safety, and environmental concerns, and implements the appropriate level of remedial action. The D and D Program provides support to identifiable facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each facility has been prepared. This report provides this documentation for the Y-12 facilities currently included in the D and D Program, as well as those planned for future inclusion in the Program, and includes projected resource requirements for the planning period of FY 1993 through FY 2000

  9. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters

  10. Treatability study on the Bear Creek Valley characterization area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Phase II work plan for S-3 site contaminated groundwater interception--in-field media evaluation and groundwater capture methods

    International Nuclear Information System (INIS)

    1996-12-01

    A treatability study is being conducted to support implementation:of early actions at the S-3 Site in the Bear Creek Valley (BCV) Characterization Area (CA). The objectives of the early actions Will be (1) to reduce concentrations of uranium and nitrate in Bear Creek and (2) to reduce contaminants of concern in North Tributary (NT)-1 and NT-2. The BCV CA is located within the US DOE's Oak Ridge Reservation in Tennessee. Hazardous and radioactive materials from the Y-12 Plant operations were, disposed of at various sites within BCV. Groundwater and surface water in the BCV CA have been contaminated. The remedial investigation (RI) for the BCV CA identified that the greatest mass flux of contaminants from the various sources migrates via groundwater at the source and discharges to surface water in Bear Creek and its tributaries. In the RI, the combined discharge from the S-3 Site and the Boneyard/Burnyard (BYBY) was identified as accounting for 75% of the cancer risk and more than 80% of the chemical toxicity to Potential downgradient human receptors. In addition, the S-3 Site has caused degradation of surface water quality in upper Bear Creek and two of its tributaries. The BCV CA treatability study focuses on capture and treatment of shallow groundwater before it discharges to tributary waters. The objectives Of treatment of this groundwater are (1) to reduce the concentrations of uranium and nitrate in NT-1 and Bear Creek such that the concentrations of these chemicals in surface water and groundwater are reduced to acceptable levels, (2) to reduce the concentrations of nitrate and metals, and reduce the overall concentration of total dissolved solids; and (3) to hydraulically contain the plume of contaminated, groundwater that is moving in bedrock in the Nolichucky Shale such that the rate of contaminant discharge will be reduced in the long term. The objective of Phase II is to produce conceptual designs for treatment system configurations

  11. Monitoring well installation plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The installation and development of groundwater monitoring wells is a primary element of the Y-12 Plant Groundwater Protection Program (GWPP), which monitors groundwater quality and hydrologic conditions at the Oak Ridge Y-12 Plant. This document is a groundwater monitoring well installation and development plan for the US Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan formalizes well installation and construction methods, well development methods, and core drilling methods that are currently implemented at the Y-12 Plant under the auspices of the GWPP. Every three years, this plan will undergo a review, during which revisions necessitated by changes in regulatory requirements or GWPP objectives may be made

  12. Y-12 Plant waste minimization strategy

    International Nuclear Information System (INIS)

    Kane, M.A.

    1987-01-01

    The 1984 Amendments to the Resource Conservation and Recovery Act (RCRA) mandate that waste minimization be a major element of hazardous waste management. In response to this mandate and the increasing costs for waste treatment, storage, and disposal, the Oak Ridge Y-12 Plant developed a waste minimization program to encompass all types of wastes. Thus, waste minimization has become an integral part of the overall waste management program. Unlike traditional approaches, waste minimization focuses on controlling waste at the beginning of production instead of the end. This approach includes: (1) substituting nonhazardous process materials for hazardous ones, (2) recycling or reusing waste effluents, (3) segregating nonhazardous waste from hazardous and radioactive waste, and (4) modifying processes to generate less waste or less toxic waste. An effective waste minimization program must provide the appropriate incentives for generators to reduce their waste and provide the necessary support mechanisms to identify opportunities for waste minimization. This presentation focuses on the Y-12 Plant's strategy to implement a comprehensive waste minimization program. This approach consists of four major program elements: (1) promotional campaign, (2) process evaluation for waste minimization opportunities, (3) waste generation tracking system, and (4) information exchange network. The presentation also examines some of the accomplishments of the program and issues which need to be resolved

  13. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  14. Fiscal year 1985 groundwater investigation drilling program at the Y-12 Plant, Oak Ridge, Tennessee: Environmental Sciences Division publication No. 2805

    International Nuclear Information System (INIS)

    Haase, C.S.; Gillis, G.A.; King, H.L.

    1987-01-01

    Groundwater investigation drilling operations at ten formerly or currently used waste disposal sites in the Y-12 vicinity have been completed. A total of 4 core holes, 11 soil borings, and 55 groundwater investigation wells were drilled at identified locations. The objective of the drilling program was to characterize the geology and hydrology of the sites investigated so that an effective monitoring well network could be designed and installed. The basic approach followed at each of the sites was to identify the major features of subsurface geology and then install the necessary boreholes to investigate the hydrogeologic significance of such features. Initially, a core hole or relatively deep borehole was drilled at an up section location to determine the general components of the subsurface geology. Study of drill cores, cuttings, and geophysical logs from this initial borehole identified geohydrologically significant targets. Those identified for investigation during the second stage of drilling at a specific site include: (1) the top of the water table, (2) the interface between the base of soil and the top of weathered bedrock, (3) base of weather in the bedrock, (4) cavity zones near the base of weathering in the top of bedrock, (5) zones of high porosity in the unweathered bedrock, and (6) fractures or fractured zones within the unweathered bedrock. After the investigatory phase was completed, groundwater investigation wells were installed to provide additional subsurface geological data and to provide data on hydrostatic heads and water quality for the shallow-flow regime in soils and upper weathered-bedrock zone and for the deep-flow regimes within the bedrock below the zone of significant weathering. 24 refs., 16 figs., 3 tabs

  15. Fiscal year 1985 groundwater investigation drilling program at the Y-12 Plant, Oak Ridge, Tennessee: Environmental Sciences Division publication No. 2805

    Energy Technology Data Exchange (ETDEWEB)

    Haase, C.S.; Gillis, G.A.; King, H.L.

    1987-01-01

    Groundwater investigation drilling operations at ten formerly or currently used waste disposal sites in the Y-12 vicinity have been completed. A total of 4 core holes, 11 soil borings, and 55 groundwater investigation wells were drilled at identified locations. The objective of the drilling program was to characterize the geology and hydrology of the sites investigated so that an effective monitoring well network could be designed and installed. The basic approach followed at each of the sites was to identify the major features of subsurface geology and then install the necessary boreholes to investigate the hydrogeologic significance of such features. Initially, a core hole or relatively deep borehole was drilled at an up section location to determine the general components of the subsurface geology. Study of drill cores, cuttings, and geophysical logs from this initial borehole identified geohydrologically significant targets. Those identified for investigation during the second stage of drilling at a specific site include: (1) the top of the water table, (2) the interface between the base of soil and the top of weathered bedrock, (3) base of weather in the bedrock, (4) cavity zones near the base of weathering in the top of bedrock, (5) zones of high porosity in the unweathered bedrock, and (6) fractures or fractured zones within the unweathered bedrock. After the investigatory phase was completed, groundwater investigation wells were installed to provide additional subsurface geological data and to provide data on hydrostatic heads and water quality for the shallow-flow regime in soils and upper weathered-bedrock zone and for the deep-flow regimes within the bedrock below the zone of significant weathering. 24 refs., 16 figs., 3 tabs.

  16. Development of a building sump database for the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Sepanski, R.J.; Field, S.M.

    1997-07-01

    Operations at the Oak Ridge Y-12 Plant have resulted in contamination of Upper East Fork Poplar Creek (UEFPC) and shallow groundwater through soil erosion, infiltration, and outfall discharges. The contamination of groundwater has been documented for nearly two decades, largely through well monitoring efforts. This study represents the first effort to formally identify and compile location data on sumps at the Y-12 Plant, several of which are known or are suspected to pump groundwater. Operation of several of these sumps have been documented to affect groundwater hydraulics and contaminant pathways. This report presents preliminary results of an investigation attempting to identify sources of data on building sumps that have not previously been incorporated into existing Y-12 Plant groundwater databases. This investigation involved acquiring information on building sumps, such as location, building number, water source, discharge location, and availability of analytical data. This information was used to construct an ARC/INFO database capable of simultaneously storing spatial data on sump locations and attribute information concerning the operation of individual building sumps. This database will be referred to hereafter as the Y-12 Plant Building Sump Database

  17. Monitoring well plugging and abandonment plan, Y-12 Plant, Oak Ridge, Tennessee (revised)

    International Nuclear Information System (INIS)

    1997-05-01

    Plugging and abandonment (P ampersand A) of defunct groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP) (AJA Technical Services, Inc. 1996). This document is the revised groundwater monitoring well P ampersand A plan for the U.S. Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan describes the systematic approach employed by Y-12 Plant GWPP to identify wells that require P ampersand A, the technical methods employed to perform P ampersand A activities, and administrative requirements. Original documentation for Y-12 Plant GWPP groundwater monitoring well P ampersand A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P ampersand A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P ampersand A schedule be maintained. Wells are added to this list by issuance of both a P ampersand A request and a P ampersand A addendum to the schedule. The current Updated Subsurface Data Base includes a single mechanism to track the status of monitoring wells. In addition, rapid growth of the groundwater monitoring network and new regulatory requirements have resulted in constant changes to the status of wells. As a result, a streamlined mechanism to identify and track monitoring wells scheduled for P ampersand A has been developed and the plan revised to formalize the new business practices

  18. Wastewater control report for the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-06-01

    The 1995 National Pollutant Discharge Elimination System (NPDES) permit for the Y-12 Plant (Part III-F, page 41) requires the preparation of a report to describe procedures and criteria used in operating on-site treatment systems to maintain compliance with the NPDES permit. This report has been prepared to fulfill this requirement. Five wastewater treatment systems are currently in operation at the Y-12 Plant; they are operated by personal in the Waste Management and Facilities Management Organizations

  19. The Y-12 Plant - a model for environmental excellence

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The Department of Energy`s Y-12 Plant, located in Oak Ridge, Tennessee, occupies more than 800 acres and has a work force of over 4,000 employees. The Y-12 Plant is managed by Martin Marietta Energy Systems, Inc., a subsidiary of Martin Marietta Corporation. Although mission emphases at the Y-12 Plant have evolved and changed with the easing of international tensions, the Plant continues to serve as a key manufacturing unit and technology demonstration center for the Department of Energy and the nation. The Y-12 Plant has undergone many changes in the last 14 years. One of the most dramatic changes has occurred in the environmental programs with measurable improvements in environmental quality, the development of an award-winning pollution prevention program, and the institution of an environmentally-conscious work ethic among the work force. Because the plant is committed to achieving excellence, not just compliance with laws and regulations, a highly structured, multimedia environmental management program is in place. This program, combined with a commitment to protect the environment while striving for continued improvement, has placed Y-12 in the position to reach excellence. As a result of the Y-12 Plant`s changing mission, they are now working closely with American industry through technology transfer to share their experiences and {open_quotes}lessons learned{close_quotes}--including environmental and pollution prevention technology. To facilitate this effort, the Oak Ridge Centers for Manufacturing Technology has been established at the Y-12 Plant. Through the Centers, the Oak Ridge staff applies skills, capabilities, and facilities developed over a 50-year history of the Oak Ridge Complex to a variety of peacetime missions. The services found at the Centers are a key to helping America`s businesses--both small and large--compete in the global marketplace while protecting the nations environment and conserving its resources.

  20. Monitoring well inspection and maintenance plan Y-12 Plant, Oak Ridge, Tennessee (revised)

    International Nuclear Information System (INIS)

    1996-09-01

    Inspection and maintenance of groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP). This document is the revised groundwater monitoring well inspection and maintenance plan for the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The plan provides a systematic program for: (1) inspecting the physical condition of monitoring wells at the Y-12 Plant and (2) identifying maintenance needs that will extend the life of each well and ensure that representative groundwater quality samples and hydrologic data are collected from the wells. Original documentation for the Y-12 Plant GWPP monitoring well inspection and maintenance program was provided in HSW, Inc. 1991a. The original revision of the plan specified that only a Monitoring Well Inspection/Maintenance Summary need be updated and reissued each year. Rapid growth of the monitoring well network and changing regulatory requirements have resulted in constant changes to the status of wells (active or inactive) listed on the Monitoring Well Inspection/Maintenance Summary. As a result, a new mechanism to track the status of monitoring wells has been developed and the plan revised to formalize the new business practices. These changes are detailed in Sections 2.4 and 2.5

  1. Calendar Year 1997 Annual Groundwater Monitoring Report For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). In July 1997, the Tennessee Department of Environment and Conservation (TDEC) approved modifications to several of the permit conditions that address RCRA pow-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (Security Pits), and RCIU4 post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin) and Kerr Hollow Quarry. This report has been prepared in accordance with these modified permit requirements. Also included in this report are the groundwater and surface water monitoring data obtained during CY 1997 for the purposes ofi (1) detection monitoring at nonhazardous solid waste disposal facilities (SWDFS) in accordance with operating permits and applicable regulations, (2) monitoring in accordance with Comprehensive Environmental Response, Compensation, and Recove~ Act Records of Decision (now pefiormed under the Integrated Water Quality Program for the Oak Ridge Reservation), and (3) monitoring needed to comply with U.S. Department of Energy Order 5400.1.

  2. Environmental Survey preliminary report, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1987-11-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE), Y-12 Plant, conducted November 10 through 21 and December 9 through 11, 1986. This Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Y-12 Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Y-12, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the Y-12 Plant Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Y-12 Plant Survey. 80 refs., 76 figs., 61 tabs

  3. Environmental Survey preliminary report, Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE), Y-12 Plant, conducted November 10 through 21 and December 9 through 11, 1986. This Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Y-12 Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Y-12, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the Y-12 Plant Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Y-12 Plant Survey. 80 refs., 76 figs., 61 tabs.

  4. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  5. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  6. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives

  7. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime's, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives

  8. Calendar Year 1997 Annual Groundwater Monitoring Report For The Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater and surface water monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCIU) post- closure permit (PCP) for the Bear Creek Hydrogeologic Regime (Bear Creek Regime), and as otherwise required by U.S. Department of Energy (DOE) Order 5400.1. In July 1997, the Temessee Department of Environment and Conservation (TDEC) approved several modifications to the RCRA post-closure corrective action monitoring requirements specified in the PCP. This report has been prepared in accordimce with these modified requirements.

  9. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    International Nuclear Information System (INIS)

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ''as low as

  10. Environmental assessment. Y-12 Plant Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1982-12-01

    The Oak Ridge Y-12 Plant, operated by Union Carbide Corporation, Nuclear Division, under contract to the US Department of Energy (DOE), has the following five major responsibilities: production of nuclear weaposn components; fabrication support for weapon design agencies; support for other UCC-ND installations; support and assistance to otehr government agencies; and processing of source and special nuclear materials. This Environmental Assessment describesthe ongoing opertions of Y-12 and evaluates the actual and possible impacts on the environment that continuation of these operatios entails. Information is presented under the following section headings: purpose and need for the proposed action; alternatives; affected environment;; and, environmental consequences

  11. Stratigraphic variations and secondary porosity within the Maynardville Limestone in Bear Creek Valley, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goldstrand, P.M.

    1995-05-01

    To evaluate groundwater and surface water contamination and migration near the Oak Ridge Y-12 plant, a Comprehensive Groundwater Monitoring Plan was developed. As part of the Maynardville exit pathways monitoring program, monitoring well clusters were ii installed perpendicular to the strike of the Maynardville Limestone, that underlies the southern part of the Y-12 Plant and Bear Creek Valley (BCV). The Maynardville Project is designed to locate potential exit pathways of groundwater, study geochemical characteristics and factors affecting the occurrence and distribution of water-bearing intervals, and provide hydrogeologic information to be used to reduce the potential impacts of contaminants entering the Maynardville Limestone

  12. Chromate abatement in the Y-12 Plant's New Hope Pond

    International Nuclear Information System (INIS)

    DeMonbrum, J.R.; Muenzer, W.A.

    1975-01-01

    Results are reported from a 15-months field study that utilized four nonchromate-based water-treatment programs in 16 low-temperature (less than 100 0 F) cooling towers using corrosion and deposition studies, microbiological control, and plant effluent creek analyses as evaluation parameters. The study succeeded in bringing the chromate content of effluent of the New Hope Pond at the Oak Ridge Y-12 Plant to the limits established by the Environmental Protection Agency. (auth)

  13. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  14. Soil Management Plan for the Y-12 Plant

    International Nuclear Information System (INIS)

    1993-01-01

    Construction activities at the US Department of Energy (DOE) Y-12 Plant have often required the excavation or other management of soil within the facility. Because some of this soil may be contaminated, Martin Marietta Energy Systems, Inc. (Energy Systems) adopted specific policies to ensure the proper management of contaminated or potentially contaminated soil at the plant. Five types of contaminated or potentially contaminated soil are likely to be present at the Y-12 Plant: Soil that is within the boundaries of a Comprehensive Response, Compensation, and Liability Act (CERCLA) Area of Contamination (AOC) or Operable Unit (OU); Soil that contains listed hazardous wastes; Soil that is within the boundaries of a RCRA Solid Waste Management Unit (SWMU); Soil that contains polychlorinated biphenyls (PCBS); Soil that contains low-level radioactive materials. The regulatory requirements associated with the five types of contaminated soil listed above are complex and will vary according to site conditions. This Soil Management Plan provides a standardized method for managers to determine the options available for selecting soil management scenarios associated with construction activities at the Y-12 Plant

  15. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    International Nuclear Information System (INIS)

    2006-01-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  16. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  17. Fiscal year 1996 well installation program summary, Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1996 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two groundwater monitoring wells were installed during the FY 1996 drilling program. One of the groundwater monitoring wells was installed in the Lake Reality area and was of polyvinyl chloride screened construction. The other well, installed near the Ash Disposal Basin, was of stainless steel construction

  18. Low-level waste minimization at the Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Koger, J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  19. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  20. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  1. Results of calendar year 1995 Well Inspection and Maintenance Program Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    McMaster, B.W.

    1996-07-01

    This document is a compendium of results of the 1995 Monitor Well Inspection and Maintenance Program at the US Department of Energy's Oak Ridge Y-12 Plant. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the effective longevity of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant from August through December 1995

  2. History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Scott C., E-mail: brookssc@ornl.go [Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN 37831-6038 (United States); Southworth, George R. [Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN 37831-6038 (United States)

    2011-01-15

    Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from {approx}2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases. - Mercury discharges from an industrial plant have created a legacy contamination problem exhibiting complex and at times counter-intuitive patterns in Hg cycling.

  3. Fiscal year 1995 well installation program summary Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1995 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (including activities that were performed in late FY 1994, but not included in the FY 1994 Well Installation Program Summary Report). Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Three groundwater monitoring wells and two gas monitoring probes were installed during the FY 1995 drilling program. One of the groundwater monitoring wells was installed at Landfill VI, the other two in the Boneyard/Burnyard area. All of the groundwater monitoring wells were constructed with stainless steel screens and casings. The two gas monitoring probes were installed at the Centralized Sanitary Landfill II and were of polyvinyl chloride (PVC) screened construction. Eleven well rehabilitation/redevelopment efforts were undertaken during FY 1995 at the Y-12 Plant. All new monitoring wells and wells targeted for redevelopment were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance

  4. Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program

  5. Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program.

  6. Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Sutton, G.E. Jr.; Field, S.M.

    1995-10-01

    Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses

  7. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Reporting and statistical evaluation of the subsequent year (sixth) data

    International Nuclear Information System (INIS)

    McMahon, L.W.; Mercier, T.M.

    1992-02-01

    This annual report has historically been prepared to meet the annual reporting requirements of the Tennessee Department of and Environment and Conservation (TDEC), Hazardous Waste Management Regulation 1200-1-11-.05 (6)(e), for detection monitoring data collected on Resource Conservation and Recovery Act (RCRA) wells in place around facilities which are accorded interim status. The regulatory authority for these units at the Y-12 Plant is currently in transition. A Federal Facility Agreement (FFA) with an effective date of January 1, 1992, has been negotiated with the Department of Energy (DOE) for the Oak Ridge Reservation. This agreement provides a framework for remediation of the Oak Ridge Reservation so that both RCRA and CERCLA requirements are integrated into the remediation process and provides for State, EPA, and DOE to proceed with CERCLA as the lead regulatory requirement and RCRA as an applicable or relevant and appropriate requirement. This report is presented for the RCRA certified wells for two interim status units at the Y-12 Plant. These units are Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin. Kerr Hollow is currently undergoing clean closure under RCRA. The Chestnut Ridge Sediment Disposal Basin (CRSDB) was closed in 1989 under a TDEC approved RCRA closure plan. The relevance of a RCRA Post-Closure Permit to either of these units is a matter of contention between DOE and TDEC since the FFA does not contemplate post-closure permits

  8. Assessment of the Groundwater Protection Program Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2005-01-01

    The following report contains an assessment of the Y-12 Groundwater Protection Program (GWPP) for the Y-12 National Security Complex at the Oak Ridge Reservation, Tennessee. The GWPP is administered by BWXT Y-12, L.L.C. for the purpose of groundwater surveillance monitoring. After over 20 years of extensive site characterization and delineation efforts, groundwater in the three hydrogeologic areas that comprise the Y-12 Complex requires a long-term monitoring network strategy that will efficiently satisfy surveillance monitoring objectives set forth in DOE Order 450.1. The GWPP assessment consisted of two phases, a qualitative review of the program and a quantitative evaluation of the groundwater monitoring network using the Monitoring and Remediation Optimization System (MAROS) software methodology. The specific objective of the qualitative section of the review of the GWPP was to evaluate the methods of data collection, management, and reporting and the function of the monitoring network for the Y-12 facility using guidance from regulatory and academic sources. The results of the qualitative review are used to suggest modifications to the overall program that would be consistent with achieving objectives for long-term groundwater monitoring. While cost minimization is a consideration in the development of the monitoring program, the primary goal is to provide a comprehensive strategy to provide quality data to support site decision making during facility operations, long-term resource restoration, and property redevelopment. The MAROS software is designed to recommend an improved groundwater monitoring network by applying statistical techniques to existing historic and current site analytical data. The MAROS methodology also considers hydrogeologic factors, regulatory framework, and the location of potential receptors. The software identifies trends and suggests components for an improved monitoring plan by analyzing individual monitoring wells in the current

  9. Effectiveness evaluation of three RCRA caps at the Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, L.A. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Goldstrand, P.M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences

    1994-01-01

    Because installation of Resource Conservation and Recovery Act (RCRA)- engineered caps is costly, it is prudent to evaluate the effectiveness of this procedure for hydrologically isolating contaminants. The objective for installation of five-part engineered caps at the Y-12 Plant was to (1) satisfy the regulatory compliance issues, (2) minimize the risk of direct contact with the wastes, and (3) reduce rainfall infiltration. Although the original objectives of installing the caps were not to alter groundwater flow, a potential effect of reducing infiltration is to minimize leaching, thus retarding groundwater contaminant migration from the site. Hence, cap effectiveness with respect to reduced groundwater contaminant migration is evaluated using groundwater data in this report. Based on the available data at the Y-12 capped areas, evaluation of cap effectiveness includes studying water level and chemical variability in nearby monitoring wells. Three caps installed during 1989 are selected for evaluation in this report. These caps are located in three significantly different hydrogeologic settings: overlying a karst aquifer (Chestnut Ridge Security Pits [CRSP]), overlying shales located on a hill slope (Oil Landfarm Waste Management Area [OLWMA]), and overlying shales in a valley floor which is a site of convergent groundwater flow (New Hope Pond [NHP]). Presumably, the caps have been effective in minimizing risk of direct contact with the wastes and halting direct rainfall infiltration into the sites over the extent of the capped areas, but no evidence is presented in this report to directly demonstrate this. The caps installed over the three sites appear to have had a minimal effect on groundwater contaminant migration from the respective sites. Following cap construction, no changes in the configuration of the water table were observed. Migration of contaminant plumes occurred at all three sites, apparently without regard to the timing of cap installation.

  10. Fiscal year 1994 well installation program summary report, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1994 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two monitoring wells were installed and one piezometer installation was attempted, but not completed, during the FY 1994 drilling program. In addition, SAIC provided health and safety and geotechnical oversight for two soil borings in support of the Y-12 Underground Storage Tank (UST) Program. All new monitoring wells were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific indicator parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance. All well installation was conducted following industry-standard methods and approved procedures in the Environment Surveillance Procedures Quality Control Program (Energy Systems 1988), the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1986), and Guidelines for Installation of Monitor Wells at the Y-12 Plant (Geraghty and Miller 1985). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Martin Marietta Energy Systems, Inc. (Energy Systems) guidelines. All of the monitoring wells installed during FY 1994 at the Y-12 Plant were of screened construction

  11. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT Y-12), the Y-12 management and operations (M and O) subcontractor for DOE.

  12. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  13. Calendar Year 2007 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of

  14. Calendar Year 2008 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  15. Calendar Year 2010 Groundwater Monitoring Report, U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2011-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2010 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2010 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2010 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  16. Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC,

    2012-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures

  17. Interpretation of well hydrographs in the karstic Maynardville Limestone at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.; McMaster, B.W.

    1996-06-01

    The Maynardville Limestone in Oak Ridge, Tennessee underlies the southern portion of Bear Creek Valley (BCV), and is considered to be the primary pathway for groundwater leaving the Y-12 Plant boundaries. Sixty-seven percent of all wells drilled into the Maynardville Limestone have intersected at least one cavity, suggesting karst features may be encountered throughout the shallow (< 200 ft) portions of the Limestone. Because waste facilities at the Y-12 Plant are located adjacent to the Maynardville Limestone, contaminants could enter the karst aquifer and be transported in the conduit system. As part of an overall hydrologic characterization effort of this karst aquifer, 41 wells in the Maynardville Limestone were instrumented with pressure transducers to monitor water level changes (hydrographs) associated with rain events. Wells at depths between approximately 20 and 750 ft were monitored over the course of at least two storms in order that variations with depth could be identified. The wells selected were not exclusively completed in cavities but were selected to include the broad range of hydrologic conditions present in the Maynardville Limestone. Cavities, fractures and diffuse flow zones were measured at a variety of depths. The water level data from the storms are used to identify areas of quickflow versus slower flowing water zones. The data are also used to estimate specific yields and continuum transmissitives in different portions of the aquifer

  18. Oak Ridge Y-12 Plant Emergency Management Hazards Assessment (EMHA) Process

    International Nuclear Information System (INIS)

    Bailiff, E.G.; Bolling, J.D.

    2000-01-01

    This report establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Plant for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provides in this report include methods and requirements for performing the following emergency management activities at Y-12: hazards identification; hazards survey, and hazards assessment

  19. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including

  20. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  1. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee; FINAL

    International Nuclear Information System (INIS)

    None

    2001-01-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee. Prepared under the auspices of the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the text; supplemental information and extensive data tables are provided in Appendix B

  2. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Bear Creek Hydrogeologic Regime (Bear Creek Regime). The Bear Creek Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the sections. Supplemental information and extensive data tables are provided in Appendix B.

  3. Tiger team assessment of the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1990-02-01

    This document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Y-12 Plant in Oak Ridge, Tennessee. The Y-12 Plant Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environmental, Safety, and Health (including Occupational Safety and Health Administration (OSHA) compliance), and Management areas and determines the plant's compliance with applicable federal (including DOE), state, and local regulations and requirements. 4 figs., 12 tabs.

  4. Results of calendar year 1994 monitor well inspection and maintenance program, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    McMaster, B.W.; Jones, S.B.; Sitzler, J.L.

    1995-06-01

    This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December

  5. Results of calendar year 1994 monitor well inspection and maintenance program, Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    McMaster, B.W. [Univ. of Tennessee, Knoxville, TN (United States); Jones, S.B.; Sitzler, J.L. [Oak Ridge National Lab., TN (United States)

    1995-06-01

    This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December.

  6. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  7. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  8. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    International Nuclear Information System (INIS)

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site

  9. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site.

  10. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2010-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  11. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2010-01-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock and Wilcox Technical Services Y-12, LLC (B and W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  12. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex

    2004-03-31

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.

  13. Fiscal Year 1998 Well Installation, Plugging and Abandonment, and Redevelopment summary report Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This report summarizes the well installation, plugging and abandonment, and redevelopment activities conducted during the federal fiscal year (FY) 1998 at the Y-12 Plant, Oak Ridge, Tennessee. Five new groundwater monitoring wells were installed at the Y-12 Plant under the FY 1998 drilling program. Two of the wells are located in west Bear Creek Valley, one is in the eastern Y-12 Plant area near Lake Reality, and two are located near the Oil Landfarm Waste Management Area, which were installed by Bechtel Jacobs Company LLC (Bechtel Jacobs) as part of a site characterization activity for the Oak Ridge Reservation (ORR) Disposal Cell. Also, two existing wells were upgraded and nine temporary piezometers were installed to characterize hydrogeologic conditions at the Disposal Cell site. In addition, 40 temporary piezometers were installed in the Boneyard/Bumyard area of Bear Creek Valley by Bechtel Jacobs as part of the accelerated remedial actions conducted by the Environmental Restoration Program. Ten monitoring wells at the Y-12 Plant were decommissioned in FY 1998. Two existing monitoring wells were redeveloped during FY 1998 (of these, GW-732 was redeveloped tsvice). All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures from the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988); the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1992); and the Monitoring Well Installation Plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee (Energy Systems 1997a). Well installation and development of the non-Y-12 Plant GWPP oversight installation projects were conducted using procedures/guidance defined in the following documents: Work Plan for Support to Upper East Fork Poplar Creek East End Volatile Organic Compound Plumes Well Installation Project, Oak Ridge Y-12 Plant, Oak Ridge

  14. Calendar Year 2006 Groundwater Monitoring Report, U.S Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2007-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  15. Design of a particulate-monitoring network for the Y-12 plant

    International Nuclear Information System (INIS)

    Hougland, E.S.; Oakes, T.W.; Underwood, J.N.

    1982-01-01

    An Air Quality Monitoring Network Design (AQMND) with multiple objectives is being developed for the Y-12 Plant production facilities. The objectives are: Y-12 facility surveillance; monitoring the transport of Y-12 generated airborne effluents towards either the Oak Ridge National Laboratory or the developed region of the City of Oak Ridge; and monitoring population exposure in residential areas close to the Y-12 Plant. A two step design process was carried out, using the Air Quality Monitor Network Design Model (AQMND) previously used for the Oak Ridge National Laboratory network. In the first step of the design we used existing air quality monitor locations, subjectively designated locations, and grid intersections as a set of potential monitor sites. The priority sites from the first step (modified to account for terrain and accessibility), and subjectively designated sites, were used as the potential monitor sites for the second step of the process which produced the final design recommendations for the monitor network

  16. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs

  17. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  18. Aqueous mercury treatment technology review for NPDES Outfall 49 Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, J.M.

    1993-04-01

    During 1950 to 1955, Building 9201-2 at the Oak Ridge Y-12 Plant was used to house development facilities for processes that employed elemental mercury to separate lithium isotopes as part of the thermonuclear weapons production operations. As a result of several spills, this building area and several other areas associated with the separation process were contaminated with mercury and became a source of continuing contamination of the Y-12 Plant discharge water to East Fork Poplar Creek (EFPC). Mercury concentrations in the outfalls south of Building 9201-2 have ranged up to 80 ppb, with the highest concentrations being experienced at Outfall 49. As a result, this outfall was chosen as a test site for future mercury treatment technology evaluation and development at the Oak Ridge Y-12 Plant. A literature review and vendor survey has identified several promising materials and technologies that may be applicable to mercury removal at the Outfall 49 site. This document summarizes those findings.

  19. Fiscal year 1996 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, from August 1995 through August 1996. A total of 27 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  20. Progress report on installing DYMCAS in the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Mee, W.T.

    1979-01-01

    A material control and accountability system to assist in detecting diversion of special nuclear materials (SNM) was being considered by the management of the Oak Ridge Y-12 Plant in early 1975. The Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) is the product of these considerations. The evolution of computerized accountability systems for near real-time accounting of SNM will revolutionize the activities for operations and accountability departments in Y-12. The advancement of nondestructive analysis equipment with a capability for real-time input of accounting data is becoming a reality. The progress of installing the DYMCAS in a large plant processing unirradiated enriched uranium is described

  1. Dealing with the chlorinated solvent situation at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1993-01-01

    Recent events regarding health and environmental problems associated with the use of chlorinated solvents have prompted the Oak Ridge Y-12 Plant to investigate substitutes for these materials. Since 1987, the purchase of chlorinated solvents at the Y-12 Plant has been reduced by 92%. This has been accomplished by substituting chlorinated solvent degreasing with ultrasonic aqueous detergent cleaning and by substituting chlorinated solvents with less toxic, environmentally friendly solvents for hand-wiping applications. Extensive studies of cleaning ability, compabitility, and effects on welding, bonding, and painting have been conducted to gain approval for use of these solvents. Toxicity and waste disposal were also assessed for the solvents

  2. Groundwater Protection Program Management Plan For The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2009-09-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP

  3. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S. [and others

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  4. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    International Nuclear Information System (INIS)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions

  5. Position paper Oak Ridge Y-12 Plant storage of uranium in plastics

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1995-07-01

    As a result of the end of the Cold War, the United States nuclear weapon stockpile is being reduced from approximately 20,000 warheads to fewer than 10,000 by the end of the century. The Oak Ridge Y-12 Plant is the Department of Energy (DOE) site charged with the responsibility of providing safe, secure storage for the uranium recovered from these weapons. In addition to weapons material, Y-12 has traditionally processed and stored uranium from nonweapon programs and presumably will continue to do so. The purpose of this document is to evaluate the suitability of plastics for use in the containment of uranium

  6. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation.

  7. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation

  8. The spill prevention, control, and countermeasures (SPCC) plan for the Y-12 Plant. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This spill prevention, control and countermeasures (SPCC) Plan is divided into two volumes. Volume I addresses Y-12`s compliance with regulations pertinent to the content of SPCC Plans. Volume II is the SPCC Hazardous Material Storage Data Base, a detailed tabulation of facility-specific information and data on potential spill sources at the Y-12 Plant. Volume I follows the basic format and subject sequence specified in 40 CFR 112.7. This sequence is prefaced by three additional chapters, including this introduction and brief discussions of the Y-12 Plant`s background/environmental setting and potential spill source categories. Two additional chapters on containers and container storage areas and PCB and PCB storage for disposal facilities are inserted into the required sequence. The following required subjects are covered in this volume: Spill history, site drainage; secondary containment/diversion structures and equipment; contingency plans; notification and spill response procedures; facility drainage; bulk storage tanks; facility transfer operations, pumping, and in-plant processes; transfer stations (facility tank cars/tank tracks); inspections and records; security, and personnel, training, and spill prevention procedures.

  9. Criteria for the safe storage of enriched uranium at the Y-12 Plant

    International Nuclear Information System (INIS)

    Cox, S.O.

    1995-07-01

    Uranium storage practices at US Department of Energy (DOE) facilities have evolved over a period spanning five decades of programmatic work in support of the nuclear deterrent mission. During this period, the Y-12 Plant in Oak Ridge, Tennessee has served as the principal enriched uranium facility for fabrication, chemical processing, metallurgical processing and storage. Recent curtailment of new nuclear weapons production and stockpile reduction has created significant amounts of enriched uranium available as a strategic resource which must be properly and safely stored. This standard specifies criteria associated with the safe storage of enriched uranium at the Y-12 Plant. Because programmatic needs, compliance regulations and desirable materials of construction change with time, it is recommended that these standards be reviewed and amended periodically to ensure that they continue to serve their intended purpose

  10. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface water

    International Nuclear Information System (INIS)

    1995-01-01

    National Pollutant Discharge Elimination System (NPDES) Permit TN0002968, issued April 28, 1995, requires that the Y-12 Plant Radiological Monitoring Plan for surface water be modified (Part 111-H). These modifications shall consist of expanding the plan to include storm water monitoring and an assessment of alpha, beta, and gamma emitters. In addition, a meeting was held with personnel from the Tennessee Department of Environment and Conservation (TDEC) on May 4, 1995. In this meeting, TDEC personnel provided guidance to Y-12 Plant personnel in regard to the contents of the modified plan. This report contains a revised plan incorporating the permit requirements and guidance provided by TDEC personnel. In addition, modifications were made to address future requirements of the new regulation for radiation protection of the public and the environment in regards to surface water monitoring

  11. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  12. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  13. Storm water runoff for the Y-12 Plant and selected parking lots

    International Nuclear Information System (INIS)

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals with establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern

  14. Statistical analysis of nuclear material weighing systems at the Oak Ridge - Y-12 plant

    International Nuclear Information System (INIS)

    Hammer, A.H.

    1980-04-01

    The variation in weight measurements on the electronic scales purchased for the Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) has been characterized and estimated to be more than is acceptable when using the current weighing methods. New weighing procedures have been developed which substantially reduce this variation and bring the weight errors within the Y-12 Plant Nuclear Materials Control and Accountability Department's desired +- 2-g accuracy

  15. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act

  16. The spill prevention, control, and countermeasures (SPCC) plan for the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This spill prevention, control and countermeasures (SPCC) Plan is divided into two volumes. Volume I addresses Y-12's compliance with regulations pertinent to the content of SPCC Plans. Volume II is the SPCC Hazardous Material Storage Data Base, a detailed tabulation of facility-specific information and data on potential spill sources at the Y-12 Plant. Volume I follows the basic format and subject sequence specified in 40 CFR 112.7. This sequence is prefaced by three additional chapters, including this introduction and brief discussions of the Y-12 Plant's background/environmental setting and potential spill source categories. Two additional chapters on containers and container storage areas and PCB and PCB storage for disposal facilities are inserted into the required sequence. The following required subjects are covered in this volume: Spill history, site drainage; secondary containment/diversion structures and equipment; contingency plans; notification and spill response procedures; facility drainage; bulk storage tanks; facility transfer operations, pumping, and in-plant processes; transfer stations (facility tank cars/tank tracks); inspections and records; security, and personnel, training, and spill prevention procedures

  17. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act.

  18. Technical safety appraisal of buildings 9206 and 9212, Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    1989-03-01

    This report covers the results of a Safety Performance Review of the Y-12 Plant conducted during the period July 25 through August 3, 1988. A Safety Performance Review is a followup to assess changes in performance since the 1986 Technical Safety Appraisal (TSA). This review is patterned after a TSA and covered the overall safety performance at Y-12, evaluating progress to date against standards of accepted practice. The review included coverage of actions taken in response to recommendations in the TSA conducted in July--August 1986. Remaining issues were identified through an assessment of safety program deficiencies and their root causes. For each of the 14 safety-related functional areas at the Y-12 Plant, results of this review are listed in Section V. These results include a discussion, conclusions, and any new safety concerns for each program. Appendix A contains a description of the system for categorizing concerns, and the concerns are summarily tabulated in Appendix B for all programs. Appendix C describes the contractor's response and current status of each of the 59 recommendations contained in the 1986 TSA

  19. Near real-time accountability system at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Combs, S.W.

    1985-05-01

    The Oak Ridge Y-12 Plant maintains a nuclear materials control and accountability system on a computerized network identified as DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). This near real-time system was initiated in 1976 and brought on line as the offical accountability system at Y-12 in April 1982. The system was designed to assist in the detection of diversion of special nuclear material and to provide timely and accurate accountability data for both routine and emergency inventory activities. In the approximately two and one-half years of on-line operation, the system has functioned quite satisfactorily in response to both routine and non-routine situations. The system remains dynamic in the sense that it is still being modified and upgraded to improve its response capability to the ever-evolving set of safeguards scenarios. This paper will discuss the development, operation, and future of the DYMCAS. 4 refs

  20. Environmental assessment for the Plating Shop Replacement, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-03-01

    The existing of Y-12 Plant Plating Shop provides vital support functions for the US Department of Energy (DOE) Defense Programs operations. In addition to weapon component plating, the facility performs other plating services to support existing operations for the Y-12 Plant, other DOE facilities, and other federal agencies. In addition, the facility would also provide essential deplating services for weapons reclamation and teardown. The existing Y-12 Plant Plating Shop is presently located in a structure which is rapidly deteriorating and obsolete. The existing building structure was originally designed to house a steam plant, not chemical plating operations. As such, vapors from plating operations have deteriorated the structure to a point where a new facility is needed for continued safe operations. The potential environmental impacts of the proposed action was anticipated to be minimal and would affect no environmentally sensitive areas. Some short-term construction- and demolition-related effects would occur in an already highly industrialized setting. These include temporarily disturbing 72,000 square feet of land for the new plating shop and related site preparation activities, constructing a permanent building on part of the area, and using 80 construction personnel over a period of 18 months for site preparation and construction. Demolition effects vary depending on the environmentally suitable option selected, but they could involve as much as 262 cubic yards of concrete rubble and approximately 1600 cubic yards of soil disposed as waste. Either 1600 cubic yards of fresh soil or 1850 yards of clay and fresh soil could be required. Soil erosion would be minimal. Approximately 20 construction personnel would be involved for 12 months in demolition activities

  1. Technical basis for the internal dosimetry program at the Y-12 Plant

    International Nuclear Information System (INIS)

    Ashley, J.C.; Barber, J.M.; Snapp, L.M.; Turner, J.E.

    1992-01-01

    Since the beginning of plant operations. almost all work with radioactive materials has involved isotopes associated with uranium, enriched or depleted in U 235 . While limited quantities of isotopes of elements other than uranium are present, workplace monitoring and precess knowledge have established that internal exposure from these other isotopes is insignificant in comparison with uranium. While the changing plant mission may necessitate the consideration of internal exposure from other isotopes at some point in time, only enriched and depleted uranium will be considered in this basis document. The portions of the internal dosimetry technical basis which may be unique to the Y-12 Plant is considered in this manual. This manual presents the technical basis of the routine in vivo and in vitro bioassay programs including choice of frequency, participant selection criteria, and action level guidelines. Protocols for special bioassay will be presented in the chapters which described the basis for intake, uptake, and dam assessment. A discussion of the factors which led to the need to develop a special biokinetic model for uranium at the Y-12 Plant, as well as a description of the model's basic parameters, are included in this document

  2. Post-closure permit application for the Kerr Hollow Quarry at the Y-12 plant

    International Nuclear Information System (INIS)

    1995-06-01

    The Kerr Hollow Quarry (KHQ) is located on U.S. Department of Energy (DOE) property at the Y-12 Plant, Oak Ridge, Tennessee. The Oak Ridge Y-12 Plant was built by the U.S. Army Corps of Engineers in 1943 as part of the Manhattan Project. Until 1992, the primary mission of the Y-12 Plant was the production and fabrication of nuclear weapons components. Activities associated with these functions included production of lithium compounds, recovery of enriched uranium from scrap material, and fabrication of uranium and other materials into finished parts for assemblies. The Kerr Hollow Quarry was used for waste disposal of a variety of materials including water-reactive and shock-sensitive chemicals and compressed gas cylinders. These materials were packaged in various containers and sank under the water in the quarry due to their great weight. Disposal activities were terminated in November, 1988 due to a determination by the Tennessee Department of Environment and Conservation that the quarry was subject to regulations under the Resource Conservation and Recovery Act of 1993. Methods of closure for the quarry were reviewed, and actions were initiated to close the quarry in accordance with closure requirements for interim status surface impoundments specified in Tennessee Rules 1200-1-11-.05(7) and 1200-1-11-.05(11). As part of these actions, efforts were made to characterize the physical and chemical nature of wastes that had been disposed of in the quarry, and to remove any containers or debris that were put into the quarry during waste disposal activities. Closure certification reports (Fraser et al. 1993 and Dames and Moore 1993) document closure activities in detail. This report contains the post-closure permit application for the Kerr Hollow Quarry site

  3. Chemical characteristics of waters in Karst Formations at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.

    1994-11-01

    Several waste disposal sites are located adjacent to or on a karst aquifer composed of the Cambrian Maynardville Limestone (Cmn) and the Cambrian Copper Ridge Dolomite (Ccr) at the U.S. Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, TN. Highly variable chemical characteristics (i.e., hardness) can indicate that the portion of the aquifer tapped by a particular well is subject to a significant quick-flow component where recharge to the system is rapid and water levels and water quality change rapidly in response to precipitation events. Water zones in wells at the Y-12 Plant that exhibit quick-flow behavior (i.e., high hydraulic conductivity) are identified based on their geochemical characteristics and variability in geochemical parameters, and observations made during drilling of the wells. The chemical data used in this study consist of between one and 20 chemical analyses for each of 102 wells and multipart monitoring zones. Of these 102 water zones, 10 were consistently undersaturated with respect to calcite suggesting active dissolution. Repeat sampling of water zones shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 water zones. Twelve of the zones had partial pressure of CO 2 near atmospheric values suggesting limited interaction between recharge waters and the gases and solids in the vadose zone and aquifer, and hence, relatively short residence times. The preliminary data suggest that the Cmn is composed of a complicated network of interconnected, perhaps anastomosing, cavities. The degree of interconnection between the identified cavities is yet to be determined, although it is expected that there is a significant vertical and lateral interconnection between the cavities located at shallow depths in the Cnm throughout Bear Creek Valley and the Y-12 Plant area

  4. Post-closure permit application for the Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant

    International Nuclear Information System (INIS)

    Greer, J.K. Jr.; Kimbrough, C.W.

    1989-01-01

    This report contains information related to the closure and post closure of the Chestnut Ridge Sediment Disposal Basin of the Y-12 plant. Information concerning the background of the basin, geology, hydrology, and analysis of the sediments is included

  5. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene

  6. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

  7. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G

  8. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  9. Routine environmental audit of the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This report documents the results of the routine environmental audit of the Oak Ridge Y-12 Plant (Y-12 Plant), Anderson County, Tennessee. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), State of Tennessee regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted August 22-September 2, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.1 B, open-quotes Environment, Safety, and Health Appraisal Program,close quotes establishes the mission of EH-24 to provide comprehensive, independent oversight of DOE environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of DOE's environmental programs within line organizations, and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements

  10. Routine environmental audit of the Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report documents the results of the routine environmental audit of the Oak Ridge Y-12 Plant (Y-12 Plant), Anderson County, Tennessee. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), State of Tennessee regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted August 22-September 2, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.1 B, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} establishes the mission of EH-24 to provide comprehensive, independent oversight of DOE environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of DOE`s environmental programs within line organizations, and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  11. Phase 2 focused feasibility study report for the reduction of mercury in plant effluent project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    The purpose of this focused feasibility study (FS) is to review the alternatives that have been evaluated under the Reduction of Mercury in Plant Effluent scoping efforts and provide justification for the recommended alternative. The chosen option from this study will be executed to meet the mercury-specific requirements of the recently negotiated National Pollutant Discharge Elimination System (NPDES) Permit for the Oak Ridge Y-12 Plant. Four previous ''mercury use'' buildings at the Y-12 Plant have been identified as primary contributors to these discharges and are scheduled to undergo upgrades to mitigate them as sources. They are 9201-2, 9201-4, 9201-5, and 9204-4. These buildings contain mercury-contaminated pipes and sumps that discharge to EFPC. The current requirements for limiting mercury discharges to EFPC are defined in the draft Y-12 Plant NPDES Permit, which is expected to become effective in July 1994. The main requirement related to mercury in the permit is to reduce the downstream mercury concentration to 5 g/day or less. Three basic options are considered and estimated in this study, including treatment at the building sources with local units (∼$3.8 million); a combination of local treatment and centralized treatment at the Central Pollution Control Facility (∼$6.6--8.9 million); and hydraulic control of the groundwater and/or in situ soil treatment (∼$120 million). As negotiated under the NPDES Permit, an ''interim'' local unit, utilizing carbon adsorption, is being placed in operation in the 9201-2 building by July 1994. Since the major uncertainties associated with meeting the NPDES permit discharge requirements for mercury are flow rates and treatment efficiency, the 9201-2 unit will provide within 6 months the data necessary to optimize a treatment design

  12. Experimental bypass of Lake Reality, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-10-01

    Studies conducted by the Y-12 Reduction of Mercury in Plant Effluent (RMPE) Program and Y-12 Biological Monitoring and Abatement Program (BMAP) in 1995 and 1996 (Y/ER-251, Y/ER-277) identified concerns regarding Lake Reality's effect on the transport and transformation of mercury in East Fork Poplar Creek (EFPC). The pond appeared to have two potentially adverse effects on mercury transport. First, it acted as a biochemical reactor, converting inorganic mercury in inflowing water to methylmercury, a more toxic substance with extremely high bioaccumulation potential in aquatic environments. Second, the pond appeared to trap mercury associated with suspended particulates during periods of stormflow, and slowly released that mercury via the export of resuspended particles during periods of baseflow. The net effect was to raise the day-to-day exposure of aquatic life to mercury in the stream downstream from the pond, and add to the calculated mercury loading of the stream under baseflow conditions. Scientific investigations thus indicated that diversion of the flow of EFPC around Lake Reality had the potential to reduce time-averaged concentrations of methylmercury and total mercury in the creek below its discharge, but that such diversion might also interfere with possible beneficial effects of the retention pond. Therefore, an experimental bypass of the pond was undertaken in late 1996 to evaluate the consequences of such an action before embarking on a more permanent change

  13. RCRA closure of eight land-based units at the Y-12 plant

    International Nuclear Information System (INIS)

    Stone, J.E.; Welch, S.H.

    1988-01-01

    Eight land-based hazardous waste management units at the Oak Ridge Y-12 Plant are being closed under an integrated multi-year program. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. These units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. The closure of these sites will be funded by a new Department of Energy budget category, the Environmental Restoration Budget Category (ERBC), which is intended to provide greater flexibility in the response to closure and remedial activities. A major project, Closure and Post-Closure Activities (CAPCA), has been identified for ERBC funding to close and remediate the land units in accordance with RCRA requirements. Establishing the scope of this program has required the development of risk assessments and the preparation of an integrated schedule

  14. Single parameter controls for nuclear criticality safety at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Baker, J.S.; Peek, W.M.

    1995-01-01

    At the Oak Ridge Y-12 Plant, there are numerous situations in which nuclear criticality safety must be assured and subcriticality demonstrated by some method other than the straightforward use of the double contingency principle. Some cases are cited, and the criticality safety evaluation of contaminated combustible waste collectors is considered in detail. The criticality safety evaluation for combustible collectors is based on applying one very good control to the one controllable parameter. Safety can only be defended when the contingency of excess density is limited to a credible value based on process knowledge. No reasonable single failure is found that will result in a criticality accident. The historically accepted viewpoint is that this meets double contingency, even though there are not two independent controls on the single parameter of interest

  15. A RCRA clean closure of a unique site - Kerr Hollow quarry at the Y-12 Plant

    International Nuclear Information System (INIS)

    Stone, J.E.; Yemington, C.

    1991-01-01

    An abandoned rock quarry, Kerr Hollow Quarry (KHQ), near the DOE Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, was used from 1951-1988 as a site to treat RCRA wastes which were reactive, corrosive, or ignitable and which posed major concerns for personnel safety. The wastes were generated from operations at the Y-12 Plant and Oak Ridge National Laboratory and were previously treated by allowing the wastes to react with the water in KHQ. When closure of the site was required by the RCRA regulations, a closure method was selected to allow for clean closure of the quarry without treatment or removal of the water in KHQ. The method proposed to and approved by the Tennessee Department of Health and Environment (TDHE) was one of surveying the containers in the quarry by a submersible Remotely Operated Vehicle (ROV) using sonar and visually inspecting the containers by camera to confirm that all containers are breached and empty. Any container found intact would be breached to allow the contents to react with water and form non-hazardous residue. The progress of this unique type of closure is presented along with a summary of the problems encountered, planning activities, equipment utilized and other information about the closure. All work was done with remotely operated equipment. This work is being performed by Sonsub, Inc. This closure project showed the practicality and cost benefits of telerobotic systems for work on hazardous waste sites. In addition to the intangible benefit of reduced exposure of workers, insurance costs are much lower and efficiency is higher. Daily start-up time is reduced since there is no need to don protective suits or other gear. Productivity is higher since personnel work only in clean areas where they are not hampered by protective gear. Cleanup time at shift end is minimized since the remote equipment does not leave the hazardous area and personnel need not go through decontamination

  16. Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R. [Oak Ridge National Lab., TN (United States); Phipps, T.L. [CKY, Inc. (United States)

    1998-04-01

    Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan.

  17. Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R.; Phipps, T.L.

    1998-04-01

    Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan

  18. Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments

  19. Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments.

  20. The nuclear materials control and accountability internal audit program at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Lewis, T.J.

    1987-01-01

    The internal audit program of the Nuclear Material Control and Accountability (NMCandA) Department at the Oak Ridge Y-12 Plant, through inventory-verification audits, inventory-observation audits, procedures audits, and records audits, evaluates the adequacy of material accounting and control systems and procedures throughout the Plant; appraises and verifies the accuracy and reliability of accountability records and reports; assures the consistent application of generally accepted accounting principles in accounting for nuclear materials; and assures compliance with the Department of Energy (DOE) and NMCandA procedures and requirements. The internal audit program has significantly strengthened the control and accountability of nuclear materials through improving the system of internal control over nuclear materials, increasing the awareness of materials control and accountability concerns within the Plant's material balance areas (MBAs), strengthening the existence of audit trails within the overall accounting system for nuclear materials, improving the accuracy and timeliness of data submitted to the nuclear materials accountability system, auditing the NMCandA accounting system to ensure its accuracy and reliability, and ensuring that all components of that system (general ledgers, subsidiary ledgers, inventory listings, etc.) are in agreement among themselves

  1. A successful environmental remediation program closure and post-closure activities (CAPCA) Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bowers, M.H.

    1991-01-01

    The Resource Conservation and Recovery Act (RCRA) closure of eleven waste management units at the Department of Energy's (DOE's) Oak Ridge Y-12 Plant is nearing completion. The Oak Ridge Y-12 Plant is managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy under Contract DE-AC05-84OR21400. The Closure and Post Closure Program (CAPCA) has been accomplished on an accelerated schedule through the efforts of a dedicated team from several organizations. This paper relates experience gained from the program that can be of benefit on other DOE environmental remediation projects. Technical design and construction aspects, as well as project management considerations, are discussed

  2. Computer aided process planning at the Oak Ridge Y-12 plant: a pilot project

    International Nuclear Information System (INIS)

    Hewgley, R.E. Jr.; Prewett, H.P. Jr.

    1979-01-01

    In 1976, a formal needs analysis was conducted in one of the Fabrication Division Shops of all activities from the receipt of an order through final machining. The results indicated deficiencies in process planning activities involving special production work. A pilot program was organized to investigate the benefits of emerging CAM technology and application of GT concepts for machining operations at the Y-12 Plant. The objective of the CAPP Project was to provide computer-assisted process planning for special production machining in th shop. The CAPP team was charged with the specific goal of demonstrating computer-aided process planning within a four-year term. The CAPP charter included a plan with intermediate measurable milestones for achieving its mission. In three years, the CAPP project demonstrated benefits to process planning. A capability to retrieve historical records for similar parts, to review accurately the status of all staff assignments, and to generate detailed machining procedures definitely can impact the way in which a machine shop prepared for new orders. The real payoff is in the hardcopy output (N/C programs, studies, sequence plans, and procedures). 4 figures,

  3. Assessment of flood potential for eight buildings at the Y-12 Plant

    International Nuclear Information System (INIS)

    Eiffe, M.A.

    1997-01-01

    In 1995, P-SQUARED Technologies, Inc., (P2T) was tasked with defining the flood potential for seven buildings at the Y-12 Plant (Buildings 9204-2, 9204-2E, 9206, 9212, 9215, 9720-5, and 9995) in the assumed event of a design storm with a recurrence interval of 10,000 years. At the conclusion of the study, P2T prepared and submitted a report summarizing the flood potential for those seven buildings. In November of 1997, P2T was tasked with (1) defining flood potential for the same seven buildings listed above for design storms with recurrence intervals of 500 years and 2000 years, and (2) defining flood potential for Building 9720-38 for design storms with recurrence intervals of 500 years, 2000 years, and 10,000 years. This report presents the results of the analyses conducted to define flood potential at these locations and for these recurrence intervals. None of the buildings investigated are completely safe from flooding during the storms considered. Runoff from rooftops may cause limited flooding in any areas where water is allowed to pond next to doors, vents, windows, or other openings. Flooding depths inside buildings in these areas should be limited to 1 ft or less. Buildings with openings below the grade of adjacent roads are also subject to flooding, with flood levels dependent upon the topography in that location

  4. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  5. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance

  6. RCRA land unit closures at the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; Delozier, M.F.P.; Manrod, W.E.

    1987-01-01

    Eight land-based hazardous waste management units at the Y-12 Plant are being closed under an integrated multi-year program. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. These units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. The closure of these sites will be funded by a new Department of Energy budget category, the Environmental Restoration Budget Category (ERBC), which is intended to provide greater flexibility in the response to closure and remedial activities. A major project, Closure and Post-Closure Activities (CAPCA), has been identified for ERBC funding to close and remediate the land units in accordance with RCRA requirements. Establishing the scope of this program has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA program include the development of risk assessments and the preparation of an integrated schedule

  7. Planning for closures of hazardous waste land disposal units at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; DeLozier, M.F.P.; Manrod, W.E.

    1988-01-01

    Eight hazardous waste land disposal units at the Oak Ridge Y-12 Plant are being closed in accordance with the Resource Conservation and Recovery Act (RCRA) under an integrated multi-year program. The units, some of which date back to the early 1950s and include five surface impoundments, two landfills and a land treatment unit, have been used for the management of a variety of types of hazardous wastes. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. The units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. Closure of all eight units must be initiated by November 8, 1988. Funding for the eight closures is being provided by a new Department of Energy budget category, the environmental Restoration Budget Category (ERBC), which is intended to allow for a more rapid response to environmental problems and regulatory requirements. A major project, Closure and Post-Closure Activities (CAPCA) has been identified for ERBC funding to close the land disposal units in accordance with RCRA requirements. Establishing the project scope has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA project include risk assessments and the preparation of an integrated project schedule

  8. Analysis of proposed postclosure alternatives for the Oil Landfarm Waste Management Area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Walter, K.A.; White, R.K.; Southworth, G.R.; O'Donnell, F.R.; Travis, C.C.; White, D.A.

    1990-12-01

    The Oil Landfarm Waste Management Area (WMA) is located in Bear Creek Valley about 1 mile southwest of the Y-12 Plant on the US Department of Energy (DOE) Oak Ridge Reservation. From 1943 until 1982 several types of solid and liquid wastes were deposited in the five disposal areas that constitute the Oil Landfarm WMA. The disposal areas are: the OH Landfarm disposal plots, the Boneyard, the Burnyard, the Chemical Storage Area, and the Sanitary Landfill. The Oil Landfarm disposal plots were used from 1973 until 1982 for the biological degradation of oily wastes.The Boneyard was active 1943 to 1970 and received a great variety of wastes for burning or burial including organics, metals, acids, and debris. The Burnyard operated from 1943 to 1968 and. consisted of unlined trenches in which various wastes from plant operations were ignited with solvents or oils and burned. The Chemical Storage Area operated from 1975 to 1981 for the disposal of wastes that posed safety hazards; for example, reactive, corrosive, and explosive chemicals. The Sanitary Landfill was used from 1968 to 1980 for the burial of solid wastes and may contain toxic chemicals and contaminated material. Since 1982 the Y-12 Plant has sampled groundwater, surface water, soils and sediments in Bear Creek Valley. Data from this sampling program show that at the Oil Landfarm WMA groundwater is the most seriously contaminated medium. The chief contaminants of groundwater are the volatile organic compounds (VOCs). This study assesses the risks to human health and the environment posed by the Oil Landfarm WMA under three remedial scenarios

  9. Reduction of mercury in plant effluents data management implementation plan FY 1998 Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Fischer, K.N.; Forsberg, V.M.

    1998-01-01

    The purpose of the Data Management Implementation Plan (DMIP) is to document the requirements and responsibilities for managing, using, and archiving data used for the Reduction of Mercury in Plant Effluents (RMPE) project. The DMIP was created for the RMPE project in accordance with the guidance given in Environmental Data Management Implementation Handbook for the Environmental Restoration Program (ES/ER/TM- 88/R 1) and in ''Developing, implementing, and Maintaining Data Management Implementation Plans'' (EMEF/ER-P2216, Rev. 0). This document reflects the state of the RMPE project and the types of environmental monitoring planned as they existed through March 16, 1998. The scope of this document is the management of the RMPE project's environmental information, which includes electronic or hard copy records describing environmental processes or conditions. The RMPE program was established as a best management practice to address sources in the Y-12 Plant that contribute mercury to plant effluents being discharged to Upper East Fork Poplar Creek. The strategy is multifaceted: reroute clean water through clean conduits; clean, reline, and/or replace mercury-contaminated water conduits; eliminate or reduce accumulations of mercury in tanks and sumps; isolate inaccessible mercury from contact with water; and install treatment capability for streams where the source(s) cannot be eliminated or mitigated to acceptable levels. The RMPE project database consists of data from surface water monitoring and sediment sampling at locations of interest within the Y-12 Plant. This DMIP describes the types and sources of RMPE data, other data systems relevant to the RMPE project, the different data management interactions and flow of information involved in processing RMPE data, and the systems used in data management

  10. Technical review of the Oak Ridge Y-12 Plant non-radiological effluent and environmental monitoring program. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Based on information reviewed in July 1985, Y-12 has some very strong areas such as chain-of-custody forms and compliance work on the new NPDES permit. The recommendations are divided into eighteen categories. Each recommendation is also divided into major or minor categories as an indication of the resources estimated to complete this recommendation. The areas needing the most improvement are air monitoring, QA/QC, field procedures, documentation, groundwater sampling, spill prevention control and countermeasures plan and biological monitoring. Recommendations are tabulated by category and by priority.

  11. Subsurface-controlled geological maps for the Y-12 plant and adjacent areas of Bear Creek Valley

    International Nuclear Information System (INIS)

    King, H.L.; Haase, C.S.

    1987-04-01

    Bear Creek Valley in the vicinity of the US Department of Energy Y-12 Plant is underlain by Middle to Late Cambrian strata of the Conasauga Group. The group consists of interbedded limestones, shales, mudstones, and siltstones, and it can be divided into six discrete formations. Bear Creek Valley is bordered on the north by Pine Ridge, which is underlain by sandstones, siltstones, and shales of the Rome Formation, and on the south by Chestnut Ridge, which is underlain by dolostones of the Knox Group. Subsurface-controlled geological maps illustrating stratigraphic data and formational contacts for the formations within the Conasauga Group have been prepared for the Y-12 Plant vicinity and selected areas in Bear Creek Valley westward from the plant. The maps are consistent with all available surface and subsurface data for areas where sufficient data exist to make map construction feasible. 13 refs

  12. Sampling results, DNAPL Monitoring Well GW-730, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, First and Second Quarter, FY 1995

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this document is to provide initial groundwater sampling results form multiport wells constructed around the Y-12 Burial Grounds. These wells were constructed in response to discovery of free phase DNAPL at the Burial Grounds. Results in this report provide contaminate monitoring information and, where appropriate, information for groundwater reference concentrations

  13. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality.

  14. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality

  15. Waste management plan for Phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Plant (WMP) for the Bear Creek Valley Treatability Study addresses waste management requirements for the Oak Ridge Y-12 Plant. The study is intended to produce treatment performance data required to design a treatment system for contaminated groundwater. The treatability study will consist of an evaluation of various treatment media including: continuous column tests, with up to six columns being employed to evaluate the performance of different media in the treatment of groundwater; an evaluation of the denitrifying capacity and metal uptake capacity of a wetland system; and the long-term denitrifying capacity and metal uptake capacity of algal mats. The Sampling and Analysis Plan (SAP) covers the project description, technical objectives, procedures, and planned work activities in greater detail. The Health and Safety Plan (HASP) addresses the health and safety concerns and requirements for the proposed sampling activities. This WMP identifies the types and estimates the volumes of various wastes that may be generated during the proposed treatability studies. The approach to managing waste outlined in this WMP emphasizes: (1) management of the waste generated in a manner that is protective of human health and the environment; (2) minimization of waste generation, thereby reducing unnecessary costs and usage of limited permitted storage and disposal capacities; and (3) compliance with federal, state, and site requirements. Prior sampling at the site has detected organic, radioactive, and metals contamination in groundwater and surface water. Proposed field operations are not expected to result in worker exposures greater than applicable exposure or action limits

  16. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  17. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan

  18. Mercury abatement report on the US Department of Energy Oak Ridge Y- 12 Plant for fiscal year 1995

    International Nuclear Information System (INIS)

    1995-11-01

    This Annual Mercury Abatement Report for fiscal year 1995 summarizes the status of activities and the levels of mercury contamination in East Fork Poplar Creek (EFPC) resulting from activities at the US Department of Energy's Oak Ridge Y-12 Plant. The report outlines the status of the on-going project activities in support of project compliance, the results of the ongoing sampling and characterization efforts, the biological monitoring activities, and our conclusions relative to the progress in demonstrating compliance with the National Pollutant Discharge Elimination (NPDES) permit. Overall, the pace of mercury activities at the Y-12 Plant is ahead of the compliance schedules in the NPDES permit and new and exciting opportunities are being recognized for achieving additional mercury reductions. These opportunities were not felt to be achievable several years ago

  19. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section

  20. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections

  1. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  2. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Adams, S.M. [Oak Ridge National Lab., TN (United States); Black, M.C. [Oklahoma State Univ., Stillwater, OK (United States)] [and others

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  3. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate

  4. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Black, M.C. (Oklahoma State Univ., Stillwater, OK (United States)); Gatz, A.J. Jr. (Ohio Wesleyan Univ., Delaware, OH (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  5. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    Energy Technology Data Exchange (ETDEWEB)

    Wrapp, John [UCOR, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Julius, Jonathon [DOE Oak Ridge (United States); Browning, Debbie [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN, 37932 (United States); Kane, Michael [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Whaley, Katherine [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Estes, Chuck [EnergySolutions, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Witzeman, John [RSI, P.O. Box 4699, Oak Ridge, TN, 37831 (United States)

    2013-07-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  6. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    International Nuclear Information System (INIS)

    Wrapp, John; Julius, Jonathon; Browning, Debbie; Kane, Michael; Whaley, Katherine; Estes, Chuck; Witzeman, John

    2013-01-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  7. Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ''site,'' data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

  8. Best management practices plan for Phase II of the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Oak Ridge Y-12 Plant is currently under a Federal Agreement to define soil and groundwater contamination and develop remedies to protect human health and the environment. The western end of the site is known to have a former nitric acid disposal pit that has been remediated and capped. Remedial investigation data indicate this pit was a source of nitrate, uranium, technetium, and other metals contamination in groundwater. The downgradient receptor of this contamination includes Bear Creek and its tributaries. A feasibility study is under way to develop a remedy to prevent further contaminant migration to this receptor. To support the feasibility study, the treatability study is being completed to examine groundwater treatment at the S-3 site. This document serves as the top-level command medium for Phase II of the Bear Creek Valley (BCV) Treatability Study and, as such, will be the primary resource for management and implementation of field activities. Many of the details and standard operating procedures referred to herein can be found in other Lockheed Martin Energy Systems, Inc. (Energy Systems), documents. Several supporting documents specific to this project are also cited. These include the Sampling and Analysis Plan (SAP), the Health and Safety Plan (HASP), and the Waste Management Plan (WMP)

  9. Mercury abatement report on the U.S. Department of Energy's Oak Ridge Y-12 Plant. Fiscal year 1996

    International Nuclear Information System (INIS)

    1996-11-01

    This report summarizes the status of activities and the levels of mercury contamination in Upper East Fork Poplar Creek (UEFPC) resulting from activities at the Department of Energy's (DOE's) Y-12 Facility during fiscal year 1996 (FY96). The report outlines the status of ongoing and new project activities in support of project goals, the results of sampling and characterization efforts conducted during FY 1996, biological monitoring activities, and our conclusions relative to the progress in demonstrating compliance with the National Pollutant Discharge Elimination (NPDES) permit. Although the pace of mercury remediation activities at DOE's Y-12 Plant is ahead of the compliance schedule established in the NPDES permit, the resulting level of mercury in UEFPC is higher than predicted based on the projects completed. Fortunately, recently recognized opportunities are being pursued for implementation in the next two years to assist in meeting permit requirements

  10. Final report for the Central Mercury Treatment System in Building 9623 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This document discusses the construction of the Central Mercury Treatment System (CMTS) in Building 9623 at the Y-12 Plant, the remediation activities involved, waste generated from the project, and the monitoring schedule of the CMTS. As part of the Reduction of Mercury in Plant Effluent Program, the project treats groundwater contaminated with mercury from Buildings 9201-4, 9201-5, and 9204-4 at the Y-12 Plant to meet National Pollutant Discharge Elimination System (NPDES) Permit limits for discharge to East Fork Poplar Creek. The CMTS, located in Building 9623, will treat water from the sumps of buildings in which mercury was used in operations and which have been shown to be significant contributors to the overall levels of mercury in plant effluents. This project was anticipated when the NPDES Permit was issued, and the contamination limits and frequency of monitoring for the system discharge are detailed in the permit as Outfall 551. This project was performed as an Incentive Task Order and included the advance procurement of the carbon columns, removal of existing equipment in Building 9623, and system installation and checkout. Construction activities for installing the system started in January 1996 after the area in Building 9623 had been cleared of existing, obsolete equipment. The CMTS became operational on November 26, 1996, well ahead of the permit start date of January 1, 1998. The early completion date allows Hg concentrations in EFPC to be evaluated to determine whether further actions are required to meet NPDES permit limits for reduced Hg loading to the creek

  11. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft 2 of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL

  12. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  13. Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-03-01

    The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the ''preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited

  14. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  15. Sampling results, DNAPL monitoring well GW-727, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Quarterly report, 1995

    International Nuclear Information System (INIS)

    1996-05-01

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 feet below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. A major task in the work plan calls for the construction and installation of five multiport wells. This report summarizes purging and sampling activities for one of these multiport wells, GW-727, and presents analytical results for GW- 727. This report summarizes purging and sampling activities for GW-727 and presents analytical results for GW-727

  16. Use of the E. J. Brooks 'Multi-Lok' for material safeguards at the Y- 12 Plant

    International Nuclear Information System (INIS)

    Key, C.D.

    1995-01-01

    The Oak Ridge Y-12 Plant has begun using the E. J. Brooks 'Multi-Lok' as the replacement of the cup seal. The cup seal in previous years of usage has proved to be difficult to apply and verify, along with easily broken during handling. Replacement of the cup seal with the Multi-Lok has resulted in operations satisfaction in ease of application and verification. Inadvertent breakage of the previous fragile seal has been completely eliminated. Cost savings are abundant. The final result is customer satisfaction with optimum product performance

  17. Seismic analysis of Industrial Waste Landfill 4 at Y-12 Plant

    International Nuclear Information System (INIS)

    1995-01-01

    This calculation was to seismically evaluate Landfill IV at Y-12 as required by Tennessee Rule 1200-1-7-04(2) for seismic impact zones. The calculation verifies that the landfill meets the seismic requirements of the Tennessee Division of Solid Waste, ''Earthquake Evaluation Guidance Document.'' The theoretical displacements of 0.17 in. and 0.13 in. for the design basis earthquake are well below the limiting seimsic slope stability design criteria. There is no potential for liquefaction due to absence of chohesionless soils, or for loss or reduction of shear strength for the clays at this site as result of earthquake vibration. The vegetative cover on slopes will most likely be displaced and move during a large seismic event, but this is not considered a serious deficiency because the cover is not involved in the structural stability of the landfill and there would be no release of waste to the environment

  18. Waste management plan for phase II of the Bear Creek Valley Treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    This Waste Management Plan (WMP) for the Bear Creek Valley Treatability Study addresses waste management requirements for the Oak Ridge Y-12 Plant. The study is intended to produce treatment performance data required to design a treatment system for contaminated groundwater. The treatability study will consist of an evaluation of various treatment media including continuous column tests, with up to six columns being employed to evaluate the performance of different media in the treatment of groundwater; an evaluation of the dentrifying capacity and metal uptake capacity of a wetland system; and the long-term dentrifying capacity and metal uptake capacity of algal mats. Additionally, the treatability study involves installation of a trench and incline well to evaluate and assess hydraulic impacts of pumping groundwater. The Sampling and Analysis Plan (SAP) covers the project description, technical objectives, procedures, and planned work activities in greater detail. The Health and Safety Plan (HASP) addresses the health and safety concerns and requirements for the proposed sampling activities. This WMP identifies the types and estimates the volumes of various wastes that may be generated during the proposed treatability studies. The approach to managing waste outlined in this WMP emphasizes the following points: (1) management of the waste generated in a manner that is protective of human health and the environment; (2) minimization of waste generation, thereby reducing unnecessary costs and usage of limited permitted storage and disposal capacities; and (3) compliance with federal, state, and site requirements. Prior sampling at the site has detected organic, radioactive, and metals contamination in groundwater and surface water. Proposed field operations are not expected to result in worker exposures greater than applicable exposure or action limits

  19. Sampling and analysis plan for Phase II of the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that affect ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of environmental and media testing. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, surface water, seeps, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetland. Groundwater, surface water, and seeps will be monitored continuously for field parameters and sampled for analytical parameters during pump tests conducted periodically during the investigation. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment

  20. Remedial investigation work plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.; Clapp, R.B.; Dearstone, K.; Dreier, R.B.; Early, T.O.; Herbes, S.E.; Loar, J.M.; Parr, P.D.; Southworth, G.R.

    1991-07-01

    As part of its response to Resource Conservation and Recovery Act (RCRA), the US Department of Energy had agreed to further investigate contamination of Bear Creek and its floodplain resulting from releases of hazardous waste or hazardous constituents from the Y-12 Plant solid waste management units (SWMU) located in the Bear Creek watershed. That proposed RCRA Facility Investigation has been modified to incorporate the requirements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) into a Remedial Investigation (RI) Plan for Bear Creek. This document is the RI Plan for Bear Creek and its flood-of-record floodplain. The following assumptions were made in the preparation of this RI Plan: (1) That source-area groundwater monitoring will be conducted as a part of the comprehensive groundwater monitoring plan for the Bear Creek Hydrogeologic Regime; and (2) that postclosure activities associated with each SWMU do not explicitly include a comprehensive assessment of surface water, sediment, and floodplain soil contamination in Bear Creek and its tributaries. The RI Plan is thus intended to provide a more comprehensive evaluation of Bear Creek and its floodplain than that provided by the investigative monitoring and risk assessment activities associated with the ten individual SWMUs. RI activities will be carefully coordinated with other monitoring and assessment activities to avoid redundancy and to maximize the utility of data gathered during the investigation. 121 refs., 61 figs., 46 tabs

  1. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen

  2. The Y-12 Plant No Rad-Added Program for off-site shipment of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    Cooper, K.H.; Mattie, B.K.; Williams, J.L.; Jacobs, D.G.; Roberts, K.A.

    1994-01-01

    On May 17, 1991, the US Department of Energy (DOE) issued a directive for DOE operations to cease off-site shipments of non-radioactive hazardous waste pending further clarification and approvals. A DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste was issued in November 1991. In response to these directives, the Waste Management Division of Oak Ridge Y-12 Plant, with assistance from Roy F. Weston, Inc., has developed a No Rad-Added Program to provide small programmatic guidance and a set of procedures, approved by DOE, which will permit hazardous waste to be shipped from the Y-12 Plant to commercial treatment, storage, or disposal facilities after ensuring and certifying that hazardous waste has no radioactivity added as a result of DOE operations. There are serious legal and financial consequences of shipping waste containing radioactivity to an off-site facility not licensed to receive radioactive materials. Therefore, this program is designed with well-defined responsibilities and stringent documentation requirements

  3. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rosensteel.

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2

  4. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    International Nuclear Information System (INIS)

    1995-05-01

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy's (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events

  5. Resource Conservation and Recovery Act (RCRA) general contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Skaggs, B.E.

    1993-11-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures herein can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent's Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement

  6. Resource Conservation and Recovery Act (RCRA) contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-08-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent's Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement

  7. Best management practices plan for Phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The Oak Ridge Y-12 Plant site is currently under a Federal Facilities Agreement to define soil and groundwater contamination and develop remedies to protect human health and the environment. The western end of the site is known to have a former nitric acid disposal pit that has been remediated and capped. Remedial investigation data indicate this pit was a source of nitrate, uranium, technetium, and other metals contamination in groundwater. The downgradient receptor of this contamination includes Bear Creek and its tributaries. A feasibility study is underway to develop a remedy to prevent further contaminant migration to this receptor. To support the feasibility study, a treatability study is being completed to examine groundwater treatment at the S-3 site. This document serves as the top level command medium for Phase II and as such will be the primary resource for management and implementation of field activities. Many of the details and standard operating procedures referred within this document can be found in other Lockheed Martin Energy Systems (Energy Systems) documents. Several supporting documents specific to this project are also cited. These include the Sampling and Analysis Plan (SAP), the Health and Safety Plan (HASP), and the Waste Management Plan (WMP). Section 1 describes the results of Phase I efforts. Section 2 describes the objectives of Phase II. Section 3 provides details of field testing. Section 4 addresses the HASP. Section 5 describes the SAP. Section 6 introduces the WMP. Environmental compliance issues are discussed in Section 7, and sediment and erosion control is addressed in Section 8. Information about the project team is provided in Section 9

  8. Sampling and analysis plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study, and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that impact ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of media testing. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetlands. This plan will be implemented as part of the BCV Phase II Treatability Study Best Management Practices Plan and in conjunction with the BCV Phase II Treatability Study Health and Safety Plan and the BCV Phase II Treatability Study Waste Management Plan

  9. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge

  10. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  11. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments

  12. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.

  13. Removal action work plan for the YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    The US Department of Energy is conducting environmental restoration activities at the Y-12 Plant in Oak Ridge, Tennessee. As part of these efforts, a removal action is planned for the former YS-860 Firing Ranges as described in the Action Memorandum for the project. This removal action work plan (RmAWP) is focused on the former YS-860 Firing Ranges, located outside the primary fenceline at the eastern end of the plant. This RmAWP defines the technical approach, procedures, and requirements for the removal of lead-contaminated soil and site restoration of the former YS-860 Firing Ranges at the Y-12 Plant. This RmAWP describes excavation, verification/confirmatory sampling, and reporting requirements for the project. Lower tier plans associated with the RmAWP, which are submitted as separate stand-alone documents, include a field sampling and analysis plan, a health and safety plan, a quality assurance project plan, a waste management plan, a data management implementation plan, and a best management practices plan. A site evaluation of the YS-86O Firing Ranges conducted in 1996 by Lockheed Martin Energy Systems, Inc., determined that elevated lead levels were present in the Firing Ranges target berm soils. The results of this sampling event form the basis for the removal action recommendation as described in the Action Memorandum for this project. This RmAWP contains a brief history and description of the Former YS-860 Firing Ranges Project, along with the current project schedule and milestones. This RmAWP also provides an overview of the technical requirements of the project, including a summary of the approach for the removal activities. Finally, the RmAWP identifies the regulatory requirements and the appropriate removal action responses to address applicable or relevant and appropriate requirements to achieve the project goals of substantially reducing the risk to human health and the environment

  14. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    1995-01-01

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1

  15. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

  16. Annual summary report on the Decontamination and Decommissioning Program at the Oak Ridge Y-12 Plant for the period ending September 30, 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Y-12 Decontamination and Decommissioning (D ampersand D) Program provides for the ultimate disposition of plant process buildings and their supporting facilities. The overall objective is to enable the Y-12 Plant to meet applicable environmental regulations and Department of Energy (DOE) orders to protect human health and the environment from contaminated facilities through decommissioning activities. This objective is met by providing for the surveillance and maintenance (S ampersand M) of accepted standby or shutdown facilities awaiting decommissioning; planning for decommissioning of these facilities; and implementing a program to accomplish the safe, cost-effective, and orderly disposition of contaminated facilities. The Y-12 D ampersand D Program was organized during FY 1992 to encompass the needs of surplus facilities at the Y-12 Plant. The need existed for a program which would include Weapons Program facilities as well as other facilities used by several programs within the Y-12 Plant. Building 9201-4 (Alpha 4) is the only facility that is formally in the D ampersand D Program. Funding for the work completed in FY 1992 was shared by the Environmental Restoration and Waste Management Program (EW-20) and Weapons Operations (GB-92). This report summarizes the FY 1992 D ampersand D activities associated with Building 9201-4. A section is provided for each task; the tasks include surveillance, routine and special maintenance, safety, and D ampersand D planning

  17. Health and safety plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This Health and Safety Plan (HASP) addresses the health and safety (H&S) concerns and requirements for the Bear Creek Valley (BCV) Treatability Study at the Oak Ridge Y-12 Plant. Samples will be collected from effluent following treatment tests of extraction columns, algal mats, and mature wetlands supplied by surface water locations and existing groundwater monitoring well locations. The project Sampling and Analysis Plan addresses the project description, technical objectives, procedures, and planned work activities in greater detail. It is the responsibility of the project managers, field manager, and site health and safety officer (SHSO) to determine that the requirements of this HASP are sufficiently protective. If it is determined that the requirements of this HASP are not sufficiently protective, a field change order(s) (FCO) will be prepared. FCOs will include a completed job hazard analysis or similar worksheet to ensure complete hazard assessment. FCOs must be approved by the Environmental Management and Enrichment Facilities (EMEF) project manager, EMEF H&S manager, subcontractor project or field manager, and subcontractor H&S representative. As a minimum, FCOs will be prepared if additional tasks will be performed or if contaminant exposure is anticipated.

  18. Sampling results, DNAPL monitoring well GW-790, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, first-third quarter, FY 1995

    International Nuclear Information System (INIS)

    1996-05-01

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 ft. below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. To date, free-phase DNAPL contamination has been encountered in GW-625 (the discovery well), and is suspected to occur in GW-628 and GW-629. In addition, groundwater from GW-117 shows levels of volatile organic compounds suggestive of a dissolved contaminant plume. Results of the preliminary DNAPL investigation are presented in detail, and a work plan for assessment and characterization of the DNAPL is presented. A major task in the work plan calls for the construction and installation of five multipart wells. These wells (GW-726, GW-727, GW-729, GW-730, GW-730 and GW- 790) were constructed and instrumented with multipart components from August, 1991 to April, 1993. Subsequently, purging and sampling activities were started in each well. This report summarizes purging and sampling activities for GW-790 and presents analytical results for GW-790

  19. Health and safety plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This Health and Safety Plan (HASP) addresses the health and safety (H ampersand S) concerns and requirements for the Bear Creek Valley (BCV) Treatability Study at the Oak Ridge Y-12 Plant. Samples will be collected from effluent following treatment tests of extraction columns, algal mats, and mature wetlands supplied by surface water locations and existing groundwater monitoring well locations. The project Sampling and Analysis Plan addresses the project description, technical objectives, procedures, and planned work activities in greater detail. It is the responsibility of the project managers, field manager, and site health and safety officer (SHSO) to determine that the requirements of this HASP are sufficiently protective. If it is determined that the requirements of this HASP are not sufficiently protective, a field change order(s) (FCO) will be prepared. FCOs will include a completed job hazard analysis or similar worksheet to ensure complete hazard assessment. FCOs must be approved by the Environmental Management and Enrichment Facilities (EMEF) project manager, EMEF H ampersand S manager, subcontractor project or field manager, and subcontractor H ampersand S representative. As a minimum, FCOs will be prepared if additional tasks will be performed or if contaminant exposure is anticipated

  20. Resource conversation and recovery act (RCRA) Contingency Plan for interim status or permitted units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    The official mission of the Y-12 Plant is to serve as a manufacturing technology center for key processes such that capabilities are maintained for safe, secure, reliable, and survivable nuclear weapons systems and other applications of national importance. The Y-12 RCRA Contingency Plan will be reviewed and revised if necessary if the facility RCRA operating permits are revised, the plan is inadequate in an emergency, the procedures herein can be improved, the facility's operations change in a manner that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent's Office and the Emergency Preparedness Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste interim status or permitted treatment, storage, or disposal facilities. The 90-day storage areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement

  1. Seismic analysis and testing of clay tile walls at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Fricke, K.E.; Jones, W.D.

    1989-01-01

    The recent DOE 6430.1A General Design Criteria has emphasized the importance of determining the adequacy and, hence, safety of both new and old facilities to natural phenomenon hazards such as earthquakes and high winds. In order to meet the criteria, an existing unreinforced clay time wall, which is an integral part of a new facility being placed in an old building, has been evaluated for resistance to seismic events. Part I of this paper consists of the analytical studies. The facility was mathematically modeled and analyzed using a finite element program. The material properties used in the analysis are based exclusively on data available in the current engineering literature for masonry blocks and walls. The results of the analysis conclude that the wall is adequate to meet the seismic requirements per the new criteria, but the results of the testing program described in Part II will eventually need to be incorporated into the analysis. Part II documents the results of a testing program to obtain material properties of the masonry and verify the values used in the analysis of Part I. The fact that most of the available testing data is on brick and concrete block and that the condition of the walls throughout the plants is suspect led to the testing program. The following tests on clay-tile walls, units, and panels were performed: (1) in-situ mortar joint shear strength of existing 12-inch walls, (2) compression strength, (3) tensile strength, and (4) diagonal tension (shear) strength of panels taken from the existing walls. The test results at this time are fairly inconclusive and have high standard deviations. The testing program is ongoing and is currently being expanded

  2. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent from buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project's cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion

  3. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2 - Neutron Radiation ORAUT-OTIB-0045

    International Nuclear Information System (INIS)

    Kerr, G.D.; Frome, E.L.; Watkins, J.P.; Tankersley, W.G.

    2009-01-01

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  4. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    Energy Technology Data Exchange (ETDEWEB)

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  5. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  6. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes ∼ 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios

  7. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs

  8. Technical implementation in support of the IAEA's remote monitoring field trial at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Corbell, B.H.; Moran, B.W.; Pickett, C.A.; Whitaker, J.M.; Resnik, W.; Landreth, D.

    1996-01-01

    A remote monitoring system (RMS) field trial will be conducted for the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. Remote monitoring technologies are being evaluated to verify their capability to enhance the effectiveness and timeliness of IAEA safeguards in storage facilities while reducing the costs of inspections and burdens on the operator. Phase one of the field trial, which involved proving the satellite transmission of sensor data and safeguards images from a video camera activated by seals and motion sensors installed in the vault, was completed in September 1995. Phase two involves formal testing of the RMS as a tool for use by the IAEA during their tasks of monitoring the storage of nuclear material. The field trial to be completed during early 1997 includes access and item monitoring of nuclear materials in two storage trays. The RMS includes a variety of Sandia, Oak Ridge, and Aquila sensor technologies that provide video monitoring, radiation attribute measurements, and container identification to the on-site data acquisition system (DAS) by way of radio-frequency and Echelon LONWorks networks. The accumulated safeguards information will be transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines

  9. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

  10. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification

  11. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent from buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project`s cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion.

  12. Surveillance and maintenance report on the Alpha-4 Building at the Oak Ridge Y-12 Plant for fiscal year 1995

    International Nuclear Information System (INIS)

    Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.

    1995-12-01

    Part of the Environmental Restoration Division and funded by the Office of Environmental Management (EM-40) Program, the Oak Ridge Y-l2 Plant Decontamination and Decommissioning Program strives to protect human health and the environment and reduce the number of hazardous-material-contaminated facilities by properly managing and dispositioning facilities when they are no longer required to fulfill a site mission. Building 9201-4, known as Alpha-4, is the only facility at the Y-12 Plant under the D and D Program, and it is the D and D Program that provides surveillance and maintenance (S and M) of the facility. Alpha-4 housed uranium enrichment operations from 1945--47. In 1955 a process known as Colex, for column exchange, that involved electrochemical and solvent extraction processes began. These processes required substantial quantities of mercury as a solvent to separate lithium-6 from lithium-7 (in the form of lithium hydroxide). The Colex process was discontinued in 1962, leaving a legacy of process equipment and lines contaminated with mercury and lithium hydroxide. Now in the inactive-shutdown phase, Alpha-4 requires an S and M program that provides for risk mitigation, hazard abatement, and site preparation for subsequent D and D and/or long-term maintenance of the shutdown status of the building. Daily surveillance activities emphasizes structural integrity, leak detection, safeguards, health of personnel, environmental issues, safety conditions, equipment, hazardous materials, mercury monitoring, and cleanup. This report communicates the status of the program plans and specific surveillance and maintenance requirements for Alpha-4

  13. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  14. Phase II confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works

  15. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-18

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

  16. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2) presents background information pertaining to this floodplain investigation.

  17. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  18. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met

  19. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-09-01

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials

  20. Detailed analysis of a RCRA landfill for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of this detailed analysis is to provide a preliminary compilation of data, information, and estimated costs associated with a RCRA landfill alternative for UNC Disposal Site. This is in response to Environmental Protection Agency (EPA) comment No. 6 from their review of a open-quotes Feasibility Study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee.close quotes

  1. Finding of no significant impact: Interim storage of enriched uranium above the maximum historical level at the Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the Proposed Interim Storage of Enriched Uranium Above the Maximum Historical Storage Level at the Y-12 Plant, Oak Ridge, Tennessee (DOE/EA-0929, September, 1994). The EA evaluates the environmental effects of transportation, prestorage processing, and interim storage of bounding quantities of enriched uranium at the Y-12 Plant over a ten-year period. The State of Tennessee and the public participated in public meetings and workshops which were held after a predecisional draft EA was released in February 1994, and after the revised pre-approval EA was issued in September 1994. Comments provided by the State and public have been carefully considered by the Department. As a result of this public process, the Department has determined that the Y-12 Plant-would store no more than 500 metric tons of highly enriched uranium (HEU) and no more than 6 metric tons of low enriched uranium (LEU). The bounding storage quantities analyzed in the pre-approval EA are 500 metric tons of HEU and 7,105.9 metric tons of LEU. Based on-the analyses in the EA, as revised by the attachment to the Finding of No Significant Impact (FONSI), DOE has determined that interim storage of 500 metric tons of HEU and 6 metric tons of LEU at the Y-12 Plant does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement (EIS) is not required and the Department is issuing this FONSI

  2. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19 ampersand D2) presents background information pertaining to this floodplain investigation

  3. Remedial investigation work plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  4. Surveillance and maintenance report on decontamination and decommissioning and remedial action activities at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Fiscal year 1996

    International Nuclear Information System (INIS)

    King, H.L.; Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.; Wayland, G.S.

    1996-12-01

    The Oak Ridge Y-12 Plant Decontamination and Decommissioning (D ampersand D) and Remedial Action (RA) programs are part of the Environmental Restoration (ER) Division and are funded by the Office of Environmental Management (EM-40). Building 9201-4 (known as Alpha-4), three sites located within Building 9201-3 (the Oil Storage Tank, the Molten Salt Reactor Experiment Fuel Handling Facility, and the Coolant Salt Technology Facility), and Building 9419-1 (the Decontamination Facility) are currently the facilities at the Y-12 Plant included in the D ampersand D program. The RA program provides surveillance and maintenance (S ampersand M) and program management of ER sites at the Y-12 Plant, including selected sites listed in Appendix C of the Federal Facilities Agreement (FFA), sites listed in the Hazardous and Solid Waste Amendment (HSWA) permit Solid Waste Management Unit (SWM-U) list, and sites currently closed or undergoing post-closure activities under the Resource Conservation and Recovery Act of 1976 (RCRA) or the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report communicates the status of the program plans and specific S ampersand M activities for the D ampersand D and RA programs

  5. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) section 270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below

  6. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.

  7. Automated instruments for in-line accounting of highly enriched uranium at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Russo, P.A.; Strittmatter, R.B.; Sandford, E.L.; Stephens, M.M.; Brumfield, T.L.; Smith, S.E.; McCullough, E.E.; Jeter, I.W.; Bowers, G.L.

    1985-02-01

    Two automated nondestructive assay instruments developed at Los Alamos in support of nuclear materials accounting needs are currently operating in-line at the Oak Ridge Y-12 facility for recovery of highly enriched uranium (HEU). One instrument provides the HEU inventory in the secondary solvent extraction system, and the other monitors HEU concentration in the secondary intermediate evaporator. Both instruments were installed in December 1982. Operational evaluation of these instruments was a joint effort of Y-12 and Los Alamos personnel. This evaluation included comparison of the solvent extraction system inventories with direct measurements performed on the dumped solution components of the solvent extraction system and comparison of concentration assay results with the external assays of samples withdrawn from the process. The function and design of the instruments and detailed results of the operational evaluation are reported

  8. Y-12 Uranium Exposure Study

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, K.F.; Kerr, G.D.

    1999-08-05

    Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

  9. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc

  10. Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID number-sign 0-010117

    International Nuclear Information System (INIS)

    1994-01-01

    This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility

  11. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  12. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  13. Remedial Investigation Report on the Abandoned Nitric Acid Pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Energy Systems Environmental Restoration Program; Y-12 Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Upper East Fork Poplar Creek Operable Unit 2 consists of the Abandoned Nitric Acid pipeline (ANAP). This pipeline was installed in 1951 to transport liquid wastes {approximately}4800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. During the mid-1980s, sections of the pipeline were removed during various construction projects. A total of 19 locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The 19 samples collected below the pipeline were analyzed by the Oak Ridge Y-12 Plant`s laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. Uranium activities in the soil samples ranged from 0.53 to 13.0 pCi/g for {sup 238}U, from 0.075 to 0.75 pCi/g for {sup 235}U, and from 0.71 to 5.0 pCi/g for {sup 238}U. Maximum total values for lead, chromium, and nickel were 75.1 mg/kg, 56.3 mg/kg, and 53.0 mg/kg, respectively. The maximum nitrate/nitrite value detected was 32.0 mg-N/kg. One sample obtained adjacent to a sewer line contained various organic compounds, at least some of which were tentatively identified as fragrance chemicals commonly associated with soaps and cleaning solutions. The results of the baseline human health risk assessment for the ANAP contaminants of potential concern show no unacceptable risks to human health.

  14. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  15. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities

  16. Waste management plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    This waste management plan defines the procedures for control and management of waste generated as a result of the removal action of the YS-86O Firing Ranges site at the Oak Ridge Y-12 Plant. This document includes plan objectives; remediation activities; key personnel; waste generation activities; and waste treatment, storage, transportation, and disposal. Methods of control and characterization of waste generated as a result of remediation activities will be within the guidelines and procedures outlined herein. ENTECH personnel will make every effort when conducting remediation and decontamination activities to minimize the amount of generated waste

  17. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100 ampersand D3 and Y/ER-53 ampersand D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs

  18. An application of safer for the Upper East Fork Poplar Creek characterization area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lutz, C.T.; Provost, C.A.

    1996-01-01

    The Streamlined Approach for Environmental Restoration (SAFER) has been applied at the US Department of Energy's Y-12 Plant in Oak Ridge, Tennessee. The Y-12 Plant is an operationally and hydrogeologically complex area located within the watershed of Upper East Fork Poplar Creek (UEFPC). The plant has been in operation since 1943 and nearly 175 potentially contaminated sites resulting from past waste management practices have been identified. The need to complete Remedial Investigations (RIs) for the sites in a timely and cost-effective manner has resulted in an approach that considers the entire watershed of UEFPC, which has been designated a open-quotes Characterization Areaclose quotes (CA). This approach emphasizes the watershed rather than individual sites, focuses on key questions and issues, and maximizes the use of existing data. The goal of this approach is to focus work toward the resolution of key questions and decisions necessary to complete the remediation of the CA. An evaluation of the potentially contaminated sites, the development of key questions, and the compilation and analysis of existing data are progressing. A SAFER workshop will be held in 1996, which will allow the project team and stakeholders to discuss the status of the RI, identify additional key questions and issues, and determine the activities necessary to complete the RI. This investigation demonstrates an approach to streamlining the RI process that could be applied successfully to other complex sites

  19. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  20. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site

  1. Hydraulic testing plan for the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatability technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project directly supports the BCV Feasibility Study. Part of the Treatability Study, Phase II Hydraulic Performance Testing, will produce hydraulic and treatment performance data required to design a long-term treatment system. This effort consists of the installation and testing of two groundwater collection systems: a trench in the vicinity of GW-835 and an angled pumping well adjacent to NT-1. Pumping tests and evaluations of gradients under ambient conditions will provide data for full-scale design of treatment systems. In addition to hydraulic performance, in situ treatment chemistry data will be obtained from monitoring wells installed in the reactive media section of the trench. The in situ treatment work is not part of this test plan. This Hydraulic Testing Plan describes the location and installation of the trench and NT-1 wells, the locations and purpose of the monitoring wells, and the procedures for the pumping tests of the trench and NT-1 wells

  2. Groundwater Interim Measures Work Plan for the Former Chemical Plant

    Science.gov (United States)

    May 2012 Groundwater IMWP, revised per EPA's approval, focuses on the installation of a groundwater containment system to mitigate groundwater migration from the former plant. A prior 2002 work plan is included in its entirety in Appendix B.

  3. Proposed experiment for SnCl2 treatment of Outfall 200 for the purpose of mercury removal from East Fork Poplar Creek, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Southworth, G.R.

    1997-03-01

    Identification and treatment/elimination of point sources of mercury (Hg) to East Fork Poplar Creek (EFPC) within the Y-12 Plant have reduced base flow mercury concentrations considerably; but, after all such actions are completed, nonpoint sources will continue to add mercury to the creek. Studies conducted in 1996 on the use of air stripping to remove elemental mercury from Outfall 51, a mercury-contaminated natural spring, demonstrated that the addition of trace concentrations of stannous chloride (SnCl 2 ) converted a large fraction of the dissolved mercury in the outfall to elemental mercury, which could subsequently be removed by air stripping. Dissolved mercury is the dominant form in EFPC at the north/south (N/S) pipes, where it emerges from the underground storm drain network. More than 50% of that mercury is capable of being rapidly reduced by the addition of a 3--5 fold molar excess of stannous chloride. Upon conversion to the volatile gaseous (elemental) form, mercury would be lost across the air-water interface through natural volatilization. EFPC within the Y-12 Plant is shallow, turbulent, and open to sunlight and wind, providing conditions that facilitate natural evasion of volatile chemicals from the water. Preliminary calculations estimate that 75% or more of the elemental mercury could be removed via evasion between the N/S pipes and the Y-l2 Plant boundary (Station 17). Alternatively, elemental mercury might be removed from EFPC in a short reach of stream below the N/S pipes by an in-situ air stripping system which bubbles air through the water column. The purpose of these proposed experiments is to test whether natural volatilization or in-situ air stripping may be used to further reduce baseflow concentrations of mercury in EFPC. Results of this experiment will be useful for understanding the transport and fate of other volatile chemicals in the upper reaches of EFPC

  4. Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits

    International Nuclear Information System (INIS)

    1995-04-01

    In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

  5. The elimination of chlorinated, chlorofluorocarbon, and other RCRA hazardous solvents from the Y-12 Plant's enriched uranium operations

    International Nuclear Information System (INIS)

    Johnson, D.H.; Patton, R.L.; Thompson, L.M.

    1990-01-01

    A major driving force in waste minimization within the plant is the reduction of mixed radioactive wastes associated with operations on highly enriched uranium. High enriched uranium has a high concentration of the uranium-235 isotope (up to 97.5% enrichment) and is radioactive, giving off alpha and low level gamma radiation. The material is fissionable with as little as two pounds dissolved in water being capable of producing a spontaneous chain reaction. For these reasons the material is processed in small batches or small geometries. Additionally, the material is completely recycled because of its strategic and monetary value. Since the early eighties, the plant has had an active waste minimization program which has concentrated on substitution of less hazardous solvents wherever possible. The following paper summarizes efforts in two areas - development of a water-based machining coolant to replace perchloroethylene and substitution of an aliphatic solvent to replace solvents producing hazardous wastes as defined by the Resource, Conservation, and Recovery Act (RCRA)

  6. Mercury issues related to NPDES and the CERCLA watershed project at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to present the current understanding of the issues and options surrounding compliance with the current National Pollutant Discharge Elimination System (NPDES) permit conditions. This is a complicated issue that directly impacts, and will be directly impacted by, ongoing CERCLA activities in Lower East Fork Poplar Creek and the Clinch River/Poplar Creek. It may be necessary to reconstitute the whole and combine actions and decisions regarding the entire creek (origin to confluence with the Clinch River) to develop a viable long-term strategy that meets regulatory goals and requirements as well as those of DOE's 10-Year Plan and the new watershed management permitting approach. This document presents background information on the Reduction of Mercury in Plant Effluents (RMPE) and NPDES programs insofar as it is needed to understand the issues and options. A tremendous amount of data has been collected to support the NPDES/RMPE and CERCLA programs. These data are not presented, although they may be referenced and conclusions based on them may be presented, as necessary, to support discussion of the options

  7. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  8. The subsurface hydrology around Building 9201-2: Results of the July 1994 water level recovery test, Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-06-01

    A water level recovery test was conducted at Building 9201-2 at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, from 12:45 p.m. on July 29 until 8:22 a.m. on July 31, 1994. The purpose of the test was to improve the general understanding of the subsurface hydrology around the building. The information is needed to determine the minimum pumping capacity necessary to maintain safe water levels in the basement of the building and to assist in designing systems for treating mercury-bearing waters in the basement. The test was initiated by shutting off the three main sump pumps in Building 9201-2 (i.e., O-12, E-13, and E-22) for 43.5 hr and allowing the water in the basement to approach a static level. The pumps in sumps F-3 and P-6 were also not operating during the test. During the test, water levels were monitored in 5 sumps (P-6, O-12, F-3, E-13, and E-22); a pit near sump K-22; 4 monitoring wells or piezometers in the basement near the O-12 sump, and 16 wells outside of the building. Sump K-22 was dry during the entire test

  9. RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-04-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. In January 1993, the Closure Plan was revised to include inspection and maintenance criteria and to reflect that future monitoring and remediation would be conducted as part of the ongoing Comprehensive Environmental Response, Compensation, and Liability Act activities at the Oak Ridge Y-12 Plant. This Closure Plan revision is intended to reflect the placement of the Kerr Hollow Quarry debris at the Walk-In Pits, revise the closure dates, and acknowledge that the disposition of a monitoring well within the closure site cannot be verified

  10. Evaluation of cross borehole tests at selected wells in the Maynardville Limestone and Copper Ridge Dolomite at the Oak Ridge Y- 12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.; McMaster, B.W.; Desmarais, K.M.

    1995-05-01

    Several waste disposal sites are located on or adjacent to the karstic Maynardville Limestone (Cmn) and the Copper Ridge Dolomite (Ccr) at the Department of Energy Y-12 Plant. These formations receive contaminants from nearby disposal sites, and transport of these contaminants through the formations can be quite rapid due to the karst flow system. Groups of wells, aligned perpendicular to strike, were drilled to investigate the characteristics of the Cmn, and these wells are identified as Pickets. In order to evaluate transport processes through the karst aquifer, the formations must be characterized. As one component of this characterization effort, cross borehole tests were conducted where water was injected into one well at a site, and water level responses were monitored in nearby wells to determine the directions in which quick flow is more dominant. The ultimate objective of the studies of the Cmn is to characterize the hydrologic characteristics of the karst aquifer and to identify the generalized configuration of the conduit systems and portions subject to a significant quick flow component (i.e., higher hydraulic conductivity zones). The resultant conceptual model will be useful in constructing numerical models to be used to predict flow paths

  11. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  12. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV

  13. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI

  14. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part B: Decontamination, robotics/automation, waste management

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the decontamination, robotics/automation, and WM data sheets

  15. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  16. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  17. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  18. Federal and state regulatory requirements for the D ampersand D of the Alpha-4 Building, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Etnier, E.L.; Houlberg, L.M.; Bock, R.E.

    1994-01-01

    The US Department of Energy (DOE) has begun the decontamination and decommissioning (D ampersand D) of Building 9201-4 (Alpha-4) at the Oak Y-12 Plant, Oak Ridge, Tennessee, The Alpha-4 Building was used from 1953--1962 to house a column exchange (Colex) process for lithium isotope separation. This process involved electrochemical and solvent extraction processes that required substantial quantities of mercury. Presently there is no law or regulation mandating decommissioning at DOE facilites or setting de minimis or ''below regulatory concern'' (BRC) radioactivity levels to guide decommissioning activities at DOE facilities. However, DOE Order 5820.2A, Chap. V (Decommissioning of Radioactively Contaminated Facilities), requires that the regulatory status of each project be identified and that technical engineering planning must assure D ampersand D compliance with all environmental regulations during cleanup activities. To assist in the performance of this requirement, this paper gives a brief overview of potential federal and state regulatory requirements related to D ampersand D activities at Alpha-4. Compliance with other federal, state, and local regulations not addressed here may be required, depending on site characterization, actual D ampersand D activities, and wastes generated

  19. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets

  20. Response to comments on remedial investigation report for the Plating Shop Container Areas (S-334 and S-351) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-12-01

    The Plating Shop Container Storage Areas site is composed of two solid waste management units (SWMUs) designated S-334 and S-351. Both SWMUs were previously sampled during a remedial investigation (RI) in 1989. Samples were collected at the ground surface, 2 ft below the ground surface, and 4 ft below the ground surface. Beryllium, chromium, cyanide, lead, uranium, and nickel were detected at slightly elevated concentrations at both SWMU locations within the site. The samples were not analyzed for organics. The samples collected for the Resource Conservation and Recovery Act Facility Investigation (RFI) should have been analyzed for volatile organic contaminants. The site was resampled in August 1991. Samples were collected from between 1 ft to 3 ft from the boreholes drilled for the original RFI. In addition, samples were obtained from the same depth horizons that were sampled previously. These additional samples were analyzed for volatile organics. Tetrachloroethene was detected in some of the samples at concentrations up to 86 μg/kg. The baseline risk assessment was revised to incorporate the organic sampling data. The risks are unchanged as a result of information from the latest sampling effort (10 -7 ). This report, ES/ER-36 ampersand D2, is a companion document to Es/ER-36 ampersand D1, Remedial Investigation Report, Plating Shop Container Areas (S-334 and S-351), Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

  1. Draft postclosure permit application for Bear Creek Hydrogeologic Regime at the Oak Ridge Y-12 Plant Oil Landform Hazardous Waste Disposal Unit

    International Nuclear Information System (INIS)

    1991-08-01

    The Oil Landfarm Hazardous-Waste Disposal Unit (HWDU) is located approximately one and one-half miles west of the Department of Energy's (DOE) Y-12 Plant in Oak Ridge, Tennessee. The Oil Landfarm HWDU consists of three disposal plots and along with the Bear Creek Burial Grounds and the S-3 Site comprise the Bear Creek Valley Waste Disposal Area (BCVWDA). The facility was used for the biological degradation of waste oil and machine coolants via landfarming, a process involving the application of waste oils and coolants to nutrient-adjusted soil during the dry months of the year (April to October). The Oil Landfarm HWDU has been closed as a hazardous-waste disposal unit and therefore will be subject to post-closure care. The closure plan for the Oil Landfarm HWDU is provided in Appendix A.1. A post-closure plan for the Oil Landfarm HWDU is presented in Appendix A.2. The purpose of this plan is to identify and describe the activities that will be performed during the post-closure care period. This plan will be implemented and will continue throughout the post-closure care period

  2. Data management implementation plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    The former YS-860 Firing Ranges are located outside the primary facility fenceline at the Y-12 Plant within the Upper East Fork Poplar Creek watershed. The lead-contaminated soils at this site will be removed as part of early source actions of the Oak Ridge Reservation Environmental Restoration Program. The removal action will focus on the excavation of bullets and lead-contaminated soil from the shooting range berms, transportation of the material to a certified treatment and/or disposal facility, demolition and landfilling of a concrete trench and asphalt pathways, and grading and revegetating of the entire site. The primary purpose of environmental data management is to provide a system for generating and maintaining technically defensible data. To meet current regulatory requirements for the Environmental Restoration Program, complete documentation of the information flow must be established. This necessitates that each step in the data management process (collection, management, storage, and analysis) be adequately planned and documented. This document will serve to identify data management procedures, expected data types and flow, and roles and responsibilities for all data management activities associated with the YS-860 Firing Ranges removal action

  3. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-11-01

    The Bear Creek Burial Grounds (BCBG) are located on the southwest flank of Pine Ridge ∼1.5 miles west of the Oak Ridge Y-12 Plant in Bear Creek Valley. This facility consists of several contiguous disposal sites identified as Burial Grounds A, B, C, and D. Each burial site consists of a series of trenches used for disposal of solid wastes and, in some cases, liquid wastes. Initially, the RCRA Closure/Postclosure plan for the BCBG was intended to apply to A Area, C-West, B Area, and the walk-in pits for BCBG. However, a plan was provided to include the B Area in the walk-in pits so that both areas cold be closed under one cap. The closure plan for B Area and the walk-in pits is presented in this document. The actual quantity and identity of materials is uncertain. The largest volume of material disposed in BCBG consists of uranium-contaminated industrial trash (paper, wood, steel, glass, and rubble)

  4. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE's Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated

  5. Quality assurance project plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    This quality assurance project plan defines project organization and roles of responsibility, sampling and field procedures, sample documentation and chain-of-custody protocols, equipment calibration, analytical procedures, data reduction and validation, and internal quality control procedures for the former YS-860 Firing Ranges removal action at the Oak Ridge Y-12 Plant. The ENTECH Team will maintain the highest standards to ensure strict compliance with this plan. Implementation of this plan will include consideration of the technical, as well as administrative, aspects of activities affecting quality. Plan implementation is based on the premise that quality controls selected for each element of work are consistent with the risk, importance, and health and safety considerations of performing the work. The purpose of this removal action is to address lead-contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of two small arms firing ranges. This plan covers the removal action at the former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification sampling, grading, and revegetation

  6. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  7. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility

  8. Hydraulic head data from the DNAPL monitoring wells GW-726, GW-727, GW-729, GW-730, and GW-790 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Third quarter FY 1992 through second quarter FY 1996

    International Nuclear Information System (INIS)

    Drier, R.B.; Caldanaro, A.J.

    1997-02-01

    In January 1990, dense nonaqueous-phase liquids (DNAPLs) were discovered at a depth of approximately 274 ft below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. Detailed results of the preliminary DNAPL investigation are presented in Haase and King (1990a), and a work plan for assessment and characterization of the DNAPL is presented in Haase and King (1990b). A major task in the work plan calls for the construction and installation of five multiport wells. This report summarizes fluid pressure monitoring activities for the five multiport wells. The report includes a discussion of data collection and processing, and presents the data in the form of hydraulic head graphs. The report does not include interpretation of (1) flow paths, (2) aquifer characteristics, or (3) spatial synthesis of data. As funding and need arises, these topics will be addressed in future reports. To date, a series of fluid pressure measurements have been collected from each of the five Westbay-instrumented multiport wells that were built to quantify groundwater characteristics in the vicinity of a DNAPL plume. These measurements have been converted to hydraulic head, and the results are presented graphically in this report. It is recommended that future tasks use this data to support technically sound environmental remediation decisions. For example, these data can be used to design a remediation strategy or can be used to evaluate and rate a variety of remediation strategies

  9. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-08-01

    CDM Federal Programs Corporation (CDM Federal) was contracted by Martin Marietta Energy Systems, Inc. to prepare a Phase H Sampling Plan to describe field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures. To address deficiencies noted by the regulators, the following activities will be conducted: Background surface soil and surface water/sediment samples will be collected based on statistical considerations for comparison to site data. Existing and new data to be collected will be used to support a human health risk assessment that includes the future homesteader scenario. Biological surveys, samples, and measurements will be collected/conducted to augment existing data and support an ecological risk assessment. Another round of groundwater sampling will be conducted, including on-site wells and the wells on Chestnut Ridge downgradient of the Security Pits. Borings will be completed in the FCAP to collect samples from below the surface depth to describe the chemical characteristics and volume of the ash. The volume of ash associated with sluice channel on Chestnut Ridge will be determined. Soil samples will be corrected below the coal ash in the FCAP and adjacent to sluice channel to evaluate soil contamination and migration of contaminants

  10. Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.

  11. Soil sampling and analysis plan for the Bear Creek Valley floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. It is an addendum to a previously issued document, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2), which presents background information pertaining to this floodplain investigation. The strategy presented in the SAP is to divide the investigation into three component parts: a large-scale characterization of the floodplain; a fine-scale characterization of the floodplain beginning with a known contaminated location; and a stream sediment characterization. During the large-scale and the fine-scale characterizations, soil and biota samples (i.e., small mammals, earthworms, and vegetation) will be collected in order to characterize the nature and extent of floodplain soil contamination and the impact of this contamination on floodplain biota. The fine-scale characterization will begin with an investigation of a site corresponding to the location noted in the Remedial Investigation Work Plan (ES/ER-19&D2) as an area where uranium and PCBs are concentrated in discrete strata. During this fine-scale characterization, a 1 m deep soil profile excavation will be dug into the creek berm, and individual soil strata in the excavation will be screened for alpha radiation, PCBs, and VOCs. After the laboratory analysis results are received, biota samples will be collected in the vicinity of those locations.

  12. Nuclear-criticality safety analysis of the Oak Ridge Y-12 plant birdcage-type containers for intraplant storage and transportation

    International Nuclear Information System (INIS)

    Stachowiak, R.V.

    1983-01-01

    The Oak Ridge Y-12 Plant birdcage-type containers include a family of cubic (20-, 24-, and 30-inch) open-framed containers used for the in-house storage and transfer of unirradiated enriched uranium metal. This paper provides insight into the nuclear criticality safety analysis for birdcage usage. All credible contingencies (abnormal events) were analyzed and proven safe (subcritical) in accordance with the requirements and procedures of nuclear criticality safety standards. Examples of the contingencies considered in the analysis include, but are not limited to, full water reflection of any single uranium mass loading, double batching of a loading, water moderation, and misuse of the birdcage. These and other applicable contingencies determine the maximum uranium mass for the 20- and 24-inch birdcages, which is 20 and 28 kilograms, respectively. The maximum number of birdcages stored at one location and the storage array configuration are also determined by the credible contingencies. Stacking restrictions for birdcage storage are three high for the 20-inch birdcage and two high for the 24-inch birdcage. A maximum size for square-based arrays is ten feet by ten feet. Any number of these arrays may be used provided a twelve-foot separation is maintained between each array. Such a storage arrangement results in a floor utilization of 0.42 birdcages per square foot. Better floor utilization, i.e., more birdcages per square foot, is possible with other array configurations that are not square-based. Physical as well as administrative controls, procedures, training, and audits are used to ensure these basic criteria are observed. 1 table

  13. Soil sampling and analysis plan for the Bear Creek Valley floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. It is an addendum to a previously issued document, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19 ampersand D2), which presents background information pertaining to this floodplain investigation. The strategy presented in the SAP is to divide the investigation into three component parts: a large-scale characterization of the floodplain; a fine-scale characterization of the floodplain beginning with a known contaminated location; and a stream sediment characterization. During the large-scale and the fine-scale characterizations, soil and biota samples (i.e., small mammals, earthworms, and vegetation) will be collected in order to characterize the nature and extent of floodplain soil contamination and the impact of this contamination on floodplain biota. The fine-scale characterization will begin with an investigation of a site corresponding to the location noted in the Remedial Investigation Work Plan (ES/ER-19 ampersand D2) as an area where uranium and PCBs are concentrated in discrete strata. During this fine-scale characterization, a 1 m deep soil profile excavation will be dug into the creek berm, and individual soil strata in the excavation will be screened for alpha radiation, PCBs, and VOCs. After the laboratory analysis results are received, biota samples will be collected in the vicinity of those locations

  14. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy's (DOE's) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is ∼ 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends ∼1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of ∼1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top

  15. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  16. Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This report comprises appendices A--J which support the Y-12 Plant's remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data

  17. Sampling and analysis plan for volatile organic compounds in storm drain for the Upper East Fork Poplar Creek characterization area remedial investigation at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous- and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation, the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  18. Y-12 Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Charles G

    2012-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  19. Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Smith, C.M.

    1994-09-01

    The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110

  20. Report of Flood, Oil Sheen, and fish Kill Incidents on East Fork Poplar Creek at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, B.E.

    1997-09-01

    Water quality and plant opemtion irriiormation provided by the Y-12 Plant strongly suggest that a dechlorinating agent, applied to the raw water released below the North-South Pipes was responsible for the toxicity resulting in the fish kill of July 24. Dissolved oxygen (DO) measurements in upper EFPC indicai e that low oxygen levels (3-5 ppm) occurred for a period of up to 30 min. This slug of low DO water traveling down EFPC to the lake could easily explain the massive fish kill and the resulting observations. Dissolved oxygen levels of 5.2 ppm or lower are documented as causing problems for warmwater fish species (Heath 1995). The presence of other stressors, including a range of petrochemicals, tends to lower resistance to low oxygen conditions. Given the sequence of events in upper EFPC in the few days prior to July 24, where extremely high flows were followed by inputs of a wide range of low concentrations of oils, the sensitivity to low DO conditions might be heightened. The possible toxic impact of ::he oils and other contaminants reaching EFPC as a result of the heavy rainfidl on July 22 doesn't appear significant enough to be the sole cause of the kill on July 24. Even during the height of the kill, a large school of fish remained immediately downstream of the North-South Pipes. If the toxicity of waters flowing through this outlet were the primary cause of the kill, then it would be expected that this school of fish would not have been present immediately below the pipes. Any impact of waters entering from other sources, such as pumping of basements WOUIC1 have produced a staggered pattern of mortality, with fishing dying in different localities at different times and rates. Further, it would be expected that the morta.lhy observed would have continued over several days at least, as more resistant individuals succumbed slowly to the toxic exposure. This would have provided freshly dead or dying fish for the surveys of July 25 and 28. In previous

  1. Corrective action baseline report for underground storage tanks 0439-U, 0440-U, 2073-U, 2074-U, and 2075-U at the East End Fuel Station, Buildings 9754 and 9754-2, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide baseline geochemical and hydrogeologic data relative to corrective action for underground storage tanks (USTs) 0439-U, 0440-U, 2073-U, 2074-U, and 2075-U at the East End Fuel Station, Buildings 9754 and 9754-2 at the Oak Ridge Y-12 Plant. Progress in support of corrective action at the East End Fuel Station has included monitoring well installation, tank removal, and baseline groundwater sampling and analysis. This document represents the baseline report for corrective action at the East End Fuel Station and is organized into three sections. Section 1 presents introductory information relative to the site, including the regulatory initiative, site description, and progress to date. Section 2 includes a summary of additional monitoring well installation activities, the results of baseline groundwater sampling, a summary of tank removal activities, and the results of confirmatory soil sampling performed during tank removal. Section 3 presents the baseline hydrogeology and planned zone of influence for groundwater remediation

  2. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill I, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    1994-03-01

    This document refers to data concerning the Environmental Restoration Program implemented at the Oak Ridge Y-12 plant. Topics discussed include: Remediation plans for the burial grounds, sanitary landfill I, oil retention ponds, S-3 ponds, and the boneyard/burnyard at Y-12. This document also contains information about the environmental policies regulating the remediation

  3. Y-12 Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Sherry, T D; Kohlhorst, D P; Little, S K

    2011-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the

  4. Decision document for performing a long-term pumping test at the S-3 Site, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-02-01

    One of the principal problems confronting the remediation of Bear Creek Valley is the cleanup of contaminated groundwater. The S-3 Site is one of the locations in the valley where groundwater is most contaminated, and contamination from the S-3 Site has also caused extensive contamination of downgradient groundwater. This groundwater plume, therefore, has a high priority in the Bear Creek Valley remedial process. Pumping and treating groundwater was identified early in the feasibility study as a likely remedial alternative for the S-3 Site groundwater plume. The hydrology and geochemistry of the plume are extremely complex. There is a high degree of uncertainty in the current understanding of how the aquifer will react physically and chemically to pumping, making evaluation of a pump-and-treat alternative impractical at the present time. Before a pump-and-treat alternative can be evaluated, its technical practicability, effectiveness, and projected cost must be determined. A long-term pumping test (LTPT) at the S-3 Site has been proposed so that the information necessary to carry out this evaluation can be collected. This document constitutes the first phase in the planning process for this test

  5. Y-12 Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, Steven C. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Spencer, Charles G. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2013-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP), while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. The mission of the Y-12 Energy Management program is to incorporate energy-efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. This plan addresses: Greenhouse Gas Reduction and Comprehensive Greenhouse Gas Inventory; Buildings, ESPC Initiative Schedule, and Regional and Local Planning; Fleet Management; Water Use Efficiency and Management; Pollution Prevention and Waste Reduction; Sustainable Acquisition; Electronic Stewardship and Data Centers; Renewable Energy; Climate Change; and Budget and Funding.

  6. Existing systems review of treatment media for the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    In situ treatment has been proposed as a remediation alternative for surface water and groundwater contaminated with uranium and nitrate as a result of former waste disposal practices in the S-3 Ponds. Interceptor trenches containing reactive media have been proposed to treat groundwater, and constructed wetlands and/or algal mats are potential alternatives for treating surface water. This report presents the results from testing of ten different reactive media, and combinations of media, that are candidates for use in the proposed interceptor trenches to remove uranium and nitrate from groundwater. It also presents the results of testing and evaluation of algal mats and wetlands for removing uranium and nitrate from surface water

  7. Best management practices plan for installation of and monitoring at temporary Weirs at NT-4, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of the installation of temporary weirs at NT-4 is to collect empirical surface water discharge data for the tributary during baseflow conditions and following rainfall events, during the spring and summer of 1997 in support of the Department of Energy's (DOE's) Oak Ridge Reservation Waste Management Alternatives Evaluation project. The duration of surface-water monitoring activities is not planned to exceed 6 months. A minimum of four temporary weirs will be installed along the length of NT-4 in the locations indicated on Attachment A. The design specifications and locations for the weirs will be provided by the DOE prime contractor for the Oak Ridge Reservation Waste Management Alternatives Evaluation project. The weirs will be fabricated by the Y-12 labor forces of Lockheed Martin Energy Systems (LMES). The Environmental Compliance Organization (ECO) of LMES will perform data collection in addition to weir installation, inspection, maintenance, and removal. Flow meters that collect data at five minute intervals will be installed on each weir and visual measurements using staff gauges mounted on each weir will also be performed

  8. Data management implementation plan for the Bear Creek Valley treatability study phase 2 hydraulic performance testing, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-12-01

    The overall objective of the Bear Creek Valley treatability study is to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project, the Bear Creek Valley treatability study Phase 2 hydraulic performance testing, directly supports the Bear Creek Valley Feasibility Study. Specific project objectives include (1) installing monitoring and extraction wells, (2) installing a groundwater extraction trench, (3) performing pumping tests of the extraction wells and trench, (4) determining hydraulic gradients, and (5) collecting water quality parameters. The primary purpose of environmental data management is to provide a system for generating and maintaining technically defensible data. To meet current regulatory requirements for the Environmental Restoration Program, complete documentation of the information flow must be established. To do so, each step in the data management process (collection, management, storage, and analysis) must be adequately planned and documented. This document will serve to identify data management procedures, expected data types and flow, and roles and responsibilities for all data management activities associated with this project

  9. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  10. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  11. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    1993-01-01

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  12. Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package

    OpenAIRE

    El-Sayed, Amr A.

    2006-01-01

    A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...

  13. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  14. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    2005-01-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New Mexico Administrative Code), 'Adoption of 40 CFR [Code of Federal Regulations] Part 264,'specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  15. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-01-01

    CDM Federal Programs Corporation (CDM Federal) was contracted by Energy Systems to prepare a Phase II Sampling Plan to describe the field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of the Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to the applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures

  16. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification

  17. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification.

  18. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    Science.gov (United States)

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  19. Y-12 National Security Complex Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Shana E.; Bassett, P.; McMordie Stoughton, Kate

    2010-11-01

    The Department of Energy's Federal Energy Management Program (FEMP) sponsored a water assessment at the Y 12 National Security Complex (Y 12) located in Oak Ridge, Tennessee. Driven by mandated water reduction goals of Executive Orders 13423 and 13514, the objective of the water assessment is to develop a comprehensive understanding of the current water-consuming applications and equipment at Y 12 and to identify key areas for water efficiency improvements that could be applied not only at Y-12 but at other Federal facilities as well. FEMP selected Pacific Northwest National Laboratory to coordinate and manage the water assessment. PNNL contracted Water Savers, LLC to lead the technical aspects of the water assessment. Water Savers provided key technical expertise in water auditing, metering, and cooling systems. This is the report of that effort, which concluded that the Y-12 facility could realize considerable water savings by implementing the recommended water efficiency opportunities.

  20. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes

  1. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV

  2. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F - Baseline human health risk assessment report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants

  3. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    International Nuclear Information System (INIS)

    1995-04-01

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  4. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.

  5. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

  6. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  7. The effects of drainage on groundwater quality and plant species distribution in stream valley meadows

    NARCIS (Netherlands)

    Grootjans, A.P.; Diggelen, R. van; Wassen, M.J.; Wiersinga, W.A.

    1988-01-01

    Conditions in fen meadows in Dutch stream valleys are influenced by both deep (Ca2+-rich) and shallow (Ca2+-poor) groundwater flows. The distribution patterns of phreatophytic (groundwater-influenced) plant species showed distinct relationships with the distribution of different groundwater types.

  8. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-12-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre at sign ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4

  9. Groundwater monitoring at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GMP) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water-quality sampling and water-level monitoring. The WIPP Project is a research and development facility designed to demonstrate the safe disposal of defense-generated TRU and mixed waste in a geologic repository. The Salado Formation of Permian age serves as the repository medium. The Salado Formation consists of bedded salt and associated evaporites. The formation is 602 meters thick at the site area; the top surface is located at a subsurface depth of 262 meters (10). The repository lies at a subsurface depth of 655 meters. Water-quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. Data collected from this program to date, has been used by Sandia National Laboratories for site characterization and performance assessment work. The data has also been used to establish a baseline of preoperational radiological and nonradiological groundwater quality. Once the facility begins receiving waste, this baseline will be used to determine if the WIPP facility influences or alters groundwater quality over time. The water quality of a well is determined while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. 13 refs., 4 figs., 1 tab

  10. The renewed spirit of Y-12

    International Nuclear Information System (INIS)

    Wall, David; Hassler, Morris; Parker, Elaine

    2005-01-01

    The Y-12 National Security Complex began operations in 1943 as a part of the Manhattan Project, the secret U.S. program that developed the first atomic weapon. With the end of the Cold War, the advent of the War on Terror, and the changing security needs of the US, Y-12 has begun to modernize and make changes to better meet the requirements of a smaller stockpile while supporting uranium supply needs and nuclear nonproliferation missions. Although we are proud of our place in history, after 60 years, we have begun to write a new chapter that will enable us to meet the new challenges facing the world today by strengthening our security posture and utilizing existing Y-12 expertise in nuclear nonproliferation initiatives. The modernization of Y-12 will enable us to be agile enough to adapt and respond to a much wider range of U.S. national security needs. As part of the National Nuclear Security Administration, nuclear nonproliferation has become one of the primary Y-12 missions. Some of the nuclear nonproliferation programs we support include the supply of low enriched uranium (LEU) to research and test reactors. The LEU provided to the research reactor community is derived from down blending highly enriched uranium (HEU) that is removed from dismantled nuclear weapons. Y-12 expertise has been used in numerous nonproliferation programs in Russia, the recent effort to remove material from Libya, and various activities supporting the new Global Threat Reduction Initiative (GTRI). The Y-12 National Security Complex stores significant quantities of HEU and therefore, has a security posture that must adapt to these new threats of global terrorism. This year, Y-12 has made real progress in modernizing its site so that it is better able to meet these new world challenges. Our modernization efforts will increase security, improve productivity, minimize health and safety risks and enable the Y-12 Site to continue to operate far into the future. This paper will summarize how

  11. Y-12 Site environmental protection program implementation plan (EPPIP)

    International Nuclear Information System (INIS)

    1996-11-01

    The Y-12 Plant Environmental Protection Program is conducted to: (1) protect public health and the environment from chemical and radiological releases occurring from current plant operations and past waste management and operational practices; (2) ensure compliance with federal, state, and local environmental regulations and DOE directives; (3) identify potential environmental problems; (4) evaluate existing environmental contamination and determine the need for remedial actions and mitigative measures; (5) monitor the progress of ongoing remedial actions and cleanup measures; and (6) inform the public of environmental issues relating to DOE operations. DOE Order 5400.1, General Environmental Protection Program, defines the general requirements for environmental protection programs at DOE facilities. This Environmental Protection Program Implementation Plan (EPPIP) defines the methods by which the Y-12 Plant staff will comply with the order by: (1) referencing environmental protection goals and objectives and identifying strategies and timetables for attaining them; (2) providing the overall framework for the design and implementation of the Y-12 Environmental Protection Program; and (3) assigning responsibilities for complying with the requirements of the order. The EPPIP is revised and updated annually

  12. Y-12 Site environmental protection program implementation plan (EPPIP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Y-12 Plant Environmental Protection Program is conducted to: (1) protect public health and the environment from chemical and radiological releases occurring from current plant operations and past waste management and operational practices; (2) ensure compliance with federal, state, and local environmental regulations and DOE directives; (3) identify potential environmental problems; (4) evaluate existing environmental contamination and determine the need for remedial actions and mitigative measures; (5) monitor the progress of ongoing remedial actions and cleanup measures; and (6) inform the public of environmental issues relating to DOE operations. DOE Order 5400.1, General Environmental Protection Program, defines the general requirements for environmental protection programs at DOE facilities. This Environmental Protection Program Implementation Plan (EPPIP) defines the methods by which the Y-12 Plant staff will comply with the order by: (1) referencing environmental protection goals and objectives and identifying strategies and timetables for attaining them; (2) providing the overall framework for the design and implementation of the Y-12 Environmental Protection Program; and (3) assigning responsibilities for complying with the requirements of the order. The EPPIP is revised and updated annually.

  13. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  14. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bechtel Jacobs Company LLC

    2002-01-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone and Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to

  15. Groundwater monitoring at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab

  16. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  17. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    International Nuclear Information System (INIS)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants

  18. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  19. Y-12 Site-Sustainability Plan 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sherry, T. D.; Kohlhorst, D. P.; Little, S. K.

    2010-12-01

    The accomplishments to date and the long-range planning of the Y-12 National Security Complex Energy Management program support the Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the guiding principles. The site is diligently working toward establishing and prioritizing projects to reach the goals that Executive Orders 13514 and 13423 set forth. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions that are based on the application of the fi ve guiding principles for High Performance Sustainable Buildings (HPSBs) to the maximum extent possible. Current limitations in achievement of the goals lie in the existing Future Years National Security Program funding profiles. Y-12 will continue to execute energy projects as funding becomes available or as they can be accomplished incrementally within existing funding profiles. All efforts will be made to integrate energy initiatives with ongoing site mission objectives. Figures ES.1-ES.4 show some examples of sustainability activities at the Y-12 Complex.

  20. Y-12 old salvage yard scrap metal characterization study

    International Nuclear Information System (INIS)

    Anderson, L.M.; Melton, S.G.; Shaw, S.S.

    1993-11-01

    The purpose of the Y-12 Old Salvage Yard scrap metal Characterization Study is to make conservative estimates of the quantities of total uranium and the wt % 235 U contained in scrap metal. The original project scope included estimates of thorium, but due to the insignificant quantities found in the yards, thorium was excluded from further analysis. Metal in three of the four Y-12 scrap metal yards were characterized. The scrap metal yard east of the PIDAS fence is managed by the Environmental Restoration Program and therefore was not included in this study. For all Y-12 Plant scrap metal shipments, Waste Transportation, Storage, and Disposal (WTSD) personnel must complete a Request for Authorization to Ship Nuclear Materials, UCN-16409, which requires the grams of total uranium, the wt % 235 U, and the grams of 235 U contained in the shipment. This information is necessary to ensure compliance with Department of Transportation regulations, as well as to ensure that the receiving facility is adhering to its operating license. This characterization study was designed to provide a technical basis for determining these necessary radioactive quantities

  1. Development and implementation of a comprehensive groundwater protection program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gordon, D.E.

    1984-01-01

    The major goals of the groundwater protection program are to evaluate the impact on groundwater quality as a result of Savannah River Plant operations, to take corrective measures as required to restore or protect groundwater quality, and to ensure that future operations do not adversely affect the quality or availability of the groundwater resources at the site. The specific elements of this program include (1) continuation of an extensive groundwater monitoring program, (2) assessment of waste disposal sites for impacts on groundwater quality, (3) implementation of mitigative actions, as required, to restore or protect groundwater quality, (4) incorporation of groundwater protection concepts in the design of new production and waste management facilities, and (5) review of site utilization of groundwater resources to ensure compatibility with regional needs. The major focal points of the groundwater protection program are the assessment of waste disposal sites for impacts on groundwater quality and the implementation of remedial action projects. Many locations at SRP have been used as waste disposal sites for a variety of liquid and solid wastes. Field investigations are ongoing to determine the nature and extent of any contamination in the sediments and groundwater at these waste sites on a priority basis. Remedial action has been initiated. Certain aspects of the groundwater protection program have been identified as key to the success in achieving the desired objectives. Key elements of the program have included early identification of all the potential sources for groundwater contamination, development of an overall strategy for waste site assessment and mitigation, use of a flexible computerized system for data base management, and establishing good relationships with regulatory agencies. 10 references, 6 figures, 4 tables

  2. Y-12 Integrated Materials Management System

    Energy Technology Data Exchange (ETDEWEB)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.

  3. Y-12 Integrated Materials Management System

    International Nuclear Information System (INIS)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-01-01

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system

  4. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  5. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  6. Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa

    2015-01-01

    Fukushima Daiichi nuclear power plant of Tokyo Electric Power Company is facing contaminated water issues in the aftermath of the Great East Japan Earthquake on March 11, 2011. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater recharge and discharge areas, major groundwater flow direction, inflow rate into underground part of the buildings, and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into the underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean. (author)

  7. Explosives Removal from Groundwater of the Iowa Army Ammunition Plant in Continuous-Flow Laboratory Systems Planted with Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Best, Elly

    1998-01-01

    A 49-day, continuous-flow, laboratory study was performed to evaluate the ability of two submersed and one emergent plant species to phytoremediate explosives-contaminated groundwater from the Iowa...

  8. Y-12 Construction/Demolition Landfill VII: Permit application: Part 1 and 2

    International Nuclear Information System (INIS)

    1992-04-01

    The United States Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee: the Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL). Operations associated with the DOE energy research and production facilities at Oak Ridge result in the production of several types of waste materials. Disposal of solid waste (as defined in the Solid Waste Processing and Disposal Rules for Tennessee) in disposal facilities operated by the Y-12 Plant is the responsibility of Y-12 Waste Management Division (MWD). The WMD is proposing to develop a facility that will include two new disposal units: one for construction/demolition waste and spoil and one for industrial solid waste. This manual describes the closure and post-closure plans for the construction/demolition waste and spoil disposal unit. This disposal unit is referred to as the Y-12 Construction/Demolition Landfill VII (CD-VII) and is to be operated by the Y-12 Plant for the DOE. This will be a Tennessee Department of Environment and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class IV disposal unit

  9. Post-closure permit application for the Upper East Fork Poplar Creek hydrogeologic regime at the Y-12 Plant: New Hope Pond and Eastern S-3 ponds plume. Revision 2

    International Nuclear Information System (INIS)

    1995-02-01

    The intent of this Post-Closure, Permit Application (PCPA) is to satisfy the post-closure permitting requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-11. This application is for the entire Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is within the Bear Creek Valley (BCV). This PCPA has been prepared to include the entire East Fork Regime because, although there are numerous contaminant sources within the regime, the contaminant plumes throughout the East Fork Regime have coalesced and can no longer be distinguished as separate plumes. This PCPA focuses on two recognized Resource Conservation and Recovery Act (RCRA) interim status units: New Hope Pond (NHP) and the eastern S-3 Ponds plume. This PCPA presents data from groundwater assessment monitoring throughout the regime, performed since 1986. Using this data, this PCPA demonstrates that NHP is not a statistically discernible source of groundwater contaminants and that sites upgradient of NHP are the likely sources of groundwater contamination seen in the NHP vicinity. As such, this PCPA proposes a detection monitoring program to replace the current assessment monitoring program for NHP

  10. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  11. Y-12 defense programs. Nuclear Packaging Systems testing capabilities

    International Nuclear Information System (INIS)

    1995-06-01

    The Nuclear Packaging Systems (NPS) Department can manage/accomplish any packaging task. The NPS organization is responsible for managing the design, testing, certification, procurement, operation, refurbishment, maintenance, and disposal of packaging used to transport radioactive materials, other hazardous materials, and general cargoes on public roads and within the Oak Ridge Y-12 Plant. Additionally, the NPS Department has developed a Quality Assurance plan for all packaging, design and procurement of nonweapon shipping containers for radioactive materials, and design and procurement of performance-oriented packaging for hazardous materials. Further, the NPS Department is responsible for preparation and submittal of Safety Analysis Reports for Packaging (SARP). The NPS Department coordinates shipping container procurement and safety certification activities that have lead-times of up to two years. A Packaging Testing Capabilities Table at the Oak Ridge complex is included as a table

  12. Modeling groundwater flow at the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.

    1992-10-01

    Groundwater flow in the shallow unconfined aquifer at the chemical plant area of the Weldon Spring site, St. Charles County, Missouri, was modeled with the Coupled Fluid, Energy, and Solute Transport (CFEST) groundwater flow and contaminant transport computer code. The modeling was performed in support of a hydrogeological characterization effort that is part of the remedial investigation/feasibility study-environmental impact statement process being carried out by the US Department of Energy at the site. This report presents the results of model development and calibration. In the calibration procedure, the range of field-measured hydrogeological parameters was tested to obtain the best match between model-predicted and measured groundwater elevations. After calibration, the model was used to evaluate whether the presence of an on-site disposal cell would impact the ability to remediate contaminated groundwater beneath the cell. The results of the numerical modeling, which were based on an evaluation of steady-state groundwater flow velocity plots, indicated that groundwater would flow beneath the disposal cell along natural gradients. The presence of a disposal cell would not significantly affect remediation capability for groundwater contamination

  13. Numerical Simulation of Groundwater Flow at Kori Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Sohn, Wook; Sohn, Soon Whan; Chon, Chul Min; Kim, Kue Youn

    2010-01-01

    Recently, the understanding of hydrogeological characteristics of nuclear power sites is getting more importance with increasing public concerns over the environment since such understanding is essential for an environmentally friendly operation of plants. For such understanding, the prediction of groundwater flow pattern onsite plays the most critical role since it is the most dynamic of the factors to be considered. In this study, the groundwater flow at the Kori Plant 1 site has been simulated numerically with aim of providing fundamental information needed for improving the understanding of the hydrogeological characteristics of the site

  14. Comparison of physico-chemical parameters of groundwater from shallow aquifers near 2 thermal power plants in Punjab

    International Nuclear Information System (INIS)

    Gill, S.K.; Sahota, S.K.; Sahota, G.P.S.; Sahota, B.K.; Sahota, H.S.

    1993-01-01

    Physico-chemical parameters of groundwater from shallow aquifers near thermal power plants at Bathinda and Ropar have been measured. Increase in metallic content of water is noted in both the cases due to deposition of coal fly ash from the power plants on the soil. High values of calcium chloride, calcium carbonate and total dissolved solids are observed in Bathinda groundwater while Ropar groundwater is rich in ferric, fluoride and nitrate contents. (author). 8 refs., 1 fig., 1 tab

  15. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT (CD-ROM)

    Science.gov (United States)

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the tricWoroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were insta...

  16. Remedial Investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-09-01

    This Remedial Investigation (RI) work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. The potential for release of contamination to receptors through the various media is addressed, and a sampling and analysis plan is presented to determine the extent of release of contamination to the surrounding environment. Proposed activities include walkover radiation surveys at all sites, soil borings at SY-200, piezometer installation and water table sampling at SA-1 and SY-200, and surface water and sediment runoff sampling at all three sites. Data from the site characterization activities will be combined with data from ongoing site-wide monitoring programs (i.e., groundwater, surface water, and biological monitoring) to provide input for a screening-level risk assessment and evaluation of altemative remedial actions

  17. Groundwater interactions with Lobelia lakes- effects on the aquatic plant, Littorella uniflora

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    Lake Hampen is representative of a group of lakes called Lobelia lakes. These are oligotrophic, clear water lakes which tend to have a low alkalinity. These lakes are termed “Lobelia lakes” due to the characteristic isoetid species which thrive in these conditions. Isoetids are small, evergreen...... aquatic plants whose leaves grow in a rosette form and have a large root base. The large root system enables the plants to better assimilate nutrients from the sediments, and the uptake of CO2 which is used for photosynthesis, and to release O2 into otherwise anoxic sediments. Lake Hampen is situated high...... up in the Jylland ridge and lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant, sometimes the groundwater flows from the aquifer into the lake (discharge) and other times it flows from the lake into the aquifer (recharge...

  18. PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER

    Science.gov (United States)

    Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...

  19. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    Science.gov (United States)

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  20. TIE for cyanides in groundwater at a former coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    McLeay, M.; Cameron, M. [Hemmeram, Vancouver, BC (Canada); Elphick, J. [Nautilus Environmental Co., Burnaby, BC (Canada)

    2010-07-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  1. TIE for cyanides in groundwater at a former coal gasification plant

    International Nuclear Information System (INIS)

    McLeay, M.; Cameron, M.; Elphick, J.

    2010-01-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  2. Waste-management activities for groundwater protection, Savannah River Plant, Aiken, South Carolina

    International Nuclear Information System (INIS)

    1987-12-01

    Management of hazardous, low-level radioactive, and mixed waste for groundwater protection at the Savannah River Plant (SRP), Aiken, South Carolina is proposed. The preferred disposal alternative would involve modification of the SRP waste-management program to comply with all groundwater-protection requirements by implementing the following actions: (1) removal of wastes at selected existing waste sites to the extent practicable and implementing closure and groundwater remedial actions as required by applicable state and federal regulations; (2) establishment of a combination of retrievable storage, above ground, and below ground disposal facilities; and (3) continuation of the use of seepage and containment basins for the periodic discharge of reactor disassembly-basin purge. Groundwater contamination of aquifers would be controlled, improving on-site groundwater as well as surface water quality. Associated public health risks, as well as risks associated with atmospheric releases, would be reduced. Risks from releases of transuranic and high level wastes, volatile organic compounds, heavy metals, radionuclides, and other miscellaneous chemical would be contained. Some sites would be removed from public use. Other adverse impacts could include local and transitory on-site groundwater drawdown effects and minor short-term terrestrial impacts due to the use of borrow pits for backfill. Wildlife-habitat impacts could result due to land clearing and development

  3. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  4. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    in environmental systems at different scale. Feedback mechanisms between plants and hydrological systems can play an important role, however having received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can be coupled...

  5. Y-12 Sustainable Design Principles for Building Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  6. Chemical contamination of groundwater at gas processing plants - the past, the present and the future

    International Nuclear Information System (INIS)

    Wrubleski, R.M.; Drury, C.R.

    1997-01-01

    The chemicals used to remove the sour gas components (primarily H 2 S) from raw gas in the sour gas sweetening processes were discussed. The chemicals, mainly amines and physical absorbents, have been found as contaminants in soil and groundwater at several sites. Studies have been conducted to evaluate the behaviour of some of these chemicals. In particular, the contamination by sulfolane and diisopropanolamine (DIPA) which originate from the Sulfinol R sweetening process, was discussed. Prior to the mid 1970s wastes from these processes were disposed of on site in landfills that were not engineered for groundwater protection. By the mid 1970s the landfills were closed by capping. Many of the gas plant sites were located on elevated terrain where hydraulic gradient was available for downward movement of groundwater and any chemicals contained within. Contaminant movement in fractured bedrock has also affected drinking water. Ground water monitoring began in the mid 1980s to address environmental concerns, focusing on monitoring for potability, metals and organics. It was discovered that most of the plants using the Sulfinol process had groundwater contaminated with sulfolane levels ranging from 1 ppm to over 800 ppm. A research project was developed to determine the soil interaction parameters and biodegradation behaviour of pure sulfolane and DIPA to provide data in order to predict plume migration. Ecotoxicity tests were also performed to verify toxicity effects of sulfolane, DIPA, reclaimer bottoms and observed biodegradation metabolites to bio-organisms and aquatic life in aquatic receptors. 3 refs., 1 tab., 1 fig

  7. Phytoremediation of Groundwater at Air Force Plant 4, Carswell, Texas

    Science.gov (United States)

    2003-09-01

    willows, one hackberry, one mesquite, one pecan , one American elm, one unidentified elm, and one unidentified species. Cores were collected from a height...ability of trees to act as pumps was noted in the late 19th century when Eucalyptus trees were planted in Italy and Algeria to dry up marshes. The...Netherlands, Finland, Denmark, Sweden, Italy , Australia, and the United Kingdom. B-2 If shallow ground water contaminated with low level

  8. Computer modeling of ground-water flow at the Savannah River Plant

    International Nuclear Information System (INIS)

    Root, R.W. Jr.

    1979-01-01

    Mathematical equations describing ground-water flow are used in a computer model being developed to predict the space-time distribution of hydraulic head beneath a part of the Savannah River Plant site. These equations are solved by a three-dimensional finite-difference scheme. Preliminary calibration of the hydraulic head model has been completed and calculated results compare well with water-level changes observed in the field. 10 figures, 1 table

  9. Summary report on the Y-12 Sludge Detoxification Demonstration project

    International Nuclear Information System (INIS)

    Jolley, R.L.; Hollenbeck, P.E.; Kennerly, J.M.; Singh, S.P.N.

    1994-07-01

    The Y-12 Sludge Detoxification Demonstration was conducted in late 1988 at the Oak Ridge Gaseous Diffusion Plant (subsequently renamed the K-25 Site). The erstwhile Waste Management Technology Center (WMTC) managed the conduct of this waste treatment technology to assist the US Department of Energy/Oak Ridge Operations (DOE/ORO) in implementing the DOE Model. This demonstration was the first project selected by the Hazardous Waste Remedial Actions Program (HAZWRAP)(and funded by DOE) in which a private-sector vendor was contracted to demonstrate an innovative treatment process for treating some of the Oak Ridge Site's radioactive mixed wastes to enable their environmentally compliant disposal. Chem-Nuclear Systems, Inc. (CNSI) was the private-sector vendor selected to demonstrate its X*TRAX trademark process. Briefly, the X*TRAX trademark process consisted of thermally treating the sludge in an inert atmosphere (to remove the volatile components) to yield a dry residue (containing the nonvolatilized sludge components) and condensed liquids. The dry residue can then be immobilized in cementitious matrix for delisting and disposal in an industrial landfill; the condensed liquids can be disposed in, for example, an incinerator

  10. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  11. Defining groundwater-dependent ecosystems and assessing critical water needs for their foundational plant communities

    Science.gov (United States)

    Stella, J. C.

    2017-12-01

    In many water-limited regions, human water use in conjunction with increased climate variability threaten the sustainability of groundwater-dependent plant communities and the ecosystems that depend on them (GDEs). Identifying and delineating vulnerable GDEs and determining critical functional thresholds for their foundational species has proved challenging, but recent research across several disciplines shows great promise for reducing scientific uncertainty and increasing applicability to ecosystem and groundwater management. Combining interdisciplinary approaches provides insights into indicators that may serve as early indicators of ecosystem decline, or alternatively demonstrate lags in responses depending on scale or sensitivity, or that even may decouple over time (Fig. 1). At the plant scale, miniaturization of plant sap flow sensors and tensiometers allow for non-destructive, continual measurements of plant water status in response to environmental stressors. Novel applications of proven tree-ring and stable isotope methods provide multi-decadal chronologies of radial growth, physiological function (using d13C ratios) and source water use (using d18O ratios) in response to annual variation in climate and subsurface water availability to plant roots. At a landscape scale, integration of disparate geospatial data such as hyperspectral imagery and LiDAR, as well as novel spectral mixing analysis promote the development of novel water stress indices such as vegetation greenness and non-photosynthetic (i.e., dead) vegetation (Fig. 2), as well as change detection using time series (Fig. 3). Furthermore, increases in data resolution across numerous data types can increasingly differentiate individual plant species, including sensitive taxa that serve as early warning indicators of ecosystem impairment. Combining and cross-calibrating these approaches provide insight into the full range of GDE response to environmental change, including increased climate drought

  12. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations.

    Science.gov (United States)

    Iriel, Analia; Lagorio, M Gabriela; Fernández Cirelli, Alicia

    2015-11-01

    Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chemical contamination of groundwater at gas processing plants - the past, the present and the future

    Energy Technology Data Exchange (ETDEWEB)

    Wrubleski, R.M.; Drury, C.R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre; Sevigny, J.H. [Komex Consultants Ltd., Calgary, AB (Canada)

    1997-12-31

    The chemicals used to remove the sour gas components (primarily H{sub 2}S) from raw gas in the sour gas sweetening processes were discussed. The chemicals, mainly amines and physical absorbents, have been found as contaminants in soil and groundwater at several sites. Studies have been conducted to evaluate the behaviour of some of these chemicals. In particular, the contamination by sulfolane and diisopropanolamine (DIPA) which originate from the Sulfinol{sup R} sweetening process, was discussed. Prior to the mid 1970s wastes from these processes were disposed of on site in landfills that were not engineered for groundwater protection. By the mid 1970s the landfills were closed by capping. Many of the gas plant sites were located on elevated terrain where hydraulic gradient was available for downward movement of groundwater and any chemicals contained within. Contaminant movement in fractured bedrock has also affected drinking water. Ground water monitoring began in the mid 1980s to address environmental concerns, focusing on monitoring for potability, metals and organics. It was discovered that most of the plants using the Sulfinol process had groundwater contaminated with sulfolane levels ranging from 1 ppm to over 800 ppm. A research project was developed to determine the soil interaction parameters and biodegradation behaviour of pure sulfolane and DIPA to provide data in order to predict plume migration. Ecotoxicity tests were also performed to verify toxicity effects of sulfolane, DIPA, reclaimer bottoms and observed biodegradation metabolites to bio-organisms and aquatic life in aquatic receptors. 3 refs., 1 tab., 1 fig.

  14. Groundwater chemistry in the vicinity of the Puna Geothermal Venture Power Plant, Hawai‘i, after two decades of production

    Science.gov (United States)

    Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.

    2015-01-01

    We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.

  15. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energy’s (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercury’s toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 – 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size

  16. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  17. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  18. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  19. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  20. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  1. Operation of automated NDA instruments for in-line HEU accounting at Y-12

    International Nuclear Information System (INIS)

    Russo, P.A.; Strittmatter, R.B.; Sandford, E.L.; Jeter, I.W.; McCullough, E.; Bowers, G.L.

    1983-01-01

    Two automated nondestructive assay instruments developed at Los Alamos in support of nuclear materials accounting needs are currently operating in-line at the Y-12 Plant for recovery of highly enriched uranium. One instrument provides the HEU inventory in the secondary solvent extraction system, and the other monitors HEU concentration in the secondary intermediate evaporator. Both instruments were installed in December 1982. Operational evaluation of these instruments has been a joint effort of Y-12 and Los Alamos. This has included comparison of the solvent extraction system inventories with direct measurement performed on the dumped solution components of the solvent extraction system, as well as comparisons of concentration assay results with the external assays of samples withdrawn from the process. The function, design, and preliminary results of the operational evaluation are reported

  2. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems.

    Science.gov (United States)

    Borgogno, Fabio; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2012-01-21

    Several studies have shown that non-linear deterministic dynamical systems forced by external random components can give rise to unexpectedly regular temporal behaviors. Stochastic resonance and coherence resonance, the two best known processes of this type, have been studied in a number of physical and chemical systems. Here, we explore their possible occurrence in the dynamics of groundwater-dependent plant ecosystems. To this end, we develop two eco-hydrological models, which allow us to demonstrate that stochastic and coherence resonance may emerge in the dynamics of phreatophyte vegetation, depending on their deterministic properties and the intensity of external stochastic drivers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  4. Methodical studies of groundwater pollution caused by fly ash deposits from coal-fired power plants

    International Nuclear Information System (INIS)

    Spuziak-Salzenberg, D.

    1990-01-01

    The risk potential of fly ash deposits from fossil-fuel power plants was investigated through laboratory elution experiments (single elution, multiple elution, column leaching). The groundwater risk potential in the case of indiscriminate, unsealed dumping is high because of an increased water hardness and due to sulfate, molybdenum, selenium, boron, chromium, barium, strontium and arsenic contamination. Higher barium and strontium concentrations are typical of fly ash deposits. Barium and strontium thus serve as target elements for identification of sites of long-standing pollution. The risks of arsenic leaching are discussed in detail. (orig./LU) [de

  5. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  6. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    Directory of Open Access Journals (Sweden)

    Zamani Abbas Ali

    2012-12-01

    Full Text Available Abstract The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP. Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs. Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  7. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    Science.gov (United States)

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  8. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  9. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A - Waste sites, source terms, and waste inventory report; Appendix B - Description of the field activities and report database; Appendix C - Characterization of hydrogeologic setting report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV

  10. Adjusting external doses from the ORNL and Y-12 facilities for the Oak Ridge Nuclear Facilities mortality study

    International Nuclear Information System (INIS)

    Watkins, J.P.; Cragle, D.L.; West, C.M.; Tankersley, W.G.; Frome, E.L.; Crawford-Brown, D.J.

    1995-01-01

    This report presents specific procedures used for adjusting radiation doses to radiation personnel at the ORNL and Y-12 plants during the early years. Topics discussed include: background information; selection of employment years to be considered; hardcopy monitoring methods and records; pocket meter data; and replacement of 1943 unmonitored employment years. These topics were discussed for both years

  11. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  12. Investigation of the mobilizability of persistent pollutants in the system groundwater/soil/plant of a former fen

    International Nuclear Information System (INIS)

    Hein, D.; Goertz, W.; Leisner-Saaber, J.; Rathje, M.

    1993-01-01

    For a former fen situated at the eastern border of the Lower terraces of the river Rhine in the close neighbourhood of densely populated urban districts a biotope-managementplan suggests the rewetting and restauration of typical landscape forms. High concentrations of heavy metals and low pH-values of the soil imply a potential danger especially for the groundwater. In order to solve this conflict between the aims of protecting rare biotopes and of saving groundwater-resources investigations were carried out considering all environmental compartments concerned: groundwater, surfacewater, soil and plants. The results demonstate that a step-by-step rewetting of the area is possible without a previous exchange of soil. In addition, careful groundwater control has to be carried out. (orig.) [de

  13. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    International Nuclear Information System (INIS)

    Christensen, E.J.; Gordon, D.E.

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines

  14. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-01-01

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation

  15. The Compatibility of Geothermal Power Plants with Groundwater Dependent Ecosystems: The Case of the Cesine Wetland (Southern Italy

    Directory of Open Access Journals (Sweden)

    Giorgio De Giorgio

    2018-01-01

    Full Text Available The Cesine Wetland, located along the Adriatic coast, was recognized as a Wetland of International Interest and a National Natural Park. Managed by the “World Wide Fund for nature” (WWF, it is considered a groundwater dependent ecosystem which is affected by seawater intrusion. The site was selected to test the environmental compatibility of a low-enthalpy geothermal power plant (closed loop operating in the aquifer saturated portion with purpose to improving the visitor centre. For this purpose, the long-lasting thermal impact on groundwater was assessed using a multi-methodological approach. The complex aquifer system was carefully studied with geological, hydrogeological and geochemical surveys, including chemical and isotopic laboratory analyses of surface water, groundwater and seawater. The isotopes δ18O, δD, δ11B, and 3H were useful to clarify the recharge contribution, the water mixing and the water age. All information was used to improve the conceptualization of the water system, including aquifers and the boundary conditions for a density driven numerical groundwater model. The purpose was to forecast anthropogenic thermal groundwater variations up to 10 years of plant working before the plant realization and to validate the solution after some working years. All results show the environmental compatibility notwithstanding the peculiar ecological environment.

  16. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location

  17. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K. [Tennessee Univ., Knoxville, TN (United States)

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  18. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico.

    Science.gov (United States)

    Sturchio, Neil C; Kuhlman, Kristopher L; Yokochi, Reika; Probst, Peter C; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); Lorenzo-Martin, Cinta [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-16

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  20. Leaf water relations and sapflow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant

    Science.gov (United States)

    James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek

    2000-01-01

    Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...

  1. Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors?

    Directory of Open Access Journals (Sweden)

    Carl BEIERKUHNLEIN

    2009-08-01

    Full Text Available Spring water reflects the hydrochemistry of the aquifer in the associated catchments. On dense siliceous bedrock, the nearsurface groundwater flow is expected to be closely related to the biogeochemical processes of forest ecosystems, where the impact of land use is also low. We hypothesize that the plant species composition of springs mainly reflects hydrochemical conditions. Therefore, springs may serve as indicator systems for biogeochemical processes in complex forest ecosystems. To test this hypothesis, we investigate the influence of spring water chemical properties, catchment traits, and spatial position on plant species composition for 73 springs in forested catchments in central Germany, using non-metric multidimensional scaling (NMDS, Mantel tests, and path analyses. Partial Mantel tests and path analyses reveal that vegetation is more greatly influenced by spring water chemistry than by catchment traits. Consequently, the catchment's influence on vegetation is effective in an indirect way, via spring water. When considering spatial aspects (in particular altitude in addition, the explanatory power of catchment traits for spring water properties is reduced almost to zero. As vegetation shows the highest correlation with the acidity gradient, we assume that altitude acts as a sum parameter that incorporates various acidifying processes in the catchment. These processes are particularly related to altitude – through bedrock, climatic parameters and forest vegetation. The species composition of undisturbed springs is very sensitive in reflecting such conditions and may serve as an integrative tool for detecting complex ecological processes.

  2. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  3. Construction quality assurance report for the Y-12 Construction/Demolition Landfill VII (CDL VII), Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burton, P.M.

    1994-11-01

    This Construction Quality Assurance (CQA) Report provides documentation that Bid Option 2 of the Y-12 Plant Construction Demolition Landfill 7 (CDL-7) was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. CDL-7 is located in Anderson County on the south side of Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant in Oak Ridge, Tennessee. This report applies specifically to the limits of excavation for Area No. 1 portions of the perimeter maintenance road and drainage channel and Sedimentation Pond No. 3. A partial ''As-Built'' survey was performed and is included

  4. Y-12 Development Organization technical progress report: Part 3 -- Metal processing, period ending March 1, 1994

    International Nuclear Information System (INIS)

    Northcutt, W.G. Jr.

    1994-01-01

    As part of the effort to downsize its uranium processing facilities, the Y-12 Plant has supported an investigation to identify extraction solvents that would both work efficiently in centrifugal contactors and be disposed of easily. Various organic ethers, hydroxy ethers, ether ketones, acids, amides, and diketones were studied for their ability to extract uranyl nitrate from aqueous solutions. Although many of these solvents were obtained commercially, others had to be synthesized in-house. The authors found a large range of extraction coefficients for these solvents. Because of steric hindrance or some other factor, certain ethers performed poorly. On the other hand, various mono- and diethers of tetrahydrofurfuryl alcohol exhibited excellent extraction and stripping coefficients for uranyl nitrate, justifying purchase of a pilot plant batch of one of this family of solvents. Likewise, the authors determined the extraction coefficient for one of the two amides synthesized in-house to be quite high

  5. Data verification and evaluation techniques for groundwater monitoring programs

    International Nuclear Information System (INIS)

    Mercier, T.M.; Turner, R.R.

    1990-12-01

    To ensure that data resulting from groundwater monitoring programs are of the quality required to fulfill program objectives, it is suggested that a program of data verification and evaluation be implemented. These procedures are meant to supplement and support the existing laboratory quality control/quality assurance programs by identifying aberrant data resulting from a variety of unforeseen circumstances: sampling problems, data transformations in the lab, data input at the lab, data transfer, end-user data input. Using common-sense principles, pattern recognition techniques, and hydrogeological principles, a computer program was written which scans the data for suspected abnormalities and produces a text file stating sample identifiers, the suspect data, and a statement of how the data has departed from the expected. The techniques described in this paper have been developed to support the Y-12 Plant Groundwater Protection Program Management Plan

  6. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  7. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  8. Brackish groundwater as an alternative source of cooling water for nuclear power plants in Israel

    International Nuclear Information System (INIS)

    Arad, A.; Olshina, A.

    1984-01-01

    The western Negev is being considered as a potential site for the location of a nuclear powerplant. Since this part of Israel has no surface water, the only alternatives for cooling water are piped-in water, Mediterranean water and local, brackish groundwater. The Judea Group aquifer was examined for its potential to provide the required amount of cooling water over the lifetime of the plant, without causing a drastic lowering of the regional water table. The salinity of the water tends to increase from east to west. Flow within the aquifer is in the direction of Beer Sheva, where the extraction rate is 32 to 35 million cu m/yr. This has resulted in a salinity creep of 5-10 mg Cl per year in the Beer Sheva area, which poses a danger of deterioration of its water supply in the long term. Given the assumed range of aquifer properties, extraction of brackish water for cooling purposes will not result in large changes in the regional water table. Exploitation of the more saline water to the southwest of Beer Sheva could preserve the quality of Beer Sheva's water supply, at the expense of an increase in the depth from which it must be pumped. 2 references, 7 figures, 2 tables

  9. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    Pickering, D.A.; Laase, A.D.; Locke, D.A.

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  10. Kansas City plant ultraviolet/ozone/hydrogen peroxide groundwater treatment system overview

    International Nuclear Information System (INIS)

    Stites, M.E.; Hughes, R.F.

    1992-01-01

    The Kansas City Plant (KCP) has committed to the utilization of a groundwater treatment system, for removal of volatile organic compounds (VOCs), that discharges a minimal amount of pollutants to the environment. An advanced oxidation process (AOP) system utilizing ozone, ultraviolet radiation, and hydrogen peroxide serves in this capacity. Packed tower aeration and activated carbon filtration are listed as best available technologies (BATs) by the Environmental Protection Agency (EPA) for the removal of VOCs in water. The disadvantage to these BATs is that they transfer the VOCs from the water medium to the air or carbon media respectively. Operation of the system began in May 1988 at a flow rate of 22.7 liters per minute (lpm) (6 gallons per minute (gpm)). An additional 102.2 lpm (27 gpm) of flow were added in October 1990. Various efforts to optimize and track the treatment unites efficiency have been carried out. A maximum influent reading of 26,590 parts per billion (ppb) of total VOCs has been recorded. Following the addition of flows, removal efficiency has averaged approximately 95%. Both air and water effluents are factored into this calculation. (author)

  11. Modelling impacts of acid deposition and groundwater level on habitat quality and plant species diversity

    NARCIS (Netherlands)

    Kros, J.; Mol, J.P.; Wamelink, G.W.W.; Reinds, G.J.; Hinsberg, van A.; Vries, de W.

    2016-01-01

    Introduction
    We quantified the effects of the site factors pH and nitrate (NO3) concentration in soil solution and groundwater level on the vegetation of terrestrial ecosystems for the Netherlands in response to changes in atmospheric nitrogen (N) and sulphur (S) deposition and groundwater level

  12. Variable-density ground-water flow and paleohydrology in the Waste Isolation Pilot Plant (WIPP) region, southeastern New Mexico

    International Nuclear Information System (INIS)

    Davies, P.B.

    1989-01-01

    Variable-density groundwater flow was studied near the Waste Isolation Pilot Plant in southeastern New Mexico. An analysis of the relative magnitude of pressure-related and density-related flow-driving forces indicates that density-related gravity effects are not significant at the plant and to the west but are significant in areas to the north, northeast, and south. A regional-scale model of variable-density groundwater flow in the Culebra Dolomite member of the Rustler Formation indicates that the flow velocities are relatively rapid west of the site and extremely slow east and northeast of the site. In the transition zone between those two extremes, which includes the plant, velocities are highly variable. Sensitivity simulations indicates that the central and western parts of the region, including the plant, are fairly well isolated from the eastern and northeastern boundaries. Vertical-flux simulations indicate that as much as 25% of total inflow to the Culebra could be entering as vertical flow, with most of this flow occurring west of the plant. A simple cross-sectional model was developed to examine the flow system as it drains through time following recharge during a past glacial pluvial. This model indicates that the system as a whole drains very slowly and that it apparently could have sustained flow from purely transient drainage following recharge of the system during the Pleistocene

  13. Manufacturing technology education development project. Project accomplishment summary for 91-Y12P-050-A1

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, S. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Smith, R. [Tennessee Dept. of Education, Nashville, TN (United States)

    1996-09-25

    The purpose of the project was to provide a set of supplemental instructional equipment and materials to Tennessee high school students to raise their level of knowledge about manufacturing technologies with the hope that some of the best and brightest would choose manufacturing as a career path. The role of the Y-12 Plant was primarily technical: renovate the portable classroom; select and purchase appropriate equipment; install and test the equipment; assist in the development of the curriculum; train the initial group of teachers; and provide technical assistance where needed after the laboratory was deployed. The role of the Department of Education was to provide the mobile facility; assist in the design of the laboratory; lead the development of the curriculum; deploy the trailer; and develop the structure for administering the selection of schools, training teachers, and movement of the laboratory. The Department of Education as subcontracted with Middle Tennessee State University to handle the details of laboratory deployment.

  14. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    International Nuclear Information System (INIS)

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III.

    1995-01-01

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis

  15. Plant traits in response to raising groundwater levels in wetland restoration : evidence from three case studies

    NARCIS (Netherlands)

    Bodegom, P.M. van; Grootjans, A.P.; Sorrell, B.K.; Bekker, R.M.; Bakker, C.; Ozinga, W.A.; Middleton, B.

    Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative

  16. Plant traits in response to raising groundwater levels in wetland restoration: evidence from three case studies

    NARCIS (Netherlands)

    Bodegom, van P.M.; Grootjans, A.P.; Sorrell, B.K.; Bekker, R.M.; Bakker, C.; Ozinga, W.A.

    2006-01-01

    Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative

  17. Y-12 National Security Complex Emergency Management Hazards Assessment (EMHA) Process; FINAL

    International Nuclear Information System (INIS)

    Bailiff, E.F.; Bolling, J.D.

    2001-01-01

    This document establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Complex for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provided in this document include methods and requirements for performing the following emergency management activities at Y-12: (1) hazards identification; (2) hazards survey, and (3) hazards assessment

  18. Uncertainty in 14C model ages of groundwater: The influence of soil gas in terranes dominated by C3 plants

    Science.gov (United States)

    Nelson, S.; Hart, R.; Eggett, D.

    2009-12-01

    Groundwater is the largest source of fresh water readily available to humanity and aquifers with long residence times are particularly susceptible to overuse. Thus, it is important to have quantitative estimates of the residence time of water in such aquifers. Many models used to calculate 14C ages of groundwater depend on an estimate of the δ13C value of carbon dioxide in soil at the time of recharge, a value that must be estimated. Other work has suggested that for terranes dominated by C3 plants, -23‰ is an appropriate value, and sensitivity calculations show that the apparent age of a groundwater is strongly dependent on the choice of this parameter. This is especially true where the measured values of δ13C of dissolved inorganic carbon (DIC) are used to estimate the contribution of “dead” carbon to the DIC load via the dissolution of calcite in the aquifer and soil zones. To better understand the temporal and spatial isotopic and abundance variability of soil carbon dioxide, we established soil gas sampling sites that encompassed a wide variety of settings in terms of season, elevation, climate, and plant community that were sampled monthly throughout regions of the state of Utah where C3 flora dominate. Direct measurements of soil gas suggest a value of -21.8 ± 1.4‰ (1σ) is a good input variable as long as: a) C3 vegetation dominates, and b) extreme aridity does not prevail such that plant densities and soil microbial activities are minimized. If recharge is envisaged to occur during spring and early summer in highly vegetated uplands, a value of -24.0 ± 0.6‰ may be more appropriate as statistical analysis reveals that seasonality and plant density are most clearly correlated to the carbon isotope composition of carbon dioxide in soil gas. Although the two values and ranges cited above values do not diverge strongly from other published estimates, they place fairly narrow limits on the uncertainty of ±500 and ±200 yr., respectively, in

  19. Simultaneous simulations of uptake in plants and leaching to groundwater of cadmium and lead for arable land amended with compost or farmyard manure

    DEFF Research Database (Denmark)

    Legind, Charlotte Nielsen; Rein, Arno; Serre, Jeanne

    2012-01-01

    The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year...

  20. Risk assessment of groundwater environmental contamination: a case study of a karst site for the construction of a fossil power plant.

    Science.gov (United States)

    Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan

    2017-12-20

    This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of

  1. Building 9201-4 at the Oak Ridge Y-12 Site annual surveillance and maintenance report 1994

    International Nuclear Information System (INIS)

    Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.

    1995-01-01

    The Oak Ridge Y-12 Plant Decontamination and Decommissioning (D ampersand D) Program is part of the Waste Management/D ampersand D Organization and is funded by the Office of Environmental Restoration (EM-40). Strategic goals are to protect human health and environment and to reduce the number of hazardous material-contaminated facilities by properly managing and dispositioning facilities when they are no longer required to fulfill a site mission. The D ampersand D Program objectives include (1) providing surveillance and maintenance (S ampersand M) activities in support of facilities in standby and awaiting D ampersand D; (2) developing specific methods, schedules, and funding plans for the D ampersand D of shutdown facilities; and (3) implementing plans to provide for facility disposition in a safe, compliant, and cost effective manner. Presently Building 9201-4 (Alpha-4) is the only facility at the complex that is in the Y-12 D ampersand D Program. This report provides a status of the program plans and specific S ampersand M requirements for Building 9201-4 as part of the Y-12 D ampersand D Program

  2. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site

    Energy Technology Data Exchange (ETDEWEB)

    Wirthensohn, T. [University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria)], E-mail: thomas.wirthensohn@boku.ac.at; Schoeberl, P. [Wienenergie Gasnetz GmbH, Referat 17-Altlasten, Josefstaedterstrasse 10-12, 1080 Vienna (Austria); Ghosh, U. [Department of Civil and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fuchs, W. [University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria)

    2009-04-15

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5 h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies.

  3. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site.

    Science.gov (United States)

    Wirthensohn, T; Schoeberl, P; Ghosh, U; Fuchs, W

    2009-04-15

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies.

  4. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site

    International Nuclear Information System (INIS)

    Wirthensohn, T.; Schoeberl, P.; Ghosh, U.; Fuchs, W.

    2009-01-01

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5 h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies

  5. Treatment of Y-12 storm sewer sediments and DARA soils by thermal desorption

    International Nuclear Information System (INIS)

    Morris, M.I.; Shealy, S.E.

    1995-01-01

    The 1992 Oak Ridge Reservation Federal Facilities Compliance Agreement (FFCA) listed a number of mixed wastes, subject to land disposal restrictions (LDR), for which no treatment method had been identified, and required DOE to develop strategies for treatment and ultimate disposal of those wastes. This paper presents the results of a program to demonstrate that thermal desorption can remove both organics and mercury from two mixed wastes from the DOE Y-12 facility in Oak Ridge, Tennessee. The first waste, the Y-12 Storm Sewer Sediments (SSSs) was a sediment generated from upgrades to the plant storm sewer system. This material contained over 4 percent mercury, 2 percent uranium and 350 mg/kg polychlorinated biphenyls (PCBs). Leachable mercury exceeded toxicity characteristic leaching procedure (TCLP) and LDR criteria. The second waste, the Disposal Area Remedial Action (DARA) Soils, are contaminated with uranium, mercury and PCBs. This treatability study included bench-scale testing of a thermal desorption process. Results of the testing showed that, for the SSSs, total mercury could be reduced to 120 mg/kg by treatment at 600 degrees C, which is at the high end of the temperature range for typical thermal desorption systems. Leachable TCLP mercury was less than 50 μg/L and PCBs were below 2 mg/kg. Treatment of the DARA Soils at 450 degrees C for 10 minutes resulted in residual PCBs of 0.6 to 3.0 mg/kg. This is too high (goal < 2mg/kg) and higher treatment temperatures are needed. The testing also provided information on the characteristics and quantities of residuals from the thermal desorption process

  6. Regulator Interface Strategies Implemented at the Y-12 National Security Complex Old Salvage Yard Soils Remediation Project, Oak Ridge, TN - 12162

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Linda [Alliant Corporation (United States); Wilkerson, Laura; Skinner, Ralph [US DOE-ORO EM (United States); Birchfield, Joseph W. III [Link Technologies (United States)

    2012-07-01

    ), data-sharing, real-time characterization reporting, surface and groundwater modeling and other interface planning activities were utilized to help facilitate and complete characterization and remediation activities. As a result of these strategies, the surgical extraction of one contiguous area of soil approximately 354 cubic meters is planned for FY12. The strategies discussed resulted in a major reduction of footprint remediation (i.e., 2.8% of the original estimate) which was originally estimated at over 26,759 cubic meters. The original estimate was developed using historical data collected at various times over the period of 20 years. By leveraging a hybrid sampling approach that involved both statistically-based and biased sampling locations, the area of contamination was significantly reduced resulting in both a compliant remedial design that is cost effective while mitigating a principle threat sources to surface and groundwater at the Y-12 plant. One remedial action boundary of 354 cubic meters was verified in the northern section of the Western OSY area known as the old drum de-header station for VOCs. The original estimate for disposal was in excess of 26,759 cubic meters. This area is scheduled for waste characterization and profile development in the first half of fiscal year 2012. The anticipated disposal facility is an on-site Oak Ridge CERCLA disposal landfill known as the Environmental Management Waste Management Facility (EMWMF). By utilizing the careful strategic planning, field-based screening and close cooperation of regulatory stakeholders as detailed in this paper, the total area of soil requiring remedial action within the Y-12 OSY footprint was 354 cubic meters or 2.8% of the original planned estimate. A potential waste reduction of 97.2% was realized over the original planned estimate for OSY Soils. Significant cost savings were achieved by - Minimizing the footprint of the remedial action; - Confirmatory analysis of soils instead of use of

  7. Results and interpretation of groundwater data obtained from multiport-instrumented coreholes (GW-131 through GS-135), fiscal years 1990 and 1991

    International Nuclear Information System (INIS)

    Dreier, R.B.; Early, T.O.; King, H.L.

    1993-01-01

    With the increased emphasis by Department of Energy personnel on assessing the environmental impact of past waste disposal practices at all of its facilities, there has been an associated increase in characterization activities that focus on delineating site-specific groundwater flow regimes and contaminant migration pathways. At the Oak Ridge Y-12 Plant, the complex geologic and hydrologic relationships require a more detailed understanding of the three-dimensional properties of groundwater flow regimes than can be obtained by conventional monitoring activities. Thus, as part of groundwater characterization activities conducted by the Environmental Surveillance Section staff of the Y-12 Plant Environmental Management Department, five existing deep core holes were instrumented with multiport monitoring systems to provide greatly enhanced resolution of the hydraulic and hydrochemical properties of the groundwater system within Bear Creek Valley. With a multiport system, it is possible to measure hydraulic head and hydraulic conductivity and collect water samples from multiple levels within a single borehole. In this report, multiport data collected during fiscal years (FYs) 1990 and 1991 are summarized

  8. A tracking system for groundwater sampling and data transfer schedules

    International Nuclear Information System (INIS)

    Mercier, T.M.

    1990-12-01

    Since groundwater monitoring programs at the Oak Ridge Y-12 Plant have become more complex and varied and as the occasions to respond to internal and external reporting requirements have become more frequent and time constrained, the need to track groundwater sampling activities and data transfer from the analytical laboratories has become imperative. If backlogs can be caught early, resources can be added or reallocated in the field and in the laboratory in a timely manner to ensure reporting deadlines are met. The tracking system discussed in this paper starts with clear definition of the groundwater monitoring program at the facility. This information is input into base datasets at the beginning of the sampling cycle. As the sampling program progresses, information about well sampling dates and data transfer dates is input into the base datasets. From the base program data and the update data, a status report is periodically generated by a computer program which identifies the type and nature of bottle necks encountered during the implementation of the groundwater monitoring program

  9. The impact of abandoned coal gasification plants on groundwater and remediation strategies

    International Nuclear Information System (INIS)

    Werner, P.; Stieber, M.

    1997-01-01

    Areas of abandoned coal gasification-, cokeovenplants and town gasworks normally contain hazardous contaminants as there are among others PAHs, cyanides, mono aromatic compounds and phenols. Therefore a strong impact on the groundwater can be expected. In the thousands of sites existing in Germany a complete remediation is almost impossible. Combustion is the only safe way to eliminate the contaminants by mineralization; but is to expensive and not applicable for the large amount of soil to be treated. Soil washing and bio-remediation is limited by the composition of the contaminants on the one side and by the soil structure on the other. Therefore the success of the mentioned remediation techniques is normally weak and only in some selected cases efficient enough. A combination of different methods according the site characteristics might help to increase the efficiency. On the other hand it it obvious, that there are natural barriers integrated between the contaminants and the groundwater as there are e.g solubility adsorbability and biodegradability of the hazardous compounds and the distance to the groundwater. Recently developed methods for downstream groundwater remediation are presented and discussed for the application in gas work contaminations. Those so called 'passive systems' are said to be very economic and might help to prevent further distribution of the contaminants into the environment. (au)

  10. Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response.

    Science.gov (United States)

    Muniz, Valdirene S; Baptista-Dos-Reis, Renata; Benjamim, Claudia F; Mata-Santos, Hilton A; Pyrrho, Alexandre S; Strauch, Marcelo A; Melo, Paulo A; Vicentino, Amanda R R; Silva-Paiva, Juliana; Bandeira-Melo, Christianne; Weller, Peter F; Figueiredo, Rodrigo T; Neves, Josiane S

    2015-01-01

    Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5'-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.

  11. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation

  12. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  13. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    Science.gov (United States)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils

  14. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-01-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report

  15. Cornhusker Army Ammunition Plant Longterm Groundwater Monitoring Health and Safety Plan

    Science.gov (United States)

    1997-06-01

    glands. It is less toxic to humans than most anticholinesterase agents because malathion and its metabolite, malaoxon, are metabolized in the liver to...During the early and middle 1980s, the U.S. army conducted an incineration project designed to excavate and treat soils beneath leachpits and cesspools...contamination, but was unable to remove all contaminated soil . At many locations, remediation action levels could not be achieved before groundwater was

  16. Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy's (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE's Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI's role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection

  17. Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-17

    The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy`s (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection.

  18. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that

  19. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    Science.gov (United States)

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  20. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-14

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e

  1. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  2. Analysis of solutes in groundwaters from the Rustler Formation at and near the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Robinson, K.L.

    1997-09-01

    Between 1976 and 1986, groundwater samples from more than 60 locations in the vicinity of the Waste Isolation Pilot Plant site were collected and analyzed for a variety of major, minor, and trace solutes. Most of the samples were from the Rustler Formation (the Culebra Dolomite, the Magenta Dolomite, or the zone at the contact between the Rustler and underlying Salado Formations) or the Dewey Lake Red Beds. The analytical data from the laboratories are presented here with accompanying discussions of sample collection methods, supporting field measurements, and laboratory analytical methods. A comparison of four data sets and a preliminary evaluation of the data for the major solutes (Cl - , SO 4 -2 , Na, K, Ca, and Mg) shows that the data for samples analyzed by UNC/Bendix for SNL seem to be the most reliable, but that at some locations, samples representative of the native, unperturbed groundwater have not been collected. At other locations, the water chemistry has apparently changed between sampling episodes

  3. Evaluation of the proposed pilot groundwater pump and treat demonstration for the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Hale, T.B.; Huff, D.D.; Nickelson, M.D.; Rightmire, C.T.

    1992-11-01

    This report contains the evaluation and recommendations of a Groundwater Corrective Actions Review Team. The primary goal is to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at Paducah, Kentucky. A key distinction recognized by the review team is that the proposed project is intended to be a full-scale hydraulic containment of contaminants migrating from the sources of the plume, not plume remediation. The key questions incorporated into this plan are whether (1) dense, nonaqueous-phase liquids (DNAPLS) are present in the Regional Gravel Aquifer (RGA) at the source of the plume and (2) 99 Tc removal must be included as part of any groundwater treatment process. The first question cannot be answered until the contaminant sources are better defined; the second question requires further risk assessment and/or a policy decision by DOE. Technical evaluation by the review team suggests that the recommended course of action be to modify the proposed work plan to include accurate identification of the sources of contaminants and vertical distribution of contaminants within the Northwest plume before a decision is made on the preferred source-control option. If DNAPLs are not present in the RGA, removal or containment of the sources is recommended. If DNAPLs are present, then hydraulic containment will be required. Finally, the review team recognizes that it is necessary to initiate a more comprehensive analysis of sitewide remediation needs to create links between action taken for the Northwest plume and action taken for other contamination sites at PGPD

  4. Evaluation of the proposed pilot groundwater pump and treat demonstration for the Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Hale, T.B.; Huff, D.D.; Nickelson, M.D.; Rightmire, C.T.

    1992-11-01

    This report contains the evaluation and recommendations of a Groundwater Corrective Actions Review Team. The primary goal is to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at Paducah, Kentucky. A key distinction recognized by the review team is that the proposed project is intended to be a full-scale hydraulic containment of contaminants migrating from the sources of the plume, not plume remediation. The key questions incorporated into this plan are whether (1) dense, nonaqueous-phase liquids (DNAPLS) are present in the Regional Gravel Aquifer (RGA) at the source of the plume and (2) [sup 99]Tc removal must be included as part of any groundwater treatment process. The first question cannot be answered until the contaminant sources are better defined; the second question requires further risk assessment and/or a policy decision by DOE. Technical evaluation by the review team suggests that the recommended course of action be to modify the proposed work plan to include accurate identification of the sources of contaminants and vertical distribution of contaminants within the Northwest plume before a decision is made on the preferred source-control option. If DNAPLs are not present in the RGA, removal or containment of the sources is recommended. If DNAPLs are present, then hydraulic containment will be required. Finally, the review team recognizes that it is necessary to initiate a more comprehensive analysis of sitewide remediation needs to create links between action taken for the Northwest plume and action taken for other contamination sites at PGPD.

  5. Technical summary of Groundwater Quality Protection Program at Savannah River Plant. Volume II. Radioactive waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Christensen, E.J.

    1983-12-01

    This report (Volume II) presents representative monitoring data for radioactivity in groundwater at SRP. Four major groups of radioactive waste disposal sites and three minor sites are described. Much of the geohydrological and and other background information given in Volume I is applicable to these sites and is incorporated by reference. Several of the sites that contain mixed chemical and radioactive wastes are discussed in both Volumes I and II. Bulk unirradiated uranium is considered primarily a chemical waste which is addressed in Volume I, but generally not in Volume II

  6. DARA Solid Storage Facility evaluation and recommendations, Y-12 Bear Creek Burial Grounds, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Barton, W.D. III; Hughey, J.C.

    1992-08-01

    The Disposal Area Remedial Action (DARA) Solid Storage Facility (SSF) is a rectangular concrete vault with two high-density Polyethlene (HDPE) liners and covered with a metal building. The SSF was originally designed and constructed to receive saturated sediments from the excavation of the Oil Retention Ponds and Tributary 7 at the Oak Ridge Y-12 Plant. The sediments placed in the SSF were generally high-water-content soils contaminated with polychlorinated biphenyls (PCBs) and volatile organic carbons. The facility was intended to dewater the sediments by allowing the free water to percolate to a 6-in. sand layer covering the entire floor of the facility. The sand layer then drained into sumps located at the east and west ends of the facility. An application for a Part-B Permit was submitted to the state of Tennessee in February 1992 (MMES 1992a). This report is being submitted to support approval of that permit application and to address certain issues known to the regulators regarding this facility

  7. Technical results of Y-12/IAEA field trial of remote monitoring system

    International Nuclear Information System (INIS)

    Corbell, B.H.; Whitaker, J.M.; Welch, J.

    1997-01-01

    A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and