WorldWideScience

Sample records for xylenes

  1. Xylenes

    International Nuclear Information System (INIS)

    1993-01-01

    In Canada, xylenes are produced from the catalytic reforming of petroleum and as byproducts from the cracking of oil. An estimated 2,600 kilotonnes/y is consumed in Canada as a component of gasoline; 145 kilotonnes/y of purified xylenes are also consumed for other uses such as solvents. Xylenes are released into the air principally from their use as solvents and from transportation sources, and into soil and water through spills and leakage of petroleum and other chemical products. These releases have resulted in the presence of measurable concentrations of xylenes in air, water, and soil in Canada, although xylenes do not persist in any of these media. Although most xylenes are released into the air, concentrations to which wildlife are exposed are at least 1,000 times less than the effects threshold estimated for inhalation of xylenes by mammals. Xylene levels in ambient air are at least a million times less than the effects threshold recorded for plants. Concentrations of xylenes in surface water are at least 100 times less than the effects threshold estimated for the most sensitive aquatic species. Xylenes are not expected to be associated with global warming or ozone depletion. Based on data on concentrations of xylenes in ambient air, drinking water, and at self-serve gasoline stations, the total average daily intake of xylenes was estimated for various age groups in the general population. This intake is 15-45 times less than the tolerable daily intake derived on the basis of laboratory studies. It is concluded that xylenes are not entering the environment in quantities or under conditions that may be harmful to the environment, or that may constitute a danger to the environment on which human life depends, or to human life or health. 123 refs., 2 tabs

  2. Xylene isomerization

    KAUST Repository

    Bilaus, Rakan Sulaiman

    2016-06-23

    A process for producing xylenes, in particular para-xylene that is less energy intensive than conventional processes is provided. In an embodiment the process comprises contacting a feed mixture in an isomenzation zone with a catalyst at isomenzation conditions and producing an isomerized product comprising a higher proportion of p-xylene than in the feed mixture, wherein the catalyst comprises an acidic sulfonated catalytic membrane. Xylene isomenzation can also be coupled with a p-xylene extraction process, where the raffinate (p-xylene deprived stream) from the extraction process is fed to an isomenzation reactor to produce p-xylene. In an embodiment, the process can comprise: a) providing a feed stream comprising a mixture of xylene isomers including p-xylene; b) extracting p-xylene from the feed stream using a separator to separate the feed stream into a p-xylene rich stream and a p-xylene deprived stream; and c) delivering the p-xylene deprived stream to an isomenzation unit, the isomenzation unit including an acidic sulfonated catalytic membrane, and using the isomenzation unit to produce an isomerized product comprising a higher proportion of p-xylene than in the p-xylene deprived stream delivered to the isomenzation unit. In any one or more aspects, the isomenzation unit can be operated at a temperature in the range of less than 350°, for example about 20°C to about 200°C.

  3. Xylene isomerization

    KAUST Repository

    Bilaus, Rakan Sulaiman; Pinnau, Ingo

    2016-01-01

    at isomenzation conditions and producing an isomerized product comprising a higher proportion of p-xylene than in the feed mixture, wherein the catalyst comprises an acidic sulfonated catalytic membrane. Xylene isomenzation can also be coupled with a p

  4. Solid-Liquid Equilibria for the Binary Mixtures 1,4-Xylene + Ethylbenzene and 1,4-Xylene + Toluene

    DEFF Research Database (Denmark)

    Huyghe, Raphaël; Rasmussen, Peter; Thomsen, Kaj

    2004-01-01

    Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K.......Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K....

  5. A novel non-toxic xylene substitute (SBO) for histology.

    Science.gov (United States)

    Kunhua, Wang; Chuming, Fan; Tao, Lai; Yanmei, Yang; Xin, Yang; Xiaoming, Zhang; Xuezhong, Guo; Xun, Lai

    2012-01-01

    Xylene has been generally used as a clearing and deparaffinizing agent in histology. Because of the potential toxic and flammable nature of xylene, its substitutes have been introduced into some laboratories. In this study, we introduced a novel, non-toxic xylene substitute (SBO), which was generated through a mixture of 86% of white oil No.2 and 14% of N-heptane. SBO had a high boiling point (188°C) and flash point (144°C) coupled with a scentless and decreased volatility. To compare the effectiveness of SBO and xylene in histology, a wide range of tissue samples from rats and human beings were processed in parallel in SBO and xylene, subjected to various staining procedures. Similar to the xylene-processed paraffin blocks, the SBO-processed counterparts were easy to section without any evidence of cell shrinkage. Assessment of the SBO-treated sections stained with hematoxylin-eosin revealed a good maintenance of cell morphology and structure, and a clear definition of the cytoplasm and the nucleus. Moreover, comparable good results were achieved between the SBO- and xylene-processed tissues in other histochemical and immunohistochemical stainings. Six-month clinical applications at one department of pathology supported the potentials of SBO as a xylene substitute. In conclusion, we suggest that SBO is a safe and efficient substitute of xylene and may probably replace xylene without losing valuable diagnostic information.

  6. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid; Badra, Jihad; Farooq, Aamir

    2015-01-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306

  7. Health Hazards of Xylene: A Literature Review

    OpenAIRE

    T. Rajan, Sharada; Malathi, N.

    2014-01-01

    Xylene, an aromatic hydrocarbon is widely used in industry and medical laboratory as a solvent. It is a flammable liquid that requires utmost care during its usage. On exposure the vapours are rapidly absorbed through the lungs and the slowly through the skin. Prolonged exposure to xylene leads to significant amount of solvent accumulation in the adipose and muscle tissue. This article reviews the various acute and chronic health effects of xylene through various routes of exposure.

  8. NTP Toxicology and Carcinogenesis Studies of Xylenes (Mixed) (60% m-Xylene, 14% p-Xylene, 9% o-Xylene, and 17% Ethylbenzene) (CAS No. 1330-20-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies).

    Science.gov (United States)

    1986-12-01

    The technical grade of xylenes (mixed) (hereafter termed xylenes) contains the three isomeric forms and ethylbenzene (percentage composition shown above). The annual production for 1985 was approximately 7.4 x 108 gallons. Xylenes is used as a solvent and a cleaning agent and as a degreaser and is a constituent of aviation and automobile fuels. Xylenes is also used in the production of benzoic acid, phthalate anhydride, and isophthalic and terephthalic acids as well as their dimethyl esters. Toxicology and carcinogenesis studies of xylenes were conducted in laboratory animals because a large number of workers are exposed and because the long- term effects of exposure to xylenes were not known. Exposure for the present studies was by gavage in corn oil. In single-administration studies, groups of five F344/N rats and B6C3F1 mice of each sex received 500, 1,000, 2,000, 4,000, or 6,000 mg/kg. Administration of xylenes caused deaths at 6,000 mg/kg in rats and mice of each sex and at 4,000 mg/kg in male rats. In rats, clinical signs observed within 24 hours of dosing at 4,000 mg/kg included prostration, muscular incoordination, and loss of hind limb movement; these effects continued through the second week of observation. Tremors, prone position, and slowed breathing were recorded for mice on day 3, but all mice appeared normal by the end of the 2- week observation period. In 14- day studies, groups of five rats of each sex were administered 0, 125, 250, 500, 1,000, or 2,000 mg/kg, and groups of five mice of each sex received 0, 250, 500, 1,000, 2,000, or 4,000 mg/kg. Chemical- related mortality occurred only at 2,000 mg/kg in rats and at 4,000 mg/kg in mice. Rats and mice exhibited shallow breathing and prostration within 48 hours following dosing at 2,000 mg/kg. These signs persisted until day 12 for rats, but no clinical signs were noted during the second week for mice. In 13- week studies, groups of 10 rats of each sex received 0, 62.5, 125, 250, 500, or 1,000 mg

  9. Volatilisation of o-Xylene from Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund; Brun, Adam

    1994-01-01

    The diffusive release of o-xylene from two soils with different contents of organic carbon (1.1 % and 0.11 % TOC) and with two different water contents (app. 5 % w/w and 15 % w/w was studied in the laboratory. The soils were spiked with o-xylene in the laboratory. The fluxes were measured over...

  10. Excess molar volumes and refractive indices of (methoxybenzene+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T=(288.15 to 303.15)K

    International Nuclear Information System (INIS)

    Al-Kandary, Jasem A.; Al-Jimaz, Adel S.; Abdul-Latif, Abdul-Haq M.

    2006-01-01

    Densities ρ and refractive indices n D for (anisole+benzene, or toluene, or o-xylene, or m-xylene or p-xylene or mesitylene) binary mixtures over the entire range of mole fraction, at temperatures (288.15, 293.15, 298.15, and 303.15)K and atmospheric pressure, have been measured. The excess molar volume V E and molar refraction deviation ΔR m , have been calculated and fitted to the Redlich-Kister polynomial relation to estimate the binary coefficients and standard errors. The excess molar volumes are positive for (anisole+mesitylene) binary mixtures and negative for (anisole+benzene, or toluene, or xylene isomers) binary mixtures at various temperatures. Partial molar volumes V-bar i and partial excess molar volumes V-bar i E have been also derived from the experimental data. The calculated values have been used to explain the dependency of intermolecular interaction between the mixing components on the alkyl substitution on benzene ring

  11. Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K

    International Nuclear Information System (INIS)

    Rani, Ruman; Bhatia, Subhash C.

    2013-01-01

    Highlights: ► The values of densities and speeds of sound were measured for the binary mixtures at 298.15 and 308.15 K. ► Maximum deviations in excess functions were observed for binary mixtures of 1-nonanol with p-xylene. ► Calculated excess and deviation functions were fitted to the Redlich–Kister polynomial. ► The results analysed in terms of molecular interactions and structural effects. -- Abstract: Densities, ρ, and speeds of sound, u, of binary liquid mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene have been measured over the entire range of composition at T = (298.15 and 308.15) K and at atmospheric pressure. Using these results, the values of the excess molar volume, V E , isentropic compressibility, κ S , molar isentropic compressibility, K S,m , excess molar isentropic compressibility, K S,m E , deviations of the speed of sound, u D , and excess partial molar volume, V ¯ m,i E,0 , and excess partial molar isentropic compressibility, K ¯ m,i E,0 at infinite dilution, have been calculated. The calculated excess and deviation functions have been fitted to the Redlich–Kister polynomial equations and the results analysed in terms of molecular interactions

  12. A Novel Non-Toxic Xylene Substitute (SBO) for Histology

    OpenAIRE

    Kunhua, Wang; Chuming, Fan; Tao, Lai; Yanmei, Yang; Xin, Yang; Xiaoming, Zhang; Xuezhong, Guo; Xun, Lai

    2011-01-01

    Xylene has been generally used as a clearing and deparaffinizing agent in histology. Because of the potential toxic and flammable nature of xylene, its substitutes have been introduced into some laboratories. In this study, we introduced a novel, non-toxic xylene substitute (SBO), which was generated through a mixture of 86% of white oil No.2 and 14% of N-heptane. SBO had a high boiling point (188°C) and flash point (144°C) coupled with a scentless and decreased volatility. To compare the eff...

  13. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-11-01

    P-xylene is one of the highly influential commodities in the petrochemical industry. It is used to make 90% of the world’s third largest plastic production, polyethylene terephthalate (PET). With a continuously increasing demand, the current technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic microporosity (PIMs) as well as polyimides (PIM-PI), including thermally cross-linked PIM-1, PIM-6FDA-OH and thermally-rearranged PIM-6FDA-OH were investigated as potential candidates. Although they exhibited extremely high permeability to xylenes, selectivity towards p-xylene was poor. This was attributed to the polymers low chemical resistance which was apparent in their strong tendency to swell in xylenes. Consequently, a perfluoro-polymer, Teflon AF 2400, with a high chemical resistance was tested, which resulted in a slightly improved selectivity. A super acid sulfonated perfluoro-polymer (Nafion-H) was used as reactive membrane for xylenes isomerization. The membrane exhibited high catalytic activity, resulting in 19.5% p-xylene yield at 75ᵒC compared to 20% p-xylene yield at 450ᵒC in commercial fixed bed reactors. Nafion-H membrane outperforms the commercial technology with significant energy savings.

  14. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Science.gov (United States)

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  15. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Probian, Christina; Wilkes, Heinz

    2010-01-01

    The identity of the microorganisms capable of anaerobic p-xylene degradation under denitrifying conditions is hitherto unknown. Here, we report highly enriched cultures of freshwater denitrifying bacteria that grow anaerobically with p-xylene as the sole organic carbon source and electron donor. ...

  16. Volumetric, Viscometric and Excess Properties of Binary Mixtures of 1-Iodobutane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 303.15 to 313.15 K

    Directory of Open Access Journals (Sweden)

    Sangita Sharma

    2013-01-01

    Full Text Available Densities and viscosities have been determined for binary mixtures of 1-iodobutane with benzene, toluene, o-xylene, m-xylene, p-xylene, and mesitylene at 303.15, 308.15, and 313.15 K for the entire composition range at atmospheric pressure. The excess molar volumes, , deviations in viscosity, Δη, and excess Gibbs’ free energy of activation flow, Δ have been calculated from the experimental values. The experimental data were fitted to Redlich-Kister polynomial equation. The variations of these parameters with composition of the mixtures and temperature have been discussed in terms of molecular interactions occurring in these mixtures. Further, the viscosities of these binary mixtures were calculated theoretically from their corresponding pure component data by using empirical relations like Bingham, Arrhenius and Eyring, Kendall and Munroe, Hind, Katti and Chaudhari, Grunberg and Nissan, and Tamura and Kurata. Comparison of various interaction parameters has been expressed to explain the intermolecular interactions between iodobutane and selected hydrocarbons.

  17. Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural).

    Science.gov (United States)

    Bizkarra, K; Barrio, V L; Arias, P L; Cambra, J F

    2016-09-01

    In the present work m-xylene and an equimolecular mixture of m-xylene, 1-butanol and furfural, all of them bio-oil model compounds, were studied in steam reforming (SR) conditions. Three different nickel catalysts, which showed to be active in 1-butanol SR (Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3), were tested and compared with thermodynamic equilibrium values. Tests were carried out at temperatures from 800 to 600°C at atmospheric pressure with a steam to carbon ratio (S/C) of 5.0. Despite the different bio-oils fed, the amount of moles going through the catalytic bed was kept constant in order to obtain comparable results. After their use, catalysts were characterized by different techniques and those values were correlated with the activity results. All catalysts were deactivated during the SR of the mixture, mainly by coking. The highest hydrogen yields were obtained with Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts in the SR of m-xylene and SR of the mixture, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Using wintergreen oil for mounting mosquito larvae: a safer alternative to xylene.

    Science.gov (United States)

    Koay, J B; Natasya, N N; Nashithatul, Mag; Ihsanuddin, R; Salleh, F M; Azil, A H

    2016-01-01

    Permanent mounting of fourth instar mosquito larvae is essential for identifying Aedes spp. This procedure requires extensive exposure to xylene, a clearing agent in the mounting process. We investigated wintergreen oil as a substitute for xylene. Five hundred larvae were mounted on slides to evaluate shrinkage or expansion of specimens after clearing using xylene or wintergreen oil. We examined the ventral brush and siphonal hair tufts for species identification and for preservation of morphological characteristics after clearing specimens in xylene or wintergreen oil. Shrinkage of the length of whole larvae and width of the head, thorax and abdomen after mounting was significantly greater after clearing with xylene than with wintergreen oil. The length of the comb scale nearest the ventral brush was similar for both clearing agents. The clarity of the specimens after mounting was improved by clearing with wintergreen oil, but the integrity of the ventral brush and siphonal hair tufts were similar for both clearing agents.

  19. Replacing xylene with n-heptane for paraffin embedding.

    Science.gov (United States)

    Stockert, J C; López-Arias, B; Del Castillo, P; Romero, A; Blázquez-Castro, A

    2012-10-01

    In standard histological technique, aromatic solvents such as xylene and toluene are used as clearing agents between ethanol dehydration and paraffin embedding. In addition, these solvents are used for de-waxing paraffin sections. Unfortunately, these solvents are harmful and therefore adequate substitutes would be useful. We suggest the use of n-heptane as a convenient substitute for xylene. Paraffin sections of rat tissues processed with n-heptane and stained with hematoxylin-eosin or Masson's trichrome showed proper embedment, well preserved morphology and excellent staining.

  20. Separation and effect of residual moisture in liquid phase adsorption of xylene on y zeolites

    Directory of Open Access Journals (Sweden)

    P. Lahot

    2014-06-01

    Full Text Available The separation of p-xylene and m-xylene from C8 aromatic hydrocarbon feed using Y zeolites is investigated. Effect of residual moisture on p-xylene adsorption on BaY was measured in order to optimize the activation temperature of the adsorbent. The results show that with an increase in temperature the moisture on the adsorbent decreases. An optimum loading of moisture is required for adsorption of xylene on the adsorbents. The Everett equation is used to determine the adsorption capacity and selectivity. It has been found that the adsorbents best suited for the separation of p-xylene, m-xylene, o-xylene and ethyl benzene from the mixture of C8 aromatics are NaY, NaY, BaY and KY, respectively. The XRD results show that the crystallinity of the adsorbent decreases upon exchanging the zeolites to K+ and Ba2+ ions.

  1. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    International Nuclear Information System (INIS)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-01-01

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO 2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO 2 selectivity. Interestingly, Mn-TiO 2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future

  2. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Ting [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yu, Yi-Hui [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Nguyen, Van-Huy [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Lu, Kung-Te [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wu, Jeffrey Chi-Sheng, E-mail: cswu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Luh-Maan [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, Chi-Wen [Taiwan Semiconductor Manufacturing Company, Hsinchu 30078, Taiwan (China)

    2013-11-15

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO{sub 2} photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO{sub 2} selectivity. Interestingly, Mn-TiO{sub 2} in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  3. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  4. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2015-06-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.

  5. Sex differences in the toxicokinetics of inhaled solvent vaporsin humans 1. m-Xylene

    International Nuclear Information System (INIS)

    Ernstgaard, Lena; Sjoegren, Bengt; Warholm, Margareta; Johanson, Gunnar

    2003-01-01

    The aim of this study was to evaluate possible sex differences in the inhalation toxicokinetics of m-xylene vapor. Seventeen healthy volunteers (nine women and eight men) were exposed to m-xylene (200 mg/m 3 ) and to clean air (control exposure) on different occasions during 2 h of light physical exercise (50 W). The chosen level corresponds to the occupational exposure limit (8-h time weighted average) in Sweden. m-Xylene was monitored up to 24 h after exposure in exhaled air, blood, saliva, and urine by headspace gas chromatography. m-Methylhippuric acid (a metabolite of m-xylene) was analyzed in urine by high-performance liquid chromatography. Body fat and lean body mass (LBM) were estimated from sex-specific equations using bioelectrical impedance, body weight, height, and age. Genotypes and/or phenotypes of cytochromes P450 2E1 and 1A1, glutathione transferases M1 and P1, and epoxide hydrolase were determined. The toxicokinetic profile in blood was analyzed using a two-compartment population model. The area under the concentration-time curve (AUC) of m-xylene in exhaled air postexposure was larger in women than in men. In addition, the excretion via exhaled air was significantly higher in women when correcting for body weight or LBM. In contrast, the men had a significantly higher volume of distribution, excretion of m-methylhippuric acid in urine, and AUC of m-xylene in urine. The toxicokinetic analyses revealed no differences between subjects of different metabolic genotypes or phenotypes. In conclusion, the study indicates small sex differences in the inhalation toxicokinetics of m-xylene, which can be explained by body build

  6. High Selectively Catalytic Conversion of Lignin-Based Phenols into para-/m-Xylene over Pt/HZSM-5

    Directory of Open Access Journals (Sweden)

    Guozhu Liu

    2016-01-01

    Full Text Available High selectively catalytic conversion of lignin-based phenols (m-cresol, p-cresol, and guaiacol into para-/m-xylene was performed over Pt/HZSM-5 through hydrodeoxygenation and in situ methylation with methanol. It is found that the p-/m-xylene selectivity is uniformly higher than 21%, and even increase up to 33.5% for m-cresol (with phenols/methanol molar ratio of 1/8. The improved p-/m-xylene selectivity in presence of methanol is attributed to the combined reaction pathways: methylation of m-cresol into xylenols followed by HDO into p-/m-xylene, and HDO of m-cresol into toluene followed by methylation into p-/m-xylene. Comparison of the product distribution over a series of catalysts indicates that both metals and supporters have distinct effect on the p-/m-xylene selectivity.

  7. Measurement method for benzene, toluene, and xylene in the atmosphere by the gas chromatographic method

    Energy Technology Data Exchange (ETDEWEB)

    Shiroyama, H

    1975-08-01

    The chromatographic method for measuring benzene, toluene, and xylene (three isomers) in the atmosphere was evaluated using the Varian model 2740-10 gas chromatograph. As a solvent, n-hexane was most suitable, and the detection limit was improved by increasing the purity of n-hexane. The calibration curves were prepared, the recovery rate was calculated (76.0-99.4 percent), and the correlation coefficient was obtained from regression curves (r equals 0.97-0.99). Samples collected at a naphtha cracking plant, an aluminum smelting mill, a pharmaceutical plant, a carbon electrode manufacturing plant, a plywood manufacturing plant, a plastic bathtub manufacturing plant, and along a major highway were analyzed. All three substances were detected in all samples with the concentration of toluene high compared to the other two. Among xylene isomers, the concentration of p-xylene was always the lowest while m- and o-xylene varied from place to place. In the atmosphere along the highway, the benzene, toluene, and xylene determined were 0.01-0.09 ppM. No benzene, toluene, and xylene were detected in atmospheric samples used as controls.

  8. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, Francois; Langlais, Cristina; Grossmann, Stephane; Wild, Pascal [Institut National de Recherche et de Securite, Departement Polluants et Sante, Vandoeuvre Cedex (France)

    2007-02-15

    Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene. (orig.)

  9. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks.

    Science.gov (United States)

    Gagnaire, François; Langlais, Cristina; Grossmann, Stéphane; Wild, Pascal

    2007-02-01

    Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.

  10. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  11. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  12. Biodiesel production from wet municipal sludge: evaluation of in situ transesterification using xylene as a cosolvent.

    Science.gov (United States)

    Choi, O K; Song, J S; Cha, D K; Lee, J W

    2014-08-01

    This study proposes a method to produce biodiesel from wet wastewater sludge. Xylene was used as an alternative cosolvent to hexane for transesterification in order to enhance the biodiesel yield from wet wastewater sludge. The water present in the sludge could be separated during transesterification by employing xylene, which has a higher boiling point than water. Xylene enhanced the biodiesel yield up to 8.12%, which was 2.5 times higher than hexane. It was comparable to the maximum biodiesel yield of 9.68% obtained from dried sludge. Xylene could reduce either the reaction time or methanol consumption, when compared to hexane for a similar yield. The fatty acid methyl esters (FAMEs) content of the biodiesel increased approximately two fold by changing the cosolvent from hexane to xylene. The transesterification method using xylene as a cosolvent can be applied effectively and economically for biodiesel recovery from wet wastewater sludge without drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Long-lasting neurobehavioral effects of prenatal exposure to xylene in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Lund, S. P.; Simonsen, L.

    1997-01-01

    The persistence of neurobehavioral effects in female rats (Mol:WIST) exposed to 500 ppm technical xylene (dimethylbenzene, GAS-no 1330-20-7) for 6 hours per day on days 7-20 of prenatal development was studied. The dose level was selected so as not to induce maternal toxicity or decreased viabili...... are planned to investigate whether neurobehavioral effects resulting from prenatal xylene exposure can interact with neurophysiological aging processes. (C) 1997 Inter Press, Inc....

  14. SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures

    Science.gov (United States)

    Chen, Chia-Li; Li, Lijie; Tang, Ping; Cocker, David R.

    2018-05-01

    SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NOx and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f44 versus f43, H/C ratio, O/C ratio, and the oxidation state of the carbon OSbarc were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

  15. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    Science.gov (United States)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Subacute ethanol consumption reverses p-xylene-induced decreases in axonal transport

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S.; Lyerly, D.L.; Pope, C.N.

    1992-01-01

    Organic solvants, as a class, have been implicated as neurotoxic agents in humans and laboratory animals. The study was designed to assess the interaction between subacute ingestion of moderate levels of ethanol and the p-xylene-induced decreases in protein and glycoprotein synthesis and axonal transport in the rat optic system. The results indicated that animals maintained on 10% ethanol as a drinking liquid show less p-xylene-induced neurotoxicity than animals receiving no ethanol supplement.

  17. Effects of prenatal exposure to xylene on postnatal development and behavior in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Lund, S. P.; Simonsen, L.

    1995-01-01

    The effects of prenatal exposure to the organic solvent xylene (dimethylbenzene, GAS-no 1330-20-7) on postnatal development and behavior in rats were studied. Pregnant rats (Mol:WIST) were exposed to 500 ppm technical xylene 6 h per day on gestation days 7-20. The dose level was selected so as no...

  18. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond; Lee, Jong Suk; Koros, William J.

    2010-01-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  19. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond

    2010-07-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  20. Adsorption of xylene para- and meta- isomers in NaX and BaX zeolites. Study of properties-structure relations; Adsorption des isomeres para- et meta- du xylene dans les zeolithes NaX et BaX. Etude des relations proprietes-structure

    Energy Technology Data Exchange (ETDEWEB)

    Descours, A.

    1997-02-14

    The separation of para-xylene from C8 aromatics is performed industrially bu adsorption process on zeolitic molecular sieves. The sorption properties of these zeolites are strongly linked to their structure, and their comprehension require an accurate knowledge of the interactions between sorbate molecules and zeolitic structure. The aim of this work is to characterise from a structural point of view the adsorption of para- and meta-xylenes in BaX and NaX zeolites. The former is selective for para-xylene, and the latter has not selective properties for para- and meta-isomers of xylene. For each zeolite, the adsorption of pure para-xylene and meta-xylene or a mixture of the two isomers, is investigated as a function of coverage. Powder neutron diffraction is used to determine the crystalline structure of these zeolites and the different crystallographic adsorption sites of the molecules. The influence of coverage on sorbate-sorbent and sorbate-sorbate interactions is investigated. Infrared spectroscopy allows to determine the chemical environment of the sorbate molecules at low coverage or when the coverage increases, and is particularly effective for the study of the binary mixture of xylenes. This study is performed by sorbing a mixture of xylene isomers, or by sorbing these isomers successively. Infrared studies and crystallographic analysis are compared in order to get a consistent description of adsorption mechanism of xylene isomers for both zeolites as a function of coverage. The role of coverage, of cation type, an the presence of the two xylene isomers is the super-cages is essential. For both zeolites, the increase of coverage actually leads to steric hindrances between sorbed molecules and molecular rearrangements. These reorganizations are connected to the cationic distribution of NaX and BaX zeolites. The sorbed molecules are connected to the cationic distribution of NaX and BaX zeolites. The sorbed molecules are particularly confined in BaX zeolite

  1. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  2. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.; Rajendran, Arvind; Lai, Zhiping

    2013-01-01

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin

  3. Bridging the gap between traffic generated health stressors in urban areas: Predicting xylene levels in EU cities

    International Nuclear Information System (INIS)

    Vlachokostas, Ch.; Michailidou, A.V.; Spyridi, D.; Moussiopoulos, N.

    2013-01-01

    Many citizens live, work, commute, or visit traffic intensive spaces and are exposed to high levels of chemical health stressors. However, urban conurbations worldwide present monitoring “shortage” – due to economical and/or practical constraints – for toxic stressors such as xylene isomers, which can pose human health risks. This “shortage” may be covered by the establishment of associations between rarely monitored substances such as xylenes and more frequently monitored (i.e. benzene) or usually monitored (i.e. CO). Regression analysis is used and strong statistical relationships are detected. The adopted models are applied to EU cities and comparison between measurements and predictions depicts their representativeness. The analysis provides transferability insights in an effort to bridge the gap between traffic-related stressors. Strong associations between substances of the air pollution mixture may be influential to interpret the complexity of the causal chain, especially if a synergetic exposure assessment in traffic intensive spaces is considered. -- Highlights: •EU cities present monitoring shortage for health stressors such as xylenes. •The multi-stressor multi-city stepwise regression modelling approach is presented. •Strong linear relationships between xylenes and toluene, benzene, CO are detected. •Modelling results are in good agreement with the respective available measurements. •Toluene seems the optimal marker to predict xylene trends in traffic environments. -- The multi-stressor, multi-city stepwise regression modelling approach develops reliable statistical associations which capture m,p-xylene and o-xylene trends in EU traffic intensive environments

  4. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  5. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    Science.gov (United States)

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  6. The influence of the association patterns of phosphorus–substrates and xylene–substrates on the degradation of xylenes in an alluvial aquifer

    Directory of Open Access Journals (Sweden)

    SANJA MRKIC

    2005-12-01

    Full Text Available The association patterns of xylene and of total phosphorus with sediment constituents in an alluvial aquifer consisting of clays and sands which had been contaminated by a spill of technical grade xylene were investigated with the aim of assessing the dependence of in situ xylene degradation on the P-availability. The investigated alluvial sediments of the Maki{ Plain (Sava river alluvion, Quaternary age, Serbia and Montenegro are relatively poor in P. The most reliable associations were proposed by analyzing the quality of the correlations of xylene- and of P-contents with 32 sediment characteristics. The association patterns depend on the mineralogical and granulometrical composition of sediments, the structural characteristics of the organicmatter (N/C-ratio and the redox-conditions. Differing association patterns in the clays and the sand had been developed, and these characteristics influence the intrinsic xylene degradation. The main proof for the occurrence of xylene degradation is the percentul share of bacteria which oxidize xylene as a single carbon-source.

  7. Evaluation of biosafe alternatives as xylene substitutes in hematoxylin and eosin staining procedure: A comparative pilot study

    Science.gov (United States)

    Sravya, Taneeru; Rao, Guttikonda Venkateswara; Kumari, Masabattula Geetha; Sagar, Yerraguntla Vidya; Sivaranjani, Yeluri; Sudheerkanth, Kondamarri

    2018-01-01

    Background: Xylene is synthetic hydrocarbon produced from coal tar known for its wide usage as universal solvent which has many hazardous effects. The aim of this study is to compare the efficacy of xylene-free hematoxylin and eosin (H and E) sections with conventional H and E sections. Materials and Methods: The study included ninety paraffin-embedded tissue blocks. Of these, sixty blocks were processed with sesame oil (xylene alternative) and thirty blocks with xylene. The study sample was divided into three groups. Sixty sections which are taken from sesame oil-processed blocks were stained with xylene-free H and E staining method. In xylene-free staining method, 95% diluted lemon water (Group A) and 1.7% dish washing solution (DWS, Group B) were used as deparaffinizing agents whereas the remaining 30 sections were processed with xylene and stained with conventional H and E staining method (Group C). Slides were scored for the following parameters: (i) nuclear staining (adequate = score 1, inadequate = score 0), (ii) cytoplasmic staining (adequate = score 1, inadequate = score 0), (iii) uniformity (present = score 1, absent = score 0), (iv) clarity (present = score 1, absent = score 0) and (v) intensity (present = score 1, absent = score 0). Score ≤2 was considered inadequate for diagnosis while scores 3–5 were considered adequate for diagnosis. Results: Adequate nuclear staining was noted in 90% of sections of Group A and 100% each in Group B and Group C (P 0.05); adequate uniformity of staining in 53.3% of sections of Group A, 70% in Group B and 83.3% in Group C (P 0.05) and adequate intensity of staining in 76.7% sections of Group A, 93.3% in Group B and 100% in Group C (P < 0.05). Group C sections stained adequate for diagnosis (93.3%) followed by Group B (88.7%) and Group A (78%; P < 0.05). Conclusion: Tissues processed with sesame oil and stained using 1.7% DWS were found to be effective alternative to xylene.

  8. Mixture effects of benzene, toluene, ethylbenzene, and xylenes (BTEX) on lung carcinoma cells via a hanging drop air exposure system.

    Science.gov (United States)

    Liu, Faye F; Escher, Beate I; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2014-06-16

    A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 and 24 h of exposure to benzene, toluene, ethylbenzene, and xylenes (BTEX) as individual compounds and as mixtures of four or six components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated using a mass balance model and came to 17, 12, 11, 9, 4, and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene, and p-xylene, respectively, after 1 h of exposure. The EC50 decreased by a factor of 4 after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions was found for benzene, toluene, ethylbenzene, and m-xylene at four different representative fixed concentration ratios after 1 h of exposure, but lower agreement with mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable, but lower quality, prediction as well.

  9. All rights reserved Competitive Adsorption of Xylene and Toluene on ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-23

    Mar 23, 2018 ... However, when the assay was performed under agitation, it yielded higher ... petrochemical industries for removal of hydrocarbons (m- xylene and toluene) from their waste ... a result of chemical alteration of the volcanic ash.

  10. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S.S.; Lyerly, D.P. (Environmental Protection Agency, Research Triangle Park, NC (USA))

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  11. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Padilla, S.S.; Lyerly, D.P.

    1989-01-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  12. A Green Alternative to Aluminum Chloride Alkylation of Xylene

    Science.gov (United States)

    Sereda, Grigoriy A.; Rajpara, Vikul B.

    2007-01-01

    An acutely less toxic 2-bromobutane is used to develop a simple graphite-promoted procedure of alkylation of p-xylene. It is further demonstrated that aluminum chloride is not required, the need for aqueous workup is eliminated, waste solutions are not produced and the multiple use of the catalyst is allowed.

  13. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    International Nuclear Information System (INIS)

    Kershaw, D.S.; Pamukcu, S.

    1997-01-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers

  14. Densities and volumetric properties of binary mixtures of xylene with N,N-dimethylformamide at different temperatures

    International Nuclear Information System (INIS)

    Chen Bin; Liu Wei

    2007-01-01

    Densities of binary mixtures of o-xylene, or m-xylene, or p-xylene with N,N-dimethylformamide have been measured over the full range of compositions at atmospheric pressure and various temperatures by means of a vibrating-tube densimeter. The excess molar volume V m E , calculated from the density data, provides the temperature dependence of V m E in the temperature range (293.15 to 353.15)K. The V m E results were correlated using the fourth-order Redlich-Kister polynomial equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Partial molar volumes and excess partial molar volumes of two components were also calculated. It was found that the V m E in the systems studied increase with rising temperature

  15. Thermophysical properties for (diethyl carbonate + p-xylene + octane) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Casas, L.M., E-mail: lmcasas@uvigo.es [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Curras, M.R. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Mariano, A.B. [Laboratorio de Fisicoquimica, Departamento de Quimica, Facultad de Ingenieria, Universidad Nacional de Comahue, 8300 Neuquen (Argentina); Legido, J.L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)

    2011-12-15

    Highlights: > Thermophysical properties of (diethyl carbonate + p-xylene + octane) were measured. > Excess molar volumes and isentropic compressibilities were determined and correlated. > Ternary surface tension deviations were correlated using Cibulka equation. > Intermolecular interactions based on the derived properties trend were discussed. - Abstract: The density and speed of sound of the ternary mixture (diethyl carbonate + p-xylene + octane) have been measured at atmospheric pressure and in the temperature range T = (288.15 to 308.15) K. Besides, surface tension has been also determined for the same mixture at T = 298.15 K. The experimental measurements have allowed the calculation of the corresponding derived properties: excess molar volumes, excess isentropic compressibilities, and surface tension deviations. Excess properties have been correlated using Nagata and Tamura equation and correlation for the surface tension deviation has been done with the Cibulka equation. Good accuracy has been obtained. Based on the variations of the derived properties values with composition, a qualitative discussion about the intermolecular interactions was drawn.

  16. Demonstration of In situ Anaerobic Transformation of Toluene and Xylene Using Single-Well Push-Pull Tests and Deuterated BTEX Surrogates

    Science.gov (United States)

    Field, J. A.; Reusser, D. E.; Beller, H. R.; Istok, J. D.

    2001-12-01

    Obtaining unambiguous evidence of in-situ transformation of benzene, toluene, ethylbenzene and xylene (BTEX) in the subsurface is a difficult task. Recently, benzylsuccinic acid and its methyl analogues were shown to be unequivocal degradation products of anaerobic toluene and xylene biodegradation. Conducting tracer tests at BTEX-contaminated field sites is problematic because background contaminant concentrations potentially interfere with the interpretation of field test data. To avoid the time and cost associated with removing background contaminants, alternative approaches are needed. Deuterated analogs of toluene and xylene are well-suited for use in field tracer tests because they are inexpensive and can be distinguished analytically from background toluene and xylene. In this study, single-well push-pull tests, in which deuterated toluene and xylene were injected, were performed to assess the in-situ anaerobic biotransformation of toluene and xylene in BTEX-contaminated wells. A total of 4 single-well push-pull tests were conducted at BTEX-contaminated field sites near Portland, OR and Kansas City, KS. Test solutions consisting of 100 mg/L bromide, 250 mg/L nitrate, 0.4 to 2.5 mg/L toluene-d8, and 0.4 to 1.0 mg/L o-xylene-d10.were injected at a rate of 0.5 - 2 L/min. During the extraction phase, samples were taken daily to biweekly for up to 30 days. Samples for volatile organic analytes were collected in 40-mL volatile organic analysis (VOA) vials without headspace. Samples for BSA and methyl-BSA were collected in 1 L glass bottles and preserved with 5% (w/w) formalin. Samples were shipped on ice and stored at 4 C until analysis. Unambiguous evidence of toluene and xylene biotransformation was obtained with the in-situ formation of BSA and methyl-BSA. The concentrations of BSA ranged from below the detection limit (0.2 ug/L) to 1.5 ug/L. The concentrations of methyl-BSA ranged from below detection to the quantitation limit (0.7 ug/L). The highest BSA

  17. Heat integration of fractionating systems in para-xylene plants based on column optimization

    International Nuclear Information System (INIS)

    Chen, Ting; Zhang, Bingjian; Chen, Qinglin

    2014-01-01

    In this paper, the optimization of xylene fractionation and disproportionation units in a para-xylene plant is performed through a new method for systematic design based on GCC (grand composite curve) and CGCC (column grand composite curve). The distillation columns are retrofitted by CGCC firstly. Heat Integration between the columns and the background xylene separation process are then explored by GCC. We found that potential retrofits for columns suggested by CGCC provide better possibilities for further Heat Integration. The effectiveness of the retrofits is finally evaluated by means of thermodynamics and economic analysis. The results show that energy consumption of the retrofitted fractionating columns decreases by 7.13 MW. With the improved thermodynamic efficiencies, all columns operate with less energy requirements. Coupled with Heat Integration, the energy input of the para-xylene plant is reduced by 30.90 MW, and the energy outputs are increased by 17 MW and 58 MW for generation of the 3.5 MPa and 2.5 MPa steams. The energy requirement after the Heat Integration is reduced by 12% compared to the original unit. The retrofits required a fixed capital cost of 6268.91 × 10 3  $ and saved about 24790.74 × 10 3  $/year worth of steam. The payback time is approximately 0.26 year for the retrofits. - Highlights: • A new method for systematic design is proposed to improve energy saving of the PX plant in retrofit scenarios. • An optimization approach is developed to identify maximum heat recovery in distillation columns. • An efficient Heat Integration procedure of the PX plant is addressed based on the optimal retrofitted distillation columns. • The energy consumption is reduced by 12% after improvement to an industrial case

  18. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT HISTOLOGY LABORATORY XYLENE USE - FORT CARSON, COLORADO

    Science.gov (United States)

    Under the WREAFS program, RREL has performed a waste minimization opportunity assessment (WMOA) at the Evans Community Hospital Histopathology Laboratory on the Ft. Carson Army Base, Colorado, in the area of waste xylene and ethyl alcohol contaminated with human tissue. The waste...

  19. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-01-01

    technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic

  20. Catalytic para-xylene maximization. Part X: Toluene disproportionation on HF promoted H-ZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed K. Aboul-Gheit

    2012-12-01

    Full Text Available H-ZSM-5 zeolite catalysts were doped with 2%, 3% and 4%HF to be used for investigating their activities and selectivities for xylenes production and for para-xylene maximization at temperatures of 300–500 °C via toluene disproportionation. This doping caused pore size modification of the H-ZSM-5 catalyst. The reaction was carried out in a fixed bed flow type reactor. The ratio of produced para-xylene relative to its thermodynamic composition reached as high as 3.29 at 300 °C on the 4%HF doped H-ZSM-5 catalyst although this catalyst possessed the lowest amount of the largest pores (3.0–5.7 nm and the smallest pores (0.4–1.7 nm. The overall activities of the catalysts were decreased with an increase in HF doping because of diffusion restriction. The kinetics of the reaction were simply treated and found to give Ea and ΔS∗ values compatible with the characterization data of the catalysts.

  1. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries

    International Nuclear Information System (INIS)

    Alvarez, P.J.J.; Vogel, T.M.

    1991-01-01

    Release of petroleum hydrocarbons in the environment is a widespread occurrence. One particular concern is the contamination of drinking water sources by the toxic, water-soluble, and mobile petroleum components benzene, toluene, and xylene (BTX). Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds

  2. Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K

    International Nuclear Information System (INIS)

    Wang Haijun; Liu Wei; Huang Jihou

    2004-01-01

    The densities of (o-xylene, or m-xylene, or p-xylene + dimethyl sulfoxide) were measured at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume V m E calculated from the density data provide the temperature dependence of V m E in the temperature range of (293.15 to 353.15) K. The V m E results were correlated using the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Also we have calculated partial molar volume and excess partial molar volumes of two components. It was found that the V m E in the systems studied increase with rising temperature

  3. Significant changes in the amounts of neurotransmitter and related substances in rat brain induced by subacute exposure to low levels of toluene and xylene

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T.; Sudo, A.; Miyagawa, M.; Sato, M.; Hasegawa, H.

    1983-01-01

    Rats were exposed to toluene and xylene at 200-800 ppm for 30 days. After exposure, changes in the dopamine, norepinephrine, serotonin, acetylcholine (ACh), cyclic AMP, cyclic GMP, GABA, glutamic acid, glutamine, aspartic acid, taurine, glycine and alanine content of different areas of the brain were investigated. ACh in the striatum and whole brain were reduced dose-dependently by toluene and xylene. The reduction at 800 ppm of the solvents was in the range of 10 to 20% of the ACh content of the control rats. Toluene and xylene caused different changes in monoamine content other than ACh, but the changes were not dose-dependent. Among the seven free amino acids that are the main amino acid components of the brain, the glutamine content was increased by toluene and xylene at 800 ppm. Decrease in ACh and increase in glutamine in the brain appear to be phenomena common to many kinds of organic solvents including toluene and xylene after acute and subacute exposure.

  4. Highly efficient high-performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column.

    Science.gov (United States)

    Chen, Sha; Li, Xiao-Xin; Feng, Fan; Li, Sumei; Han, Jia-Hui; Jia, Zi-Yi; Shu, Lun; Somsundaran, P; Li, Jian-Rong

    2018-04-16

    In this study, the baseline separations of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column were achieved, respectively. The high selectivity for xylene isomers and phthalate acid esters was obtained with the increase of temperature and decrease of the retention time. The hydrophobicity of xylene isomers and phthalate acid esters caused the different separation time on the DUT-67(Zr) packed column. The relative standard deviation values of retention time, peak area, peak height and half peak width for five repeat separation of the xylene isomers were 0.26-0.35, 2.11-2.26, 1.51-2.03, and 0.29-0.77%, and the values of the phthalate acid esters on DUT-67(Zr) column were 0.1-0.4, 4.4-5.2, 3.9-6.3, and 0.6-2.1%, respectively. The thermodynamic properties indicated that the separation of xylene isomers was controlled by ΔH and ΔS, but the separation of phthalate acid esters was mainly controlled by ΔS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing

    International Nuclear Information System (INIS)

    Applegate, B.M.; Kehrmeyer, S.R.; Sayler, G.S.

    1998-01-01

    A tod-luxCDABE fusion was constructed and introduced into the chromosome of Pseudomonas putida F1, yielding the strain TVA8. This strain was used to examine the induction of the tod operon when exposed to benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and aqueous solutions of JP-4 jet fuel constituents. Since this system contained the complete lux cassette (luxCDABE), bacterial bioluminescence in response to putative chemical inducers of the tod operon was measured on-line in whole cells without added aldehyde substrate. There was an increasing response to toluene concentrations from 30 microg/liter to 50 mg/liter, which began to saturate at higher concentrations. The detection limit was 30 microg/liter. There was a significant light response to benzene, m- and p-xylenes, phenol, and water-soluble JP-4 jet fuel components, but there was no bioluminescence response upon exposure to o-xylene. The transposon insertion was stable and had no negative effect on cell growth

  6. A study of the electrochemical hydrogenation of o-xylene in a PEM hydrogenation reactor

    International Nuclear Information System (INIS)

    Fonocho, R.; Gardner, C.L.; Ternan, M.

    2012-01-01

    In this study, we investigate the electrochemical hydrogenation of o-xylene in a proton exchange membrane hydrogenation reactor (PEMHR). The reactor was operated isothermally over the temperature range 20–68 °C and at a pressure of 1 atm in a semi-batch mode. Hydrogen was fed into the anode compartment and o-xylene into the cathode. The hydrogenation efficiency was investigated at different current densities and temperatures. Results obtained show that the hydrogenation efficiency increases with temperature but decreases with current density. At low current densities the hydrogenation efficiency approaches 100%. A zero dimensional model was used to fit the data and extract a rate constant for the hydrogenation reaction. The activation energy for this reaction was found to be 28 kJ/mole.

  7. Gas-liquid equilibrium in mixtures of methane + m-xylene, and methane + m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Simnick, J J; Sebastian, H M; Lin, H M; Chao, K C

    1979-01-01

    Compositions of saturated equilibrium liquid and vapor phases as determined in a flow apparatus for methane + m-xylene mixtures at 370/sup 0/, 450/sup 0/, 520/sup 0/, and 600/sup 0/F (190/sup 0/, 230/sup 0/, 270/sup 0/, and 310/sup 0/C) and up to 200 atm, and for methane + m-cresol at 370/sup 0/, 520/sup 0/, 660/sup 0/, and 730/sup 0/F (190/sup 0/, 270/sup 0/, 350/sup 0/, and 390/sup 0/C) and up to 250 atm. Compared with published data on its solubility in benzene, methane appears to be more soluble in m-xylene at similar conditions but substantially less soluble in m-cresol. This difference indicates that the functional groups CH/sub 3/ and OH play different roles in determining the solubility of methane.

  8. Distortion dependent intersystem crossing: A femtosecond time-resolved photoelectron spectroscopy study of benzene, toluene, and p-xylene

    Directory of Open Access Journals (Sweden)

    Anne B. Stephansen

    2017-07-01

    Full Text Available The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early times whereupon spin-forbidden intersystem crossing becomes (partly allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped S2 equilibrium geometry. The effect is observed to increase in the presence of methyl-groups on the pinnacle carbon-atoms, where largest extents of σ and π orbital-mixing are observed. This is fully consistent with the time-resolved spectroscopy data: Toluene and p-xylene show evidence for ultrafast triplet formation competing with internal conversion, while benzene appears to only decay via internal conversion within the singlet manifold. For toluene and p-xylene, internal conversion to S1 and intersystem crossing to T3 occur within the time-resolution of our instrument. The receiver triplet state (T3 is found to undergo internal conversion in the triplet manifold within ≈100–150 fs (toluene or ≈180–200 fs (p-xylene as demonstrated by matching rise and decay components of upper and lower triplet states. Overall, the effect of methylation is found to both increase the intersystem crossing probability and direct the molecular axis of the excited state dynamics.

  9. Dealkylation of alkylbenzenes: a significant pathway in the toluene, o-, m-, p-xylene + OH reaction.

    Science.gov (United States)

    Noda, Jun; Volkamer, Rainer; Molina, Mario J

    2009-09-03

    The OH-radical initiated oxidation of a series of monocyclic aromatic hydrocarbons (benzene, toluene, o-, m-, and p-xylene) in the presence of oxygen and NO(x) was investigated in a flowtube coupled with a chemical ionization mass spectrometer (CIMS). OH-radical addition to the aromatic ring--the major reaction pathway--has previously been shown to have a particular sensitivity to experimental conditions. This is the first flowtube study that demonstrates the atmospheric relevance of product yields from the OH-addition channel on the millisecond time scale (35-75 ms); the phenol yield from benzene and cresol yields from toluene are found to be 51.0 +/- 4.3% and 17.7 +/- 2.1%, in excellent agreement with previous studies under close to atmospheric conditions. We further report unambiguous experimental evidence that dealkylation is a novel and significant pathway for toluene and o-, m-, and p-xylene oxidation. At 150 Torr of O2 partial pressure, toluene is found to dealkylate with a yield of 5.4 +/- 1.2% phenol; similarly, m-, o-, and p-xylene dealkylate with yields of 11.2 +/- 3.8%, 4.5 +/- 3.2%, and 4.3 +/- 3.1% cresol, respectively. A dealkylation mechanism via OH-addition in the ipso position is feasible (DeltaH = -9 kcal/mol for phenol formation from toluene) but does not lend itself easily to explain the significant isomer effect observed among xylenes; instead an alternative mechanism is presented that can explain this isomer effect and forms phenol and likely epoxide type products with identical m/z (indistinguishable in our CIMS analysis) via a carbene-type intermediate. Dealkylation adds to the atmospheric production of phenol- and likely epoxide-type products, with aldehydes as expected co-products, and helps improve the carbon balance in the initial stages of aromatic oxidation.

  10. Benzene, toluene and p-xylene interactions and the role of microbial communities in remediation using bioventing

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H. [Tianjin Univ., Tianjin (China). School of Chemical Engineering and Technology; Tianjin Univ., Tianjin (China). National Engineering Research Center for Distillation Technology; Li, X.G.; Jiang, B. [Tianjin Univ., Tianjin (China). National Engineering Research Center for Distillation Technology

    2005-04-01

    Bioventing is a promising in-situ soil remediation technology used to clean soils and groundwater contaminated by aromatic hydrocarbon components benzene, toluene and xylene (BTX). These contaminants are present at numerous hazardous waste sites. Bioventing provides enough oxygen to stimulate aerobic biodegradation by indigenous microorganisms. It is not constrained by contaminant volatility and can therefore be applied to contaminants that are readily biodegradable even if they are not highly volatile. This study examined the volatilization and biodegradation of BTX during bioventing from unsaturated soil. It focused on the occurrence of any substrate interaction and the effects of indigenous microbial inocula. The soil was inoculated with indigenous microorganisms obtained from the Dagang Oil Field in Tianjin, China. Then, different amounts of BTX were added to the soil in a stainless steel column through which carbon dioxide free air and pure nitrogen flowed. The volatilization-to-biodegradation ratios of BTX were 6:1, 2:1 and 2:1 respectively. After 3 weeks, the final concentration in the soil gas was 0.128 mg/L benzene, 0.377 mg/L toluene and 0.143 mg/L xylene. The substrate interactions that occurred were as follows: benzene and xylene degradation was accelerated while toluene was being degraded; and, the presence of xylene increased the lag period for benzene degradation. It was concluded that bioventing is an effective remediation technology for aromatic hydrocarbons and can significantly reduce the remediation time if target residual BTX concentration of 0.1 mg/L is to be reached. BTX removal becomes more significant with time, particularly when soils are inoculated with indigenous microbial communities from contaminated soil. 22 refs., 5 tabs., 7 figs.

  11. "Occupational Exposure To Xylene In Workers, Employing At Pathology Wards Of Hospitals Belonging To The Qazvin University Of Medical Sciences "

    Directory of Open Access Journals (Sweden)

    Shah Taheri SJ

    2005-05-01

    Full Text Available Background: Nowadays, aromatic hydrocarbons such as benzene, toluene, and xylene are extensively used in the different environments and industries, causing adverse effects on individuals who are being exposed occupationally and environmentally to these hazardous compounds. In this study, occupational exposure to xylene in workers, employing at pathology wards of hospitals belonging to the Qazvin University of Medical Sciences have been investigated. Materials and Methods: Methyl Hiporic Acid (MHA as a main metabolite of xylene in urine was used to evaluate the workers exposure to this chemical. The urine samples were taken from all 30 workers from 4 hospitals, i.e. Kosar, Shahid Rajaei, Booali and Qods. Through this study, 30 administrative employees were also selected as control group. The direct DBA colorimetric method was used to measure MHA in the workers urine. Results: The results obtained from this study showed that, there were significant differences between MHA and working days, type of jobs, and length of exposure time. This study also showed that, there were no significant differences between urinary MHA concentration and sex, age, and smoking habit. Conclusion: Through this study, it was also clearly obtained that, xylene exposure can not affect on the total and direct serum bilirobin in the workers blood. Finally, it is worth mentioning that, although this study showed no acute exposure to xylene in hospitals pathology wards, the effect of chronic exposure to such compound cannot be ignored, therefore protecting workers against like these organic solvents are strongly recommended as their TLVs are considerably being reduced during these years

  12. Substoichiometric extraction of rubidium with Dibenzo-24-crown-8 into Xylene

    International Nuclear Information System (INIS)

    Bag, M.; Chattopadhyay, P.; Basu, S.

    2014-01-01

    Owing to immense applications of rubidium in varied fields, extraction and quantification of rubidium have gained great importance in recent years. Here, studies on substoichiometric extraction of rubidium by dibenzo-24-crown-8 into xylene using 86 Rb radiotracer are reported. The method has been optimized by pH of the medium, effects of diverse ions, etc, to explore its applicability in real samples

  13. Deuterated-xylene (xylene-d{sub 10}; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, F.D.; Raymond, R.S.; Torres-Isea, R.O. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Di Fulvio, A.; Clarke, S.D.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Febbraro, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2016-06-01

    In conjunction with Eljen Technology, Inc. (Sweetwater,TX) we have designed, constructed, and evaluated a 3 in. ×3 in. deuterated-xylene organic liquid scintillator (C{sub 8}D{sub 10}; EJ301D) as a fast neutron detector. Similar to deuterated benzene (C{sub 6}D{sub 6}; NE230, BC537, and EJ315) this scintillator can provide good pulse-shape discrimination between neutrons and gamma rays, has good timing characteristics, and can provide a light spectrum with peaks corresponding to discrete neutron energy groups up to ca. 20 MeV. Unlike benzene-based detectors, deuterated xylene is less volatile, less toxic, is not known to be carcinogenic, has a higher flashpoint, and hence is much safer for many applications. In addition EJ301D can provide slightly more light output and better PSD than deuterated-benzene scintillators. We show that, as with deuterated-benzene scintillators, the light-response spectra can be unfolded to provide useable neutron energy spectra without need for time-of-flight (ToF). An array of these detectors arranged at many angles close to a reaction target can be much more effective (×10 to ×100 or more) than an array of long-path ToF detectors which must utilize a narrowly-bunched and pulse-selected beam. As we demonstrate using a small Van de Graaff accelerator, measurements can thus be performed when a bunched and pulse-selected beam (as needed for time-of-flight) is not available.

  14. Dermal absorption and disposition of musk ambrette, musk ketone and musk xylene in human subjects.

    Science.gov (United States)

    Hawkins, David R; Elsom, Lionel F; Kirkpatrick, David; Ford, Richard A; Api, Anne Marie

    2002-05-28

    Musk ambrette, musk ketone and musk xylene have a long history of use as fragrance ingredients, although musk ambrette is no longer used in fragrances. As part of the review of the safety of these uses, it is important to consider the systemic exposure that results from these uses. Since the primary route of exposure to fragrances is on the skin, dermal doses of carbon-14 labelled musk ambrette, musk ketone and musk xylene were applied to the backs (100 cm2) of healthy human volunteers (two to three subjects) at a nominal dose level of 10-20 microg/cm2 and excess material removed at 6 h. Means of 2.0% musk ambrette, 0.5% musk ketone and 0.3% musk xylene were absorbed based on the amounts excreted in urine and faeces during 5 days. Most of the material was excreted in the urine with less than 10% of the amount excreted being found in faeces. No radioactivity was detected in any plasma sample, consistent with low absorption, and no radioactivity was detected (<0.02% dose) in skin strips taken at 120 h. Analysis of urine samples indicated that all three compounds were excreted mainly as single glucuronide conjugates. The aglycones were chromatographically different, but of similar polarity, to the major rat metabolites excreted in bile also as glucuronides.

  15. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    International Nuclear Information System (INIS)

    Silva, Syllos S. da; Chiavone-Filho, Osvaldo; Barros Neto, Eduardo L. de; Nascimento, Claudio A.O.

    2012-01-01

    Highlights: ► We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. ► We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. ► The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min −1 for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H 2 O 2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  16. Structural and energetical studies of the adsorption of para and meta-isomers of xylene on pre-hydrated zeolite BaX. Characterization by neutron diffraction and temperature programmed desorption; Etude structurale et energetique de l'adsorption des isomeres para- et meta- du xylene dans la zeolithe BaX prehydratee. Caracterisation par diffraction des neutrons et thermodesorption programmee

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Ch.

    1999-10-19

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic materials. FAU-type zeolites are currently used for this separation and especially the partially hydrated BaX. The aim of this work is to characterize from a structural (by low temperature neutron powder diffraction) and an energetical (by temperature programmed desorption) point of view, the adsorption of para- and meta- isomers of xylene, for different fillings, as pure substances as well as mixtures, on pre-hydrated zeolite BaX. The influence of the water pre-adsorption on xylene adsorption selectivity is carefully discussed. The crystalline structure of the zeolite BaX (framework and compensation of charge cations) and of the adsorbed phase (water, p- and m-xylene molecules) are completely characterized by neutron diffraction. The location and the distribution of water and xylene molecules on their adsorption sites is especially followed as a function of the filling of the zeolite and of the composition of the adsorbed phase. Microscopic measurements were correlated to the energetical analysis (at a macroscopic level) in order to obtain a consistent description of adsorption phenomenon and to propose a possible origin for adsorption selectivity.

  17. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Syllos S. da [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Chiavone-Filho, Osvaldo, E-mail: osvaldo@eq.ufrn.br [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Barros Neto, Eduardo L. de [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Nascimento, Claudio A.O. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo 05508-900, SP (Brazil)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. Black-Right-Pointing-Pointer We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. Black-Right-Pointing-Pointer The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min{sup -1} for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H{sub 2}O{sub 2} concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  18. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    Science.gov (United States)

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  19. Concentrations of benzene, toluene, ethylbenzene and o-xylene in soil and atmospheric precipitations in the cities of Almaty and Astana

    Directory of Open Access Journals (Sweden)

    Dina Orazbayeva

    2016-06-01

    Full Text Available BTEX (benzene, toluene, ethylbenzene, xylene is one of the most dangerous groups of organic toxicants in terms of emissions and risks to public health. BTEX are present in almost all technogenic and natural objects. The greatest risk to public health is caused by BTEX contamination of cities characterized by high population densities and emissions to the environment. The aim of this work was to determine the concentrations of benzene, toluene, ethylbenzene and o-xylene in samples of soils and atmospheric precipitations selected in the cities of Almaty and Astana. Screening and quantification of analytes was performed by gas chromatography - mass spectrometry. Solid-phase microextraction was used for sample preparation. In the soil samples collected in the cities of Almaty and Astana, the concentrations of analytes ranged from 29.9 to 455 ng/g for benzene, from 9.9 to 375 ng/g for toluene, from 1.8 to 386 ng/g for ethylbenzene, and from 2.4 to 217 ng/g for o-xylene. Concentrations of BTEX in samples of atmospheric precipitations varied in the range of 8.2-21.2 ng/g for benzene; 0.8-5.1 ng/g for toluene; 0.1-1.1 ng/g for ethylbenzene; and 0.2-0.5 ng/g for o-xylene. BTEX concentrations in analyzed soil samples were in average ten times higher than those measured in European cities.

  20. Development of benzene, toluene, ethylbenzene and xylenes certified gaseous reference materials

    Science.gov (United States)

    Brum, M. C.; Sobrinho, D. C. G.; Fagundes, F. A.; Oudwater, R. J.; Augusto, C. R.

    2016-07-01

    The work describes the production of certified gaseous reference materials of benzene, toluene, ethylbenzene and xylenes (BTEX) in nitrogen from the gravimetric production up to the long term stability tests followed by the certifying step. The uncertainty in the amount fractions of the compounds in these mixtures was approximately 4% (relative) for the range studied from 2 to 16 µmol/mol. Also the adsorption of the BTEX on the cylinder surface and the tubing were investigated as potential uncertainty source.

  1. Selective liquid-liquid extraction of antimony(III from hydrochloric acid media by N-n-octylaniline in xylene

    Directory of Open Access Journals (Sweden)

    M. A. ANUSE

    2004-04-01

    Full Text Available N-n-Octylaniline in xylene was used for the extraction separation of antimony(III from hydrochloric acid media. Antimony(III was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III from tellurium(IV, selenium(IV, lead(II, bismuth(III, tin(IV, germanium(IV, copper(II, gold(III, iron(III and zinc(II. The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

  2. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  3. Modelling of tracer-kinetic results using xylene isomerization as an example

    International Nuclear Information System (INIS)

    Bauer, F.J.; Dermietzel, J.; Roesseler, M.; Koch, H.

    1976-01-01

    The analysis of results from differential or/and integral reactor experiments often admits the interpretation of a chemical reaction in several ways. In addition, the use of mathematical methods for the model selection and planning of experiments is rendered more difficult by great confidence intervals of the ascertained model parameters. The application of radioactively labelled molecules results in improving the knowledge of reaction mechanisms as well as the assessment of parameters obtained. This is shown on the basis of modelling the isomerization of xylene. (author)

  4. Decomposition Characteristics of Benzene, Toluene and Xylene in an Atmospheric Pressure DC Corona Discharge II. Characteristics of Deposited By-products and Decomposition Process

    OpenAIRE

    SAKAI, Seiji; TAKAHASHI, Kazuhiro; SATOH, Kohki; ITOH, Hidenori

    2016-01-01

    Gaseous by-products and deposited material obtained from the decomposition of benzene, toluene and xylene in an atmospheric pressure DC corona discharge were minutely investigated by gas chromatograph mass spectrometry and infrared absorption spectroscopy, and the decomposition processes of benzene, toluene and xylene were estimated. It was found that carbon dioxide (CO2), carbon monoxide (CO), formic acid (HCOOH) and formic anhydride ((CHO)2) were the major gaseous by-products from benzene, ...

  5. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    Science.gov (United States)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  6. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  7. Liquid dish washing soap: An excellent substitute for xylene and alcohol in hematoxylin and eosin staining procedure

    Directory of Open Access Journals (Sweden)

    Surekha Ramulu

    2012-01-01

    Full Text Available Aims: Liquid dish washing solution (DWS was used as a substitute for xylene to dewax tissue sections during hematoxylin and eosin (H and E staining. The aim was to test and compare the hypothesis that xylene-ethanol free (XEF sections deparaffinized with diluted DWS are better than or at par with the conventional H and E sections. Materials and Methods: Fifty paraffin-embedded tissue blocks was included. One section was stained with conventional HandE (group A and the other with XEF HandE (group B staining method. Slides were scored for parameters: nuclear, cytoplasmic, clarity, uniformity, and crispness of staining. Z test was used for statistical analysis. For accuracy of diagnosis, sensitivity, specificity, positive predictive value, and negative predictive value were tested. Results: Adequate nuclear staining was noted in 94% in group A and 96% in group B, -adequate cytoplasmic staining in 92% in group A and 86% in group B, clarity in 94% of group A and 96% of group B sections, uniform staining in 92% of group A and 80% of group B sections, crisp stain in 96% of group A and 88% of group B sections, and 94% of group A sections stained adequately for diagnosis as compared with 90% in group B sections. Conclusion: Liquid DWS can be used as an alternative and effective substitute to xylene and ethanol in routine HandE staining procedure.

  8. High activity of iron containing metal-organic-framework in acylation of p-xylene with benzoyl chloride

    Czech Academy of Sciences Publication Activity Database

    Kurfiřtová, Lenka; Seo, Y.; K.; Hwang, Y. K.; Chang, J.; S.; Čejka, Jiří

    2012-01-01

    Roč. 179, č. 1 (2012), s. 85-90 ISSN 0920-5861 R&D Projects: GA ČR GA104/07/0383 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * p-xylene * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  9. An isotope dilution gas chromatography/mass spectrometry method for trace analysis of xylene and its metabolites in tissues following threshold limit value exposures

    Energy Technology Data Exchange (ETDEWEB)

    Pyon, K.H.; Kracko, D.A.; Strunk, M.R. [and others

    1995-12-01

    The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, along with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.

  10. An isotope dilution gas chromatography/mass spectrometry method for trace analysis of xylene and its metabolites in tissues following threshold limit value exposures

    International Nuclear Information System (INIS)

    Pyon, K.H.; Kracko, D.A.; Strunk, M.R.

    1995-01-01

    The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, along with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS

  11. An analysis of factors that influence personal exposure to toluene and xylene in residents of Athens, Greece

    Directory of Open Access Journals (Sweden)

    Linos Athena

    2006-02-01

    Full Text Available Abstract Background Personal exposure to pollutants is influenced by various outdoor and indoor sources. The aim of this study was to evaluate the exposure of Athens citizens to toluene and xylene, excluding exposure from active smoking. Methods Passive air samplers were used to monitor volunteers, their homes and various urban sites for one year, resulting in 2400 measurements of toluene and xylene levels. Since both indoor and outdoor pollution contribute significantly to human exposure, volunteers were chosen from occupational groups who spend a lot of time in the streets (traffic policemen, bus drivers and postmen, and from groups who spend more time indoors (teachers and students. Data on individual and house characteristics were obtained using a questionnaire completed at the beginning of the study; a time-location-activity diary was also completed daily by the volunteers in each of the six monitoring campaigns. Results Average personal toluene exposure varied over the six monitoring campaigns from 53 to 80 μg/m3. Urban and indoor concentrations ranged from 47 – 84 μg/m3 and 30 – 51 μg/m3, respectively. Average personal xylene exposure varied between 56 and 85 μg/m3 while urban and indoor concentrations ranged from 53 – 88 μg/m3 and 27 – 48 μg/m3, respectively. Urban pollution, indoor residential concentrations and personal exposures exhibited the same pattern of variation during the measurement periods. This variation among monitoring campaigns might largely be explained by differences in climate parameters, namely wind speed, humidity and amount of sunlight. Conclusion In Athens, Greece, the time spent outdoors in the city center during work or leisure makes a major contribution to exposure to toluene and xylene among non-smoking citizens. Indoor pollution and means of transportation contribute significantly to individual exposure levels. Other indoor residential characteristics such as recent painting and mode of heating

  12. Evaluation of seawater contamination with benzene, toluene and xylene in the Ubatuba north coast, SP region, and study of their removal by ionizing radiation

    International Nuclear Information System (INIS)

    Almeida, Kelly Cristina Santana de

    2006-01-01

    A major concern with leaking petroleum is the environmental contamination by the toxic and low water-soluble components such as benzene, toluene, and xylenes (BTX). These hydrocarbons have relatively high pollution potential because of their significant toxicity. The objective of this study was to evaluate the contamination of seawater by the main pollutants of the output and transport of petroleum, such as benzene, toluene, and xylene, and their removal by the exposure to the ionizing radiation. The studied region was Ubatuba region, SP, between 23 deg 26'S and 23 deg 46'S of latitude and 45 deg 02'W and 45 deg 11'W of longitude, area of carry and output of petroleum, and samples were collected from November, 2003 to July, 2005. For BTX in seawater analysis, the Purge and Trap concentrator with FIDGC detector showed significantly higher sensibility than Head Space concentrator with MSGC detector. The minimal detected limits (MDL) obtained at FIDGC were of 0.50 μg/L for benzene, 0.70 μg/L for toluene, and 1.54 μg/L for xylene, and the obtained experimental variability was 15%. While the concentrator type Headspace system with MS detector showed higher MLD, about of 9.30 mg/L for benzene, 8.50 mg/L for toluene, and 9.80 mg/L for xylene, and 10% of experimental variability. In the studied area the benzene concentration varied from 1.0 μg/L to 2.0 μg/L, the concentration of toluene varied from 60 Co, presented a removal from 10% to 40% of benzene at 20 kGy absorbed doses and concentration of 35.1 mg/L and 70.2 mg/L, respectively; from 20% to 60% of toluene removal with 15 kGy absorbed dose and from 20% to 80% of xylene with 15 kGy absorbed dose in similar concentrations. (author)

  13. Analysis of benzene, toluene, ethylbenzene and xylenes in soils by headspace and gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The constituents of gasoline: benzene, toluene, ethylbenzene and xylenes (BTEX are frequently found in soils due to leaks in fuel storage tanks and they present chronic toxicity. In this work it was developed and validated a methodology of BTEX analysis in soil by gas chromatography/ flame ionization detector and static headspace. The recovery of BTEX in soil samples was evaluated using soils with different textures (sandy and loamy. The analysis method showed good resolution, in a low time of analysis (less than 30 minutes. Limits of quantification of 0.05 mg Kg¯¹ soil for benzene, toluene, ethylbenzene and xylenes are below the guiding values that range from 0.15 to 95 mg Kg¯¹ soil, established to determine soil quality. It was verified that the methodology enables the use of this method for BTEX analysis of soil samples for passive environmental identification of gas stations.

  14. Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Arey, Janet; Atkinson, Roger

    2010-09-23

    Aromatic hydrocarbons comprise 20% of non-methane volatile organic compounds in urban areas and are transformed mainly by atmospheric chemical reactions with OH radicals during daytime. In this work we have measured the formation yields of glyoxal and methylglyoxal from the OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes over the NO2 concentration range (0.2-10.3) × 1013 molecules cm(-3). For toluene, o-, m-, and p-xylene, and 1,3,5-trimethylbenzene, the yields showed a dependence on NO2, decreasing with increasing NO2 concentration and with no evidence for formation of glyoxal or methylglyoxal from the reactions of the OH-aromatic adducts with NO2. In contrast, for 1,2,3- and 1,2,4-trimethylbenzene the glyoxal and methylglyoxal formation yields were independent of the NO2 concentration within the experimental uncertainties. Extrapolations of our results to NO2 concentrations representative of the ambient atmosphere results in the following glyoxal and methylglyoxal yields, respectively: for toluene, 26.0 ± 2.2% and 21.5 ± 2.9%; for o-xylene, 12.7 ± 1.9% and 33.1 ± 6.1%; for m-xylene, 11.4 ± 0.7% and 51.5 ± 8.5%; for p-xylene, 38.9 ± 4.7% and 18.7 ± 2.2%; for 1,2,3-trimethylbenzene, 4.7 ± 2.4% and 15.1 ± 3.3%; for 1,2,4-trimethylbenzene, 8.7 ± 1.6% and 27.2 ± 8.1%; and for 1,3,5-trimethylbenzene, 58.1 ± 5.3% (methylglyoxal).

  15. Evaluating the impact of water supply strategies on p-xylene biodegradation performance in an organic media-based biofilter.

    Science.gov (United States)

    Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A

    2011-01-30

    The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Removal of traces of toluene and p-xylene in indoor air using biofiltration and a hybrid system (biofiltration + adsorption).

    Science.gov (United States)

    Luengas, Angela Tatiana; Hort, Cécile; Platel, Vincent; Elias, Ana; Barona, Astrid; Moynault, Laurent

    2017-04-01

    Biofiltration technology and the hybrid system combining biofiltration and adsorption (onto activated carbon) were compared as possible methods to toluene and p-xylene at parts per million concentration levels (2-45 and 1-33 ppb, respectively). An organic material was used as packing material for the biofiltration process. Even at low empty bed residence times (EBRTs) and concentrations, toluene removal efficiency reached 100% and p-xylene showed an increasing trend on their removal efficiency over the time using biofiltration. The assessment of by-products and particle generation by the biofilter and the hybrid system were taken into account. Acetone and acetic acid were identified as by-products of the biofilter. Particle emissions in the range of 0.03 to 10 μm were recorded for both systems.

  17. Health Risk Assessment of Xylene through Microenvironment Monitoring Data: A Case Study of the Petro-Chemical Industries, Thailand

    Directory of Open Access Journals (Sweden)

    Pensri Watchalayann

    2009-01-01

    Full Text Available In the absence of environmental health epidemiology, risk managers, policy makers and health-care authorities usually rely on estimates of human exposure level of proximity to hazardous waste site or regional ambient air quality data. Based on ambient concentrations without considering time-activity patterns, the estimation of personal exposure may be overor underestimated. Twelve villages surrounding the petro-chemical industries located in the eastern region of Thailand were randomly selected to be a representative study area. In each village, air samples were collected at thirty-one microenvironments including indoor and outdoor of a household and workplace. The time-activity patterns of the commuters were also recorded. The ambient xylene concentrations were determined by thermal desorption gas chromatograhy/mass spectrometry. The indoor samples were determined by gas chromatography flame ionization detector. Commuters living in the vicinity of the industrial areas spent most of the time indoor (93.2%, especially at home (66.8%. Individuals spent a significant fraction of the day indoors. The concentrations of xylene ranged from less than 1 μg/m3 to 291.3 μg/m3. The highest level was found at the auto repair shop (291.3 μg/m3. Given micro-environmental concentrations and activity times, the average concentrations of xylene to which commuters may be exposed daily ranged from 90.62 to 134.75 μg/m3. The long term exposure level via inhalation was found to be very low. Collectively, no hazard was indicated by the hazard quotient and the results were found to be similar in all villages.

  18. Evaluation of the occupational risk for exposition to Benzene, Toluene and Xylene in a paintings industry in Bogota

    International Nuclear Information System (INIS)

    Rubiano D, Maria del Pilar; Marciales C, Clara; Duarte A, Martha

    2002-01-01

    It was determined Benzene, Toluene and Xylene (BTX) levels in air from paint manufacture assigned to Instituto Colombiano de Seguro Social with the purpose to evaluate the occupational hazard caused by the use of these solvents. These results were compared with the threshold limit value (TLV). It was selected as sampling strategy, the methodology of partial period with consecutive samples and charcoal tubes as adsorbent of solvents. The extraction was realized with carbon disulfide and it was used gas chromatography with FID as analysis method. It was found that the method is highly selective because in presence of the others ten solvents, utilized in paint manufacture, were obtained a good separation for BTX. The precision, expressed a variance coefficient, was lower than 10%, the accuracy varied between 85 and 99 % for the three solvents. The airborne concentration found was between no detectable and 55,1 mg/m 3 for benzene, 18,3 and 253 mg/m 3 for toluene and 11,8 and 122,2 mg/m 3 for xylene. The corrected TLV values for benzene, toluene and xylenes according to the brief and scale model for the ten hours shift were 1,1, 132 and 304 mg/m 3 respectively. It was found occupational risk for benzene in some workplaces; this one is worried because benzene is not used as raw material for the paint manufacture. It was determinate that exist occupational risk in almost every workplace of the industry when it is considered the mixture of the three solvents

  19. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay

    International Nuclear Information System (INIS)

    Chen, Colin S.; Hseu, You C.; Liang, Shih H.; Kuo, J.-Y.; Chen, Ssu. C.

    2008-01-01

    Methyl-tert-butyl ether (MTBE) is a gasoline oxygenate and antiknock additive substituting for lead alkyls currently in use worldwide. Benzene, toluene, ethylbenzene, and xylene (BTEX) are volatile monoaromatic hydrocarbons which are commonly found together in crude petroleum and petroleum products such as gasoline. The aim of this study is to evaluate the genotoxic effects of these tested chemicals in human lymphocytes. Using the alkaline comet assay, we showed that all of the tested chemicals induce DNA damage in isolated human lymphocytes. This effect could follow from the induction of DNA strands breaks. The neutral version of the test revealed that MTBE, benzene, and xylenes induce DNA double-strand breaks at 200 μM. Apart from MTBE, the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-α-phenylnitrone (PBN) can decrease the level of DNA damage in BTEX at 200 μM. This indicated that DNA damage could result from the participation of free radicals in DNA-damaging effect, which was further supported by the fact that post-treatment of formamidopyrimidine-DNA glycosylase (Fpg), enzyme recognizing oxidized DNA purines, gave rise to a significant increase in the extent of DNA damage in cells treated with benzene, and xylene at 200 μM. The results obtained suggested that MTBE and BTEX could induce a variety type of DNA damage such as single-strand breaks (SSBs), double-strand breaks (DSBs), and oxidative base modification

  20. The investigation of exposure to benzene, toluene, ethylbenzene and xylene (BTEX with Solid Phase Microextr action Method in gas station in Yazd province

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Mosaddegh Mehrjerdi

    2014-01-01

    Full Text Available Abstract Background: Benzene, toluene, ethylbenzene and xylene (BTEX are volatile organic compounds which their physical and chemical characteristics are similar. Evaporation of BTEX from gasoline in petrol station into the air causes gasoline station attendants expose to them. A new extraction method of volatile organic compounds is solid phase microextraction (SPME. The aim of this study is to optimize extraction conditions of BTEX from air samples and then determination of gasoline station air contamination with BTEX in Yazd. Material and Methods: In this study air samples were collected using Tedlar bags and then extracted and analyzed with SPME fiber and gas chromatography equipped with a flame ionization detector. Results: Our results indicate that PDMS/CAR has the best peak area in comparison with two other fibers The Optimized extraction and desorption times are estimated 3 and 1 minutes, respectively Mean concentration of benzene, toluene, ethyl benzene and xylene in gas station’s air were 1932±807, 667±405, 148±89, 340±216 µg/m3 respectively. Conclusion: Benzene mean concentration is above threshold limit value (0.5PPM. Whereas, toluene, ethylbenzene and xylene mean concentration are lower than threshold limit values.

  1. Efficacy of 1.5% Dish Washing Solution and 95% Lemon Water in Substituting Perilous Xylene as a Deparaffinizing Agent for Routine H and E Staining Procedure: A Short Study

    Directory of Open Access Journals (Sweden)

    Anuradha Ananthaneni

    2014-01-01

    Full Text Available Aim. To assess the efficacy of dish washing solution and diluted lemon water in deparaffinizing sections during conventional hematoxylin and eosin staining technique. Objective. The objective is to utilize eco-friendly economical substitute for xylene. Materials and Methods. Using twenty paraffin embedded tissue blocks, three sections each were prepared. One section was stained with conventional H and E method (Group A and the other two sections with xylene-free (XF H and E (Groups B and C. Staining characteristics were compared with xylene and scoring was given. Total score of 3–5 was regarded as adequate for diagnosis and less than that inadequate for diagnosis. Statistical Analysis. Chi-square test, Kruskal Wallis ANOVA test, and Mann-Whitney U test were used. Results. Adequacy of nuclear staining, crispness, and staining for diagnosis were greater in both Groups A and C (100% than Group B (95%. Adequacy of cytoplasmic staining was similar in all the three groups (100%. Group B showed comparatively superior uniform staining and less retention of wax. Conclusion. Dish washing solution or diluted lemon water can be replaced for xylene as deparaffinizing agent in hematoxylin and eosin procedure.

  2. The Effect of Zeolite Structure on the Activity and Selectivity in p-Xylene Alkylation with Isopropyl Alcohol

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Kubů, Martin; Burton, A. W.; Zones, S. I.; Voláková, Martina; Čejka, Jiří

    2009-01-01

    Roč. 131, 3-4 (2009), s. 393-400 ISSN 1011-372X R&D Projects: GA AV ČR 1QS400400560; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503 Keywords : SSZ-35 * SSZ-33 * p-xylene * alkylation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.021, year: 2009

  3. DETERMINATION OF A BOUND MUSK XYLENE ...

    Science.gov (United States)

    Musk xylene (MX) is widely used as a fragrance ingredient in commercial toiletries. Identification and quantification of a bound 4-amino-MX (AMX) metabolite was carried out by gas chromatography-mass spectrometry (GC/MS), with selected ion monitoring (SIM). Detection of AMX occurred after the cysteine adducts in carp hemoglobin, derived from the nitroso metabolite, were released by alkaline hydrolysis. The released AMX metabolite was extracted into n-hexane. The extract was preconcentrated by evaporation, and analyzed by GC-SIM-MS. The concentration of AMX metabolite was found to range from 6.0 to 30.6 ng/g in the carp Hb, collected from the Las Vegas Wash and Lake Mead, Nevada areas. The presence of an AMX metabolite in the carp Hb was confirmed when similar mass spectral features and the same retention time of the AMX metabolite were obtained for both standard AMX and carp Hb extract solutions. In the non-hydrolyzed and reagent blank extracts, the AMX metabolite was not detected. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers,

  4. Accumulation and turnover of metabolites of toluene and xylene in nasal mucosa and olfactory bulb in the mouse

    International Nuclear Information System (INIS)

    Ghantous, H.; Dencker, L.; Danielsson, B.R.G; Gabrielsson, J.; Bergman, K.

    1990-01-01

    Autoradiography of male mice following inhalation of the radioactively labelled solvents, toluene, xylene, and styrene, revealed an accumulation of non-volatile metabolites in the nasal mucosa and olfactory bulb of the brain. Since no accumulation occurred after benzene inhalation, it was assumed that the activity represented aromatic acids, which are known metabolites of these solvents. This was supported by the finding that also radioactive benzoic acid (main metabolite of toluene) and salicylic acid accumulated in the olfactory bulb. High-performance liquid chromatography revealed that after toluene inhalation (for 1 hr), nasal mucosa and olfactory bulb contained mainly benzoic acid, with a strong accumulation in relation to blood plasma, and considerably less of its blycine conjugate, hippuric acid. After xylene inhalation, on the other hand, methyl hippuric acid dominated over the non-conjugated metabolite, toluic acid. The results indicate a specific, possibly axonal flow-mediated transport of aromatic acids from the nasal mucosa to the olfactory lobe of the brain. The toxicological significance of these results remains to be studied. (author)

  5. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  6. Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene.

    Science.gov (United States)

    Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; da Conceição Alvim-Ferraz, Maria; Delerue-Matos, Cristina

    2013-10-01

    Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.

  7. Post-Synthesis Modification of SSZ-35 Zeolite to Enhance the Selectivity in p-Xylene Alkylation with Isopropyl Alcohol

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Zones, S. I.; Čejka, Jiří

    2010-01-01

    Roč. 53, 3-4 (2010), s. 273-282 ISSN 1022-5528 R&D Projects: GA AV ČR 1QS400400560; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503 Keywords : SSZ-35 * surface modification * p-xylene * 2,5-dimethylcumene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.359, year: 2010

  8. Determination of radon in indoor air in Quebec by liquid scintillation counting in ortho-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Chah, B; Zikovsky, L; Champagne, P [Ecole Polytechnique, Montreal, PQ (Canada)

    1992-01-01

    A new method for the determination of radon in air has been developed. it is based on low temperature absorption of radon in ortho-xylene followed by liquid scintillation counting. The method is reasonably fast and sensitive enough to analyse air without precipitation. The detection limit at the 95% confidence level for a 20 l air sample and 1 h counting time is 2 mBql{sup -1}. Radon concentrations measured in indoor air in Quebec varied from 7 to 162 mBql{sup -1}. (Author).

  9. A comparative study to evaluate liquid dish washing soap as an alternative to xylene and alcohol in deparaffinization and hematoxylin and eosin staining.

    Science.gov (United States)

    Pandey, Pinki; Dixit, Alok; Tanwar, Aparna; Sharma, Anuradha; Mittal, Sanjeev

    2014-07-01

    Our study presents a new deparaffinizing and hematoxylin and eosin (H and E) staining method that involves the use of easily available, nontoxic and eco-friendly liquid diluted dish washing soap (DWS) by completely eliminating expensive and hazardous xylene and alcohol from deparaffinizing and rehydration prior to staining, staining and from dehydration prior to mounting. The aim was to evaluate and compare the quality of liquid DWS treated xylene and alcohol free (XAF) sections with that of the conventional H and E sections. A total of 100 paraffin embedded tissue blocks from different tissues were included. From each tissue block, one section was stained with conventional H and E (normal sections) and the other with XAF H and E (soapy sections) staining method. Slides were scored using five parameters: Nuclear, cytoplasmic, clarity, uniformity, and crispness of staining. Z-test was used for statistical analysis. Soapy sections scored better for cytoplasmic (90%) and crisp staining (95%) with a statistically significant difference. Whereas for uniformity of staining, normal sections (88%) scored over soapy sections (72%) (Z = 2.82, P 0.05). Liquid DWS is a safe and efficient alternative to xylene and alcohol in deparaffinization and routine H and E staining procedure. We are documenting this project that can be used as a model for other histology laboratories.

  10. Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

    Science.gov (United States)

    McNally, Kevin; Cotton, Richard; Cocker, John; Jones, Kate; Bartels, Mike; Rick, David; Price, Paul; Loizou, George

    2012-01-01

    There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure. PMID:22719759

  11. Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Kevin McNally

    2012-01-01

    Full Text Available There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.

  12. Removal performance of toluene, p-xylene and ethylene using a plasma-pretreated biotrickling system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J.; Han, B.; Kim, S.J.; Kim, Y.J. [Korea Inst. of Machinery and Materials (Korea, Republic of)

    2010-07-01

    The use of biological systems for removing volatile organic compounds (VOCs) from gaseous emissions was discussed. The systems rely on microorganism activity and do not produce any secondary pollution. Recently, the integration of biofiltration and UV photooxidation has been performed to remove VOCs in air. The systems using both UV photooxidation and biofiltration removed recalcitrant and VOCs more effectively than a stand-alone process using only biofiltration, because the UV pre-treatment not only removes the gases, but also changes them to easily biodegradable and water soluble byproducts such as acids and aldehydes. The biotrickling filter in this study was exposed to toluene gas only for over one month to cultivate specific microorganisms. The non-thermal plasma was a dielectric barrier discharge (DBD) plasma. The performance for removing toluene, p-xylene, and ethylene by the biotrickling filter, the plasma reactor and the plasma-pretreated bio-trickling system was investigated at a variety of flow rates and inlet concentrations of the test gases. The experimental results showed that the removal efficiencies of the integrated system of non-thermal plasma and biotrickling filter for p-xylene and ethylene were enhanced by 28.0 and 29.7 percent respectively, and increased by only 5.3 percent for toluene, as compared to those of the stand-alone biotrickling filtration. It was concluded that the plasma-pretreated biofiltration system could enhance the performance of the biotrickling filter for removing VOC gases, particularly for reducing low biodegradable pollutants with high loading which are chemically different from the cultivated gases. 12 refs., 7 figs.

  13. Evaluating the efficiency of two phase partitioning stirred tank bio-reactor for treating xylene vapors from the airstreamthrough a bed of Pseudomonas Putida

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-04-01

    Conclusion: Overall, the results of the present research revealed that the application of two phase stirred tank bioreactors (TPPBs containing pure strains of Pseudomonas putida was successful for treatment of air streams with xylene.

  14. Substrate Interactions during the Biodegradation of Benzene, Toluene, Ethylbenze, and Xylene (BTEX) Hydrocarbons by the Fungus Cladophialophora sp. Strain T1

    NARCIS (Netherlands)

    Prenafeta-Boldú, F.X.; Vervoort, J.; Grotenhuis, J.T.C.; Groenestijn, van J.W.

    2002-01-01

    The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene,

  15. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  16. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  17. Evaluation of the adsorption capacity of nano-graphene and nano-graphene oxide for xylene removal from air and their comparison with the standard adsorbent of activated carbon to introduce the optimized one

    Directory of Open Access Journals (Sweden)

    Akram Tabrizi

    2016-06-01

    Full Text Available Introduction: Volatile organic compounds from industrial activities are one of the most important pollutants released into the air and have adverse effects on human and environment. Therefore, they should be removed before releasing into atmosphere. The aim of the study was to evaluate xylene removal from air by nano-grapheme and nano-graphene oxide in comparison with activated carbon adsorbent. Material and Method:  After preparing adsorbents of activated carbon, nano-graphene, and nano-graphene oxide, experiments adsorption capacity in static mode (Batch were carried out in a glass vial. Some variables including contact time, the amount of adsorbent, the concentration of xylene, and the temperature were studied. Langmuir absorption isotherms were used in order to study the adsorption capacity of xylene on adsorbents. Moreover, sample analysis was done by gas chromatography with Flame Ionization Detector (GC-FID. Results: The adsorption capacities of activated carbon, nano-graphene oxide and nano-graphene for removal of xylene were obtained 349.8, 14.5, and 490 mg/g, respectively. The results of Scanning Electron Microscope (SEM for nano-graphene and nano-graphene oxide showed particle size of less than 100 nm. While, the results of Transmission Electron Microscope (TEM showed particle size of 45nm for nano-graphene and 65 nm for nano-graphene oxide. Also, X-Ray Diffraction (XRD showed cube structure of nano-adsorbents. Conclusion: In constant humidity, increase in exposure time and temperature caused an increase in the adsorption capacity. The results revealed greater adsorption capacity of xylene removal for nano-graphene compared to the activated carbon, and nano-graphene oxide.

  18. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses

    Science.gov (United States)

    Peter, A.; Steinbach, A.; Liedl, R.; Ptak, T.; Michaelis, W.; Teutsch, G.

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods—the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both—were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of δ13C time series by an inversion algorithm to obtain spatially

  19. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase

    Science.gov (United States)

    Korologos, Christos A.; Philippopoulos, Constantine J.; Poulopoulos, Stavros G.

    2011-12-01

    In the present work, the gas-solid heterogeneous photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) over UV-irradiated titanium dioxide was studied in an annular reactor operated in the CSTR (continuous stirred-tank reactor) mode. GC-FID and GC-MS were used for analysing reactor inlet and outlet streams. Initial BTEX concentrations were in the low parts per million (ppmv) range, whereas the water concentration was in the range of 0-35,230 ppmv and the residence time varied from 50 to 210 s. The effect of water addition on the photocatalytic process showed strong dependence on the type of the BTEX and the water vapour concentration. The increase in residence time resulted in a considerable increase in the conversion achieved for all compounds and experimental conditions. There was a clear interaction between residence time and water presence regarding the effect on conversions achieved. It was established that conversions over 95% could be achieved by adjusting appropriately the experimental conditions and especially the water concentration in the reactor. In all cases, no by-products were detected above the detection limit and carbon dioxide was the only compound detected. Finally, various Langmuir-Hinshelwood kinetic models have been tested in the analysis of the experimental data obtained. The kinetic data obtained confirmed that water had an active participation in the photocatalytic reactions of benzene, toluene, ethylbenzene and m-xylene since the model involving reaction of BTEX and water adsorbed on different active sites yielded the most successful fitting to the experimental results for the first three compounds, whereas the kinetic model based on the assumption that reaction between VOC and water dissociatively adsorbed on the photocatalyst takes place was the most appropriate in the case of m-xylene.

  20. The effect of gallium supported on mesoporous silica and its catalytic activity for oxidation of benzene, toluene and o-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Schwanke, A.J.; Pergher, S.; Probst, L.F.D. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Balzer, R. [Universidade Federal do Parana (UFPR), PR (Brazil)

    2016-07-01

    Full text: Benzene, toluene and xylene (BTX) are a particular class of volatile organic compounds, which are highly toxic pollutants. In this study, samples of gallium-containing mesoporous silica (MS-Ga7% and MS-Ga11%) were synthesized and their catalytic activity in the oxidation of BTX was investigated. The physicochemical characterization by XRD, XPS, XRF, nitrogen adsorption and desorption isotherms at 77K, FTIR, SEM and TEM shows that the inclusion of gallium in the mesoporous silica structure leads to an increase in the number of oxygen vacancies in the structure of the MS-Ga system, which can result in an increase in the total and surface oxygen mobility. The results show the highest conversion for benzene (65%), with >40% for toluene and >28% for o-xylene. The high catalytic activity observed was attributed to a combination of several factors including a higher number of active sites (gallium and gallium oxide) being exposed, with a greater mobility of the active oxygen species on the surface of the catalyst promoting the catalytic activity. (author)

  1. Utilization of alternative fuels and materials in cement kiln towards emissions of benzene, toluene, ethyl-benzene and xylenes (BTEX

    Directory of Open Access Journals (Sweden)

    Muliane Ulfi

    2018-01-01

    Full Text Available Co-processing in cement industry has benefits for energy conservation and waste recycling. Nevertheless, emissions of benzene, toluene, ethyl-benzene, and xylenes (BTEX tend to increase compared to a non co-processing kiln. A study was conducted in kiln feeding solid AFR (similar to municipal solid waste, MSW having production capacity 4600-ton clinker/day (max. 5000 ton/day and kiln feeding biomass having production capacity 7800-ton clinker/day (max. 8000 ton/day. The concentration of VOCs emissions tends to be higher at the raw mill on rather than the raw mill off. At the raw mill on, concentration of total volatile organic carbon (VOCs emission from cement kiln stack feeding Solid AFR 1, biomass, Solid AFR 2, and mixture of Solid AFR and biomass is 16.18 mg/Nm3, 16.15 mg/Nm3, 9.02 mg/Nm3, and 14.11 mg/Nm3 respectively. The utilization of biomass resulted in the lower fraction of benzene and the higher fraction of xylenes in the total VOCs emission. Operating conditions such as thermal substitution rate, preheater temperature, and kiln speed are also likely to affect BTEX emissions.

  2. Wetlands for the remediation of BTEX [benzene, toluene, ethylbenzene, xylenes] contamination: Amalgamation of policy and technology

    International Nuclear Information System (INIS)

    Main, C.J.

    1993-01-01

    The fate and transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) as they pass from a groundwater to a surface water environment was studied in three separate field experiments. The first examined the fate of BTEX from a spilled gasoline plume as it travelled vertically in the groundwater flow regime from a mineral soil unit through an organic soil unit to a surface wetland. The second considered surface water processes in the swamp that result in losses of BTEX concentrations. The final experiment evaluated the effects of seasonal and temporal changes on the processes occurring in the swamp that affect the fate and transport of BTEX under natural flow conditions. Significant reductions in BTEX were observed as the plume travelled vertically to reach the surface water. Reductions in contaminant levels were primarily due to sorption and biodegradation. On reaching the surface, overall reduction of compound concentration over 6 m of horizontal flow ranged from 92% for benzene to 85% for m-xylene. BTEX losses were mainly due to dilution, volatilization, and sorption. Limitations existing in the approach taken by present legislation and guidelines for wetland protection are discussed. Reactive legislation and guidelines should allow natural remediation of contamination in wetlands to be considered, especially when contaminant remediation requires alteration of the hydrologic flow regime or removal of contaminated material that may result in elimination of the wetland. 70 refs., 20 figs., 14 tabs

  3. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    Science.gov (United States)

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  4. On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene.

    Science.gov (United States)

    Shiramizu, Mika; Toste, F Dean

    2011-10-24

    Polyethylene terephthalate (PET) is a polymeric material with high global demand. Conventionally, PET is produced from fossil-fuel-based materials. Herein, we explored the feasibility of a sustainable method for PET production by using solely bio-renewable resources. Specifically, 2,5-dimethylfuran (derived from lignocellulosic biomass through 5-(hydroxymethyl)furfural) and acrolein (produced from glycerol, a side product of biodiesel production) were converted into the key intermediate p-xylene (a precursor of terephthalic acid). This synthesis consists of a sequential Diels-Alder reaction, oxidation, dehydration, and decarboxylation. In particular, the pivotal first step, the Diels-Alder reaction, was studied in detail to provide useful kinetic and thermodynamic data. Although it was found that this reaction requires low temperature to proceed efficiently, which presents a limitation on economic feasibility on an industrial scale, the concept was realized and bio-derived p-xylene was obtained in 34% overall yield over four steps. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental study and kinetic modeling of the thermal degradation of aromatic volatile organic compounds (benzene, toluene and xylene-para) in methane flames; Etude experimentale et modelisation cinetique de la degradation thermique des composes organiques volatils aromatiques benzenes, toluene et para-xylene dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L.

    2001-02-01

    This study treats of the thermal degradation of a family of aromatic volatile organic compounds (VOCs) in laminar premixed methane flames at low pressure. The experimental influence of benzene, toluene and xylene-para on the structure of a reference methane flame has been studied. The molar fraction profiles of the stable and reactive, aliphatic, aromatic and cyclic species have been established by the coupling of the molecular beam sampling/mass spectroscopy technique with the gas chromatography/mass spectroscopy technique. Temperature profiles have been measured using a covered thermocouple. A detailed kinetic mechanism of oxidation of these compounds in flame conditions has been developed. Different available sub-mechanisms have been used as references: the GDF-Kin 1.0 model for the oxidation of methane and the models of Tan and Franck (1996) and of Lindstedt and Maurice (1996) in the case of benzene and toluene. In the case of para-xylene, a model has been developed because no mechanisms was available in the literature. These different mechanisms have been refined, completed or adjusted by comparing the experimental results with those obtained by kinetic modeling. The complete kinetic mechanism, comprising 156 chemical species involved in 1072 reactions allows to reproduce all the experimental observations in a satisfactory manner. The kinetic analysis of reactions velocity has permitted to determine oxidation kinetic schemes for benzene, toluene, xylene-para and for the cyclopentadienyl radical, main species at the origin of the rupture of the aromatic cycle. Reactions of recombination with the methyl radicals formed during methane oxidation, of the different aromatic or aliphatic radicals created during the oxidation of aromatics, play an important role and lead to the formation of several aromatic pollutants (ethyl-benzene for instance) or aliphatic pollutants (butadiene or penta-diene for instance) in flames. (J.S.)

  6. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations

    International Nuclear Information System (INIS)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I.

    2004-12-01

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  7. DETERMINATION OF A BOUND MUSK XYLENE METABOLITE IN CARP HEMOGLOBIN AS A BIOMARKER OF EXPOSURE BY GAS CHROMATOGRAPHY MASS SPECTROMETRY USING SELECTED ION MONITORING

    Science.gov (United States)

    Musk xylene (MX) is widely used as a fragrance ingredient in commercial toiletries. Identification and quantification of a bound 4-amino-MX (AMX) metabolite was carried out by gas chromatography-mass spectrometry (GC/MS), with selected ion monitoring (SIM). Detection of AMX occur...

  8. Biomonitoring-based exposure assessment of benzene, toluene, ethylbenzene and xylene among workers at petroleum distribution facilities.

    Science.gov (United States)

    Heibati, Behzad; Godri Pollitt, Krystal J; Charati, Jamshid Yazdani; Ducatman, Alan; Shokrzadeh, Mohammad; Karimi, Ali; Mohammadyan, Mahmoud

    2018-03-01

    Elevated emissions of volatile organic compounds, including benzene, toluene, ethylbenzene, and o, p, and m-xylenes (BTEX), are an occupational health concern at oil transfer stations. This exploratory study investigated personal exposure to BTEX through environmental air and urine samples collected from 50 male workers at a major oil distribution company in Iran. Airborne BTEX exposures were evaluated over 8h periods during work-shift by using personal passive samplers. Urinary BTEX levels were determined using solid-phase microextraction with gas chromatography mass spectrometry for separation and detection. Mean exposure to ambient concentrations of benzene differed by workers' job type: tanker loading workers (5390μg/m 3 ), tank-gauging workers (830μg/m 3 ), drivers (81.9μg/m 3 ), firefighters (71.2μg/m 3 ) and office workers (19.8μg/m 3 ). Exposure across job type was similarly stratified across all personal exposures to BTEX measured in air samples with maximum concentrations found for tanker loading workers. Average exposures concentrations of BTEX measured in urine were 11.83 ppb benzene, 1.87 ppb toluene, 0.43 ppb ethylebenzene, and 3.76 ppb xylene. Personal air exposure to benzene was found to be positively associated with benzene concentrations measured in urine; however, a relationship was not observed to the other BTEX compounds. Urinary exposure profiles are a potentially useful, noninvasive, and rapid method for assessing exposure to benzene in a developing and relatively remote production region. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Department of Surgery, Taichung Veterans General Hospital, Taiwan, ROC (China); National Yang-Ming University, Taipei, Taiwan, ROC (China); Yeh, Chou-Ming, E-mail: cmchou4301@gmail.com [Taichung Hospital, Department of Health, Executive Yuan, Taiwan, ROC (China); Chung, Chi-Jen [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, Taiwan, ROC (China)

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ω{sub p}) and para-xylene monomer flow rate (f{sub p}). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ω{sub p} or high f{sub p}, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ω{sub p} and f{sub p}. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  10. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    International Nuclear Information System (INIS)

    Chou, Chia-Man; Yeh, Chou-Ming; Chung, Chi-Jen; He, Ju-Liang

    2013-01-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ω p ) and para-xylene monomer flow rate (f p ). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ω p or high f p , in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ω p and f p . PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  11. Phenomena Based Process Intensification of Toluene Methylation for Sustainable Para-xylene Production

    DEFF Research Database (Denmark)

    Anantasarn, Nateetorn; Babi, Deenesh Kavi; Suriyapraphadilok, Uthaiporn

    2016-01-01

    The objective of this work is to generate more sustainable intensified process designs for the production of important chemicals in the petrochemical sector. A 3-stage approach is applied. In stage 1, the base case design is generated or selected from literature. In stage 2, the base case design...... is analysed in terms of economics, sustainability and LCA factors in order to identify process hot-spots that are translated into design targets. In stage 3, intensified flowsheet alternatives are generated that match the targets and thereby eliminate and/or minimize the process hot-spots using a phenomena...... operations to generate more sustainable designs. An overview of the key concepts and framework are presented together with the results from a case study highlighting the application of the framework to the sustainable design of a production process for para-xylene, which is an important chemical utilized...

  12. Experimental vapor-liquid equilibria data for binary mixtures of xylene isomers

    Directory of Open Access Journals (Sweden)

    W.L. Rodrigues

    2005-09-01

    Full Text Available Separation of aromatic C8 compounds by distillation is a difficult task due to the low relative volatilities of the compounds and to the high degree of purity required of the final commercial products. For rigorous simulation and optimization of this separation, the use of a model capable of describing vapor-liquid equilibria accurately is necessary. Nevertheless, experimental data are not available for all binaries at atmospheric pressure. Vapor-liquid equilibria data for binary mixtures were isobarically obtained with a modified Fischer cell at 100.65 kPa. The vapor and liquid phase compositions were analyzed with a gas chromatograph. The methodology was initially tested for cyclo-hexane+n-heptane data; results obtained are similar to other data in the literature. Data for xylene binary mixtures were then obtained, and after testing, were considered to be thermodynamically consistent. Experimental data were regressed with Aspen Plus® 10.1 and binary interaction parameters were reported for the most frequently used activity coefficient models and for the classic mixing rules of two cubic equations of state.

  13. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    Science.gov (United States)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  14. Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether.

    Science.gov (United States)

    Shim, Eun-Hwa; Kim, Jaisoo; Cho, Kyung-Suk; Ryu, Hee Wook

    2006-05-01

    This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m(-3) h(-1), respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m(-3) h(-1), respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m(-3) h(-1), respectively. These capacities decreased to 40, 50, and 100 g m(-3) h(-1) when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m(-3) h(-1), and that of the four-gas mixture was 200 g m(-3) h(-1). Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m(-3) h(-1), respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/ or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed

  15. 对、邻二甲苯和醋酸二元液体混合物在不同温度和压力下的密度和超额摩尔体积%Density and Excess Molar Volume of Binary Mixtures of p-Xylene+Acetic Acid and o-Xylene+Acetic Acid at Different Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    杨天宇; 夏淑倩; 邸志国; 马沛生

    2008-01-01

    A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosion and pressure, and ease of observation. The experimental densities over the entire range of mole fraction for the bi- nary mixture of p-xylene+acetic acid and o-xylene+acetic acid were measured using the new apparatus at tempera- tures ranging from 313.15K to 473.15K and pressure ranging from 0.20 to 2.0 MPa. The density values were used in the determination of excess molar volumes, VE. The Redlich-Kister equation was used to fit the excess molar volume values, and the coefficients and estimate of the standard error values were presented. The experimental re- suits prove that the density measurement apparatus is successful.

  16. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein.

    Science.gov (United States)

    Hu, Yancheng; Li, Ning; Li, Guangyi; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl - and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl - may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Kinetics and thermodynamics of β-carotene and chlorophyll adsorption onto acid-activated bentonite from Xinjiang in xylene solution

    International Nuclear Information System (INIS)

    Wu Zhansheng; Li Chun

    2009-01-01

    The kinetics and thermodynamics of β-carotene and chlorophyll adsorption from xylene solution onto acid-activated bentonite (AAB) within the temperature range 65-95 deg. C were investigated. Adsorption of β-carotene was described well with the Langmuir isotherm, whereas chlorophyll adsorption was determined well with the Freundlich isotherm, and the experimental data on chlorophyll adsorption were also fitted by the Langmuir isotherm to a certain extent, as reflected by correlation coefficients (R 2 ) over 0.9865. In addition, the adsorption of β-carotene and chlorophyll onto AAB are favorable. The pseudo-second-order model was found to explain the kinetics of adsorption of both pigments more effectively. Increase of temperature enhanced the adsorption rate and equilibrium adsorption capacity of β-carotene and chlorophyll on AAB. The activation energy for the sorption of β-carotene and chlorophyll on AAB was 19.808 kJ/mol and 16.475 kJ/mol, respectively. The thermodynamic parameters ΔH θ , ΔS θ and ΔG θ , computed from K F of the adsorption isotherm constant, were 21.766 kJ/mol, 92.244 J/K mol and -9.554 kJ/mol respectively for the adsorption of β-carotene on AAB at 65 deg. C, and for adsorption of chlorophyll on AAB at 65 deg. C were 31.051 kJ/mol, 93.549 J/K mol and -0.729 kJ/mol, respectively. The adsorption of β-carotene and chlorophyll in xylene solution on AAB was a spontaneous and endothermic process with increasing in the randomness at the solid-solution interface.

  19. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    Science.gov (United States)

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  20. Optimization of the p-xylene oxidation process by a multi-objective differential evolution algorithm with adaptive parameters co-derived with the population-based incremental learning algorithm

    Science.gov (United States)

    Guo, Zhan; Yan, Xuefeng

    2018-04-01

    Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.

  1. Intermolecular Interactions in Binary Liquid Mixtures of Styrene with m-, o-, or p-xylene%苯乙烯与邻、间、对-二甲苯二元混合液的分子间相互作用

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The densities (ρ), ultrasonic speeds (v), and refractive indices (n) of binary mixtures of styrene (STY)with m-, o-, or p-xylene, including those of their pure liquids, were measured over the entire composition range at the temperatures 298.15, 303.15, 308.15, and 313.15 K. The excess volumes (VE), deviations in isentropic compressibilities(△ks), acoustic impedances (△Z), and refractive indices (△n) were calculated from the experimental data. Partial molar volumes (V0φ,2) and partial molar isentropic compressibilities (K0φ,2) of xylenes in styrene have also been calculated. The derived functions, namely, VE, △ks, △Z, △n, V0φ,2, and K0φ,2 were used to have a better understanding of the intermolecular interactions occurring between the component molecules of the present liquid mixtures. The variations of these parameters suggest that the interactions between styrene and o-, m-, or p-xylene molecules follow the sequences: p-xylene>o-xylene>m-xylene. Apart from using density data for the calculation of VE, excess molar volumes were also estimated using refractive index data. Furthermore, several refractive index mixing rules have been used to estimate the refractive indices of the studied liquid mixtures theoretically. Overall, the computed and measured data were interpreted in terms of interactions between the mixing components.

  2. A study of the homogeneous stages in the catalytic oxidation of naphthalene, o-xylene, and benzene over a vibratory-fluidized catalyst bed

    Energy Technology Data Exchange (ETDEWEB)

    Korneichuk, G P; Stasevich, V P; Shaprinskaya, T M; Girushtin, G G; Gritsenko, V I; Zelenchukova, T G

    1978-01-01

    To identify the conditions for minimizing homogeneous states, the reaction kinetics were studied in a vibrating gradientless quartz reactor both in the presence and absence of the catalyst. A tenfold decrease of the reactional space in the absence of catalyst inhibited the oxidation (e.g., from a 68% conversion to 10% at 500/sup 0/C for o-xylene, and from 100% to 2% at 580/sup 0/C for benzene), whereas increasing the surface-volume ratio of the reactor increased the oxidation rate for benzene, which indicated that noncatalytic oxidation follows a radical-chain mechanism and involves both homogeneous (mainly) and heterogeneous stages. Catalytic oxidation carried out in a small volume (to avoid the homogeneous states) followed a heterogeneous mechanism up to 580/sup 0/C for naphthalene and o-xylene, and up to 550/sup 0/C for benzene. At higher temperatures, however, volume oxidation of benzene to carbon oxides was detected, which was favored by intense reactor vibration (i.e., increasing free space between catalyst grains), constituted 27% at 564/sup 0/C and 40% at 584/sup 0/C, and probably followed a heterogeneous-homogeneous mechanism. The partial oxidation products (i.e., phthalic and (for benzene) maleic anhydride) formed entirely by a heterogeneous mechanism. Tables and graphs.

  3. Synthesis of polyimides from α,αʹ-bis(3-aminophenoxy)-p-xylene: Spectroscopic, single crystal XRD and thermal studies

    Science.gov (United States)

    Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal

    2018-05-01

    The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.

  4. Testicular atrophy and loss of nerve growth factor-immunoreactive germ cell line in rats exposed to n-hexane and a protective effect of simultaneous exposure to toluene or xylene

    Energy Technology Data Exchange (ETDEWEB)

    Nylen, P; Johnson, A C; Hoeglund, G; Ebendal, T; Eriksdotter-Nilsson, M; Henschen, A; Olson, L; Hansson, T; Kronevi, T; Kvist, U

    1989-07-01

    Testicular and germ cell line morphology in rats were studied 2 weeks, 10 months and 14 months after cessation of a 61-day inhalation exposure to 1000 ppm n-hexane. Androgen biosynthetic capacity of testis, testosterone blood concentration, vas deferens morphology and noradrenaline (NA) concentration, epididymal sperm morphology, and fertility were also studied. Severe testicular atrophy involving the seminiferous tubules with loss of the nerve growth factor (NGF) immunoreactive germ cell line was found. Total loss of the germ cell line was found in a fraction of animals up to 14 months post-exposure, indicating permanent testicular damage. No impairment of androgen synthesis or androgen dependent accessory organs was observed. Simultaneous administration of 1000 ppm n-hexane and 1000 ppm toluene, or 1000 ppm n-hexane and 1000 ppm xylene, did not cause germ cell line alterations or testicular atrophy. Toluene and xylene were thus found to protect from n-hexane induced testicular atrophy. (orig.).

  5. Caractérisation structurale de l'adsorption des isomères para- et meta- du xylène dans la zéolithe de type faujasite BaX Structural Characterization of Para- and Meta- Xylene in Bax Zeolite

    Directory of Open Access Journals (Sweden)

    Mellot C.

    2006-11-01

    . Pour les molécules de méta-xylène, quel que soit le taux de remplissage, les sites occupés sont à proximité des cations (sites SII; lorsque la troisième molécule est introduite, un réarrangement moléculaire est observé. The separation of para-xylene from C8 aromatic by adsorption on a molecular sieve is a field of research in which much work has been done at Institut Français du Pétrole (IFP in recent years. With a view to obtaining a better understanding of the phenomena involved in this separation, the ensuing research aims to characterize the adsorption of para-xylene and meta-xylene isomers in the state of pure bodies in a BaX zeolite, which is a sieve recognized for its high-performance selective properties during competitive adsorptions. The originality of our approach consists in characterizing, on a molecular scale, the adsorption of two isomers in the zeolitic network so as to work out a molecular filling model of the BaX zeolite. Two principal techniques, infrared spectroscopy and neutron diffraction, were chosen for analyzing each of the two isomers, the adsorbate-adsorbent system. The infrared properties of the adsorbate provide exact information concerning the local environment of the xylene molecule in the zeolite as well as on the existence of adsorbate-adsorbent and adsorbate-adsorbate interactions. Infrared spectroscopy was used to examine both the influence of adsorption on the vibrationel properties - integrated frequencies and adsorbances of fundamental modes - of the xylene molecules and the way these same properties evolve as a function of the zeolite coverage. At the same time, neutron diffraction was used to determine, atome by atome, the chrystallographic position of the xylene molecules in the zeolitic network as a function of the coverage. Two coverages were examined, corresponding to 1 mol/sc (molecule per supercage and 3 mol/sc. One of the major consequences was the gaining of an exact knowledge of the interatomic distances and

  6. Theoretical study on the alkylation of o-xylene with styrene in AlCl3-ionic liquid catalytic system.

    Science.gov (United States)

    Cao, Bobo; Du, Jiuyao; Cao, Ziping; Sun, Haitao; Sun, Xuejun; Fu, Hui

    2017-06-01

    To explore sustainable catalysts with innovative mechanisms, the alkylation mechanism of o-xylene with styrene was studied using DFT method in AlCl 3 -ionic liquid catalytic system. The reaction pathway was consisted of CC coupling and a hydrogen shift, in which two transition states were found and further discussed. The reactive energy catalyzed by superelectrophilic AlCl 2 + (12.6kcal/mol) was distinctly lower than AlCl 3 (43.0kcal/mol), which was determined as the rate-determining step. Mulliken charge along IRC gave a comprehensive understanding of charge distribution and electron transfer in dynamic progress. Bond orders and AIM theory were used to study the nature of chemical bonds and the driving forces in different reaction stages. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. High dimension feature extraction based visualized SOM fault diagnosis method and its application in p-xylene oxidation process☆

    Institute of Scientific and Technical Information of China (English)

    Ying Tian; Wenli Du; Feng Qian

    2015-01-01

    Purified terephthalic acid (PTA) is an important chemical raw material. P-xylene (PX) is transformed to terephthalic acid (TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to im-prove the product quality, as wel as to visualize the fault type clearly, a fault diagnosis method based on self-organizing map (SOM) and high dimensional feature extraction method, local tangent space alignment (LTSA), is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously, and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process in-dicate that the LTSA–SOM can wel detect and visualize the fault type.

  8. Surface tension, density, and speed of sound for the ternary mixture {l_brace}diethyl carbonate + p-xylene + decane{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, Laura; Casas, Lidia M. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Legido, Jose L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)], E-mail: xllegido@uvigo.es

    2009-05-15

    This paper reports the results of a new experimental study of thermophysical properties for the ternary mixture of {l_brace}diethyl carbonate + p-xylene + decane{r_brace}. Surface tension has been measured at 298.15 K and, density and speed of sound have been measured in the temperature range T = (288.15 to 308.15) K. Excess molar volumes, excess isentropic compressibilities, and surface tension deviations, have been calculated from experimental data. Surface tension deviations have been correlated with Cibulka equation and Nagata and Tamura equation was used for the other excess properties. Good accuracy has been obtained. These excess magnitudes are discussed qualitatively in terms of the nature and type of intermolecular interactions of the components involved.

  9. Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor.

    Science.gov (United States)

    Aranda, Elisabet; Marco-Urrea, Ernest; Caminal, Gloria; Arias, María E; García-Romera, Inmaculada; Guillén, Francisco

    2010-09-15

    Advanced oxidation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) by the extracellular hydroxyl radicals (*OH) generated by the white-rot fungus Trametes versicolor is for the first time demonstrated. The production of *OH was induced by incubating the fungus with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-EDTA. Under these conditions, *OH were generated through DBQ redox cycling catalyzed by quinone reductase and laccase. The capability of T. versicolor growing in malt extract medium to produce *OH by this mechanism was shown during primary and secondary metabolism, and was quantitatively modulated by the replacement of EDTA by oxalate and Mn2+ addition to DBQ incubations. Oxidation of BTEX was observed only under *OH induction conditions. *OH involvement was inferred from the high correlation observed between the rates at which they were produced under different DBQ redox cycling conditions and those of benzene removal, and the production of phenol as a typical hydroxylation product of *OH attack on benzene. All the BTEX compounds (500 microM) were oxidized at a similar rate, reaching an average of 71% degradation in 6 h samples. After this time oxidation stopped due to O2 depletion in the closed vials used in the incubations. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Crystal structure of (1S,2R,6R,7R,8S,12S-4,10,17-triphenyl-15-thia-4,10-diazapentacyclo[5.5.5.01,16.02,6.08,12]heptadeca-13,16-diene-3,5,9,11-tetrone p-xylene hemisolvate

    Directory of Open Access Journals (Sweden)

    Wayland E. Noland

    2014-12-01

    Full Text Available The title tetrone compound, C32H22N2O4S· 0.5C8H10, is the major product (50% yield of an attempted Diels–Alder reaction of 2-(α-styrylthiophene with N-phenylmaleimide (2 equivalents in toluene. Recrystallization of the resulting powder from p-xylene gave the title hemisolvate; the p-xylene molecule is located about an inversion center. In the crystal, the primary tetrone contacts are between a carbonyl O atom and the four flagpole H atoms of the bicyclo[2.2.2]octene core, forming chains along [001].

  11. Evaluation of seawater contamination with benzene, toluene and xylene in the Ubatuba north coast, SP region, and study of their removal by ionizing radiation; Avaliacao da contaminacao da agua do mar por benzeno, tolueno e xileno na regiao de Ubatuba, litoral norte (SP) e estudo da degradacao destes compostos por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Kelly Cristina Santana de

    2006-07-01

    A major concern with leaking petroleum is the environmental contamination by the toxic and low water-soluble components such as benzene, toluene, and xylenes (BTX). These hydrocarbons have relatively high pollution potential because of their significant toxicity. The objective of this study was to evaluate the contamination of seawater by the main pollutants of the output and transport of petroleum, such as benzene, toluene, and xylene, and their removal by the exposure to the ionizing radiation. The studied region was Ubatuba region, SP, between 23 deg 26'S and 23 deg 46'S of latitude and 45 deg 02'W and 45 deg 11'W of longitude, area of carry and output of petroleum, and samples were collected from November, 2003 to July, 2005. For BTX in seawater analysis, the Purge and Trap concentrator with FIDGC detector showed significantly higher sensibility than Head Space concentrator with MSGC detector. The minimal detected limits (MDL) obtained at FIDGC were of 0.50 {mu}g/L for benzene, 0.70 {mu}g/L for toluene, and 1.54 {mu}g/L for xylene, and the obtained experimental variability was 15%. While the concentrator type Headspace system with MS detector showed higher MLD, about of 9.30 mg/L for benzene, 8.50 mg/L for toluene, and 9.80 mg/L for xylene, and 10% of experimental variability. In the studied area the benzene concentration varied from 1.0 {mu}g/L to 2.0 {mu}g/L, the concentration of toluene varied from < 0.70 {mu}g/L to 3.24 {mu}g/L and the maximum value of xylene observed was of 2.92 {mu}g/L. The seawater samples contaminated with BTX standard and exposed to ionizing radiation using a source of {sup 60}Co, presented a removal from 10% to 40% of benzene at 20 kGy absorbed doses and concentration of 35.1 mg/L and 70.2 mg/L, respectively; from 20% to 60% of toluene removal with 15 kGy absorbed dose and from 20% to 80% of xylene with 15 kGy absorbed dose in similar concentrations. (author)

  12. Evaluation of seawater contamination with benzene, toluene and xylene in the Ubatuba north coast, SP region, and study of their removal by ionizing radiation; Avaliacao da contaminacao da agua do mar por benzeno, tolueno e xileno na regiao de Ubatuba, litoral norte (SP) e estudo da degradacao destes compostos por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Kelly Cristina Santana de

    2006-07-01

    A major concern with leaking petroleum is the environmental contamination by the toxic and low water-soluble components such as benzene, toluene, and xylenes (BTX). These hydrocarbons have relatively high pollution potential because of their significant toxicity. The objective of this study was to evaluate the contamination of seawater by the main pollutants of the output and transport of petroleum, such as benzene, toluene, and xylene, and their removal by the exposure to the ionizing radiation. The studied region was Ubatuba region, SP, between 23 deg 26'S and 23 deg 46'S of latitude and 45 deg 02'W and 45 deg 11'W of longitude, area of carry and output of petroleum, and samples were collected from November, 2003 to July, 2005. For BTX in seawater analysis, the Purge and Trap concentrator with FIDGC detector showed significantly higher sensibility than Head Space concentrator with MSGC detector. The minimal detected limits (MDL) obtained at FIDGC were of 0.50 {mu}g/L for benzene, 0.70 {mu}g/L for toluene, and 1.54 {mu}g/L for xylene, and the obtained experimental variability was 15%. While the concentrator type Headspace system with MS detector showed higher MLD, about of 9.30 mg/L for benzene, 8.50 mg/L for toluene, and 9.80 mg/L for xylene, and 10% of experimental variability. In the studied area the benzene concentration varied from 1.0 {mu}g/L to 2.0 {mu}g/L, the concentration of toluene varied from < 0.70 {mu}g/L to 3.24 {mu}g/L and the maximum value of xylene observed was of 2.92 {mu}g/L. The seawater samples contaminated with BTX standard and exposed to ionizing radiation using a source of {sup 60}Co, presented a removal from 10% to 40% of benzene at 20 kGy absorbed doses and concentration of 35.1 mg/L and 70.2 mg/L, respectively; from 20% to 60% of toluene removal with 15 kGy absorbed dose and from 20% to 80% of xylene with 15 kGy absorbed dose in similar concentrations. (author)

  13. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB.

    Science.gov (United States)

    Jiang, Bei; Zhou, Zunchun; Dong, Ying; Tao, Wei; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan

    2015-07-01

    A bacterium designated strain JB, able to degrade six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated from petroleum-contaminated soil. Taxonomic analyses showed that the isolate belonged to Comamonas, and until now, the genus Comamonas has not included any known BTEX degraders. The BTEX biodegradation rate was slightly low on the mineral salt medium (MSM), but adding a small amount of yeast extract greatly enhanced the biodegradation. The relationship between specific degradation rate and individual BTEX was described well by Michaelis-Menten kinetics. The treatment of petrochemical wastewater containing BTEX mixture and phenol was shown to be highly efficient by BTEX-grown JB. In addition, toxicity assessment indicated the treatment of the petrochemical wastewater by BTEX-grown JB led to less toxicity than untreated wastewater.

  14. Modified dispersive liquid-liquid microextraction for pre-concentration of benzene, toluene, ethylbenzene and xylenes prior to their determination by GC

    International Nuclear Information System (INIS)

    Faraji, Hakim; Feizbakhsh, Alireza; Helalizadeh, Masoumeh

    2013-01-01

    We have developed a modified method for the extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes (BTEX) in aqueous samples. It based on dispersive liquid-liquid microextraction along with solidification of floating organic microdrops. The dispersion of microvolumes of an extracting solvent into the aqueous occurs without dispersive solvent. Various parameters have been optimized. BTEX were quantified via GC with FID detection. Under optimized conditions, the preconcentration factors range from 301 to 514, extraction efficiencies from 60 to 103 %, repeatabilities from 2.2 to 4.1 %, and intermediate precisions from 3.5 to 7.0 %. The relative recovery for each analyte in water samples at three spiking levels is >85.6 %, with a relative standard deviation of <7.4 %. (author)

  15. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    Science.gov (United States)

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  16. Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene.

    Science.gov (United States)

    Barzegar, Maryam; Berahman, Masoud; Iraji Zad, Azam

    2018-01-01

    Recent research interest in two-dimensional (2D) materials has led to an emerging new group of materials known as transition metal dichalcogenides (TMDs), which have significant electrical, optical, and transport properties. MoS 2 is one of the well-known 2D materials in this group, which is a semiconductor with controllable band gap based on its structure. The hydrothermal process is known as one of the scalable methods to synthesize MoS 2 nanostructures. In this study, the gas sensing properties of flower-shaped MoS 2 nanoflakes, which were prepared from molybdenum trioxide (MoO 3 ) by a facile hydrothermal method, have been studied. Material characterization was performed using X-ray diffraction, Brunauer-Emmett-Teller surface area measurements, elemental analysis using energy dispersive X-ray spectroscopy, and field-emission scanning electron microscopy. The gas sensing characteristics were evaluated under exposure to various concentrations of xylene and methanol vapors. The results reveal higher sensitivity and shorter response times for methanol at temperatures below 200 °C toward 200 to 400 ppm gas concentrations. The sensing mechanisms for both gases are discussed based on simulation results using density functional theory and charge transfer.

  17. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    Science.gov (United States)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  18. Development of a versatile, easy and rapid atmospheric monitor for benzene, toluene, ethylbenzene and xylenes determination in air.

    Science.gov (United States)

    Esteve-Turrillas, Francesc A; Ly-Verdú, Saray; Pastor, Agustín; de la Guardia, Miguel

    2009-11-27

    A new procedure for the passive sampling in air of benzene, toluene, ethylbenzene and xylene isomers (BTEX) is proposed. A low-density polyethylene layflat tube filled with a mixture of solid phases provided a high versatility tool for the sampling of volatile compounds from air. Several solid phases were assayed in order to increase the BTEX absorption in the sampler and a mixture of florisil and activated carbon provided the best results. Direct head-space-gas chromatography-mass spectrometry (HS-GC-MS) measurement of the whole deployed sampler was employed for a fast determination of BTEX. Absorption isotherms were used to develop simple mathematical models for the estimation of BTEX time-weighted average concentrations in air. The proposed samplers were used to determine BTEX in indoor air environments and results were compared with those found using two reference methodologies: triolein-containing semipermeable membrane devices (SPMDs) and diffusive Radiello samplers. In short, the developed sampling system and analytical strategy provides a versatile, easy and rapid atmospheric monitor (VERAM).

  19. Synthesis of Co3O4/TiO2 composite by pyrolyzing ZIF-67 for detection of xylene

    Science.gov (United States)

    Bai, Shouli; Tian, Ke; Tian, Ye; Guo, Jun; Feng, Yongjun; Luo, Ruixian; Li, Dianqing; Chen, Aifan; Liu, Chung Chiun

    2018-03-01

    Co3O4/TiO2 composites with p-n heterojunction have been successfully prepared by pyrolyzing sacrificial template of Ti ion loaded Co-based Zeolitic imidazolate framework (ZIF-67). The structure and morphology of composite have been characterized by means of the analysis of XRD, FESEM, HRTEM and XPS spectra. The composite with a Co/Ti molar ratio of 4:1 exhibits the maximum sensing response of 6.17-50 ppm xylene, which is 5 times higher than pristine Co3O4. Moreover, Co3O4/TiO2 composite also shows good selectivity, long-term stability and rapid response and recovery. Such excellent sensing performances are attributed to material porous structure, high specific surface and the formation of abundant p-n heterojunction that permits the gas adsorption, diffusion and surface reaction and then improve the gas sensing performance. This work develops a promising synthesized approach of metal oxide composites for broader MOFs application in gas sensor field.

  20. Determination of biodegradation process of benzene, toluene, ethylbenzene and xylenes in seabed sediment by purge and trap gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang [Key Lab. for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua Univ., Beijing (China). Dept. of Physics; China Pharmaceutical Univ., Nanjing (China). Physics Teaching and Research Section, Dept. of Basic Sciences; Ma, Wanyun; Chen, Dieyan [Key Lab. for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua Univ., Beijing (China). Dept. of Physics

    2007-12-15

    Benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly found in crude oil and are used in geochemical investigations as direct indicators of the presence of oil and gas. BTEX are easily volatile and can be degraded by microorganisms, which affect their precise measurement seriously. A method for determining the biodegradation process of BTEX in seabed sediment using dynamic headspace (purge and trap) gas chromatography with a photoionization detector (PID) was developed, which had a detection limit of 7.3-13.2 ng L{sup -1} and a recovery rate of 91.6-95.0%. The decrease in the concentration of BTEX components was monitored in seabed sediment samples, which was caused by microorganism biodegradation. The results of BTEX biodegradation process were of great significance in the collection, transportation, preservation, and measurement of seabed sediment samples in the geochemical investigations of oil and gas. (orig.)

  1. Dielectric properties of liquid systems: study of interactions in the systems carbon tetrachloride with benzene, toluene, and p-xylene

    Directory of Open Access Journals (Sweden)

    Adrián H. Buep

    2014-12-01

    Full Text Available Intermolecular associations in liquid systems of non-polar and slightly polar compounds were studied through excess molar volumes (VEM and excess dielectric properties (εE and n2ED for mixtures of carbon tetrachloride (CCl4 with benzene (C6H6, toluene (C6H5CH3, and p-xylene (p-(CH32C6H4. These excess properties were calculated from measurements of density (ρ, static permittivity (ε, and refractive index (nD over the whole range of concentrations at 298.15 K. The values of the excess dielectric properties for these mixtures were fitted in two different ways, one through least squares using the Redlich–Kister equation and the other using a model developed to explain deviations from ideality. The first fit was found to be descriptive while the second gave the equilibrium constant values for the interaction products actually formed in the mixtures and the respective electronic polarizabilities and dipole moments, indicating the existence of interaction products.

  2. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene.

    Science.gov (United States)

    da Silva, Syllos S; Chiavone-Filho, Osvaldo; de Barros Neto, Eduardo L; Nascimento, Claudio A O

    2012-01-15

    Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min(-1) for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H(2)O(2) concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Technetium-99m extraction and transport across tri-n-octylamine-xylene based supported liquid membranes

    International Nuclear Information System (INIS)

    Ashraf Chaudry, M.; Ahmad, B.

    1996-01-01

    The nuclear properties of 99m Tc radionuclide are ideal for organ imaging. Study of the technetium transport across supported liquid membranes has been performed to get data for its separation from other elements. Tri-n-octylamine diluted in xylene was used to constitute the liquid membranes, supported in polypropylene microporous films. Stripping on the product solution side was performed with dilute NaOH solutions. The effect of sulphuric acid, nitric acid and hydrochloric acid in the feed on transport of 99m Tc as TcO 4 - ions has been studied. The permeability of the given ions determined from kinetic activity data has been found to be in the order of PH 2 SO 4 >PHCl>PHNO 3 . The flux values have been calculated based on this permeability data. The increase in carrier concentration has shown an increase in flux and permeability values to a given optimum concentration. The increase in temperature has been found to reduce the transport of Tc ions. The optimum conditions for transport of 99m Tc for the given acid concentration have been determined. Mechanism of Tc ion transport has also been provided based on chemical reactions involved at the membrane interfaces and uptake of Tc ions by the membrane. MoO 4 2- ions do not permeate through membrane under optimum conditions of transport for TcO 4 2 - ions from H 2 SO 4 solution. (author). 12 refs., 20 figs., 1 tab

  4. Effects of plasma polymerized para-xylene intermediate layers on characteristics of flexible organic light emitting diodes fabricated on polyethylene terephthalate substrates

    International Nuclear Information System (INIS)

    Sohn, Sunyoung; Kim, Kyuhyung; Kho, Samil; Jung, Donggeun; Boo, Jin-hyo

    2008-01-01

    Characteristics of flexible organic light emitting diodes (FOLEDs) with the plasma polymerized para-xylene (PPpX) intermediate layer were investigated. For the purpose of reducing moisture permeation through plastic substrates, a PPpX intermediate layer was inserted between FOLEDs and the plastic substrates. As the concentration of C-H bonding in the PPpX film deposited at 25 deg. C was increased, PPpX films showed increased transmittance. Surface morphologies of polyethylene terephthalate (PET) covered with the PPpX intermediate layer were improved compared to PET without PPpX on it. Due to the highly cross-linked network structure in the plasma polymer film, water vapor permeability of PET substrates with the PPpX intermediate layer of 75 nm was decreased compared to PET substrates without PPpX on it. FOLEDs with the PPpX intermediate layer showed improved optical and electrical characteristics as well as lifetimes than FOLEDs without the PPpX intermediate layer

  5. Determination of As and Se in crude oil diluted in xylene by inductively coupled plasma mass spectrometry using a dynamic reaction cell for interference correction on {sup 80}Se

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Fernanda Inda de [Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Duyck, Christiane B., E-mail: cbduyck@vm.uff.br [Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Departamento de Quimica, Universidade Federal Fluminense (UFF), Outeiro Sao Joao Batista s/n, Centro, 24020-150, Niteroi, RJ (Brazil); Fonseca, Teresa Cristina O. [Centro de Pesquisas Leopoldo A. Miguez de Mello da Petrobras (CENPES) (Brazil); Saint' Pierre, Tatiana D. [Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil)

    2012-05-15

    Arsenic and selenium can be found in crude oils and represent an important source of pollution when released to the environment during any stage of extraction or refinery. These elements present low sensitivity in the direct determination by inductively coupled plasma mass spectrometry (ICP-MS), due to their high ionization potential, and are also prone to spectral interferences. Hydride generation (HG) can be alternatively employed for the separation of these analytes from the sample matrix and introduction into the instrument. However, the required sample preparation usually increases the analysis time. In this work, a method was developed for the determination of As and Se in crude oil by ICP-MS, after sample dilution in xylene. The use of a dynamic reaction cell (DRC) allowed for the overcoming of Ar{sub 2}{sup +} interference on {sup 80}Se, but was not necessary for As, since interference on m/z 75 was not observed. The optimized operational conditions for {sup 75}As and {sup 80}Se were: 1350 W of RF power, 0.4 L min{sup -1} of Ar nebulizer and 0.7 L min{sup -1} of Ar auxiliary flow rates. The DRC conditions for {sup 80}Se were 0.5 L min{sup -1} of methane and rejection parameter q (Rpq) of 0.2. The analyses were carried out by analyte addition and the limits of detection (LOD) were 0.04 {mu}g kg{sup -1} for As and 0.1 {mu}g kg{sup -1} for Se. The accuracy was verified by the analysis of residual fuel oil certified material, with agreement at a 95% confidence level. Nine Brazilian crude oil samples were analyzed and the results compared to those obtained by hydride generation ICP-MS. In this case, samples were decomposed with nitric acid in a digester block, the analytes pre-reduced with HCl 6 mol L{sup -1} and the determination carried out by external calibration. Although better instrumental LODs were obtained by HG (0.002 {mu}g kg{sup -1} of As and 0.04 {mu}g kg{sup -1} of Se), the direct determination of As and Se in crude oil diluted in xylene by DRC

  6. Excess Molar Volume, Viscosity and Heat Capacity for the Binary Mixture of p-Xylene and Acetic Acid at Different Temperatures%对二甲苯和醋酸二元液体混合物在不同温度下的超额摩尔体积、粘度和热容

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 尹秋响; 赵长伟

    2002-01-01

    Experimental densities, viscosities and heat capacities at different temperatures were presented overthe entire range of mole fraction for the binary mixture of p-xylene and acetic acid. Density values were used in thedetermination of excess molar volumes, VE. At the same time, the excess viscosity and excess molar heat capacitieswere calculated. The values of VE, ηE and cpE were fitted to the Redlich-Kister equation. Good agreements wereobserved. The excess molar volumes are positive with a large maximum value located in the central concentrationrange. The excess viscosity has an opposite trend to the excess molar volume VE. ηE values are negative over theentire range of the mixture. The cure of dependence of cEp on concentration has a special shape. The molecularinteraction between p-xylene and acetic acid is discussed.

  7. Nitrogen regulation of the xyl genes of Pseudomonas putida mt-2 propagates into a significant effect of nitrate on m-xylene mineralization in soil

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa; Nicolaisen, Mette Haubjerg; Hansen, Hans Chr. Bruun

    2016-01-01

    nitrogen sensing status in both experimental systems. Hence, for nitrogen sources, regulatory patterns that emerge in soil reflect those observed in liquid cultures. The current study shows how distinct regulatory traits can lead to discrete environmental consequences; and it underpins that attempts......The nitrogen species available in the growth medium are key factors determining expression of xyl genes for biodegradation of aromatic compounds by Pseudomonas putida. Nitrogen compounds are frequently amended to promote degradation at polluted sites, but it remains unknown how regulation observed...... that NO3(-) compared with NH4(+) had a stimulating effect on xyl gene expression in pure culture as well as in soil, and that this stimulation was translated into increased m-xylene mineralization in soil. Furthermore, expression analysis of the nitrogen-regulated genes amtB and gdhA allowed us to monitor...

  8. Multi-objective optimization of p-xylene oxidation process using an improved self-adaptive differential evolution algorithm

    Institute of Scientific and Technical Information of China (English)

    Lili Tao; Bin Xu; Zhihua Hu; Weimin Zhong

    2017-01-01

    The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [1]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta-neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob-lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application of ISADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.

  9. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.

    Science.gov (United States)

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han

    2011-01-01

    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Quantitative Structure-Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p-Xylene Mixtures: Application to Binary and Ternary Mixtures as Extractive Agents

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young-Mook; Oh, Kyunghwan; You, Hwan; No, Kyoung Tai [Bioinformatics and Molecular Design Research Center, Seoul (Korea, Republic of); Jeon, Yukwon; Shul, Yong-Gun; Hwang, Sung Bo; Shin, Hyun Kil; Kim, Min Sung; Kim, Namseok; Son, Hyoungjun [Yonsei University, Seoul (Korea, Republic of); Chu, Young Hwan [Sangji University, Wonju (Korea, Republic of); Cho, Kwang-Hwi [Soongsil University, Seoul (Korea, Republic of)

    2016-04-15

    Ethylbenzene (EB) and p-xylene (PX) are important chemicals for the production of industrial materials; accordingly, their efficient separation is desired, even though the difference in their boiling points is very small. This paper describes the efforts toward the identification of high-performance extractive agents for EB and PX separation by distillation. Most high-performance extractive agents contain halogen atoms, which present health hazards and are corrosive to distillation plates. To avoid this disadvantage of extractive agents, we developed a quantitative structure-relative volatility relationship (QSRVR) model for designing safe extractive agents. We have previously developed and reported QSRVR models for single extractive agents. In this study, we introduce extended QSRVR models for binary and ternary extractive agents. The QSRVR models accurately predict the relative volatilities of binary and ternary extractive agents. The service to predict the relative volatility for binary and ternary extractive agents is freely available from the Internet at http://qsrvr.o pengsi.org/.

  11. Quantitative Structure-Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p-Xylene Mixtures: Application to Binary and Ternary Mixtures as Extractive Agents

    International Nuclear Information System (INIS)

    Kang, Young-Mook; Oh, Kyunghwan; You, Hwan; No, Kyoung Tai; Jeon, Yukwon; Shul, Yong-Gun; Hwang, Sung Bo; Shin, Hyun Kil; Kim, Min Sung; Kim, Namseok; Son, Hyoungjun; Chu, Young Hwan; Cho, Kwang-Hwi

    2016-01-01

    Ethylbenzene (EB) and p-xylene (PX) are important chemicals for the production of industrial materials; accordingly, their efficient separation is desired, even though the difference in their boiling points is very small. This paper describes the efforts toward the identification of high-performance extractive agents for EB and PX separation by distillation. Most high-performance extractive agents contain halogen atoms, which present health hazards and are corrosive to distillation plates. To avoid this disadvantage of extractive agents, we developed a quantitative structure-relative volatility relationship (QSRVR) model for designing safe extractive agents. We have previously developed and reported QSRVR models for single extractive agents. In this study, we introduce extended QSRVR models for binary and ternary extractive agents. The QSRVR models accurately predict the relative volatilities of binary and ternary extractive agents. The service to predict the relative volatility for binary and ternary extractive agents is freely available from the Internet at http://qsrvr.o pengsi.org/.

  12. Correct liquid scintillation counting of steroids and glycosides in RIA samples: a comparison of xylene-based, dioxane-based and colloidal counting systems. Chapter 14

    International Nuclear Information System (INIS)

    Spolders, H.

    1977-01-01

    In RIA, the following parameters are important for accurate liquid scintillation counting. (1) Absence of chemiluminescence. (2) Stability of count rate. (3) Dissolving properties for the sample. For samples with varying colours, a quench correction must be applied. For any type of accurate quench correction, a homogeneous sample is necessary. This can be obtained if proteins and the buffer can be dissolved completely in the scintillator solution. In this paper, these criteria are compared in xylene-based, dioxane-based and colloidal scintillation solutions for either bound or free antigens of different polarity. The labelling radioisotope used was 3 H. Using colloidal scintillators with plasma and buffer samples, phasing or sedimentation of salt or proteins sometimes occurs. The influence of sedimentation or phasing on count rate stability and correct quench correction is illustrated by varying the ratio between the scintillator solution and a RIA sample containing a semi-polar steroid aldosterone. (author)

  13. Acute toxicity of toluene, hexane, xylene, and benzene to the rotifers Brachionus calyciflorus and Brachionus plicatilis

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, M.D.; Andreu-Moliner, E. (Univ. of Valencia (Spain))

    1992-08-01

    A large number of studies on the biological effects of oil pollution in the aquatic environment deal with the effects of whole crude or refined oils or their water-soluble fractions. However, low boiling, aromatic hydrocarbons, which are probably the most toxic constituents of oil, have until now not been examined in sufficient detail. Toluene, benzene and xylene, constitute a major component of various oils. They may be readily lost by weathering but are toxic in waters that are relatively stagnant and are chronically polluted. Korn et al. have stated that toluene is more toxic than many other hydrocarbons such as benzene, though the latter are more water-soluble. Report of the effects of exposure to organic solvents like hexane or toluene are still limited although organic solvents are a well-known group of neurointoxicants. Various benzene derivates continue to be used as chemical intermediates, solvents, pesticides, so on, in spite of incomplete knowledge of their chronic toxicity. The majority of toxicity studies about the effects of pollution on aquatic organisms under controlled conditions have used either fish or the cladoceran Daphnia magna and there are few studies reported using rotifers. The effects of herbicides on population variables of laboratory rotifer cultures have been investigated. Rotifers are one of the main sources of zooplankton production and they have an important ecological significance in the aquatic environment. The present work was designed to investigate the effect of short-term exposure to some petroleum derivates which might be expected to occur immediately under an oil-slick, on freshwater and brackish environment rotifers. 18 refs., 1 tab.

  14. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination.

    Science.gov (United States)

    Etchegaray, Augusto; Coutte, François; Chataigné, Gabrielle; Béchet, Max; Dos Santos, Ramon H Z; Leclère, Valérie; Jacques, Philippe

    2017-01-01

    Biosurfactants are important in many areas; however, costs impede large-scale production. This work aimed to develop a global sustainable strategy for the production of biosurfactants by a novel strain of Bacillus amyloliquefaciens. Initially, Bacillus sp. strain 0G was renamed B. amyloliquefaciens subsp. plantarum (syn. Bacillus velezensis) after analysis of the gyrA and gyrB DNA sequences. Growth in modified Landy's medium produced 3 main recoverable metabolites: surfactin, fengycin, and acetoin, which promote plant growth. Cultivation was studied in the presence of renewable carbon (as glycerol) and nitrogen (as arginine) sources. While diverse kinetics of acetoin production were observed in different media, similar yields (6-8 g·L -1 ) were obtained after 72 h of growth. Glycerol increased surfactin-specific production, while arginine increased the yields of surfactin and fengycin and increased biomass significantly. The specific production of fengycin increased ∼10 times, possibly due to a connecting pathway involving arginine and ornithine. Adding value to crude extracts and biomass, both were shown to be useful, respectively, for the removal of p-xylene from contaminated water and for biodiesel production, yielding ∼70 mg·g -1 cells and glycerol, which could be recycled in novel media. This is the first study considering circular bioeconomy to lower the production costs of biosurfactants by valorisation of both microbial cells and their primary and secondary metabolites.

  15. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods

    Science.gov (United States)

    Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products. PMID:29261711

  16. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Takahata, Yoh; Hoaki, Toshihiro [Taisei Corp., Yokohama (Japan). Civil Engineering Research Inst.; Kasai, Yuki; Watanabe, Kazuya [Marine Biotechnology Institute, Kamaishi (Japan)

    2006-12-15

    A groundwater plume contaminated with gasoline constituents [mainly benzene, toluene, and xylenes (BTX)] had been treated by pumping and aeration for approximately 10 years, and the treatment strategy was recently changed to monitored natural attenuation (MNA). To gain information on the feasibility of using MNA to control the spread of BTX, chemical and microbiological parameters in groundwater samples obtained inside and outside the contaminated plume were measured over the course of 73 weeks. The depletion of electron acceptors (i.e., dissolved oxygen, nitrate, and sulfate) and increase of soluble iron were observed in the contaminated zone. Laboratory incubation tests revealed that groundwater obtained immediately outside the contaminated zone (the boundary zone) exhibited much higher potential for BTX degradation than those in the contaminated zone and in uncontaminated background zones. The boundary zone was a former contaminated area where BTX were no longer detected. Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments revealed that DGGE profiles for groundwater samples obtained from the contaminated zone were clustered together and distinct from those from uncontaminated zones. In addition, unique bacterial rRNA types were observed in the boundary zone. These results indicate that the boundary zone in the contaminant plumes served as a natural barrier for preventing the BTX contamination from spreading out. (orig.)

  17. Determinação de benzeno, tolueno, etilbenzeno e xilenos em gasolina comercializada nos postos do estado do Piauí Determination of benzene, toluene, ethylbenzene and xylenes in commercial gasoline from Piaui state

    Directory of Open Access Journals (Sweden)

    Flamys Lena do N. Silva

    2009-01-01

    Full Text Available Automotive gasoline consists of a complex mixture of flammable and volatile hydrocarbons derived from crude oil with carbon numbers within the range of 4-12 and boiling points range of 30-225 ºC. Its composition varies with the kind of crude oil and the type of refinery process that they undergone. Aromatics hydrocarbons, in particular benzene, toluene, ethylbenzene and isomeric xylenes (BTEX are the toxic group constituents presents. GC-FID was employed to quantify these hydrocarbons in 50 commercial gasoline samples from Piauí state. Statistical analysis techniques, such as PCA and HCA were used to analyze the data. Moreover, several validation parameters were evaluated.

  18. Densities, Viscosities and Related Properties for Binary Mixtures of Sulfolane + p-Xylene, Sulfolane + Ethylbenzene in the Temperature Range from 303.15 K to 353.15 K

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 周清

    2004-01-01

    Densities and viscosities of the binary systems of sulfolane + ethylbenzene, sulfolane + p-xylene have been experimentally determined in temperature interval 303.15—353.15 K and at atmospheric pressure for the whole composition range. The excess molar volumes and viscosity deviations were computed. The computed quantities have been fitted to Redlich-Kister equation. Excess molar volumes and viscosity deviation show a systematic change with increasing temperature. Two mixtures exhibit negative excess volumes with a minimum which occurs approximately at χ = 0.5. The effect of the size, shape and interaction of components on excess molar volumes and viscosity deviations is discussed.

  19. An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels-Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene.

    Science.gov (United States)

    Rohling, Roderigh Y; Uslamin, Evgeny; Zijlstra, Bart; Tranca, Ionut C; Filot, Ivo A W; Hensen, Emiel J M; Pidko, Evgeny A

    2018-02-02

    The one-pot Diels-Alder cycloaddition (DAC)/dehydration (D) tandem reaction between 2,5-dimethylfuran and ethylene is a potent pathway toward biomass-derived p -xylene. In this work, we present a cheap and active low-silica potassium-exchanged faujasite (KY, Si/Al = 2.6) catalyst. Catalyst optimization was guided by a computational study of the DAC/D reaction mechanism over different alkali-exchanged faujasites using periodic density functional theory calculations complemented by microkinetic modeling. Two types of faujasite models were compared, i.e., a high-silica alkali-exchanged faujasite model representing isolated active cation sites and a low-silica alkali-exchanged faujasite in which the reaction involves several cations in the proximity. The mechanistic study points to a significant synergetic cooperative effect of the ensemble of cations in the faujasite supercage on the DAC/D reaction. Alignment of the reactants by their interactions with the cationic sites and stabilization of reaction intermediates contribute to the high catalytic performance. Experiments confirmed the prediction that KY is the most active catalyst among low-silica alkali-exchanged faujasites. This work is an example of how the catalytic reactivity of zeolites depends on multiple interactions between the zeolite and reagents.

  20. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Science.gov (United States)

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien

    2009-05-01

    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  1. Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene, toluene, ethyl-benzene, and xylene from polluted airstreams using response surface methodology.

    Science.gov (United States)

    Najafpoor, Ali Asghar; Jonidi Jafari, Ahmad; Hosseinzadeh, Ahmad; Khani Jazani, Reza; Bargozin, Hasan

    2018-01-01

    Treatment with a non-thermal plasma (NTP) is a new and effective technology applied recently for conversion of gases for air pollution control. This research was initiated to optimize the efficient application of the NTP process in benzene, toluene, ethyl-benzene, and xylene (BTEX) removal. The effects of four variables including temperature, initial BTEX concentration, voltage, and flow rate on the BTEX elimination efficiency were investigated using response surface methodology (RSM). The constructed model was evaluated by analysis of variance (ANOVA). The model goodness-of-fit and statistical significance was assessed using determination coefficients (R 2 and R 2 adj ) and the F-test. The results revealed that the R 2 proportion was greater than 0.96 for BTEX removal efficiency. The statistical analysis demonstrated that the BTEX removal efficiency was significantly correlated with the temperature, BTEX concentration, voltage, and flow rate. Voltage was the most influential variable affecting the dependent variable as it exerted a significant effect (p < 0.0001) on the response variable. According to the achieved results, NTP can be applied as a progressive, cost-effective, and practical process for treatment of airstreams polluted with BTEX in conditions of low residence time and high concentrations of pollutants.

  2. Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene promoted by cobalt catalysts supported on γ-Al2O3-CeO2

    Directory of Open Access Journals (Sweden)

    R. Balzer

    2014-09-01

    Full Text Available Cobalt catalysts supported on γ-alumina, ceria and γ-alumina-ceria, with 10 or 20%wt of cobalt load, prepared by the wet impregnation method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission transmission electron microscopy (FETEM, N2 adsorption-desorption isotherms (BET/BJH methods, energy-dispersive X-ray spectroscopy (EDX, X-ray photoemission spectroscopy (XPS, O2-chemisorption and temperature programmed reduction (TPR were used to promote the oxidation of volatile organic compounds (n-hexane, benzene, toluene and o-xylene. For a range of low temperatures (50-350 °C, the activity of the catalysts with a higher cobalt load (20% wt was greater than that of the catalysts with a lower cobalt load (10% wt. The Co/γ-Al2O3-CeO2 catalytic systems presented the best performances. The results obtained in the characterization suggest that the higher catalytic activity of the Co20/γ-Al2O3-CeO2 catalyst may be attributed to the higher metal content and amount of oxygen vacancies, as well as the effects of the interaction between the cobalt and the alumina and cerium oxides.

  3. Detection rates, trends in and factors affecting observed levels of selected volatile organic compounds in blood among US adolescents and adults.

    Science.gov (United States)

    Jain, Ram B

    2017-12-01

    Data from National Health and Nutrition Examination Survey were analyzed to evaluate detection rates, trend in and factors affecting the observed levels of 1,4-dichlorobenzene, benzene, ethylbenzene, o-xylene, styrene, toluene, and m/p-xylene among US adolescents and adults over 2005-2012. Over 2005-20102, among adolescents, detection rates declined by more than 50% for benzene, ethylbenzene, and o-xylene, and among adults, detection rates declined by more than 50% for ethylbenzene and o-xylene and by a little less than 50% for benzene. Among adults, adjusted levels of 1, 4-dichlorobenzene, benzene, ethylbenzene, o-xylene, toluene, and m/p-xylene decreased by 13.7%, 17.1%, 20%, 17.7%, 23.2%, and 18.7% respectively for every two-year survey cycle. Among adolescents, percentage decline in the levels of 1, 4-dichlorobenzene, benzene, ethylbenzene, o-xylene, styrene, toluene, and m/p-xylene was 15.2%, 21.4%, 19.3%, 16.1%, 47.8%, and 17.7% respectively for every two year survey period. The ratio of adjusted geometric means for adult smokers as compared to adult nonsmokers was 10.7 for benzene, 3.5 for ethylbenzene, 2.0 for o-xylene, 3.4 for styrene, 3.5 for toluene, and 2.2 for m/p-xylene. Among adolescents, gender did not affect the adjusted levels of any of the seven VOCs, and the order in which adjusted levels for 1, 4-dichlorobenzene by race/ethnicity was observed was: non-Hispanic white (0.038ng/mL)non-Hispanic black (0.178ng/mL) and most of the pairwise comparisons were statistically significantly different (pvs. 0.025ng/mL). For adults, gender did not affect the adjusted levels of 1, 4-dicholorobenzene, ethylbenzene, o-xylene, styrene, toluene, and m/p-xylene. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biodegradation of BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) composites present in the petrochemical effluents industries; Biodegradacao dos compostos BTX (Benzeno, Tolueno e Xilenos) presentes em efluentes petroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Minatti, Gheise; Mello, Josiane M.M. de; Souza, Selene M.A. Guelli Ulson de; Ulson de, Antonio Augusto [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2008-07-01

    The compounds BTX inside of the petrochemical effluent have presented a high potential of pollution, representing a serious risk to the environment and to the human. The great improvements in the field of biological treatment of liquid effluent were reached through the process using biofilm capable of degrading toxic compounds. The objective of this paper is to determine the degradation kinetics of BTX using biofilm. The experimental data were compared with two kinetic models, kinetic of first order and model of Michaelis-Menten. The kinetic parameters of BTX compounds were experimentally obtained in a bioreactor in batch with biomass immobilized in activated-carbon, being fed daily with solution of nutrients and BTX. For the kinetic models studied in this paper, the best performance was achieved with the model of Michaelis-Menten showing a good correlation coefficient for the three compounds. The biomass amount in these bioreactors was 49.18, 28.35 and 5.15 mg of SSV per gram of support for the toluene, benzene and o-xylene, respectively. The experimental tests showed that the biomass inside of bioreactor is capable to degrade all compounds in a time of approximately 300 minutes. (author)

  5. Early Liver and Kidney Dysfunction Associated with Occupational Exposure to Sub-Threshold Limit Value Levels of Benzene, Toluene, and Xylenes in Unleaded Petrol.

    Science.gov (United States)

    Neghab, Masoud; Hosseinzadeh, Kiamars; Hassanzadeh, Jafar

    2015-12-01

    Unleaded petrol contains significant amounts of monocyclic aromatic hydrocarbons such as benzene, toluene, and xylenes (BTX). Toxic responses following occupational exposure to unleaded petrol have been evaluated only in limited studies. The main purpose of this study was to ascertain whether (or not) exposure to unleaded petrol, under normal working conditions, is associated with any hepatotoxic or nephrotoxic response. This was a cross-sectional study in which 200 employees of Shiraz petrol stations with current exposure to unleaded petrol, as well as 200 unexposed employees, were investigated. Atmospheric concentrations of BTX were measured using standard methods. Additionally, urine and fasting blood samples were taken from individuals for urinalysis and routine biochemical tests of kidney and liver function. The geometric means of airborne concentrations of BTX were found to be 0.8 mg m(-3), 1.4 mg m(-3), and 2.8 mg m(-3), respectively. Additionally, means of direct bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea and plasma creatinine were significantly higher in exposed individuals than in unexposed employees. Conversely, serum albumin, total protein, and serum concentrations of calcium and sodium were significantly lower in petrol station workers than in their unexposed counterparts. The average exposure of petrol station workers to BTX did not exceed the current threshold limit values (TLVs) for these chemicals. However, evidence of subtle, subclinical and prepathologic early liver and kidney dysfunction was evident in exposed individuals.

  6. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Hu Zhifeng; Deng Dong

    2008-01-01

    Effective anaerobic BTEX biodegradation was obtained under nitrate and sulfate reducing conditions by the mixed bacterial consortium that were enriched from gasoline contaminated soil. Under the conditions of using nitrate or sulfate as reducing acceptor, the degradation rates of the six tested substrates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene. The higher concentrations of BTEX were toxic to the mixed cultures and led to reduce the degradation rates of BTEX. Benzene and p-xylene were more toxic than toluene and ethylbenzene. Nitrate was a more favorable electron acceptor compared to sulfate. The measured ratios between the amount of nitrate consumed and the amount of benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene degraded were 9.47, 9.26, 11.14, 12.46, 13.36 and 13.02, respectively. The measured ratios between sulfate reduction and BTEX degradation were 3.51, 4.33, 4.89, 4.81, 4.86 and 4.76, respectively, which were nearly the same to theoretical ones, and the relative error between the measured and calculated ratios was less than 10%

  7. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Shamizadeh, Mohammad; Moradian, Rostam; Astinchap, Bandar

    2014-01-01

    Highlights: • Co 3 O 4 nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co 3 O 4 nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared

  8. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: MB.Gholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba; Shamizadeh, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam; Astinchap, Bandar [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Technology Research Laboratory, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Co{sub 3}O{sub 4} nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co{sub 3}O{sub 4} nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.

  9. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography.

    Science.gov (United States)

    Kondor, Anett; Dallos, András

    2014-10-03

    Adsorption isotherm data of some alkyl aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) measured in the temperature range of 423-523K on a partially dealuminated faujasite type DAY F20 zeolite by inverse gas chromatography are presented in this work. The temperature dependent form of Tóth's equation has been fitted to the multiple temperature adsorption isotherms of benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene with standard deviations of 4.6, 5.0, 5.9, 4.3, 5.1 and 6.3mmolkg(-1) and coefficients of determinations (r(2)) of 0.977, 0.971, 0.974, 0.975, 0.991 and 0.991, respectively. The gas-solid equilibria and modeling were interpreted on the basis of the interfacial properties of the zeolite, by dispersive, specific and total surface energy heterogeneity profiles and distributions of the adsorbent measured by surface energy analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecular Symmetry Analysis of Low-Energy Torsional and Vibrational States in the S_{0} and S_{1} States of p-XYLENE to Interpret the Rempi Spectrum

    Science.gov (United States)

    Groner, Peter; Gardner, Adrian M.; Tuttle, William Duncan; Wright, Timothy G.

    2017-06-01

    The electronic transition S_{1} ← S_{0} of p-xylene (pXyl) has been observed by REMPI spectroscopy. Its analysis required a detailed investigation of the molecular symmetry of pXyl whose methyl groups are almost free internal rotors. The molecular symmetry group of pXyl has 72 operators. This group, called [33]D_{2h}, is isomorphic to G_{36}(EM), the double group for ethane and dimethyl acetylene even though it is NOT a double group for pXyl. Loosely speaking, the group symbol, [33]D_{2h}, indicates that is for a molecule with two threefold rotors on a molecular frame with D_{2h} point group symmetry. The transformation properties of the (i) free internal rotor basis functions for the torsional coordinates, (ii) the asymmetric rotor (Wang) basis functions for the Eulerian angles, (iii) nuclear spin functions, (iv) potential function, and (v) transitions dipole moment functions were determined. The forms of the torsional potential in the S_{0} and S_{1} states and the dependence of the first order torsional splittings on the potential coefficients have been obtained. AM Gardner, WD Tuttle, P. Groner, TG Wright, J. Chem. Phys., submitted Dec 2016 P Groner, JR Durig, J. Chem. Phys., 66 (1977) 1856 PR Bunker, P Jensen, Molecular Symmetry and Spectroscopy (1998, NRC Research Press, Ottawa, 2nd ed.)

  11. Adsorption properties of the SAPO-5 molecular sieve

    KAUST Repository

    Hu, Enping; Lai, Zhiping; Wang, Kean

    2010-01-01

    The adsorption properties of an aluminophosphate molecular sieve, SAPO-5, were measured for a number of gases and vapors, including N2, water, isopropanol, and xylenes. The data showed that SAPO-5 is quite hydrophobic and has a strong selectivity of o-xylene over its isomers m- and p-xylene. © 2010 American Chemical Society.

  12. Adsorption properties of the SAPO-5 molecular sieve

    KAUST Repository

    Hu, Enping

    2010-09-09

    The adsorption properties of an aluminophosphate molecular sieve, SAPO-5, were measured for a number of gases and vapors, including N2, water, isopropanol, and xylenes. The data showed that SAPO-5 is quite hydrophobic and has a strong selectivity of o-xylene over its isomers m- and p-xylene. © 2010 American Chemical Society.

  13. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  14. Solubility, density and excess molar volume of binary mixtures of aromatic compounds and common ionic liquids at T=283.15K and atmospheric pressure

    OpenAIRE

    Emilio J Gonzalez; Patricia Requejo; Filipa Maia; Ángeles Dominguez; Maria Eugénia Macedo

    2015-01-01

    In this work, the solubility of aromatic compounds (benzene, or toluene, or ethylbenzene, or o-xylene, or m-xylene, or p-xylene) in several ionic liquids (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or 1-ethyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, or 1-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, or 1-ethyl-3-methylpyridinium ethylsulfate, or 1-hexyl-3-methylimidazolium dicyana...

  15. Use of lanthanide shift reagents together with silver trifluoroacetate for quantitative analysis of mixtures of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Dambska, A.; Janowski, A.

    1980-01-01

    The shifts induced by equimolar mixture of typical lanthanide shift reagent such as 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octadionato europium with silver trifluoroacetate in 1 H NMR spectra of aromatic hydrocarbons have been used for analytical purposes; the NMR determination of m- and p-xylenes in mixtures has been chosen as an example. The use has been made of difference between induced shifts of methyl group signals in the 1 H NMR spectra of m- and p-xylenes. The magnitude of induced shifts of methyl groups signal in m-xylene is always larger than that of p-isomer, irrespective of contents of m- and p-xylenes in mixture. (author)

  16. Effects of climate change on the wash-off of volatile organic compounds from urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna

    2011-09-01

    The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in 300 μm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    Science.gov (United States)

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation

  18. Quantification of benzene, toluene, ethylbenzene and o-xylene in internal combustion engine exhaust with time-weighted average solid phase microextraction and gas chromatography mass spectrometry.

    Science.gov (United States)

    Baimatova, Nassiba; Koziel, Jacek A; Kenessov, Bulat

    2015-05-11

    A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA-SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m(-3) (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Phase transitions on (liquid + liquid) equilibria for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems at T = (563, 573, and 583) K

    International Nuclear Information System (INIS)

    Togo, Masaki; Inamori, Yoshiki; Shimoyama, Yusuke

    2012-01-01

    Highlights: ► Mixtures of (water + 1-methylnaphthalene + light aromatic hydrocarbon) are focused. ► Phase transition pressures on (liquid + liquid) equilibria were measured. ► Effects of aromatic hydrocarbons on phase transition pressure are investigated. ► Phase transition pressures are discussed using dielectric constants of hydrocarbons. - Abstract: Phase transitions for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems are observed at their (liquid + liquid) equilibria at T = (563, 573, and 583) K and (8.6 to 25.0) MPa. The phase transition pressures at T = (563, 573, and 583) K were measured for the five species of light aromatic hydrocarbons, o-, m-, p-xylenes, ethylbenzene, and mesitylene. The measurements of the phase transition pressures were carried out by changing the feed mole fraction of water and 1-methylnaphthalene in water free, respectively. Effects of the feed mole fraction of water on the phase transition pressures are very small. Increasing the feed mole fraction of 1-methylnaphthalene results in decreasing the phase transition pressures at constant temperature. The slopes depending on the feed mole fraction for 1-methylnaphthalene at the phase transition pressures are decreased with increasing temperature for (water + 1-methylnaphthalene + p-xylene), (water + 1-methylnaphthalene + o-xylene), and (water + 1-methylnaphthalene + mesitylene) systems. For xylene isomers, the highest and lowest of the phase transition pressures are obtained in the case of p- and o-xylenes, respectively. The phase transition pressures for ethylbenzene are lower than those in the case of p-xylene. The similar phase transition pressures are given for p-xylene and mesitylene.

  20. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing.

    Science.gov (United States)

    Liu, Junfeng; Mu, Yujing; Zhang, Yujie; Zhang, Zhimin; Wang, Xiaoke; Liu, Yanju; Sun, Zhenquan

    2009-12-15

    The hourly concentrations of BTEX (Benzene, Toluene, Ethylbenzene, m,p-Xylene and o-Xylene) in the urban area of Beijing were measured during July-October 2008, covering the periods of the 2008 Olympic Games and Paralympic Games. The atmospheric BTEX were pre-concentrated on Tenax-TA tubes, and analyzed by GC-PID (Gas Chromatography with Photo Ionization Detector) after thermal desorption. During the games, the mean daytime concentrations of benzene, toluene, ethylbenzene, m,p-xylene and o-xylene were 2.37, 3.97, 1.92, 3.51 and 1.90 microg/m3, respectively, and were 52.8%, 63.9%, 56.4%, 56.8% and 46.9%, respectively lower than those after the games. The significantly positive correlation between BTEX and CO as well as the ratio of benzene/toluene suggested that the vehicle exhaust was the major source of BTEX during the whole investigated period. The extremely high ratios of ethylbenzene to m,p-xylene (E/X) were mainly observed at noontime in haze days, indicating that photochemical reactions were highly active under these typical days.

  1. Examination of hydrogen-bonding interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A.; Rakipov, Ilnaz T. [Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Acree, William E., E-mail: acree@unt.edu [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Brumfield, Michela [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Abraham, Michael H. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-10-20

    Highlights: • Enthalpies of solution measured for 48 solutes dissolved in mesitylene. • Enthalpies of solution measured for 81 solutes dissolved in p-xylene. • Abraham model correlations derived for enthalpies of solvation of solutes in mesitylene. • Abraham model correlations derived for enthalpies of solvation of solutes in p-xylene. • Hydrogen-bonding enthalpies reported for interactions of aromatic hydrocarbons with hydrogen-bond acidic solutes. - Abstract: Enthalpies of solution at infinite dilution of 48 organic solutes in mesitylene and 81 organic solutes in p-xylene were measured using isothermal solution calorimeter. Enthalpies of solvation for 92 organic vapors and gaseous solutes in mesitylene and for 130 gaseous compounds in p-xylene were determined from the experimental and literature data. Abraham model correlations are determined from the experimental enthalpy of solvation data. The derived correlations describe the experimental gas-to-mesitylene and gas-to-p-xylene solvation enthalpies to within average standard deviations of 1.87 kJ mol{sup −1} and 2.08 kJ mol{sup −1}, respectively. Enthalpies of X-H⋯π (X-O, N, and C) hydrogen bond formation of proton donor solutes (alcohols, amines, chlorinated hydrocarbons etc.) with mesitylene and p-xylene were calculated based on the Abraham solvation equation. Obtained values are in good agreement with the results determined using conventional methods.

  2. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.

    Science.gov (United States)

    Valcke, Mathieu; Haddad, Sami

    2015-01-01

    The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.

  3. Evaluation of potential toxicity from co-exposure to three CNS depressants (toluene, ethylbenzene, and xylene) under resting and working conditions using PBPK modeling.

    Science.gov (United States)

    Dennison, James E; Bigelow, Philip L; Mumtaz, Moiz M; Andersen, Melvin E; Dobrev, Ivan D; Yang, Raymond S H

    2005-03-01

    Under OSHA and American Conference of Governmental Industrial Hygienists (ACGIH) guidelines, the mixture formula (unity calculation) provides a method for evaluating exposures to mixtures of chemicals that cause similar toxicities. According to the formula, if exposures are reduced in proportion to the number of chemicals and their respective exposure limits, the overall exposure is acceptable. This approach assumes that responses are additive, which is not the case when pharmacokinetic interactions occur. To determine the validity of the additivity assumption, we performed unity calculations for a variety of exposures to toluene, ethylbenzene, and/or xylene using the concentration of each chemical in blood in the calculation instead of the inhaled concentration. The blood concentrations were predicted using a validated physiologically based pharmacokinetic (PBPK) model to allow exploration of a variety of exposure scenarios. In addition, the Occupational Safety and Health Administration and ACGIH occupational exposure limits were largely based on studies of humans or animals that were resting during exposure. The PBPK model was also used to determine the increased concentration of chemicals in the blood when employees were exercising or performing manual work. At rest, a modest overexposure occurs due to pharmacokinetic interactions when exposure is equal to levels where a unity calculation is 1.0 based on threshold limit values (TLVs). Under work load, however, internal exposure was 87%higher than provided by the TLVs. When exposures were controlled by a unity calculation based on permissible exposure limits (PELs), internal exposure was 2.9 and 4.6 times the exposures at the TLVs at rest and workload, respectively. If exposure was equal to PELs outright, internal exposure was 12.5 and 16 times the exposure at the TLVs at rest and workload, respectively. These analyses indicate the importance of (1) selecting appropriate exposure limits, (2) performing unity

  4. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: Field demonstration

    International Nuclear Information System (INIS)

    Hutchins, S.R.; Downs, W.C.; Wilson, J.T.; Smith, G.B.; Kovacs, D.A.

    1991-01-01

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft X 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallons of ground water per week through the infiltration gallery at a rate designed to raise the water table above the contaminated interval. Ground water containing ambient concentrations was first recirculated for 40 days. Concentrations of benzene in monitoring wells beneath the infiltration gallery were reduced from 760 to <1 micrograms/1. Concentrations of toluene, ethylbenzene, m,p-xylene, and o-xylene were reduced from 4500 to 17,840 to 44,2600 to 490, and 1400 to 260 micrograms/1, respectively. Average core concentrations of benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene were reduced from 0.84 to 0.032, 33 to 0.13, 18 to 0.36, 58 to 7.4, and 26 to 3.2 mg/kg, respectively. Ground water amended with nitrate (10 mg/1 nitrate-nitrogen) and nutrients was then recirculated for 76 days. Final core concentrations of benzene, toluene, ethylbenzene, m,p-xylene and o-xylene were 0.017, 0.036, 0.019, 0.059, and 0.27 mg/kg, respectively. Final aqueous concentrations were <1 micrograms/1 for benzene and toluene, 6 micrograms/1 for ethylbenzene, and 20 to 40 micrograms/1 for the xylene isomers, in good agreement with predicted values based on residual fuel content and partitioning theory. Although alkylbenzene concentrations have been substantially reduced, the test plot is still contaminated with the weathered fuel. Based on stoichiometry, approximately 10 times more nitrate was consumed than could be accounted for by BTX degradation alone, indicating that other compounds were also degraded under denitrifying conditions

  5. Densities, Viscosities and Related Properties for Binary Mixtures of Sulfolane + p-Xylene, Sulfolane + Ethylbenzene in the Temperature Range from 303.15 K to 353.15 K%二元混合物环丁酚和对二甲苯、乙苯在温度范围为303.15-353.15K下的密度、黏度及其相关性质

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 周清

    2004-01-01

    Densities and viscosities of the binary systems of sulfolane + ethylbenzene, sulfolane + p-xylene have been experimentally determined in temperature interval 303.15-353.15 K and at atmospheric pressure for the whole composition range. The excess molar volumes and viscosity deviations were computed. The computed quantities have been fitted to Redlich-Kister equation. Excess molar volumes and viscosity deviation show a systematic change with increasing temperature. Two mixtures exhibit negative excess volumes with a minimum which occurs approximately at x = 0.5. The effect of the size, shape and interaction of components on excess molar volumes and viscosity deviations is discussed.

  6. Análise por cromatografia gasosa de BTEX nas emissões de motor de combustão interna alimentado com diesel e mistura diesel-biodiesel (B10 Analysis of BTEX in the emissions from an internal combustion engine burning diesel oil and diesel-biodiesel mixture (B10 by gas chromatography

    Directory of Open Access Journals (Sweden)

    Sérgio L. Ferreira

    2008-01-01

    Full Text Available This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene by using high resolution gas chromatography (HRGC. For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.

  7. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar; Lee, Inkyu; Moon, Il

    2015-01-01

    Excess molar volumes (V m E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V m E values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V m E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V m E values for systems with s-shaped V m E versus x 1 graph, the V m E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures

  8. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study.

    Science.gov (United States)

    Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas

    2012-07-31

    Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures

  9. Dealumination of mordenite zeolite and its catalytic performance ...

    African Journals Online (AJOL)

    The performances were then benchmarked with the performance of SAPO-11, a commercially available catalyst.The results showed that p-xylene/o-xylene ratio over the catalysts was found to be in the order: dealuminated mordenite > mordenite > SAPO-11, however dealuminated mordenite and SAPO-11 gave higher ...

  10. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  11. New method for the exact determination of phenols in low-temperature tar and tar oils

    Energy Technology Data Exchange (ETDEWEB)

    Lambris, G; Haferkorn, H

    1949-01-01

    A 3-gram sample of water-free tar or tar oil containing approximately 50% phenols is dissolved in a mixture of benzene and xylene and a known excess of a 20% KOH solution of known normality saturated with benzene and xylene is added. Weight of the KOH is determined by difference. This mixture is shaken repeatedly in a 300-milliliter separatory funnel. After standing for 0.5 h, the dark or almost black phenolate solution containing the major portion is separated and weighed. Care must be taken to prevent the induction of solids. The phenolate in the residue is extracted with hot water and titrated with 0.2N HCl and 1 ml. Congo red (1:100). If water is present in the tar or tar oil, 100 ml of xylene is added immediately after weighing and the water separated by distillation the weight of which must be determined. Any phenols carried over are dissolved in the small quantity of xylene in the distillate. This quantity is added to the bulk of the xylene. After any remaining phenols are extracted from the tar residue with boiling benzene, the benzene-xylene mixture is treated with KOH as above. The accuracy of the method is estimated to be +-1% as shown by experiments with phenol; o-, m-, and p-cresol; cresol mixture; and pyrocatechol. The weight of the dissolved phenols X is determined by X = c - a + cd/(ab - d) where a = weight of KOH, b = HCl used per gram of KOH, C = weight of major portion of phenolate solution, which is formed by shaking the phenol solution with KOH, d = HCl used for titration of phenolate residue.

  12. THz wave sensing for petroleum industrial applications

    Science.gov (United States)

    Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

  13. 16 CFR 1500.83 - Exemptions for small packages, minor hazards, and special circumstances.

    Science.gov (United States)

    2010-01-01

    ... (also known as xylol), petroleum distillates, and/or turpentine in the concentrations described in...), xylene (also known as xylol), or petroleum distillates as defined in § 1500.14(a)(3), and/or because the... which contain toluene (also known as toluol), xylene (also known as xylol), or petroleum distillates in...

  14. Breakthrough indicator for aromatic VOCs using needle trap samplers for activated carbon adsorbent.

    Science.gov (United States)

    Cheng, Wen-Hsi; Jiang, Jia-Rong; Huang, Yi-Ning; Huang, Shiun-Chian; Yu, Yan-Pin

    2012-08-01

    Internal circulation cabinets equipped with granular activated carbon (GAC) for adsorbing volatile organic compounds (VOCs) are widely used to store bottles containing organic solvents in universities, colleges, and hospital laboratories throughout Taiwan. This work evaluates the VOC adsorption capacities of GAC using various adsorption times for gas stream mixtures of 100 ppm toluene and 100 ppm o-xylene. Additionally, needle trap sampling (NTS) technology was used to indicate the time for renewing the GAC to avoid VOC breakthrough from adsorbents. Experimental results demonstrate that the proposed models can linearly express toluene and o-xylene adsorption capacities as the natural logarithm of adsorption time (ln(t)) and can accurately simulate the equilibrium adsorption capacities (Qe, g VOCs/g GAC) for gaseous toluene and o-xylene. The NTS, packed with 60-80 mesh divinylbenzene (DVB) particles, was compared in terms of extraction efficiency by simultaneously using the 75-microm Carboxen/polydimethylsiloxane-solid-phase microextraction (Carboxen/PDMS-SPME) fiber for time-weighted average (TWA) sampling, and experimental results indicated that the packed DVB-NTS achieved higher toluene extraction rates. Additionally, the NTS installed in the outlet air stream for adsorbing toluene and o-xylene exhausted through GAC accurately indicated toluene and o-xylene breakthrough times of 4700-5000 min. The GAC-NTS operational instructions to indicate the replacing time of adsorbent in the internal circulation cabinets are also included in this paper.

  15. Comparative analysis of efficacy and cleaning ability of hand and rotary devices for gutta-percha removal in root canal retreatment: an in vitro study.

    Science.gov (United States)

    Reddy, Narender; Admala, Shilpa Reddy; Dinapadu, Sainath; Pasari, Srikanth; Reddy, Manoranjan P; Rao, M S Rama

    2013-07-01

    To evaluate the efficacy and cleaning ability of Hedstrom files, and ProTaper retreatment instruments in removing gutta-percha from root canals with and without xylene as solvent. Sixty extracted single rooted human teeth were selected and decoronated, straight access established working length determined 1 mm short of canal, chemomechanical preparation done and obturated with guttapercha and AH plus sealer. Samples were stored for 1 week in humidifier divided into four groups of 15 teeth each. • Group I: Hedstrom files without xylene. • Group II: Hedstrom files with xylene. • Group III: ProTaper retreatment instruments without xylene. • Group IV: ProTaper retreatment instruments with xylene. and the following criteria were assessed - Time taken for initial plunge of instrument into guttapercha. - Time taken for complete removal of gutta-percha to reach working length - Ability of H files and ProTaper retreatment files with/ without xylene to remove gutta-percha in coronal, middle and apical 1/3 of canal. The teeth were grooved in labiolingual cross section, observed under a steromicroscope and scored according to gutta-percha debris left in the canal. Results were evaluated using ANOVA test and multiple comparisons done using Scheffe test. The least time to reach working length was found with group IV followed by groups III, II and group I respectively. Also the fastest way to remove maximum gutta-percha was group IV followed by groups III, II, and I respectively with a statistically significant difference among all groups. Apical 1/3 has more amount of remaining gutta-percha debris than middle and coronal 1/3 in all groups. The amount of gutta-percha debris in apical 1/3 was least in group IV followed by groups III, II and I respectively. The better performance of ProTaper rotary instruments has been attributed to their special flute design which tends to pull gutta-percha coronally directing it toward orifice. Also the movements of engine driven

  16. Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters.

    Science.gov (United States)

    Horstkotte, Burkhard; Lopez de Los Mozos Atochero, Natalia; Solich, Petr

    2018-06-22

    Online coupling of Lab-In-Syringe automated headspace extraction to gas chromatography has been studied. The developed methodology was successfully applied to surface water analysis using benzene, toluene, ethylbenzene, and xylenes as model analytes. The extraction system consisted of an automatic syringe pump with a 5 mL syringe into which all solutions and air for headspace formation were aspirated. The syringe piston featured a longitudinal channel, which allowed connecting the syringe void directly to a gas chromatograph with flame ionization detector via a transfer capillary. Gas injection was achieved via opening a computer-controlled pinch valve and compressing the headspace, upon which separation was initialized. Extractions were performed at room temperature; yet sensitivity comparable to previous work was obtained by high headspace to sample ratio V HS /V Sample of 1.6:1 and injection of about 77% of the headspace. Assistance by in-syringe magnetic stirring yielded an about threefold increase in extraction efficiency. Interferences were compensated by using chlorobenzene as an internal standard. Syringe cleaning and extraction lasting over 10 min was carried out in parallel to the chromatographic run enabling a time of analysis of <19 min. Excellent peak area repeatabilities with RSD of <4% when omitting and <2% RSD when using internal standard corrections on 100 μg L -1 level were achieved. An average recovery of 97.7% and limit of detection of 1-2 μg L -1 were obtained in analyses of surface water. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Excess Molar Volumes and Viscosities of Binary Mixtures of p-Xylene with Cyclohexane, n-Heptane, n-Octane,Sulfolane, N-Methyl-2-pyrrolidone and Acetic Acid at 303.15 K and 323.15 K and Atmospheric Pressure%对二甲苯与环己烷、正庚烷、正辛烷、环丁砜和N-甲基-2-吡咯烷酮和乙酸二元混合物在303.15K和323.15K的 超额体积和黏度

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 周清

    2004-01-01

    Experimental data on density and viscosity at 303.15K and 323.15K are presented for the binary mixtures of p-xylene with cyclohexane, n-heptane, n-octane, sulfolane, N-methyl-2-pyrrolidone and acetic acid.From these data, the excess molar volume and deviations in viscosity have been calculated. The computed quantities have been fitted to the Redlich-Kister Equation to derive coefficients and estimate the standard error values. Results are discussed in terms of intermolecular interactions.

  18. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 )+q -1 +Xq -1 )/(V 1 q -1/3 ), where V 1 is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). (author)

  19. Few studies of the effect of diluents on extraction of cobalt with D2EHPA. D2EHPA ni yoru Co no chushutsu ni ataeru kishakuzai no eikyo ni kansuru jakkan no kento

    Energy Technology Data Exchange (ETDEWEB)

    Aranae, M.; Nakataka, Y.; Wakamatsu, T. (Kyoto Univ., Kyoto (Japan). Faculty of Engineering); Saito, I.; Sakamoto, H. (Environment Research Inst. Resources Technical Tsukuba (Japan))

    1991-12-27

    Study was made on extraction of cobalt from weak acid solution with di-(2-ethylhexyl) phosphoric acid (D2EHPA) using various polar diluents such as benzene, toluene, o-xylene, m-xylene, n-heptane, cyclohexane and n-hepatne-benzene mixtures. Extraction efficiency of cobalt has decreased in the order, n-heptane > cyclohexane > m-xylene > o-xylene > toluene > benzene and this order has been in good agreement with the decreasing order of solubility parameters of diluents,and has shown the possibility of application of regular solution theory. When n-heptane and cyclohexane as diluents, in low loading ratio(L),were used Co-D2EHPA polymer were formed compared to other diluents. On the other hand when mixture of n-heptane/benzene was used as diluent, the efficiency of extraction, salting-out effect and formation of Co-D2EHPA polymer has changed with the texture of mixture.This change may be due to the effect of L and it has been thought for the necessity of investigation of extraction of cobalt in low polar diluents. 13 refs., 5 figs., 2 tabs.

  20. Isomerización de m-xileno sobre MCM-48 impregnada con ácido tungstenofosfórico

    Directory of Open Access Journals (Sweden)

    Edder García

    2010-09-01

    Full Text Available The m-xylene isomerization was studied on mesoporous catalyst type MCM-48, which was impregnated with tungstophosphoric acid. The synthesis was carried out hydrothermally at 423 K, using cetyl trimethyl ammonium bromide (CTMABr as the structural directing agent. The catalysts were prepared with different percentage of tungstophosphoric acid (15, 20, 25, 30 y 40 wt. % in methanol under stirring. The solids were characterized by XRD, nitrogen adsorcion, TPD-NH3, SEM and FTIR. The tungstophosphoric acid was found highly dispersed inside the pores of the mesoporous material; however, the acid presence inside the pores reduced markedly the surface area, pore volume and to a less extent the diameter. The catalysts were active in the m-xylene trans-formation to p- and o-xylene and trimethylbencenes. The catalyst prepared with 30 wt. % of tungsto-phosphoric acid resulted the most active, due to its higher number of active acid sites accessibles to the reacting molecules and to their higher activity per site. The catalysts were selective to isomerization reaction and to p-xylene.

  1. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  2. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar [Deenbandhu Chhotu Ram University of Science and Technology, Murthal (India); Lee, Inkyu; Moon, Il [Yonsei University, Seoul (Korea, Republic of)

    2015-01-15

    Excess molar volumes (V{sub m}{sup E} ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V{sub m}{sup E} values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V{sub m}{sup E} data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V{sub m}{sup E} values for systems with s-shaped V{sub m}{sup E} versus x{sub 1} graph, the V{sub m}{sup E} values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures.

  3. Sorption study of organic contaminant on raw and modified clay materials

    Directory of Open Access Journals (Sweden)

    Dammak N.

    2013-09-01

    Full Text Available The adsorption of volatile organic compound VOC (o-xylene was studied by a static headspace coupled to gas chromatography in natural and intercalated clay. Vapor–solid adsorption isotherms of o-xylene were measured at 20 °C, 30 °C and 40 °C. Clay was modified with hexadecyl trimetyl ammonium bromide (HDTMA. Absolute values of the amounts of o- xylene adsorbed in intercalated clay were about eighteen times higher than natural clay. The adsorption isotherm were analysed with Langmuir, Freundlich, Langmuir–Freundlich and Toth models. Langmuir–Freundlich model describes well the equilibrium adsorption data. The evaluation of thermodynamic parameters presents an exothermic and spontaneous adsorption process.

  4. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography-barrier ionization discharge detection.

    Science.gov (United States)

    Pascale, Raffaella; Bianco, Giuliana; Calace, Stefania; Masi, Salvatore; Mancini, Ignazio M; Mazzone, Giuseppina; Caniani, Donatella

    2018-05-04

    Benzene, toluene, ethylbenzene, and xylenes, more commonly named BTEX, represent one of the most ubiquitous and hazardous groups of atmospheric pollutants. The goal of our research was the trace quantification of BTEX in water by using a new simple, low-cost, and accurate method, based on headspace (HS) extraction and gas chromatography (GC) coupled to barrier ionization discharge detector (BID). This water application dealt with simple matrices without protein, fat, or humic material that adsorb target analytes, thus the external standard calibration was suitable to quantify each compound. The validation steps included the study of linearity, detection and quantification limits, and accuracy. LODs and LOQs varied from 0.159 to 1.845 μg/L and from 0.202 to 2.452 μg/L, respectively. The recovery was between 0.74 ± 0.13 and 1.15 ± 0.09; relative standard deviations (% RDSs) were less than 12.81% (n = 5) and 14.84% (n = 10). Also, GC performance was evaluated in term of efficiency, peak tailing and resolution. Preliminary results from practical applications to analyses of real samples are presented. The results indicate that static HS coupled to GC-BID is a successful method for BTEX analysis in water samples at the μg/L levels, provided that hydrocarbons interference occur at similar concentration levels. GC-BID may become a routine reference method alongside the official analytical techniques for quality control purposes of contaminated waters. Moreover, the new method is amenable to automation by using commercial HS units. Copyright © 2018. Published by Elsevier B.V.

  5. Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2008-08-01

    Full Text Available Measurements of Volatile Organic Compounds (VOC are analyzed to characterize the sources impacting the Hong Kong area. The ratios of different VOC species, m,p-xylenes-to-ethylbenzene, C6H14-to-toluene and p-xylene-to-total xylenes are used for diagnostic analyses. Photochemical age analysis shows that the sources of reactive aromatics, the most important contributor to the photochemical reactivity, do not appear to be preferentially located in downtown Hong Kong. In addition, they do not appear to be dominated by mobile emissions based on the analyses of speciated VOC data from an earlier study, but related to industrial, waterfront, and fuel-storage activities. The ratios, p-xylene-to-total xylenes and dSO2/dNOy, suggest that the anomalously high pollutant concentrations in western Hong Kong in the early morning hours of two episode days appear to have come from transport of urban-type emissions. Comparison of observed ambient ratios of selected VOC and their ratios in the speciated VOC emission inventories for Hong Kong and adjacent Pearl River Delta (PRD Region gives mixed results. The observed ratio C6H14-to-toluene is consistent with the speciated version of the VOC emission inventory. The ratios of selected alkanes are not. This may be caused by the inaccuracies in the inventory and/or the speciation method.

  6. Site-specific variability in BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Kao, C.M.; Borden, R.C.

    1997-01-01

    Laboratory microcosm experiments were conducted to evaluate the feasibility of benzene, toluene, ethylbenzene, m-xylene, and o-xylene (BTEX) biodegradation under denitrifying conditions. Nine different sources of inocula, including contaminated and uncontaminated soil cores from four different sites and activated sludge, were used to establish microcosms. BTEX was not degraded under denitrifying conditions in microcosms inoculated with aquifer material from Rocky Point and Traverse City. However, rapid depletion of glucose under denitrifying conditions was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing aquifer material from Fort Bragg and Sleeping Bear Dunes and sewage sludge. Benzene was recalcitrant in all microcosms tested. The degradation of o-xylene ceased after toluene, ethylbenzene, and m-xylene were depleted in the Fort Bragg and sludge microcosms, but o-xylene continued to degrade in microcosms with contaminated Sleeping Bear Dunes soil. The most probable number (MPN) of denitrifiers in these nine different inocula were measured using a microtiter technique. There was no correlation between the MPN of denitrifiers and the TEX degradation rate under denitrifying conditions. Experimental results indicate that the degradation sequence and TEX degradation rate under denitrifying conditions may differ among sites. Results also indicate that denitrification alone may not be a suitable bioremediation technology for gasoline-contaminated aquifers because of the inability of denitrifiers to degrade benzene

  7. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study

    Directory of Open Access Journals (Sweden)

    Kheirbek Iyad

    2012-07-01

    Full Text Available Abstract Background Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. Methods To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes and formaldehyde to indicators of local sources, adjusting for temporal variation. Results Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively. Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Conclusions Traffic and

  8. Distinguishing Petroleum (Crude Oil and Fuel) From Smoke Exposure within Populations Based on the Relative Blood Levels of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Styrene and 2,5-Dimethylfuran by Pattern Recognition Using Artificial Neural Networks.

    Science.gov (United States)

    Chambers, D M; Reese, C M; Thornburg, L G; Sanchez, E; Rafson, J P; Blount, B C; Ruhl, J R E; De Jesús, V R

    2018-01-02

    Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their toxicity and gas-phase prevalence, where exposure is typically by inhalation. However, BTEXS levels in the general U.S. population are primarily from exposure to tobacco smoke, where smokers have blood levels on average up to eight times higher than nonsmokers. This work describes a method using partition theory and artificial neural network (ANN) pattern recognition to classify exposure source based on relative BTEXS and 2,5-dimethylfuran blood levels. A method using surrogate signatures to train the ANN was validated by comparing blood levels among cigarette smokers from the National Health and Nutrition Examination Survey (NHANES) with BTEXS and 2,5-dimethylfuran signatures derived from the smoke of machine-smoked cigarettes. Classification agreement for an ANN model trained with relative VOC levels was up to 99.8% for nonsmokers and 100.0% for smokers. As such, because there is limited blood level data on individuals exposed to crude oil/fuel, only surrogate signatures derived from crude oil and fuel were used for training the ANN. For the 2007-2008 NHANES data, the ANN model assigned 7 out of 1998 specimens (0.35%) and for the 2013-2014 NHANES data 12 out of 2906 specimens (0.41%) to the crude oil/fuel signature category.

  9. A Marine Hazardous Substances Data System. Volume 2.

    Science.gov (United States)

    1985-12-01

    HAZARDOUS CARGOS (CONT’D) *20-DEC-85 CHEMICAL NAIIE CHRIS CFR OTHER TLV-TWA SEG CODE ROUTE PPM NO. WAX : CANDELILLA D 684 WAX . CARNAUBA WCA D 685 WAX ...50 693 * WAX : PARAFFIN IJPF D 2 MG/M3 696 MXYLENE XLM D 100 693 O-XYLENE XLO D 100 694 P-XYLENE XLP D 100 695 ZINC DIALKYLDITHIOPHOSPHATE ZDP D 10

  10. Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates.

    Science.gov (United States)

    McKelvie, Jennifer R; Lindstrom, Jon E; Beller, Harry R; Richmond, Sharon A; Sherwood Lollar, Barbara

    2005-12-01

    In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.

  11. Selectivity in catalytic alkyne cyclotrimerization over chromium(VI): kinetic evaluation using the characteristics of radioactive carbon-11 decay for nondisruptive ultrasensitive detection of adsorbed species

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Wolf, A.P.

    1984-01-01

    The application of carbon-11 to kinetic measurements of molecular sorption is reported using positron annihilation surface detection (PASD). The technique is nondisruptive to dynamic processes and has the sensitivity to detect 10 -8 of a monolayer. In studies of alkyne cyclomerization on silica-alumina-supported Cr(VI), a high selectivity toward p-xylene formation was observed when acetylene-propyne mixtures were cotrimerized at monolayer total alkyne coverages. This selectivity was enhanced to 84% p-xylene, as the partial acetylene coverage was reduced to 1.0% of a monolayer. Competitive sorption studies utilized PASD to measure the surface concentration of [ 11 C]-acetylene coupled with macroscopic sorption measurements of propyne. Surface displacement of sorbed acetylene by propyne was observed with subsequent readsorption. The kinetics of this displacement were evaluated by using PASD in pulse-flow studies with various acetylene and propyne coverages and were modeled to a calculation of the isomeric xylene distribution. A near-identical fit was obtained between experimental and modeled results. This strongly suggested that the observed selectivity for p-xylene formation was due to sorbate interactions resulting in a specific molecular ordering of the alkyne mixture on the catalyst surface

  12. Optimizing BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.

    1991-01-01

    Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), which are hazardous compounds, regulated by the U.S. Environmental Protection Agency (EPA). Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Michigan, were amended with selected concentrations of nutrients and one or more hydrocarbons. Toluene, ethylbenzene, m-xylene, and p-xylene, were degraded to below 5 micrograms/L when present as sole source substrates; stoichiometric calculations indicated that nitrate removal was sufficient to account for 70 to 80% of the compounds being mineralized. o-Xylene was recalcitrant when present as a sole source substrate, but was slowly degraded in the presence of the other hydrocarbons. Benzene was not degraded within one year, regardless of whether it was available as a sole source substrate or in combination with toluene, phenol, or catechol. Pre-exposure to low levels of BTEX and nutrients had variable effects, as did the addition of different concentrations of ammonia and phosphate. Nitrate concentrations as high as 500 mg/L NO3-N were slightly inhibitory. These data indicate that nitrate-mediated biodegradation of BTEX at Traverse City can occur under a variety of environmental conditions with rates relatively independent of nutrient concentrations. However, the data reaffirm that benzene is recalcitrant under strictly anaerobic conditions in these samples

  13. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 ) + q -1 + Xq -1 )/(V l q -1/3 ), where V l is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). From this one-dimensional change in height, q was calculated by taking into account the volumetric expansion due to heating and melting. (author)

  14. Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions

    KAUST Repository

    Pavlopoulou, Eleni

    2014-09-09

    © 2014 American Chemical Society. In this work, we investigated the effects of solvent(s)-polymer(s) interactions on the morphology of all-polymer bulk-heterojunction (BHJ) active layers cast from cosolutions. We demonstrate that altering the interactions between the solvent and both the donor and acceptor polymers in the cosolution prior to film-casting induces different solid-state morphological characteristics that subsequently leads to differences in the device performance of organic photovoltaics (OPV). Poly(3-hexylthiophene), P3HT, was codissolved poly[[N,N\\'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5 ′-(2,2 ′-bithiophene)], P(NDI2OD-T2), or otherwise known as ActivInk N2200, in dichlorobenzene, chlorobenzene, and xylene. According to the qualitative interaction map we propose, all three solvents exhibit favorable interactions with P3HT. The extent of incompatibility these solvents exhibit with P(NDI2OD-T2), however, varies, with xylene as the worst solvent for P(NDI2OD-T2) among those examined. Polymer-polymer interactions in xylene are, thus, more favorable compared to P(NDI2OD-T2)-xylene interactions. Grazing-incidence wide-angle X-ray scattering measurements on the cast films suggest that this preferential affinity between the two polymers disrupts crystallization in the blends; P(NDI2OD-T2) crystallinity decreases and, concurrently, results in shorter P3HT coherence lengths. Significant mixing of the two polymers is also evidenced. OPVs comprising P3HT and P(NDI2OD-T2) active layers cast from xylene exhibit the best device characteristics compared to OPVs whose active layers are cast from di- or mono-chlorobenzene. We attribute the improved OPV performance for the xylene-cast active layer to the presence of a more intermixed network of nanocrystalline domains of the two polymers, which originates from the affinity of P3HT and P(NDI2OD-T2) in the parent cosolution.

  15. Comments for the Update to the ATSDR Toxicological Profile for JP-5 and JP-8 Occurring in FY14

    Science.gov (United States)

    2013-12-30

    Exposure Chamber. Made of stainless steel, about the size and shape of an attaché case, this IN-TOX product will hold up to 24 mice, each contained in...hydrocarbon markers (n- octane, n-decane, n-tetradecane, toluene, ethylbenzene , and m-xylene)” is incomplete and therefore incorrect. The model, in...aromatic hydrocarbon markers (n-octane, n-decane, n- tetradecane, toluene, ethylbenzene , and m-xylene), plus three chemical lumped compartments based

  16. Geochemical indicators of intrinsic bioremediation

    International Nuclear Information System (INIS)

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-01-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO 2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes

  17. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa.

    Science.gov (United States)

    Moolla, Raeesa; Curtis, Christopher J; Knight, Jasper

    2015-12-15

    Of increasing concern is pollution by volatile organic compounds, with particular reference to five aromatic hydrocarbons (benzene, toluene, ethyl benzene and two isomeric xylenes; BTEX). These pollutants are classified as hazardous air pollutants. Due to the potential health risks associated with these pollutants, BTEX concentrations were monitored at a bus diesel-refueling bay, in Johannesburg, South Africa, using gas chromatography, coupled with a photo-ionization detector. Results indicate that o-xylene (29-50%) and benzene (13-33%) were found to be the most abundant species of total BTEX at the site. Benzene was within South African occupational limits, but above international occupational exposure limits. On the other hand, occupational concentrations of toluene, ethyl-benzene and xylenes were within national and international occupational limits throughout the monitoring period, based on 8-hour workday weighted averages. Ethyl-benzene and p-xylene concentrations, during winter, correspond to activity at the site, and thus idling of buses during refueling may elevate results. Overall, occupational air quality at the refueling bay is a matter of health concern, especially with regards to benzene exposure, and future reduction strategies are crucial. Discrepancies between national and international limit values merit further investigation to determine whether South African guidelines for benzene are sufficiently precautionary. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A single simple procedure for dewaxing, hydration and heat-induced epitope retrieval (HIER) for immunohistochemistry in formalin fixed paraffin-embedded tissue

    DEFF Research Database (Denmark)

    Paulsen, I M S; Dimke, H; Frische, S

    2015-01-01

    Heat-induced epitope retrieval (HIER) is widely used for immunohistochemistry on formalin fixed paraffin-embedded tissue and includes temperatures well above the melting point of paraffin. We therefore tested whether traditional xylene-based removal of paraffin is required on sections from paraff...... of dewaxing in xylene. In conclusion, the HIER procedure described and tested can be used as a single procedure enabling dewaxing, hydration and epitope retrieval for immunohistochemistry in formalin fixed paraffin-embedded tissue....

  19. Toxicokinetic Study for Investigation of Sex Differences in Internal Dosimetry of Jet Propulsion Fuel 8 (JP-8) in the Laboratory Rat

    Science.gov (United States)

    2013-07-26

    brain and observed cochlea concentrations of n-octane, n-decane, n-tetradecane, ethylbenzene , m-xylene and toluene in rats exposed to JP-8 (high...occur in combination with noise expo- sures (Department of the Army, 1998). The hydrocarbons ethylbenzene , toluene, and p-xylene, known to be present in...to supply JP-8 to the Cannon nose-only exposure system. Rats were exposed to JP-8 on a 52-position Cannon nose-only exposure system (Lab Products

  20. Selective separation of uranium from nuclear waste solution by bis (2,4,4-trimethylpentyl phosphinic) acid in ionic liquid and molecular diluents: a comparative study

    International Nuclear Information System (INIS)

    Singh, Manpreet; Sengupta, Arijit; Murali, M.S.; Adya, V.C.; Kadam, R.M.

    2016-01-01

    Room temperature ionic liquid has been world-wide considered as the potential 'green' alternatives to the molecular diluents. A comparative study was carried out for studying selective separation of uranium from radioactive waste solution using Bis(2,4,4-trimethylpentyl phosphinic) acid in molecular diluent (xylene) and ionic liquid (C 8 mimNTf 2 ). For ionic liquid based system, the extraction kinetics was found to be slower compared to the molecular diluents. This was attributed to the higher viscosity of ionic liquid. In ionic liquid the extraction occurs with the predominance of 'ion exchange' mechanism through (UO 2 (NO 3 ). 2L) + species, while for xylene based system 'solvation' mechanism predominates at higher feed acidity. The extraction process in ionic liquid was found to be thermodynamically more favoured than in xylene. The nature of the extracted species was found to be different in ionic liquid and xylene as obtained from difference in luminescence emission profiles and lifetime of the extracted complex. Ionic liquid based system was found to be radiolytically more stable than the molecular diluents based solvent system. Na 2 CO 3 solution was found to back extract the uranyl ion almost quantitatively (99.9 %) from the loaded organic phase but overall stripping from ionic liquid phase is comparatively poorer than that of xylene phase. The processing of Simulated High Level Waste (SHLW) of Pressurized Heavy Water Reactor (PHWR) or Research Reactor (RR) origin revealed that bis(2,4,4-trimethylpentyl phosphinic) acid can effectively be used for the preferential extraction of U with better selectivity for ionic liquid phase. But the ion exchange mechanism is one of the disadvantages for its plant scale application. (author)

  1. Comparison of BTX Profiles and Their Mutagenicity Assessment at Two Sites of Agra, India

    Directory of Open Access Journals (Sweden)

    Vyoma Singla

    2012-01-01

    Full Text Available In the present study, the concentrations of three volatile organic compounds (VOCs, namely, acronym for benzene, toluene, and xylenes (BTX were assessed because of their role in the tropospheric chemistry. Two representative sites, a roadside and a petrol pump, were chosen for sample collection. VOCs were collected using SKC-activated charcoal tubes and SKC personal sampler and characterized by gas chromatograph using flame ionization detector. Among BTX, benzene had the highest concentration. At the roadside, mean concentration of benzene, toluene, o-,m-xylene, and p-xylene were 14.7 ± 2.4 μgm−3, 8.1 ± 1.2 μgm−3, 2.1 ± 0.8 μgm−3, and 5.1 ± 1.2 μgm−3, respectively. At the petrol pump, the mean concentrations of benzene, toluene, o-,m-xylene and p-xylene were 19.5 ± 3.7 μgm−3, 12.9 ± 1.1 μgm−3, 3.6 ± 0.5 μgm−3 and 11.1 ± 1.5 μgm−3, respectively, and were numerically higher by a fraction of 2. Monthly variation of BTX showed maximum concentration in winter. Inter-species ratios and inter-species correlation indicated traffic as the major source of BTX. Extracts of samples were positive in both Salmonella typhimurium tester strains TA98 and TA100 without metabolic activation suggesting the presence of direct mutagens in ambient air that can cause both frame-shift and base-pair mutation. The mutagenic response was greater for TA100 than TA98 suggesting greater activity for base-pair mutagenicity than frame-shift mutagenicity and was found to be statistically significant.

  2. Sampling of BTX in Hat Yai city using cost effective laboratory-built PCB passive sampler.

    Science.gov (United States)

    Subba, Jas Raj; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2016-08-23

    A laboratory-built printed circuit board (PCB) passive sampler used for the monitoring of xylene and styrene in copy print shops was re-validated for detecting benzene, toluene and xylene (BTX) and applied for the sampling of ambient air from Hat Yai city, Songkhla, Thailand, in the month of November 2014. For monitoring, the PCB passive samplers were exposed to target analytes in 16 locations covering high to low exposure areas. After sampling, the samplers were thermally desorbed and the analytes were trapped by multi-walled carbon nanotubes packed into a micro-preconcentrator coupled to a gas chromatograph (GC) equipped with a flame ionization detector. At the optimum GC operating conditions, the linear dynamic ranges for BTX were 0.06-5.6 µg for benzene, 0.07-2.2 µg for toluene and 0.23-2.5 µg for xylene with R(2) > 0.99 with the limits of detection being 6.6, 6.8 and 19 ng for benzene, toluene and xylene, respectively. The concentrations of BTX in the 16 sampling sites were in the range of N.D.-1.3 ± 1.6, 4.50 ± 0.76-49.6 ± 3.7 and 1.00 ± 0.21-39.6 ± 3.1 µg m(-3), respectively. When compared to past studies, there had been an increase in the benzene concentration.

  3. Reductions in commuter exposure to volatile organic compounds in Mexico City due to the environmental program ProAire2002-2010.

    Science.gov (United States)

    Shinohara, Naohide; Ángeles, Felipe; Basaldud, Roberto; Cardenas, Beatriz; Wakamatsu, Shinji

    2017-05-01

    We investigated commuter exposure to volatile organic compounds in the metropolitan area of Mexico City in 2011 in private car, microbus, bus, metro, metrobus, and trolley bus. A similar survey was conducted in 2002 before initiation of the ProAire2002-2010 program aimed at reducing air pollution. Formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene were sampled while traveling during the morning rush hour in May 2011. Compared with the 2002 survey, in-vehicle concentrations were substantially lower in 2011, except for formaldehyde in microbuses (35% higher than in 2002). The reductions were 17-42% (except microbuses), 25-44%, 41-61%, 43-61%, 71-79%, 80-91%, and 79-93% for formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene, respectively. These reductions are considered to be the outcome of some of the actions in the ProAire2002-2010 program. In some microbuses, use of liquid petroleum gas may have increased in-vehicle formaldehyde concentrations. The reduction in predicted excess cancer incidence of commuters because of ProAire2002-2010 was estimated to be 1.4 cases/yr. In addition, if every microbus commuter changed their transport mode to bus, metro, or metrobus in the future, the estimated excess cancer incidence of commuters could be further decreased from 6.4 to 0.88-2.2 cases/year.

  4. A single simple procedure for dewaxing, hydration and heat-induced epitope retrieval (HIER for immunohistochemistry in formalin fixed paraffin-embedded tissue

    Directory of Open Access Journals (Sweden)

    I.M.S. Paulsen

    2015-11-01

    Full Text Available Heat-induced epitope retrieval (HIER is widely used for immunohistochemistry on formalin fixed paraffin-embedded tissue and includes temperatures well above the melting point of paraffin. We therefore tested whether traditional xylene-based removal of paraffin is required on sections from paraffin-embedded tissue, when HIER is performed by vigorous boiling in 10 mM Tris/0.5 mM EGTA-buffer (pH=9. Immunohistochemical results using HIER with or without prior dewaxing in xylene were evaluated using 7 primary antibodies targeting proteins located in the cytosol, intracellular vesicles and plasma membrane. No effect of omitting prior dewaxing was observed on staining pattern. Semiquantitative analysis did not show HIER to influence the intensity of labelling consistently. Consequently, quantification of immune labelling intensity using fluorescent secondary antibodies was performed at 5 dilutions of primary antibody with and without prior dewaxing in xylene. No effect of omitting prior dewaxing on signal intensity was detectable indicating similar immunoreactivity in dewaxed and non-dewaxed sections. The intensity of staining the nucleus with the DNA-stain ToPro3 was similarly unaffected by omission of dewaxing in xylene. In conclusion, the HIER procedure described and tested can be used as a single procedure enabling dewaxing, hydration and epitope retrieval for immunohistochemistry in formalin fixed paraffin-embedded tissue.

  5. Tracer kinetic investigations on isomerization and synthesis of /sup 8/C-aromates. II. Isomerization of ethylbenzene by means of heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dermietzel, J; Roesseler, M; Jockisch, W; Wienhold, C [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung; Franke, H; Klempin, J; Barz, H J [VEB Petrolchemisches Kombinat Schwedt (German Democratic Republic)

    1978-01-01

    The mechanism of ethylbenzene isomerization on Pt/Al/sub 2/O/sub 3/ catalysts by means of /sup 14/C labelled compounds has been investigated, measuring the isotope distribution between ring and alkyl carbon atoms. The results suggest that ethylbenzene isomerizes via structure rearrangement involving ring carbon atoms. A similar mechanism takes place in xylene isomerization under increased hydrogen partial pressure, while under normal pressure 1,2-methyl group shifting is dominating. All three xylenes are formed from ethylbenzene by parallel reactions.

  6. Petroleum hydrocarbon biodegradation under mixed denitrifying/microaerophilic conditions

    International Nuclear Information System (INIS)

    Miller, D.E.; Hutchins, S.R.

    1995-01-01

    Data are presented for aqueous-flow, soil-column microcosms in which removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) is observed for two operating conditions: (1) nitrate, 25 to 26 mg(N)/L, as the single electron acceptor and (2) nitrate, 27 to 28 mg(N)/L combined with low levels of oxygen, 0.8 to 1.2 mg O 2 /L. Soils used in this study include aquifer material from Traverse City, Michigan; Park City, Kansas; and Eglin Air Force Base (AFB), Florida. BTEX compounds are introduced at concentrations ranging from 2.5 to 5 mg/L, with total BTEX loading from 20 to 22 mg/L Complete removal of toluene and partial removal of ethylbenzene, m-xylene, and o-xylene were observed for all soils during trials in which nitrate was the only electron acceptor. Combining low levels of oxygen with nitrate produced varying effects on BTEX removal, nitrate utilization, and nitrite production. Benzene proved recalcitrant throughout all operating trials

  7. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  8. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  9. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...... to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process...

  10. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Science.gov (United States)

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  12. Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers

    Directory of Open Access Journals (Sweden)

    James S. Wright

    2015-03-01

    Full Text Available A family of one-dimensional coordination polymers, [Ag4(O2C(CF22CF34(phenazine2(arenen]·m(arene, 1 (arene = toluene or xylene, have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF22CF34(phenazine2], 2a and/or 2b, with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b, not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF22CF34(phenazine2(toluene]·2(toluene, a phase containing toluene coordinated to Ag(I in an unusual μ:η1,η1 manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations.

  13. Crystallization behavior of polyethylene on silicon wafers in solution casting processes traced by time-resolved measurements of synchrotron grazing-incidence small-angle and wide-angle X-ray scattering

    International Nuclear Information System (INIS)

    Sasaki, S; Masunaga, H; Takata, M; Itou, K; Tashiro, K; Okuda, H; Takahara, A

    2009-01-01

    Crystallization behavior of polyethylene (PE) on silicon wafers in solution casting processes has been successfully traced by time-resolved grazing-incidence small-angle and wide-angle X-ray scattering (GISWAXS) measurements utilizing synchrotron radiation. A p-xylene solution of PE kept at ca. 343 K was dropped on a silicon wafer at ca. 298 K. While the p-xylene evaporated naturally from the dropped solution sample, PE chains crystallized to be a thin film. Raman spectral measurements were performed simultaneously with the GISWAXS measurements to evaluate quantitatively the p-xylene the dropped solution contained. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns indicated nucleation and crystal growth in the dropped solution and the following as-cast film. GIWAXS and Raman spectral data revealed that crystallization of PE was enhanced after complete evaporation of the p-xylene from the dropped solution. The [110] and [200] directions of the orthorhombic PE crystal became relatively parallel to the wafer surface with time, which implied that the flat-on lamellae with respect to the wafer surface were mainly formed in the as-cast film. On the other hand, grazing-incidence small-angle X-ray scattering (GISAXS) patterns implied formation of isolated lamellae in the dropped solution. The lamellae and amorphous might alternatively be stacked in the preferred direction perpendicular to the wafer surface. The synchrotron GISWAXS experimental method could be applied for kinetic study on hierarchical structure of polymer thin films.

  14. Plutonium separation and the measurement of its concentration in natural waters (1963); Separation du plutonium et mesure de sa concentration dans les eaux naturelles

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, J; Messainguiral, L; Meiraneisio, A M [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1963-07-01

    After concentration by chemisorption on a calcium fluoride suspension, the plutonium is purified and isolated by xylene extraction of the complex formed with T.T.A. The radioelement is measured by counting with a ZnS (Ag) scintillator after evaporation or electrolysis. (authors) [French] Apres concentration par chimisorption sur une suspension de fluorure de calcium, le plutonium est purifie et isole par extraction au xylene du complexe forme avec la T.T.A. La mesure du radioelement est effectuee par comptage au scintillateur S Zn (Ag) apres evaporation ou electrolyse. (auteurs)

  15. Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area.

    Science.gov (United States)

    Martins, Eduardo Monteiro; Arbilla, Graciela; Bauerfeldt, Glauco Favilla; de Paula, Murilo

    2007-05-01

    A comprehensive monitoring campaign to assess aldehydes and BTEX concentrations was performed during 12 months, in the Tijuca district (Rio de Janeiro), an area with commercial activities and a high flux of vehicles. The mean concentrations of formaldehyde and acetaldehyde were 151 and 30 ppb, respectively. The high formaldehyde/acetaldehyde ratio was attributed to extensive use of compressed natural gas (CNG). The number of CNG vehicles in the metropolitan Region of Rio de Janeiro increased from 23000 in January 2001 to 161000 in January 2005. Monitoring data show that, for the same period, methane and formaldehyde concentrations increased while NO(x) and CO levels diminished. Mean concentrations for benzene, toluene, ethylbenzene, m,p-xylene and o-xylene, were 1.1, 4.8, 3.6, 10.4 and 3.0 micro gm(-3), respectively. Benzene and toluene concentrations were lower than the values determined in 1996, for the same location. The levels of ethylbenzene and xylenes determined in this work are similar to values obtained in 1996. This fact may be explained as a consequence of changes in the gasoline composition.

  16. Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations

    KAUST Repository

    Zhang, Ke

    2013-11-07

    The framework hydrophobicity and flexibility of ZIF-8 are investigated by a detailed adsorption and diffusion study of a series of probe molecules including ethanol, 1-butanol, water, hexane isomers, xylene isomers, and 1,2,4-trimethylbenzene. The prospects for using ZIF-8 in biofuel recovery and hydrocarbon separations are discussed in terms of adsorption or kinetic selectivities. ZIF-8 shows extremely low water vapor uptakes and is especially suitable for vapor phase butanol-based biofuel recovery. The extraordinary framework flexibility of ZIF-8 is demonstrated by the adsorption of hydrocarbon molecules that are much larger than its nominal pore size, such as m-xylene, o-xylene and 1,2,4-trimethylbenzene. The calculation of corrected diffusion coefficients reveals an interesting spectrum of promising kinetic hydrocarbon separations by ZIF-8. These findings confirm that a molecular sieving effect tends to occur in the sorbate molecular size range of 4-6 Å rather than around the nominal ZIF-8 pore size of 3.4 Å, due to its surprising framework flexibility. © 2013 American Chemical Society.

  17. Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide

    International Nuclear Information System (INIS)

    Kim, Young Sang; In, Gyo; Choi, Jong Moon

    2003-01-01

    Equilibria and applications of a synergistic extraction were studied for the determination of a trace lithium by using thenoyltrifluoroacetone (TTA) and trioctylphosphine oxide (TOPO) as ligands. Several equations were derived for the extraction of lithium into m-xylene as a phase of Li-TTA·mTOPO adduct. Distribution coefficients and extraction constant were determined together with a stability constant of the adduct. The adduct was quantitatively extracted from the basic solution of higher than pH 9 by shaking for 30 minutes. m- Xylene was selected as an optimum solvent by comparing the extraction efficiency among several kinds of organic solvents. The stability constant (β 2 ) for Li-TTA/2TOPO was 150 times higher than Li-TTA/TOPO. The distribution coefficient of Li-TTA/2TOPO into m-xylene was 9.12 and the logarithmic extraction constant (log Kex) was 6.76. Trace lithium of sub-ppm level in seawater samples could be determined under modified conditions and a detection limit equivalent to 3 times standard deviation for background absorption was 0.42 ng/mL

  18. Selective laser pyrolysis of metallo-organics as a method of forming patterned thin film superconductors

    International Nuclear Information System (INIS)

    Mantese, J.V.; Catalan, A.B.; Sell, J.A.; Meyer, M.S.; Mance, A.M.

    1990-01-01

    This patent describes a method for forming patterned films of superconductive materials forming a solution from the neodecanoates of yttrium, barium and copper. The neodecanoates forming an oxide mixture exhibiting superconductive properties upon subsequent thermal decompositions wherein the oxide mixture is characterized by a ratio of yttrium:barium:copper of approximately 1:2:4, the solution comprising an organic solvent such as xylene; adding to the solution an appropriate dye, depositing a film of the solution having the dye onto a strontium titanate substrate; exposing selective regions of the film with an Argon laser emitting the wavelength of light, such that the exposed regions of the film become insoluble in the xylene; immersing the film into the xylene so that the soluble; unexposed regions of the film are removed from the substrate; heating the film to thermally decompose the neodecanoates into a film containing yttrium, barium and copper oxides; to promote recrystallization and grain growth of the metal oxides within the film and induce a change therein by which the film exhibits superconducting properties

  19. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures.

    Science.gov (United States)

    Liu, Faye F; Peng, Cheng; Escher, Beate I; Fantino, Emmanuelle; Giles, Cindy; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2013-10-15

    Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX(®) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50cell for 1h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kgdry weight, which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud

    2014-07-24

    This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.

  1. Extraction spectrophotometric determination of rare earth with trioctylethylammonium bromide and Xylenol Orange

    International Nuclear Information System (INIS)

    Shijo, Yoshio

    1976-01-01

    A spectrophotometric method of determination of the rare earth was studied by the solvent extraction of rare earth-Xylenol Orange chelate into xylene solution of trioctylethylammonium bromide(TOEA). The rare earth-XO-TOEA complexes are extracted into aromatic hydrocarbons such as benzene, toluene, and xylene, but not into polar solvents such as n-butanol ethylacetate, methylisobutylketone, and nitrobenzene. The optimum pH range for the extraction were 6.3 -- 6.7, 6.3 -- 6.5, 5.8 -- 6.9, 5.7 -- 6.9, and 5.5 -- 6.8 for lanthanum, praseodymium, cerium, gadolinium, and dysprosium, respectively. The absorption maximum of the complexes extracted into xylene were found at 605 nm for lanthanum, praseodymium, and cerium, 596 nm for gadolinium, and 590 nm for dysprosium. Beer's law held for about 0 -- 4.5 μg of rare earth per 5 ml of xylene. The molar absorptivity of the extracted species were 1.53x10 5 , 1.42x10 5 , 1.35x10 5 , 8.5x10 4 , 8.2x10 4 cm -1 mol -1 l for lanthanum, praseodymium, cerium, gadolinium, and dysprosium, respectively. The composition of the ternary complexes were estimated to be M:XO:TOEA=1:1:2 for gadolinium and dysprosium, whereas 1:2:n for lanthanum, praseodymium and cerium. Combination ratio n of TOEA to metal-XO chelates in the latters could not be estimated by the commonly available methods. Thorium, vanadium, uranium, bismuth, aluminum, zirconium, chromium, nitrate, perchlorate and iodide interfered when triethylenetetramine and 1,10-phenanthroline were added as masking agent. (auth.)

  2. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari

    2005-01-01

    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  3. Destruction of contaminated metallic sodium wastes by reaction on alcohol and hydrolysis

    International Nuclear Information System (INIS)

    Brault, Auguste; Bruneau, Christian; Chevalier, Gerard; Kerfanto, Michel.

    1977-02-01

    The reactions of metallic sodium with organic compounds have been reviewed in the light of the problem. An experimental investigation is then described. It shows that metallic sodium can be changed into an alcoholate, then into a soda aqueous solution with conditions allowing to master the reaction velocity. Sodium reacts on the chosen alcohol, monoethyl ether diethylene glycol in the presence of xylene. The alcoholate thus formed is hydrolysed on removal of xylene by distillation. The alcohol set free is separated from soda aqueous phase by addition of an organic solvent and decantation. The alcohol and the solvents are regenerated and recycled [fr

  4. The stable isotope fingerprinting technique for agricultural pesticide

    Science.gov (United States)

    Suto, N.; Kawashima, H.

    2014-12-01

    The compound specific isotope analysis (CSIA) is nowadays an important and powerful tool in geochemical, environmental, and forensics field. In particular, the stable isotope ratio of pesticide is applied to biological process and reaction in the soil and distribution channel as forensics science. The aim of this study is to measure the stable isotope ratios of pesticide using various analytical methodologies, GC/IRMS, EA/IRMS, and LC/IRMS under high accuracy and precision. Therefore, these methods seemed to be important knowledge as geological field. In particular case, we present the method to measure carbon isotope ratio of nine malathion emulsion pesticides using GC/IRMS with cryo-focusing system to identify the source. In December 2013, food poisoning occurred after eating frozen dumplings (i.e., pizza and chicken nuggets) in Japan. There was a very high concentration, maximum value 15,000ppm, of malathion (diethyl (dimethoxythiophosphorylthio) succinate) in products. This incident was caused by an employee of process, and threatened the food safety. We analyzed the δ13C of malathion ranged from -30.63‰ to -29.54‰ (S.D. 0.10‰), the differences less than 1.0‰. All malathion emulsion sold in Japan are imported from Cheminova India Lat., Denmark to Sumitomo Chemical Co. Ltd., Japan. After that, Japanese each manufacture buy from Sumitomo Chemical Co. Ltd. And blended malathion and organic solvent (ethylbenzene and xylene). Therefore, ethylbenzene and xylene may be important tool as source identification. We measured the δ13C of ethylbenzene and m-,p-xylene, too. As the results, the δ13C of ethylbenzene and m-,p-xylene ranged from -28.20‰ to -20.84‰ (S.D. 0.16‰), -28.69‰ to -25.15‰ (S.D. 0.13‰), respectively. The δ13C of ethylbenzene and m-,p-xylene can be identified manufacture, although the δ13C of malathion indicated same value. In addition, we measured five pesticides (acephate, acetamiprid, glufosinate, glyphosate, and oxamyl) using

  5. DOAS urban pollution measurements

    International Nuclear Information System (INIS)

    Stevens, R.K.; Vossler, T.L.

    1991-01-01

    This paper reports that during July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc., was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 and path 2, ozone (O 3 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), nitrous acid (HNO 2 ), formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH 3 ) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRM) instruments were located near the DOAS light receivers and measurements of O 3 , NO 2 , and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for O 3 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRM's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o-xylene

  6. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption

    Directory of Open Access Journals (Sweden)

    Silvana Canzano

    2014-07-01

    Full Text Available In this work, an experimental and modeling analysis of the adsorption of four aromatic compounds (i.e., toluene, naphthalene, o-xylene and ethylbenzene onto a commercial activated carbon is carried out. The aim is to assess the suitability of the adsorption process for the treatment of polluted groundwater, also when a multiple contamination is detected. Batch adsorption tests from simulated polluted groundwater are performed in single-compound systems and in two binary systems (i.e., toluene + naphthalene and o-xylene + ethylbenzene, at constant temperature (20 °C and pH (7. Experimental results in single-compound systems reveal that all of the analytes are significantly adsorbed on the tested activated carbon. In particular, toluene and naphthalene adsorption capacities are the highest and of similar value, while for o-xylene and ethylbenzene, the performances are lower. The adsorption of these compounds seems to be influenced by a combined effect of several parameters, such as hydrophobicity, molecule size, structure of the molecule, etc. Experimental results in binary systems show a different behavior of the two systems, which confirms their complexity and explains the interest in these complex adsorption systems. In particular, toluene and naphthalene are mutually competitive, while in the case of o-xylene + ethylbenzene, only the former undergoes competitive effects. The analysis of the entire experimental data set is integrated with a dedicated modeling analysis using the extended Langmuir model. For both single-compound and binary systems, this model provides acceptable results, in particular for low equilibrium concentrations, like those more commonly found in groundwater, and for the compounds involved in adsorptive competitive effects.

  7. Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics.

    Science.gov (United States)

    Wang, Huiliang; Hsieh, Bing; Jiménez-Osés, Gonzalo; Liu, Peng; Tassone, Christopher J; Diao, Ying; Lei, Ting; Houk, Kendall N; Bao, Zhenan

    2015-01-07

    Regioregular poly(3-alkylthiophene) (P3AT) polymers have been previously reported for the selective, high-yield dispersion of semiconducting single-walled carbon nanotubes (SWCNTs) in toluene. Here, five alternative solvents are investigated, namely, tetrahydrofuran, decalin, tetralin, m-xylene, and o-xylene, for the dispersion of SWCNTs by poly(3-dodecylthiophene) P3DDT. The dispersion yield could be increased to over 40% using decalin or o-xylene as the solvents while maintaining high selectivity towards semiconducting SWCNTs. Molecular dynamics (MD) simulations in explicit solvents are used to explain the improved sorting yield. In addition, a general mechanism is proposed to explain the selective dispersion of semiconducting SWCNTs by conjugated polymers. The possibility to perform selective sorting of semiconducting SWCNTs using various solvents provides a greater diversity of semiconducting SWCNT ink properties, such as boiling point, viscosity, and surface tension as well as toxicity. The efficacy of these new semiconducting SWCNT inks is demonstrated by using the high boiling point and high viscosity solvent tetralin for inkjet-printed transistors, where solvent properties are more compatible with the inkjet printing head and improved droplet formation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Combined removal of a BTEX, TCE, and cis-DCE mixture using Pseudomonas sp. immobilized on scrap tyres.

    Science.gov (United States)

    Lu, Qihong; de Toledo, Renata Alves; Xie, Fei; Li, Junhui; Shim, Hojae

    2015-09-01

    The simultaneous aerobic removal of a mixture of benzene, toluene, ethylbenzene, and o,m,p-xylene (BTEX); cis-dichloroethylene (cis-DCE); and trichloroethylene (TCE) from the artificially contaminated water using an indigenous bacterial isolate identified as Pseudomonas plecoglossicida immobilized on waste scrap tyres was investigated. Suspended and immobilized conditions were compared for the removal of these volatile organic compounds. For the immobilized system, toluene, benzene, and ethylbenzene were completely removed, while the highest removal efficiencies of 99.0 ± 0.1, 96.8 ± 0.3, 73.6 ± 2.5, and 61.6 ± 0.9% were obtained for o-xylene, m,p-xylene, TCE, and cis-DCE, respectively. The sorption kinetics of contaminants towards tyre surface was also evaluated, and the sorption capacity generally followed the order of toluene > benzene > m,p-xylene > o-xylene > ethylbenzene > TCE > cis-DCE. Scrap tyres showed a good capability for the simultaneous sorption and bioremoval of BTEX/cis-DCE/TCE mixture, implying a promising waste material for the removal of contaminant mixture from industrial wastewater or contaminated groundwater.

  9. Volatile organic compounds in a residential and commercial urban area with a diesel, compressed natural gas and oxygenated gasoline vehicular fleet.

    Science.gov (United States)

    Martins, Eduardo Monteiro; Arbilla, Graciela; Gatti, Luciana Vanni

    2010-02-01

    Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3-C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

  10. Preparation of domestic detector using solutions of the scintillation materials (Acridine) and (Eosin)

    International Nuclear Information System (INIS)

    Yousuf, R.M.; Najam, I.A.

    2009-01-01

    In this work, three types of scintillation materials. Acridine orange, Eosin blue and Eosin yellow, were used to act as liquid scintillation detectors. They can be used to detect ionizing radiation, especially that of high Linear Energy Transfer (Let). This work determines the optimum concentration for each of the investigated materials to be 0.2 g/1 dissolved in methanol, added to a solution of Anthracene in Xylene of the concentration of 1.4 g/1 and a solution of POPOP in Xylene of the concentration of 0.2 g/1. All samples were irradiated using radioactive sources 241 Am, 137 Cs and 60 Co. (authors).

  11. Short-term clearing of opaque otoliths from larval fish Transparentación de otolitos de larvas de peces

    Directory of Open Access Journals (Sweden)

    César Flores Coto

    2005-06-01

    Full Text Available A simple technique for otolith of larval fishes is described. After fixing the otolith with some resin and drying, lift one edge of the resin and add 1-2 drops of xylene. The otolith becomes transparent and allows counting the growth rings before the xylene evaporates.Se describe una técnica sencilla para transparentar otolitos de larvas de peces. Después de fijar los otolitos con alguna resina y dejar secar, se levanta la resina en algún punto y se agrega 1-2 gotas de Xilol. El otolito se transparenta y permite contar los anillos de crecimiento, antes de que el xilol se evapore.

  12. Light-weight plastination.

    Science.gov (United States)

    Steinke, Hanno; Rabi, Suganthy; Saito, Toshiyuki; Sawutti, Alimjan; Miyaki, Takayoshi; Itoh, Masahiro; Spanel-Borowski, Katharina

    2008-11-20

    Plastination is an excellent technique which helps to keep the anatomical specimens in a dry, odourless state. Since the invention of plastination technique by von Hagens, research has been done to improve the quality of plastinated specimens. In this paper, we have described a method of producing light-weight plastinated specimens using xylene along with silicone and in the final step, substitute xylene with air. The finished plastinated specimens were light-weight, dry, odourless and robust. This method requires less use of resin thus making the plastination technique more cost-effective. The light-weight specimens are easy to carry and can easily be used for teaching.

  13. Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Field Demonstration Report: IRP Site 4, POL Area, Springfield ANG Base, Springfield, Ohio

    National Research Council Canada - National Science Library

    Reed, Dennis

    2003-01-01

    ...) methodology to compare the approaches. Soil core composites were analyzed for trichloroethylene, gasoline-range organics, volatile petroleum hydrocarbons, benzene, toluene, ethylbenzene, and xylenes...

  14. 76 FR 60777 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Science.gov (United States)

    2011-09-30

    ... that contained the remains of laboratory and production samples, distillation tars, and waste solvents..., chlorobenzene, ethylbenzene, xylene, o-dichlorobenzene, tetrachloroethylene, and trichloroethylene. The Site...

  15. DERIVED THERMODYNAMIC PROPERTIES OF [o-XYLENE OR p ...

    African Journals Online (AJOL)

    Preferred Customer

    This paper is a continuation of our earlier work related to the study of thermodynamic properties of binary and ternary mixtures [1-6]. Reliable data on phase behavior and thermodynamic excess properties of multi component fluid mixtures are necessary for the proper design of synthesis and separation processes of the ...

  16. Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging.

    Science.gov (United States)

    Nallala, Jayakrupakar; Lloyd, Gavin Rhys; Stone, Nicholas

    2015-04-07

    In infrared spectral histopathology, paraffin embedded tissues are often de-paraffinized using chemical agents such as xylene and hexane. These chemicals are known to be toxic and the routine de-waxing procedure is time consuming. A comparative study was carried out to identify alternate de-paraffinization methods by using paraffin oil and electronic de-paraffinization (using a mathematical computer algorithm) and their effectiveness was compared to xylene and hexane. Sixteen adjacent tissue sections obtained from a single block of a normal colon tissue were de-paraffinized using xylene, hexane and paraffin oil (+ hexane wash) at five different time points each for comparison. One section was reserved unprocessed for electronic de-paraffinization based on a modified extended multiplicative signal correction (EMSC). IR imaging was carried out on these tissue sections. Coefficients based on the fit of a pure paraffin model to the IR images were then calculated to estimate the amount of paraffin remaining after processing. Results indicate that on average xylene removes more paraffin in comparison to hexane and paraffin oil although the differences were small. This makes paraffin oil, followed by a hexane wash, an interesting and less toxic alternative method of de-paraffinization. However, none of the chemical methods removed paraffin completely from the tissues at any given time point. Moreover, paraffin was removed more easily from the glandular regions than the connective tissue regions indicating a form of differential paraffin retention based on the histology. In such cases, the use of electronic de-paraffinization to neutralize such variances across different tissue regions might be considered. Moreover it is faster, reduces scatter artefacts by index matching and enables samples to be easily stored for further analysis if required.

  17. Time-activity relationships to VOC personal exposure factors

    Science.gov (United States)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  18. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.

    Science.gov (United States)

    Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E

    2008-09-01

    Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.

  19. Environmental Waste Management in a School Hospital and in a Laboratory of Human Anatomy of a University

    Directory of Open Access Journals (Sweden)

    Kira Lusa Manfredini

    2013-12-01

    Full Text Available The scientific and professional activities developed in a Hospital School and a Laboratory of Human Anatomy of a university can generate parallel, chemical residues from various degrees of angerousness, which may require physical treatment and / or suitable chemical, before being sent to final destination. The General Hospital (GH generates monthly 10 L of xylenes and 50 L of glutaraldehyde to provide ass instance to their patients. Already the Laboratory of Human Anatomy of University de Caxias do Sul (AL-UCS uses more than 10,000 liters for preserving corpses in tanks. The present study aims to analyze the chemical waste management of the GH and the AL-UCS and propose techniques for recovery and reuse of chemicals formaldehyde, glutaraldehyde and xylenes, minimizing the impacts generated by the use, often indispensable and sometimes questionable, of such waste. So far two sets of samples were collected (in March and April 2013 of xylene, glutaraldehyde and formaldehyde in the GH and also at the AL-UCS and it is intended to repeat the collections with monthly periodicity, in the next two semesters. Partial results show that, comparing the relationship of area and the medium areas of the chromatographic (in µV.s of patterns with compounds of interest, an increase in the percentage of formaldehyde relative to the samples in standard formalin (121.84% may be due to contamination with organic compounds with a retention time close to the compound of interest, the xylene was little degradation in the samples, indicating that this compound can be reused in the common procedures of healthcare institutions, with respect to glutaraldehyde significant degradation was observed for the compound in samples represents only 61.88% of the chromatographic peak area of the standard, therefore the reuse of these compounds may require the use of purification methods such as simple distillation and fractional distillation

  20. Atmospheric BTEX-concentrations in an area with intensive street traffic

    Science.gov (United States)

    Buczynska, Anna Jolanta; Krata, Agnieszka; Stranger, Marianne; Locateli Godoi, Ana Flavia; Kontozova-Deutsch, Velichka; Bencs, László; Naveau, Inge; Roekens, Edward; Van Grieken, René

    The major threat to clean air in developed and industrializing countries is now posed by traffic emissions. The effects of traffic road modifications on the air quality are, however, rarely reported in the literature. The aim of this study was to determine the influence of the modernization and renovation of a traffic artery in the region of Mortsel (Antwerp, Belgium) on the concentration of volatile organic compounds such as: benzene, toluene, ethylbenzene and m-, p-, o-xylenes (BTEX). The original goal of the reconstruction works was to reduce the traffic lanes of one of the busiest streets in Antwerp, in order to discourage the road traffic and in consequence also to improve the air quality in this region. The average concentrations of BTEX before these works in 2003 were: 1.6, 7.0, 0.9, 2.3, and 0.9 μg/m 3, for benzene, toluene, ethylbenzene, m + p xylenes, and o-xylene, respectively. However, after the completion of the works, in 2005, they were slightly higher: 2.5, 9.5, 1.6, 3.4, and 1.3 μg/m 3, respectively. The scatter plots of benzene against toluene, ethylbenzene and xylenes in 2003 and 2005 showed very good correlations. This fact indicated that all of the measured compounds originated from the same source, namely the road traffic. Moreover, the data obtained from an air-monitoring station at less than 6 km distance from the sampling site (operated by the Flemish Environment Agency, and located in Borgerhout, Antwerp), confirmed the lack of influence of background concentrations of BTEX. The obtained results led to the conclusion that the reduction of the number of traffic lanes had apparently increased the traffic jams and also increased the emission from cars. Therefore, these modernization works had even a negative impact on the local concentration of traffic-related pollutants as BTEX.

  1. Health assessment for Smith's Farm, Shepherdsville, Bullitt County, Kentucky, Region 4. CERCLIS No. KYD097267413. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-15

    The Smith's Farm site is on the National Priorities List. The environmental contamination on-site consists of ethylbenzene, bis-(2-ethylhexyl)phthalate, toluene, xylene, polychlorinated biphenyls, arsenic, chromium, lead, and nickel in soil; ethylbenzene, arsenic, mercury, nickel, cadmium, and zinc in surface water; ethylbenzene, toluene, bis-(2-ethylhexyl)phthalate, polychlorinated biphenyls, arsenic, chromium, lead, and nickel in sediment; and 1,1,1-trichlorethane, vinyl chloride, isophorone, benzene, trans-1,2-dichloroethylene, trichloroethylene, xylenes, arsenic, nickel, and lead in leachate. Based on the available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances.

  2. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  3. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2007-01-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO 3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

  4. A review and assessment of hydrodynamic cavitation as a technology for the future.

    Science.gov (United States)

    Gogate, Parag R; Pandit, Aniruddha B

    2005-01-01

    In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.

  5. A SIMPLE PARAFFIN EMBEDDED PROTOCOL FOR FISH EGG, EMBRYO, AND LARVAE

    Directory of Open Access Journals (Sweden)

    Gratiana Eka Wijayanti

    2017-06-01

    Full Text Available This paper describes a simple protocol of paraffin-embedded histological section for fish eggs, embryo and larvae of the hard-lipped barb and the giant gourami. The specimens were fixed in Bouin solution, washed in 70% ethanol, then were dehydrated in a series of ethanol solution of increasing concentration until absolute ethanol was reached. The specimens were cleared in graded xylene and were infiltrated with liquid paraffin then were embedded in pure paraffin. Upon sectioning, at 4–5 µm thick the specimens were attached to the gelatin-coated glass slide and let to dry at room temperature or 37°C overnight. The specimens were deparaffinized in xylene, rehydrated then were stained with hematoxylin and eosin. After being dehydrated in graded ethanol, the specimens were cleared in xylene and were mounted with an organic mounting agent. Any step in preparing histological section including samples collection, fixation, dehydration, infiltration and embedding might contribute to the quality of histological features. A proper knowledge of the tissues beeing processed, fixative solution and the histological techniques is essential to gain good results. Bouin fixative is preferable to fix fish larvae and produce a good histological feature. Decalcification is necessary to produce a good histological section on the specimens containing bone.

  6. Comparison of Urinary Biomarkers of Exposure in Humans Using Electronic Cigarettes, Combustible Cigarettes, and Smokeless Tobacco.

    Science.gov (United States)

    Lorkiewicz, Pawel; Riggs, Daniel W; Keith, Rachel J; Conklin, Daniel J; Xie, Zhengzhi; Sutaria, Saurin; Lynch, Blake; Srivastava, Sanjay; Bhatnagar, Aruni

    2018-06-02

    Cigarette smoking is associated with an increase in cardiovascular disease risk, attributable in part to reactive volatile organic chemicals (VOCs). However, little is known about the extent of VOC exposure due to the use of other tobacco products. We recruited 48 healthy, tobacco users in four groups: cigarette, smokeless tobacco, occasional users of first generation e-cigarette and e-cigarette menthol and 12 healthy nontobacco users. After abstaining for 48 h, tobacco users used an assigned product. Urine was collected at baseline followed by five collections over a 3-h period to measure urinary metabolites of VOCs, nicotine, and tobacco alkaloids. Urinary levels of nicotine were ≃2-fold lower in occasional e-cigarette and smokeless tobacco users than in the cigarette smokers; cotinine and 3-hydroxycotinine levels were similar in all groups. Compared with nontobacco users, e-cigarette users had higher levels of urinary metabolites of xylene, cyanide, styrene, ethylbenzene, and benzene at baseline and elevated urinary levels of metabolites of xylene, N,N-dimethylformamide, and acrylonitrile after e-cigarette use. Metabolites of acrolein, crotonaldehyde, and 1,3-butadiene were significantly higher in smokers than in users of other products or nontobacco users. VOC metabolite levels in smokeless tobacco group were comparable to those found in nonusers with the exception of xylene metabolite-2-methylhippuric acid (2MHA), which was almost three fold higher than in nontobacco users. Smoking results in exposure to a range of VOCs at concentrations higher than those observed with other products, and first generation e-cigarette use is associated with elevated levels of N,N-dimethylformamide and xylene metabolites. This study shows that occasional users of first generation e-cigarettes have lower levels of nicotine exposure than the users of combustible cigarettes. Compared with combustible cigarettes, e-cigarettes, and smokeless tobacco products deliver lower levels of

  7. Light Nonaqueous-Phase Liquid Weathering at Various Fuel Release Sites

    National Research Council Canada - National Science Library

    Henry, Bruce

    1999-01-01

    ...) contracted with Parsons ES to perform this fuels weathering study. Of particular interest for this study is the weathering or natural depletion of benzene, toluene, ethylbenzene, and xylenes (BTEX...

  8. Degradation of air polluted by organic compounds

    International Nuclear Information System (INIS)

    Santoyo O, E.L.; Lizama S, B.E.; Vazquez A, O.; Luna C, P.C.; Arredondo H, S.

    1999-01-01

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m 3 and for xylene between 218-870 mg/m 3 . In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO 2 and H 2 O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  9. Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation

    International Nuclear Information System (INIS)

    Martinez-de la Cruz, A.; Perez, U.M. Garcia

    2010-01-01

    Bismuth vanadate (BiVO 4 ) was synthesized by the co-precipitation method at 200 o C. The photocatalytic activity of the oxide was tested for the photodegradation of rhodamine B under visible light irradiation. The analysis of the total organic carbon showed that the mineralization of rhodamine B over a BiVO 4 photocatalyst (∼40% after 100 h of irradiation) is feasible. In the same way, a gas chromatography analysis coupled with mass spectroscopy revealed the existence of organic intermediates during the photodegradation process such as ethylbenzene, o-xylene, m-xylene, and phthalic anhydride. The modification of variables such as dispersion pH, amount of dissolved O 2 , and irradiation source was studied in order to know the details about the photodegradation mechanism.

  10. Background Atmospheric Levels of Aldehydes, BTEX and PM10 Pollutants in a Medium-Sized City of Southern Italy

    International Nuclear Information System (INIS)

    Iovino, P.; Salvestrini, S.; Capasso, S.

    2007-01-01

    Background atmospheric levels of aldehydes, BTEX and PM10 pollutants were measured in the suburb of Caserta (Italy), 75 thousands inhabitants, 41 0 04' N, on rainless weekdays and weekends during 2005. On weekdays the average daily concentrations (μg m -3 ) were 41.6 PM10, 8.6 benzene, 25.2 toluene, 6.3 ethylbenzene, 14.0 (m+p)-xylene, 11.7 o-xylene, 6.5 formaldehyde, 3.3 acetaldehyde. All the pollutant concentrations were strictly correlated (mean correlation coefficients = 0.90). At weekends the concentrations were lower by about 1.6 times. Both on weekdays and at weekends the PM10 and benzene levels exceeded the limits set by the EU Directive 30/1999 and 69/2000, respectively

  11. Exposição ocupacional a compostos orgânicos voláteis na indústria naval Occupational exposure to volatile organic compounds in the naval industry

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Barrozo da Costa

    2002-05-01

    Full Text Available The scope of this study involved the evaluation of the concentration of some volatile organic compounds in the internal environmental air of a naval shipyard in the State of Rio de Janeiro, during painting activities in enclosed, semi-enclosed and open areas. Xylene was the volatile compound found in greatest abundance (25.20 to 191.66 ppm in the locations researched. Benzene in the air, which is a carcinogenic substance, attained levels of 3.34 ppm in semi-enclosed environments and the highest levels of toluene, xylene and n-butanol were found in the enclosed space of the ship. Results obtained highlight the need to establish air quality control programs in these internal areas, in order to safeguard the health of the workers.

  12. Anti-inflammatory activity of Heliotropium strigosum in animal models.

    Science.gov (United States)

    Khan, Haroon; Khan, Murad Ali; Gul, Farah; Hussain, Sajjid; Ashraf, Nadeem

    2015-12-01

    The current project was designed to evaluate the anti-inflammatory activity of crude extract of Heliotropium strigosum and its subsequent solvent fractions in post carrageenan-induced edema and post xylene-induced ear edema at 50, 100, and 200 mg/kg intraperitoneally. The results revealed marked attenuation of edema induced by carrageenan injection in a dose-dependent manner. The ethyl acetate fraction was most dominant with 73.33% inhibition followed by hexane fraction (70.66%). When the extracts were challenged against xylene-induced ear edema, again ethyl acetate and hexane fractions were most impressive with 38.21 and 35.77% inhibition, respectively. It is concluded that various extracts of H. strigosum possessed strong anti-inflammatory activity in animal models. © The Author(s) 2012.

  13. A method for the quantitative determination of uranium-233 in an irradiated thorium rod; Une methode de dosage de l'uranium 233 contenu dans un barreau de thorium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bathellier, A; Sontag, R; Chesne, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A rapid method for the quantitative determination of uranium-233 in irradiated thorium is described. A 30 per cent solution of trilaurylamine in xylene is used to extract the uranium from an aqueous hydrochloric acid solution and separate it from the thorium. This may be followed by {alpha} counting or fluorimetry. The practical operating conditions of the separation are discussed in detail. (author) [French] Une methode rapide de dosage de l'uranium-233 contenu dans le thorium irradie est decrite. Elle utilise la trilauryfamine a 30 pour cent dans le xylene pour extraire l'uranium d'une dissolution aqueuse chlorhydrique et le separer du thorium. Le comptage {alpha} ou la fluorimetrie sont alors possibles. Les conditions operatoires de la separation sont discutees et precisees. (auteur)

  14. International Journal of Health Research

    African Journals Online (AJOL)

    HP

    disciplines (including medicine, pharmacy, nursing, biotechnology, cell and molecular biology, and related engineering fields). .... with xylene as the displacement fluid [5]. The bulk and ... balance (Mettler Analytical Balance, Philip. Harris Ltd.

  15. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  16. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators.

    Science.gov (United States)

    Rafiee, Ata; Delgado-Saborit, Juana Maria; Gordi, Elham; Quémerais, Bernadette; Kazemi Moghadam, Vahid; Lu, Wenjing; Hashemi, Fallah; Hoseini, Mohammad

    2018-08-01

    Urinary benzene, toluene, ethylbenzene, and xylenes (BTEX) can be used as a reliable biomarker of exposure to these pollutants. This study was aimed to investigate the urinary BTEX concentration in operators of healthcare waste (HCW) autoclaves. This cross-sectional study was conducted in selected hospitals in Tehran, Iran between April and June 2017. Twenty operators (as the case group) and twenty control subjects were enrolled in the study. Personal urine samples were collected at the beginning and end of the work shift. Urinary BTEX were measured by a headspace gas chromatography-mass spectrometry (GC/MS). A detailed questionnaire was used to gather information from subjects. Results showed that the median of urinary benzene, toluene, ethylbenzene, m-p xylene, and o-xylene levels in the exposed group were 3.26, 3.36, 0.84, 3.94 and 4.48 μg/L, respectively. With the exception of ethylbenzene, subjects in the exposed group had significantly higher urinary BTEX levels than control group (p autoclave used were also identified as predictors of urinary BTEX concentrations. The healthcare waste treatment autoclaves can be considered as a significant BTEX exposure source for operators working with these treatment facilities. The appropriate personal protection equipment and control measures capable in reducing BTEX exposure should be provided to HCW workers to reduce their exposures to BTEX. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  18. Turbulence effects on volatilization rates of liquids and solutes.

    Science.gov (United States)

    Lee, Jiunn-Fwu; Chao, Huan-Ping; Chiou, Cary T; Manes, Milton

    2004-08-15

    Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (K(L)) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neat liquids through a new algorithm. The associated liquid-film transfer coefficients (kL) can then be obtained from measured K(L) and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of K(L). The improved kG estimation enables accurate K(L) predictions for low-volatility (i.e., low-H) solutes where K(L) and kGH are essentially equal. In addition, the prediction of K(L) values for high-volatility (i.e., high-H) solutes, where K(L) approximately equal to kL, is also improved by using appropriate reference kL values.

  19. Intrinsic bioremediation of a BTEX and MTBE plume under mixed aerobic/denitrifying conditions

    International Nuclear Information System (INIS)

    Borden, R.C.; Daniel, R.A.

    1995-01-01

    A shallow Coastal Plain aquifer in rural Sampson Country, North Carolina, has been contaminated with petroleum hydrocarbon from a leaking underground storage tank containing gasoline.An extensive field characterization has been performed to define the horizontal and vertical distribution of soluble gasoline components and indicator parameters. A plume of dissolved methyl tert-butyl ether (MTBE) and the aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is present in the aquifer and has migrated over 600 ft from the source area. Background dissolved oxygen concentrations range from 7 to 8 mg/L, and nitrate concentrations range from 5 to 22 mg/L as N due to extensive fertilization of fields surrounding the spill. In the center of the BTEX plume, oxygen concentrations decline to less than 1 mg/L while nitrate concentrations remain high. The total mass flux of MTBE and all BTEX components decline with distance downgradient relative to a conservative tracer (chloride). At the source, the total BTEX concentration exceeds 75 mg/L while 130 ft downgradient, total BTEX concentrations are less than 4.9 mg/L, a 15-fold reduction. Toluene and ethylbenzene decline most rapidly followed by m-p-xylene, o-xylene and finally benzene. Biodegradation of TEX appears to be enhanced by the excess nitrate present in the aquifer while benzene biodegradation appears to be due to strictly aerobic processes

  20. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities.

    Science.gov (United States)

    Daghio, Matteo; Espinoza Tofalos, Anna; Leoni, Barbara; Cristiani, Pierangela; Papacchini, Maddalena; Jalilnejad, Elham; Bestetti, Giuseppina; Franzetti, Andrea

    2018-01-05

    BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m 2 with a maximum peak at 480mA/m 2 ) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days -1 , 0.34±0.09days -1 and 0.16±0.02days -1 , respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production.

    Science.gov (United States)

    Tsai, Jiun H; Huang, Yao S; Shieh, Zhu X; Chiang, Hung L

    2011-01-01

    The electronics industry is a major business in the Central Taiwan Science Park (CTSP). Particulate samples and 11 water-soluble ionic species in the particulate phase were measured by ionic chromatography (IC). Additionally, acid and base gases were sampled by denuder absorption and analyzed by IC. Volatile organic compounds (VOCs) were collected in stainless-steel canisters four times daily and analyzed via gas chromatography/mass spectrometry. Ozone formation potential (OFP) was measured using maximum increment reactivity. In addition, airborne pollutants during (1) construction and (2) mass production were measured. Particulate matter concentration did not increase significantly near the optoelectronic plant during construction, but it was higher than during mass production. SO(2), HNO(2) and NH(3) were the dominant gases in the denuder absorption system. Nitrate, sulfate, and ammonium ions predominated both in PM(2.5) and PM(10-2.5); but calcium ion concentration was significantly higher in PM(10-2.5) samples during construction. Toluene, propane, isopentane, and n-butane may have come from vehicle exhaust. Construction equipment emitted high concentrations of ethylbenzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene, and toluene. During mass production, methyl ethyl ketone), acetone and ethyl acetate were significantly higher than during construction, although there was continuous rain. The aromatic group constituted >50% of the VOC concentration totals and contributed >70% of OFP.

  2. Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland

    Directory of Open Access Journals (Sweden)

    Anna Mainka

    2016-12-01

    Full Text Available Indoor air quality (IAQ in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to compare the concentrations of the monoaromatic volatile benzene, toluene, ethylbenzene m,p-xylene and o-xylene (BTEX in urban nursery schools located in Gliwice, Poland. The nursery schools were chosen to include areas with different urbanization and traffic density characteristics in order to gather a more diverse picture of exposure risks in the various regions of the city. BTEX were sampled during winter and spring seasons in older and younger children classrooms. The samples were thermally desorbed (TD and then analyzed with use of gas chromatography (GC. In addition, outdoor measurements were carried out in the playground at each nursery school. BTEX quantification, indoor/outdoor concentration, and correlation coefficients were used to identify pollutant sources. Elevated levels of o-xylene and ethylbenzene were found in all monitored classrooms during the winter season. Outdoor concentrations were lower than indoors for each classroom. Indicators based on health risk assessment for chronic health effects associated with carcinogenic benzene or non-carcinogenic BTEX were proposed to rank sites according to their hazard level.

  3. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stalls located near busy roadways in Seoul, Korea

    International Nuclear Information System (INIS)

    Bae, Hyunjoo; Chung, Moonho; Yang, Wonho

    2004-01-01

    It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO 2 ) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m 3 , respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO 2 , indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources

  4. Process of transformation of radioactive waste of metal sodium into soda solution by reaction with an alcohol followed by hydrolysis

    International Nuclear Information System (INIS)

    Chevalier, Gerard; Mathurin, Rene.

    1981-09-01

    Reviews of the literature and of the laboratory tests are followed by a presentation of the results obtained during experiments carried out on a model with some ten grams of sodium contaminated by radioactive materials and on an industrial pre-pilot with several kilograms of non-contaminated sodium. Sodium is converted into alcoholate through the action of ethylcarbitol (CH 3 CH 2 OCH 2 CH 2 OCH 2 OH) on liquid sodium in suspension in xylene at 110 deg C. Once the reaction is complete, xylene is distillated and the alcoholate is in solution in an axcess of alcohol. Hydrolysis by water gives out the initial alcohol which is then extracted from the aqueous phase by toluene. All these operations are carried out in inert atmosphere (nitrogen). Sodium is thus converted into a sodium hydroxide aqueous solution with emission of hydrogen, the intermediate products (alcohol, xylene, toluene) being recyled. The process is reliable and recycling of organic products is favourable economically. The advantage of the method is to concentrate nearly all the radioactivity of the contaminated sodium in the aqueous phase, thus avoiding the dispersion of activity especially with the gaseous effluents. Finally, data are given allowing to consider the realization of a pilot with a weekly capacity of 100 kg of sodium, in semi-continuous operation [fr

  5. Turbulence effects on volatilization rates of liquids and solutes

    Science.gov (United States)

    Lee, J.-F.; Chao, H.-P.; Chiou, C.T.; Manes, M.

    2004-01-01

    Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (KL) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neatliquids through anew algorithm. The associated liquid-film transfer coefficients (KL) can then be obtained from measured KL and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of KL. The improved kG estimation enables accurate K L predictions for low-volatility (i.e., low-H) solutes where K L and kGH are essentially equal. In addition, the prediction of KL values for high-volatility (i.e., high-H) solutes, where KL ??? kL, is also improved by using appropriate reference kL values.

  6. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    WINTEC

    composites have recently found applications in packaging, automotive ... process using xylene as the solvent. Solvent ... Particle size distribution curve for clay, bentonite. Table 2. .... greater probability of debonding due to the poor interfa-.

  7. DOAS (differential optical absorption spectroscopy) urban pollution measurements

    Science.gov (United States)

    Stevens, Robert K.; Vossler, T. L.

    1991-05-01

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.

  8. Determination of (BTEX) of the gasoline's combustion in Ecuador

    International Nuclear Information System (INIS)

    Garcia, Nelson; Insuasti, Alicia

    1998-01-01

    The contents of benzene, toluene, ethyl benzene and xylenes (BTEX) were determined and quantified in the gasoline's combustion on an internal combustion engine. Gas chromatography with flame ionization detector were used for chemical determinations

  9. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  10. Degradation of air polluted by organic compounds; Degradacion de aire contaminado por compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo O, E L; Lizama S, B E [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, 56000 Toluca (Mexico); Vazquez A, O; Luna C, P C; Arredondo H, S [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m{sup 3} and for xylene between 218-870 mg/m{sup 3}. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO{sub 2} and H{sub 2}O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  11. Photocatalytic properties of BiVO{sub 4} prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de la Cruz, A., E-mail: azael70@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico); Perez, U.M. Garcia [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico)

    2010-02-15

    Bismuth vanadate (BiVO{sub 4}) was synthesized by the co-precipitation method at 200 {sup o}C. The photocatalytic activity of the oxide was tested for the photodegradation of rhodamine B under visible light irradiation. The analysis of the total organic carbon showed that the mineralization of rhodamine B over a BiVO{sub 4} photocatalyst ({approx}40% after 100 h of irradiation) is feasible. In the same way, a gas chromatography analysis coupled with mass spectroscopy revealed the existence of organic intermediates during the photodegradation process such as ethylbenzene, o-xylene, m-xylene, and phthalic anhydride. The modification of variables such as dispersion pH, amount of dissolved O{sub 2}, and irradiation source was studied in order to know the details about the photodegradation mechanism.

  12. Long-term phenol, cresols and BTEX monitoring in urban air.

    Science.gov (United States)

    Sturaro, Alberto; Rella, Rocco; Parvoli, Giorgio; Ferrara, Daniela

    2010-05-01

    This paper reports the results of a long-term monitoring of benzene, toluene, ethylbenzene, xylenes (BTEX), phenol and cresols in the air of Padua during a wide period of the year 2007 using two radial passive samplers (Radiello system) equipped with BTEX- and phenol-specific cartridges. Two sites were monitored, one in the industrial area and one close to the town centre. Relevant pollution episodes have been observed during both the winter and summer periods. Benzene, together with toluene, ethylbenzene and xylenes showed their maximum concentrations during the winter season, but the secondary pollutant phenol was higher than benzene for a large period of the year when the meteorological conditions blocked the pollutants in the lower layers of the atmosphere and solar radiation increased the benzene photo-oxidation process.

  13. Bioprocessing of concentrated mixed hazardous industrial waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Silver, G.; Attalla, A.; Prisc, M.

    1994-01-01

    The use of selected microorganisms for the degradation and/or the detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. This work describes the unique capabilities of an isolated strain of Pseudomonas for metabolizing methylated aromatic compounds. This strain of Pseudomonas putida Idaho is unique in that it can tolerate and grow under a layer of neat p-xylene. A bioprocess has been developed to degrade LLW and mixed wastes containing methylated aromatic compounds, i.e., pseudocumene, toluene and p-xylene. The process is now in the demonstration phase at a DOE facility and has been running for one year. Feed concentrations of 21200 ppm of the toxic organic substrate have been fed to the bioreactor. This report describes the results obtained thus far

  14. Distortion dependent intersystem crossing

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Sølling, Theis Ivan

    2017-01-01

    . The effect is observed to increase in the presence of methyl-groups on the pinnacle carbon-atoms, where largest extents of r and p orbital-mixing are observed. This is fully consistent with the time-resolved spectroscopy data: Toluene and p-xylene show evidence for ultrafast triplet formation competing......The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early...... times whereupon spin-forbidden intersystem crossing becomes (partly) allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped) S2 equilibrium geometry...

  15. Handbook for Evaluating Ecological Effects of Pollution at DARCOM installations. Volume 2, Essential Background Data. (Installation Environmental Impact Assessment)

    Science.gov (United States)

    1979-12-01

    Nitrates Sulfur dioxide Xylene Nitrites Oxides of nitrogen Mercaptans "Red Water" Carbon monoxide Chlorine Acids: Ketones Fluorine Hydrochloric Esters...Trichloroethylene Varnishes Methylchloroform Undercoatings Mineral spirits Liquid styrene Naphtha Adhesives Halgenated hydrocarbons Nonmethane hydrocarbons

  16. Occurrence and Distribution of Pharmaceutical Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Holm, John V.; Rügge, Kirsten; Bjerg, Poul Løgstrup

    1995-01-01

    Usually landfill leachates contain specific organic compounds as BTEXs (benzene, toluene, ethylbenzene, and xylenes), chlorinated aliphatic hydrocarbons and chlorobenzenes originating from household chemicals and waste from small businesses (I). However, where industrial waste has been landfilled...

  17. Study on the isolation of active constituents in Lonicera japonica and ...

    African Journals Online (AJOL)

    Lonicera japonica has antibacterial and gall bladder-protective effects. Objective: To study the .... Dexamethasone acetate cream (999 Pi Yan. Ping), xylene, dry yeast ... 3 ml of yeast solution. (concentration of 20%) at dorsal skin, after inducing.

  18. South African Journal of Chemistry - Vol 57 (2004)

    African Journals Online (AJOL)

    Study on Colour Reaction of Vanadium(V) with ... Quantification of Sugars in Soft Drinks and Fruit Juices by Density, Refractometry, Infrared Spectroscopy ... Kinetic Aspects of the Direct Electrochemical Oxidation of p-Xylene in Methanol using ...

  19. A demonstration of biofiltration for VOC removal in petrochemical industries.

    Science.gov (United States)

    Zhao, Lan; Huang, Shaobin; Wei, Zongmin

    2014-05-01

    A biotrickling filter demo has been set up in a petrochemical factory in Sinopec Group for about 10 months with a maximum inlet gas flow rate of 3000 m3 h(-1). The purpose of this project is to assess the ability of the biotrickling filter to remove hardly biodegradable VOCs such as benzene, toluene and xylene which are recalcitrant and poorly water soluble and commonly found in petrochemical factories. Light-weight hollow ceramic balls (Φ 5-8 cm) were used as the packing media treated with large amounts of circulating water (2.4 m3 m(-2) h(-1)) added with bacterial species. The controlled empty bed retention time (EBRT) of 240 s is a key parameter for reaching a removal efficiency of 95% for benzene, toluene, xylene, and 90% for total hydrocarbons. The demo has been successfully adopted and practically applied in waste air treatments in many petrochemical industries for about two years. The net inlet concentrations of benzene, toluene and xylene were varied from 0.5 to 3 g m(-3). The biofiltration process is highly efficient for the removal of hydrophobic and recalcitrant VOCs with various concentrations from the petrochemical factories. The SEM analysis of the bacterial community in the BTF during VOC removal showed that Pseudomonas putida and Klebsiella sp. phylum were dominant and shutdown periods could play a role in forming the community structural differences and leading to the changes of removal efficiencies.

  20. Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells.

    Science.gov (United States)

    Torretta, Vincenzo; Collivignarelli, Maria Cristina; Raboni, Massimo; Viotti, Paolo

    2015-01-01

    The paper presents the results of a two-stage pilot plant for the removal of benzene, toluene, ethylbenzene and xylene (BTEX) from a waste air stream of a refinery wastewater treatment plant (WWTP). The pilot plant consisted of a water scrubber followed by a biotrickling filter (BTF). The exhausted air was drawn from the main works of the WWTP in order to prevent the free migration to the atmosphere of these volatile hazardous contaminants. Concentrations were detected at average values of 12.4 mg Nm(-3) for benzene, 11.1 mg Nm(-3) for toluene, 2.7 mg Nm(-3) for ethylbenzene and 9.5 mg Nm(-3) for xylene, with considerable fluctuation mainly for benzene and toluene (peak concentrations of 56.8 and 55.0 mg Nm(-3), respectively). The two treatment stages proved to play an effective complementary task: the water scrubber demonstrated the ability to remove the concentration peaks, whereas the BTF was effective as a polishing stage. The overall average removal efficiency achieved was 94.8% while the scrubber and BTF elimination capacity were 37.8 and 15.6 g BTEX d(-1) m(-3), respectively. This result has led to outlet average concentrations of 1.02, 0.25, 0.32 and 0.26 mg Nm(-3) for benzene, toluene, ethylbenzene and xylene, respectively. The paper also compares these final concentrations with toxic and odour threshold concentrations.

  1. Performance of a reactor containing denitrifying immobilized biomass in removing ethanol and aromatic hydrocarbons (BTEX) in a short operating period

    International Nuclear Information System (INIS)

    Gusmao, Valquiria Ribeiro; Chinalia, Fabio Alexandre; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio

    2007-01-01

    A horizontal-flow anaerobic immobilized biomass reactor (HAIB) containing denitrifying biomass was evaluated with respect to its ability to remove, separately and in a short operating period (30 days), organic matter, nitrate, and the hydrocarbons benzene (41.4 mg L -1 ), toluene (27.8 mg L -1 ), ethylbenzene (31.1 mg L -1 ), o-xylene (28.5 mg L -1 ), m-xylene (28.4 mg L -1 ) and p-xylene (32.1 mg L -1 ). The purified culture, which was grown in the presence of the specific hydrocarbon, was used as the source of cells to be immobilized in the polyurethane foam. After 30 days of operation, the foam was removed and a new immobilized biomass was grown in the presence of another hydrocarbon. The average hydrocarbon removal efficiency attained was 97%. The organic matter, especially ethanol, was removed with an average efficiency of 83% at a mean influent concentration of 1185.0 mg L -1 . A concomitant removal of 97% of nitrate was observed for a mean influent concentration of 423.4 mg L -1 . The independent removal of each hydrocarbon demonstrated that these contaminants can be biodegraded separately, without the need for a compound to be the primary substrate for the degradation of another. This study proposes the application of the system for treatment of areas contaminated with these compounds, with substitution and formation of a biofilm in a 30-day period

  2. X-Ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, C.R.; Watts, B.; Thomsen, L.; Ade, H.; Greenham, N.C.; Dastoor, P.C.; /Cambridge U. /North Carolina State U. /Newcastle U., Australia

    2007-07-10

    The composition of blend films of poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) used in prototype polymer solar cells has been quantitatively mapped using scanning transmission X-ray microscopy (STXM). The resolution of the STXM technique is 50 nm or better, allowing the first nanoscale lateral chemical mapping of this blend system. For 1:1 blend films spin-coated from xylene we find that the F8BT-rich domain is over 90% pure (by weight) and the PFB-rich domain contains 70% PFB. For 5:1 and 1:5 blend films processed from xylene, the minority phases are found to be intermixed, containing as much as 50% by weight of the majority polymer. Films prepared from chloroform with a 1:1 weight ratio have also been imaged but show no features on the length scale of 50 nm or greater. Additionally, the performance of photovoltaic devices fabricated using films prepared in an identical fashion to those prepared for STXM analysis has been evaluated and compared to the performance of chloroform blends with varied weight ratio. By studying the influence of blend composition on device performance in chloroform blends with a uniform morphology, we relate the performance of xylene-processed films to the local blend composition measured by STXM and the degree of nanoscale phase separation.

  3. Silicone sensing phase for detection of aromatic hydrocarbons in water employing near-infrared spectroscopy.

    Science.gov (United States)

    Albuquerque, Jackson S; Pimentel, M Fernanda; Silva, Valdinete L; Raimundo, Ivo M; Rohwedder, Jarbas J R; Pasquini, Celio

    2005-01-01

    The use of silicone for detection of aromatic hydrocarbons in water using near-infrared spectroscopy is proposed. A sensing phase of poly(dimethylsiloxane) (PDMS) was prepared, and a rod of this material was adapted to a transflectance probe for measurements from 850 to 1800 nm. Deionized water samples contaminated separately with known amounts of benzene, toluene, ethylbenzene, and m-xylene were used for evaluation of the PDMS sensing phase, and measurements were made in a closed reactor with constant stirring. Equilibrium states were obtained after 90, 180, 360, and 405 min for benzene, toluene, ethylbenzene, and m-xylene, respectively. The PDMS sensing phase showed a reversible response, presenting linear response ranges up to 360, 290, 100, and 80 mg L(-1), with detection limits of 8.0, 7.0, 2.6, and 3.0 mg L(-1) for benzene, toluene, ethylbenzene, and m-xylene, respectively. Reference spectra obtained with different rods showed a relative standard deviation of 0.5%, indicating repeatability in the sensing phase preparation. A relative standard deviation of 6.7% was obtained for measurements performed with six different rods, using a 52 mg L(-1) toluene aqueous solution. The sensing phase was evaluated for identification of sources of contamination of water in simulated studies, employing Brazilian gasoline type A (without ethanol), gasoline type C (with 25% of anhydrous ethanol), and diesel fuel. Principal component analysis was able to classify the water in distinct groups, contaminated by gasoline A, gasoline C, or diesel fuel.

  4. Cumene cracking on modified mesoporous material type MCM-41

    African Journals Online (AJOL)

    AlMCM-41 materials, the method of its exchange mode and its grains form were investigated for the mesoporous catalytic activity in the cumene (i.e. isopropylbenzene) cracking reaction. Benzene, propylene and xylene derivatives are the main ...

  5. short communication infrared and ultraviolet spectrophotometric

    African Journals Online (AJOL)

    a

    petroleum distillate into acid, base, neutral, saturate and aromatic fractions while Hirsh et al. [9] ... 100% n-hexane 5% Benzene + 15% benzene + benzene, ether and .... Model compounds: toluene 254 nm, o-xylene 263 nm, aniline 230 nm, ...

  6. Bromination of Aromatic Compounds by Residual Bromide in Sodium Chloride Matrix Modifier Salt During Heated Headspace GC/MS Analysis

    Science.gov (United States)

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation rea...

  7. A Field Method For Determination of Groundwater and Groundwater-sediment Associated Potentials for Degradation of Xenobiotic Organic Compounds

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund; Holm, Peter Engelund

    1992-01-01

    Determination of the degradation potentials for a mixture of eight organic trace contaminants (benzene, toluene, o-xylene, naphthalene, tetrachloromethane, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene) has been made by specially developed in situ microcosms under aerobic and anaerobi...

  8. Bioprocessing scenarios for mixed hazardous waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.

    1994-01-01

    The potential of biological processing of mixed hazardous waste has not been determined. However, the use of selected microorganisms for the degradation and/or detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. The isolation of a unique strain of Pseudomonas Putida Idaho seems well adapted to withstand the demands of the input stream comprised of liquid scintillation waste. This paper describes the results from the continuous processing of a mixture comprised of p-xylene and surfactant as well as commercial liquid scintillation formulations. The two formulations tested contained xylene and pseudocumene as the solvent base. The process is now at the demonstration phase at one of DOE's facilities which has a substantial amount of stored waste of this type. The system at the DOE facility is comprised of two CSTR units in series

  9. Radiochemical studies in chemical separation and spectrographic determination of rare earths in thorium oxide matrix (Preprint No. RA.06)

    International Nuclear Information System (INIS)

    Adya, V.C.; Dhawale, B.A.; Rajeshwari, B.; Bangia, T.R.; Sastry, M.D.

    1989-01-01

    A chemical separation procedure was standardised for the separation of traces of rare earths from ThO 2 matrix using HDEHP (Di 2-ethyl hexyl phosphoric acid). The studies were carried out using both nitric acid and hydrochloric acid medium in different concentrations. The extraction studies were also carried out using radioactive isotopes of rare earths viz. 141 Ce, 152-154 Eu, 153 Gd, 170 Tm etc. The extraction was effective in both media. In 0.1 M HDEHP/xylene and 3 M HNO 3 , Ce was partially extracted into organic phase. So HCl/xylene medium was chosen for extraction purposes. The recovery was confirmed by both gamma counting and emission spectropgraphic method. It was found to be quantitative within experimental error. The separation procedure development here was used for determination of rare earths in thorium oxide matrix by emission spectrographic method. (author)

  10. Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.

    Science.gov (United States)

    Rosi, Luca; Bartoli, Mattia; Frediani, Marco

    2018-03-01

    Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis of Poly (Butyl Methacrylate/Butyl Acrylate) Highly Absorptive Resin Using Glow Discharge Electrolysis

    International Nuclear Information System (INIS)

    Li Yan; Yao Mengqi; Liao Ruirui; Yang Wu; Gao Jinzhang; Ren Jie

    2014-01-01

    A highly absorptive resin poly (butyl methacrylate (BMA)-co-butyl acrylate (BA)) was prepared by emulsion polymerization, which was initiated by glow discharge electrolysis plasma (GDEP). The effects of discharge voltage, discharge time, monomer ratio and the amounts of cross-linking agent were examined and discussed in detail. The chemical structure of the obtained resin was characterized by means of attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The optimal conditions were obtained as: discharge voltage was 600 V, discharge time was 8 min, the ratios of BMA:BA being 2:1 for chloroform and 3:1 for xylene, with 2% N, N'-methylenebis. Under optimal conditions, the oil absorbency was 70 g/g for chloroform and 46 g/g for xylene. Moreover, the absorptive dynamical behavior of the resulting resin was also investigated

  12. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  13. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in

  14. SPATIAL AND TEMPORAL VARIABILITY IN ACROLEIN AND SELECT VOLATILE ORGANIC COMPOUNDS IN DETROIT, MICHIGAN

    Science.gov (United States)

    The variability in outdoor concentrations of acrolein, benzene, toluene, ethylbenzene and xylenes (BTEX), and 1,3-butadiene was examined for data measured during summer 2004 of the Detroit Exposure and Aerosol Research Study (DEARS). Results for acrolein indicated no significant...

  15. NITRO MUSK BOUND TO CARP HEMOGLOBIN: DETERMINATION BY GC WITH TWO MS DETECTION MODES: EIMS VERSUS ELECTRON CAPTURE NEGEATIVE ION MS

    Science.gov (United States)

    Nitroaromatic compounds including synthetic nitro musks are important raw materials and intermediates in the synthesis of explosives, dyes, and pesticides, pharmaceutical and personal care-products (PPCPs). The nitro musks such as musk xylene (MX) and musk ketone (MK) are extensi...

  16. IN VITRO CYTOTOXICITY OF BTEX METABOLITES IN HELA CELL LINES

    Science.gov (United States)

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied exte...

  17. Evaluation of a portable gas chromatograph with photoionization detector under variations of VOC concentration, temperature, and relative humidity.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Eun Gyung; LeBouf, Ryan F; Kashon, Michael L; Chisholm, William; Harper, Martin

    2018-04-01

    The objective of this present study was to evaluate the performance of a portable gas chromatograph-photoionization detector (GC-PID), under various test conditions to determine if it could be used in occupational settings. A mixture of 7 volatile organic compounds (VOCs)-acetone, ethylbenzene, methyl isobutyl ketone, toluene, m-xylene, p-xylene, and o-xylene-was selected because its components are commonly present in paint manufacturing industries. A full-factorial combination of 4 concentration levels (exposure scenarios) of VOC mixtures, 3 different temperatures (25°C, 30°C, and 35°C), and 3 relative humidities (RHs; 25%, 50%, and 75%) was conducted in a full-size controlled environmental chamber. Three repetitions were conducted for each test condition allowing for estimation of accuracy. Time-weighted average exposure data were collected using solid sorbent tubes (Anasorb 747, SKC Inc.) as the reference sampling medium. Calibration curves of Frog-4000 using the dry gases showed R 2 > 0.99 for all analytes except for toluene (R 2 = 0.97). Frog-4000 estimates within a test condition showed good consistency for the performance of repeated measurement. However, there was ∼41-64% reduction in the analysis of polar acetone with 75% RH relative to collection at 25% RH. Although Frog-4000 results correlated well with solid sorbent tubes (r = 0.808-0.993, except for toluene) most of the combinations regardless of analyte did not meet the <25% accuracy criterion recommended by NIOSH. The effect of chromatographic co-elution can be seen with m, p-xylene when the results are compared to the sorbent tube sampling technique with GC-flame ionization detector. The results indicated an effect of humidity on the quantification of the polar compounds that might be attributed to the pre-concentrator placed in the selected GC-PID. Further investigation may resolve the humidity effect on sorbent trap with micro GC pre-concentrator when water vapor is present. Although this

  18. A highly sensitive BTX sensor based on electrochemically derived wall connected TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, K. [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Lu, Chia-Wei [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Ho, Mon-Shu [Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan (China); Bhattacharyya, P., E-mail: pb_etc_besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-11-01

    Highlights: • Electrochemically synthesized TiO{sub 2} nanotube array for sensing benzene, toluene, and xylene (BTX) with enhanced sensitivity at relatively low temperature is reported. • Structural characterizations (XRD, FESEM, and AFM), have revealed that variation of the H{sub 2}O concentrations in mixed electrolyte comprising ethylene glycol and ammonium fluoride (NH{sub 4}F + EG) resulted in the formation of four distinct TiO{sub 2} nanoforms. • Photo luminescence spectra (PL spectra) analysis has revealed distinctly different stoichiometry of the four anodized sample. • Among the various nanoforms, the wall connected TiO{sub 2} nanotube array has been found to be the most efficient one for BTX sensing in the concentration range 20–400 ppm at relatively lower operating temperature (50–200 °C). • Among the three target species, benzene was found to offer the highest response magnitude followed by toluene and xylene at all the concentrations. - Abstract: This paper concerns development of electrochemically synthesized titanium dioxide (TiO{sub 2}) nanotube array for sensing the carcinogenic aromatic hydrocarbons like benzene, toluene, and xylene (BTX) with enhanced sensitivity achievable at relatively low temperature. Structural characterizations (XRD, FESEM), revealed that variation of the H{sub 2}O concentrations (1%, 2%, 5%, 8%, 10%, and 100% by volume) in mixed electrolyte, comprising of ethylene glycol (EG) and ammonium fluoride (NH{sub 4}F), resulted in the formation of six distinctly different TiO{sub 2} nanoforms. Photo luminescence spectra (PL spectra) analysis authenticated different stoichiometry of these six samples. Besides, the X-ray photoelectron spectroscopy (XPS) was carried out to investigate the defect states. The XPS study enables to correlate the oxygen vacancy concentration with the anodization parameters. Among the various nanoforms, the wall connected TiO{sub 2} nanotube array was found to be the most efficient one for BTX

  19. Prompt HO2 formation following the reaction of OH with aromatic compounds under atmospheric conditions.

    Science.gov (United States)

    Nehr, Sascha; Bohn, Birger; Wahner, Andreas

    2012-06-21

    The secondary formation of HO(2) radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO(x) (=OH + HO(2)) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO(2) yields (HO(2) formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of monocyclic aromatic hydrocarbons. The measured HO(2) formation yields are as follows: toluene, 0.42 ± 0.11; ethylbenzene, 0.53 ± 0.10; o-xylene, 0.41 ± 0.08; m-xylene, 0.27 ± 0.06; p-xylene, 0.40 ± 0.09; 1,2,3-trimethylbenzene, 0.31 ± 0.06; 1,2,4-trimethylbenzene, 0.37 ± 0.09; 1,3,5-trimethylbenzene, 0.29 ± 0.08; hexamethylbenzene, 0.32 ± 0.08; phenol, 0.89 ± 0.29; o-cresol, 0.87 ± 0.29; 2,5-dimethylphenol, 0.72 ± 0.12; 2,4,6-trimethylphenol, 0.45 ± 0.13. For the alkylbenzenes HO(2) is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O(2). In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO(2) yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (≤0.3) for all investigated alkylbenzenes except m-xylene. For the hydroxybenzenes the currently proposed HO(2) coproducts are dihydroxybenzenes. For phenol and o-cresol the determined HO(2) yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO(2) forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available.

  20. Determination of Technetium-99 in Environmental Samples by Solvent Extraction at Controlled Valence

    DEFF Research Database (Denmark)

    Chen, Q.J.; Aarkrog, A.; Dahlgaard, H.

    1989-01-01

    Distribution coefficients of technetium and ruthenium are determined under different conditions with CCl4, cyclohexanone, and 5% tri-isooctylamine (TIOA)/xylene. A method for analyzing 99Tc in environmental samples has been developed by solvent extraction in which the valences of technetium...

  1. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  2. Extraction of aromatics from naphtha with ionic liquids

    NARCIS (Netherlands)

    Meindersma, G.W.

    2005-01-01

    The objective of this study was the development of a separation technology for the selective recovery and purification of aromatic compounds benzene, toluene, ethylbenzene and xylenes (BTEX) from liquid ethylene cracker feeds. Most ethylene cracker feeds contain 10 ¿ 25% of aromatic components,

  3. Browse Title Index

    African Journals Online (AJOL)

    Items 151 - 200 of 444 ... Vol 59 (2006), HgO/I2 as an Efficient Reagent for the Oxidative ... Nano-core, Partially Covered with Pt, as Catalysts for Methanol Oxidation, Abstract PDF .... of the Direct Electrochemical Oxidation of p-Xylene in Methanol ...

  4. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.; Odedairo, T.; Balasamy, R. J.

    2012-01-01

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro

  5. Degradation of BTEX by anaerobic bacteria: physiology and application

    NARCIS (Netherlands)

    Weelink, S.A.B.; Eekert, van M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and

  6. MTBE BIOREMEDIATION WITH BIONETS CONTAINING ISOLITE®, PM1, SOLID OXYGEN SOURCE (SOS) OR AIR

    Science.gov (United States)

    MTBE, a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in groundwater than BTEX (benzene, toluene, ethylbenzene, xylenes). It is turning up at many American crossroads. The objective of this well controlled study was to determine if biological...

  7. MTBE BIOREMEDIATION WITH BIONETS(TM) CONTAINING ISOLITE, PM1, SOLD OXYGEN SOURCE (SOS) OR AIR

    Science.gov (United States)

    MTBE, a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in groundwater than BTEX (benzene, toluene, ethylbenzene, xylenes). It is turning up at many American crossroads. The objective of this well controlled study was to determine if biological...

  8. Antioxidant and antibacterial constituents of Steganotaenia ...

    African Journals Online (AJOL)

    GC-MS analysis of the hexane and dichloromethane was carried out to determine their chemical constituents. Results revealed that both extracts contained similar compounds (including cumene, xylene, citronellol and long chain hydrocarbons). In addition the dichloromethane extract contains cadinanol, ar-curcumene and ...

  9. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    Science.gov (United States)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  10. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  11. MTBE and aromatic hydrocarbons in North Carolina stormwater runoff.

    Science.gov (United States)

    Borden, Robert C; Black, David C; McBlief, Kathleen V

    2002-01-01

    A total of 249 stormwater samples were collected from 46 different sampling locations in North Carolina over an approximate 1-year period and analyzed to identify land use types where fuel oxygenates and aromatic hydrocarbons may be present in higher concentrations and at greater frequency. Samples were analyzed by gas chromatography-mass spectrometry in ion selective mode to achieve a quantitation limit of 0.05 microg/l. m-,p-Xylene and toluene were detected in over half of all samples analyzed, followed by MTBE: o-xylene: 1,3,5-trimethylbenzene: ethylbenzene; and 1,2,4-trimethylbenzene. Benzene, DIPE, TAME and 1,2,3-trimethylbenzene were detected in runoff from a gas station or discharge of contaminated groundwater from a former leaking underground storage tank. For all of the aromatic hydrocarbons, the maximum observed contaminant concentrations were over an order of magnitude lower than current drinking water standards.

  12. Study of content of oil phase in the nanoemulsion oil/water during the oil demulsification; Aplicacao de nanoemulsoes com diferentes teores de fase oleosa no processo de desemulsificacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Veronica B.; Almeida, Sarah M. de; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mails: veronicabs@ima.ufrj.br, celias@ima.ufrj.br

    2011-07-01

    Oil-in-water nano emulsions are being developed to break up crude oil emulsions. In this initial study, the nanoemulsions were prepared the nonionic ethoxylated polymeric surfactants lauryl ether (Ultrol L100) - and the solvent xylene as the oil phase. The nanoemulsions obtained with 5,7 and 10%wt of the oil phase were evaluated for their efficiency in demulsifying oil emulsions by means of gravitational separation tests (bottle tests). For purposes of comparison, the efficiency was evaluated of aqueous solution of the pure surfactant and solvent xylene in the same concentrations used to prepare the nanoemulsions. The results show that the nanoemulsions are an alternative to demulsify water-in-oil emulsions with efficiency values of 90-95%. Moreover, was observed the influence the concentration oil phase in the nanoemulsion: the higher the concentration of oil phase, the higher the rate of break up crude oil emulsion. (author)

  13. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    Science.gov (United States)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  14. Characterization of nuclear fuel using immersion and method of penetration (MPI)

    International Nuclear Information System (INIS)

    Faeda, K. C. M.; Lameiras, F.S.; Ferraz, W.B.; Machado, G.C.

    2011-01-01

    The characterization of nuclear fuel is of great importance and aims to minimize the effects related to burning and the temperature in the fuel, so that the stability of the fuel during the time of his stay in the reactor core. The method of penetration and use the boost immersion with vacuum impregnation to measure density and open porosity of ceramic materials. It is non-destructive if the liquid impregnation can be removed from the sample. The impregnation requires the use of a liquid with low surface tension and small variation of surface tension with temperature. The xylene due its large industrial employment has been widely used for this purpose. However, it presents serious problems of toxicity. In this work, comparable studies of xylene with water + detergent to measure density and porosity in alumina pellets. The atmospheric pressure, temperature and humidity were monitored during the measurements and considered as covariates. (author)

  15. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5.

    Science.gov (United States)

    House, Alan J; Hyman, Michael R

    2010-07-01

    In this study we have examined the effects of individual gasoline hydrocarbons (C(5-10,12,14) n-alkanes, C(5-8) isoalkanes, alicyclics [cyclopentane and methylcyclopentane] and BTEX compounds [benzene, toluene, ethylbenzene, m-, o-, and p-xylene]) on cometabolism of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA) by Mycobacterium austroafricanum JOB5. All of the alkanes tested supported growth and both MTBE and TBA oxidation. Growth on C(5-8) n-alkanes and isoalkanes was inhibited by acetylene whereas growth on longer chain n-alkanes was largely unaffected by this gas. However, oxidation of both MTBE and TBA by resting cells was consistently inhibited by acetylene, irrespective of the alkane used as growth-supporting substrate. A model involving two separate but co-expressed alkane-oxidizing enzyme systems is proposed to account for these observations. Cyclopentane, methylcyclopentane, benzene and ethylbenzene did not support growth but these compounds all inhibited MTBE and TBA oxidation by alkane-grown cells. In the case of benzene, the inhibition was shown to be due to competitive interactions with both MTBE and TBA. Several aromatic compounds (p-xylene > toluene > m-xylene) did support growth and cells previously grown on these substrates also oxidized MTBE and TBA. Low concentrations of toluene (TBA oxidation by alkane-grown cells whereas higher concentrations were inhibitory. The effects of acetylene suggest strain JOB5 also has two distinct toluene-oxidizing activities. These results have been discussed in terms of their impact on our understanding of MTBE and TBA cometabolism and the enzymes involved in these processes in mycobacteria and other bacteria.

  16. Mass concentrations of BTEX inside air environment of buses in Changsha, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaokai; Zhang, Guoqiang; Zhang, Quan [College of Civil Engineering, Hunan University, Changsha 410082, Hunan (China); Chen, Hong [College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan (China)

    2011-02-15

    In order to estimate the mass concentrations of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) inside air environment of buses and to analyze the influencing factors of the BTEX pollution levels, 22 public buses were investigated in Changsha, China. The interior air was collected through activated charcoal adsorption tubes and then the air samples were analyzed with thermally desorbed gas chromatograph. The mass concentrations ranged from 21.3 to 106.4 {mu}g/m{sup 3} for benzene, from 53.5 to 266.0 {mu}g/m{sup 3} for toluene, from 19.6 to 95.9 {mu}g/m{sup 3} for ethylbenzene and from 46.9 to 234.8 {mu}g/m{sup 3} for xylenes. Their mean values were 68.7, 179.7, 62.5 and 151.8 {mu}g/m{sup 3}, respectively. The rates of buses tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were 45.5% for toluene and 13.6% for xylenes. The BTEX levels increased when in-car temperature or relative humidity rose, and decreased when car age or travel distance increased. The BTEX concentrations were higher in leather trims buses than in non-leather trims ones, in air-conditioned buses than in non-air-conditioned ones, and in high-grade buses than in low-grade ones. According to the analysis of multiple linear regression equation, car age and in-car temperature were two most important factors influencing the BTEX pollution levels in the cabins of public buses. (author)

  17. Uptake of Organic Gas Phase Species by 1-Methylnaphthalene

    Science.gov (United States)

    Zhang, H.; Xia, J.; Davidovits, P.; Jayne, J. T.; Kolb, C. E.; Worsnop, D. R.

    2002-12-01

    Using a droplet train apparatus, the mass accommodation coefficients (α) on 1-methylnapthalene of gas phase m-xylene, ethylbenzene, butylbenzene, α-pinene, γ-terpinene, and 2-methyl-2-hexanol were measured as a function of temperature (265 K to 296 K). 1-methylnapthalene was selected as a surrogate for hydrophobic and aromatic hydrocarbons found in tropospheric aerosols. The mass accommodation coefficients (α) of all the molecules obtained from these measurements exhibit negative temperature dependence. The upper and lower values of α at 265 K and 296 K respectively are: for m-xylene 0.44 and 0.26; for ethylbenzene 0.37 and 0.22; for butylbenzene 0.47 and 0.31; for α-pinene 0.47 and 0.096; for γ-terpinene 0.39 and 0.12; for 2-methyl-2-hexanol 0.44 and 0.26. The uptake measurements also yielded values for the product HDl1/2 for most of the molecules studied (H = Henry's law constant, Dl = liquid phase diffusion coefficient). Using calculated values of Dl the Henry's law constant is obtained, and expressed in the form ln H (M/atm) = -A + B/T. The A and B values for the molecules studied are listed in Table 1. Table 1: A and B values for the Henry's law constant H expressed as ln H (M/atm) = -A + B/T \\ m-xylene: A=7.20, B=4060\\ethylbenzene: A=5.81, B=3660\\butylbenzene: A=16.95, B=7330α-pinene: A=15.69, B=6360\\2-methyl-2-hexanol: A=9.95, B=4760

  18. Acute and recent air pollution exposure and cardiovascular events at labour and delivery

    Science.gov (United States)

    Männistö, Tuija; Mendola, Pauline; Grantz, Katherine Laughon; Leishear, Kira; Sundaram, Rajeshwari; Sherman, Seth; Ying, Qi; Liu, Danping

    2017-01-01

    Objective To study the relationship between acute air pollution exposure and cardiovascular events during labour/delivery. Methods The Consortium on Safe Labor (2002–2008), an observational US cohort with 223 502 singleton deliveries provided electronic medical records. Air pollution exposure was estimated by modified Community Multiscale Air Quality models. Cardiovascular events (cardiac failure/arrest, stroke, myocardial infarcts and other events) were recorded in the hospital discharge records for 687 pregnancies (0.3%). Logistic regression with generalised estimating equations estimated the relationship between cardiovascular events and daily air pollutant levels for delivery day and the 7 days preceding delivery. Results Increased odds of cardiovascular events were observed for each IQR increase in exposure to nitric oxides at 5 and 6 days prior to delivery (OR=1.17, 99% CI 1.04 to 1.30 and OR=1.15, 1.03 to 1.28, respectively). High exposure to toxic air pollution species such as ethylbenzene (OR=1.50, 1.08 to 2.09), m-xylene (OR=1.54, 1.11 to 2.13), o-xylene (OR=1.51, 1.09 to 2.09), p-xylene (OR=1.43, 1.03 to 1.99) and toluene (OR=1.42, 1.02 to 1.97) at 5 days prior to delivery were also associated with cardiovascular events. Decreased odds of events were observed with exposure to ozone. Conclusions Air pollution in the days prior to delivery, especially nitrogen oxides and some toxic air pollution species, was associated with increased risk of cardiovascular events during the labour/delivery admission. PMID:26105036

  19. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi.

    Science.gov (United States)

    Kumar, Amit; Singh, Bhupendra Pratap; Punia, Monika; Singh, Deepak; Kumar, Krishan; Jain, V K

    2014-02-01

    The present work investigated the levels of total volatile organic compounds (TVOC) and benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX) in different microenvironments in the library of Jawaharlal Nehru University in summer and winter during 2011-2012. Carcinogenic and non-carcinogenic health risks due to organic compounds were also evaluated using US Environmental Protection Agency (USEPA) conventional approaches. Real-time monitoring was done for TVOC using a data-logging photo-ionization detector. For BTEX measurements, the National Institute for Occupational Safety and Health (NIOSH) standard method which consists of active sampling of air through activated charcoal, followed by analysis with gas chromatography, was performed. Simultaneously, outdoor measurements for TVOC and BTEX were carried out. Indoor concentrations of TVOC and BTEX (except benzene) were higher as compared to the outdoor for both seasons. Toluene and m/p-xylene were the most abundant organic contaminant observed in this study. Indoor to outdoor (I/O) ratios of BTEX compounds were generally greater than unity and ranged from 0.2 to 8.7 and 0.2 to 4.3 in winter and summer, respectively. Statistical analysis and I/O ratios showed that the dominant pollution sources mainly came from indoors. The observed mean concentrations of TVOC lie within the second group of the Molhave criteria of indoor air quality, indicating a multifactorial exposure range. The estimated lifetime cancer risk (LCR) due to benzene in this study exceeded the value of 1 × 10(-6) recommended by USEPA, and the hazard quotient (HQ) of non-cancer risk came under an acceptable range.

  20. High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction.

    Science.gov (United States)

    Qin, Weiwei; Silvestre, Martin Eduardo; Li, Yongli; Franzreb, Matthias

    2016-02-05

    Metal-organic framework (MOF) MIL-100(Fe) with well-defined thickness was homogenously coated onto the outer surface of magnetic microparticles via a liquid-phase epitaxy method. The as-synthesized MIL-100(Fe) was used as stationary phase for high-performance liquid chromatography (HPLC) and separations of two groups of mixed aromatic hydrocarbons (toluene, styrene and p-xylene; acetanilide, 2-nirtoaniline and 1-naphthylamine) using methanol/water as mobile phase were performed to evaluate its performance. Increasing water content of the mobile phase composition can greatly improve the separations on the expense of a longer elution time. Stepwise elution significantly shortens the elution time of acetanilide, 2-nirtoaniline and 1-naphthylamine mixtures, while still achieving a baseline separation. Combining the experimental results and in-depth modeling using a recently developed chromatographic software (ChromX), adsorption equilibrium parameters, including the affinities and maximum capacities, for each analyte toward the MIL-100(Fe) are obtained. In addition, the pore diffusivity of aromatic hydrocarbons within MIL-100(Fe) was determined to be 5×10(-12)m(2)s(-1). While the affinities of MIL-100(Fe) toward the analyte molecules differs much, the maximum capacities of the analytes are in a narrow range with q*MOFmax,toluene=3.55molL(-1), q*MOFmax,styrene or p-xylene=3.53molL(-1), and q*MOFmax,anilines=3.12molL(-1) corresponding to approximately 842 toluene and 838 styrene or p-xylene, and 740 aniline molecules per MIL-100(Fe) unit cell, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances

    Science.gov (United States)

    2010-04-01

    ... Ketone Naptha Pentane Propylene Oxide Toluene Vinyl Acetate Xylene Hazardous Gases Acetaldehyde Butadiene Butane Ethene Ethylene Ethylene Oxide Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (LPG... Commercial/Industrial Facilities,” by Rolf Jensen and Associates, Inc., April 1982) [49 FR 5105, Feb. 10...

  2. Download this PDF file

    African Journals Online (AJOL)

    is liquid ion exchanger based involving 20% Aliquot 336S in xylene hardened by ... using both the electrodes lie between 7.97 and 8.55 at 30°, at an ionic strength of .... Cattrall, RW., Hamilton, C. lon Selective Electrode Review 1984, 6, 125. 6.

  3. Three-dimensional modelling of an injection experiment in the anaerobic part of a landfill plume

    DEFF Research Database (Denmark)

    Juul Petersen, Michael; Engesgaard, Peter Knudegaard; Bjerg, Poul Løgstrup

    1998-01-01

    Analytical and numerical three-dimensional (3-D) simulations have been conducted and compared to data obtained from a large-scale (50 m), natural gradient field injection experiment. Eighteen different xenobiotic compounds (i.e. benzene, toluene, o-xylene, naphthalene, 1,1,1-TCA, PCE, and TCE...

  4. Identification of Bound Nitro Musk-Protein Adduct in Fish Liver By Gas Chromatography-Mass Sectrometry: Biotransformation, Dose-Response and Toxicokinetics of Nitro Musk Metabolites Protein Adducts in Trout Liver as Biomarker of Exposure

    Science.gov (United States)

    Ubiquitous occurrences of synthetic nitro musks are evident in the literature. The In vivo analysis of musk xylene (MX) and musk ketone (MK) - protein adducts in trout liver have been performed by gas chromatography-mass spectrometry using selected ion monitoring (GC-SIM-MS). Bio...

  5. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE.

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  6. BTEX AND MTBE BIOREMEDIATION: BIONETS™ CONTAINING SOS, PM1 AND ISOLITE®

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylenes) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets w...

  7. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS(TM) CONTAINING PM1, SOS, ISOLITE (R)

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  8. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE�

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets were plac...

  9. Molecular transport behaviour of organic solvents through halloysite ...

    Indian Academy of Sciences (India)

    Micro and Nano Materials Laboratory, Department of Chemistry, Institute of Technical ... The transport behaviour of three organic solvents (benzene, toluene and xylene) through halloysite nan- ... ena play important roles in different areas of engineering and ... their blends by an equilibrium swelling method has been.

  10. FORMATION OF NITRO MUSK ADDUCTS OF RAINBOW TROUT HEMOGLOBIN FOR POTENTIAL USE AS BIOMARKERS OF EXPOSURE

    Science.gov (United States)

    The high use of nitro musk xylene (MX) and musk ketone (MK) as fragrances, and their persistence and bioaccumulation potential make them ubiquitous environmental contaminants. The 4-amino-MX (AMX) and 2-amino-MK (AMK) metabolites have been detected in trout fish hemoglobin (Hb) s...

  11. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J

    2015-01-01

    Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions...

  12. Dehydrogenation of light alkanes over rhenium catalysts on conventional and mesoporous MFI supports

    DEFF Research Database (Denmark)

    Rovik, Anne Krogh; Hagen, Anke; Schmidt, I.

    2006-01-01

    Recently, Re/HZSM-5 (Si/Al = 15) was shown to be an efficient catalyst for ethane dehydrogenation and aromatization at 823 K and atmospheric pressure. In this reaction, the major initial products were benzene, toluene and xylene (BTX), but increasing amounts of ethene were produced with time...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The electrode parameters of Co(II) ion in hexagonal meso phase of the lyotropic liquid crystal ternary system (pluronic P84/cobalt/-xylene) is determined using cyclic voltammetry, deduced convolutive voltammetry and chronoamperometry techniques. The morphology of nanostructured deposited films of Co2+ ion in ...

  14. The occurrence of selected hydrocarbons in food on sale at petrol station shops and comparison with food from other shops: a literature survey

    NARCIS (Netherlands)

    Wolf, J.M. de; Beld, C.M.B. van den; Gennart, J.-Ph.; Riley, A.J.; Urbanus, J.

    2000-01-01

    A review of reports on the occurrence of some hydrocarbons in food in relation to the sales location, with emphasis on petrol station shops, covers the principal selected hydrocarbons, i.e., volatile components of gasoline, e.g., benzene, pentane, hexane, toluene, MTBE, and xylene; relevance of

  15. Evaluation of uncertainty of ideal-gas entropy and heat capacity calculations by density functional theory (DFT) for molecules containing symmetrical internal rotors

    Czech Academy of Sciences Publication Activity Database

    Červinka, C.; Fulem, Michal; Růžička, K.

    2013-01-01

    Roč. 58, č. 5 (2013), s. 1382-1390 ISSN 0021-9568 Institutional support: RVO:68378271 Keywords : chemical thermodynamic properties * ab-initio calculation * vapor-pressure * xylene isomerization * organic-compounds * hindered rotation * methyl-groups * vaporization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.045, year: 2013

  16. USE OF BENZOATE TO ESTABLISH REACTIVE BUFFER ZONES FOR ENHANCED ATTENUATION OF BTX MIGRATION: AQUIFER COLUMN EXPERIMENTS (R823420)

    Science.gov (United States)

    Flow-through aquifer columns were used to evaluate the efficacy of using benzoate as a biostimulatory substrate to enhance the aerobic biodegradation of benzene, toluene, and o-xylene (BTX), fed continuously at low concentra tions (about 0.2 mg/L each). When used as a cosubstr...

  17. The Fate of Dissolved Creosote Compounds in an Intact Fratured Clay Column

    DEFF Research Database (Denmark)

    Broholm, Kim; Arvin, Erik; Hansen, Asger

    1995-01-01

    The fate of 16 different organics typical for creosote was studied under aerobic conditions in a large intact fractured clay column experiment. Some of the organics (benzene, toluene, o-xylene, phenol, and o-cresol) were transported at the same rate as bromide through the fractured clay, whereas ...

  18. An experimental study on regulated and unregulated pollutants from a spark ignition car fuelled on liquefied petroleum gas and Gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.; Yun-shan, G.E.; Jun-fang, W.; Jian-wei, T.; Gardezi, S.A.R.

    2010-01-01

    In the experimental study conducted on a spark ignition (SI) car running on a chassis dynamometer, fuelled on liquefied petroleum gas (LPG) and gasoline, carbon monoxide (CO) and total hydrocarbons (HC) decreased by 37.3% and 46.8%, respectively, while oxides of nitrogen (NOx) increased by 59.7% due to higher compression ratio with LPG, compared with gasoline. In case of LPG fuel, formaldehyde, acetaldehyde, propionaldehyde, 2-butanone, butyraldehyde, benzaldehyde and valeraldehyde decreased, leading to an over all decrease of about 35% and 26% in carbonyls and their ozone forming potential (OFP), respectively, compared with gasoline. Furthermore, benzene, toluene, ethyl benzene, xylene and styrene decreased, resulting in an overall decrease of 38.8% in volatile organic compounds (VOCs) and 39.2% in BTEX (benzene, toluene, ethyl benzene and xylene) species due to more complete combustion with LPG, compared with gasoline. Further, the OFP of VOCs with LPG was 6% lower than that with gasoline fuel. (author)

  19. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  20. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB

    Directory of Open Access Journals (Sweden)

    Sarzyński Rafał

    2017-01-01

    Full Text Available The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ∼200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution through packing (polypropylene Ralu rings covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2. The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 – 84 gm-3 h -1, styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  1. Sorption of BTX mixtures to contaminated and uncontaminated site soils

    International Nuclear Information System (INIS)

    Uchrin, C.G.; Koshy, K.; Wojtenko, I.

    1995-01-01

    Both adsorption and desorption studies are being performed examining benzene, toluene, and meta-xylene (BTX) as single components, binary mixtures, and trinary mixture onto both existing contaminated soils as well as some uncontaminated reference soils. The contaminated soils were obtained from an oil refinery site and another industrial site in New Jersey. The oil refinery site soil did not exhibit significant amounts of either benzene, toluene or xylene but was contaminated with other compounds while the other industrial site soil was contaminated with toluene among other compounds. The organic carbon content of the soils ranged from 0.14 to 2.91 percent. Preliminary adsorption studies showed BTX to strongly sorb to these soils. The adsorption studies onto the reference soils also demonstrated the effect of organic matter on adsorption. Sequential batch desorption studies show the BTX to desorb quickly, reaching equilibrium within 48 hours. Long-term uptake and release were not noted with these soil/contaminant systems

  2. Comparison of cigarette smoke exposure atmospheres in different puffing modes

    International Nuclear Information System (INIS)

    Chen, B.T.; Bechtold, W.E.; Mauderly, J.L.

    1988-01-01

    Mainstream cigarette smoke generated using different puffing profiles was characterized for particle size distribution, vapor/gas concentration, and chemical composition. Three puffing profiles were compared: (1) a standard, 2-sec, 35 ml puff (SP), once per minute; (2) a puff of double the standard volume (70 mL), once per minute (DP); and (3) a double puff, twice per minute (2-DP). Results from samples collected with a multijet Mercer impactor indicated that the mass median aerodynamic diameter of smoke particles decreased with puff volume. The concentrations of specific chemicals from gas samples (CO, CO 2 , nitrogen oxides, and small molecular weight hydrocarbons), organic vapor samples (acetone, 2-methylfuran, benzene, meta- and para-xylene, ortho-xylene, and limonene), and particulate samples (nicotine, glycerol, hydroquinone, and palmitic acid) showed good agreement among the three puffing profiles. They support a prediction that the health effects of cigarette smoke generated from 2-DP or DP profiles would not be different from those resulting from SP profiles. (author)

  3. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    Science.gov (United States)

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dosimetric studies based on the radiation-induced bleaching of Sudan red and Sudan blue dyes in organic solutions

    International Nuclear Information System (INIS)

    Souka, N.; Farag, A.N.

    1990-01-01

    An investigation was carried out on the effect of γ-radiation on the absorption spectra of Sudan red and Sudan blue dyes in organic solutions. A continuous decrease in the absorbance values at the absorption bands was observed with an increase of absorbed dose. The radiation sensitivities of decoloration gave widely different radiation chemical reduction yields (G-values) for the bleaching of both dyes depending on whether xylene, ethyl acetate, or chloroform was used as the solvent. On the basis of experimental results, suggestions are made concerning the dye solutions as prospective dosimeters. The following absorbed dose ranges can be covered: 10 1 -10 2 Gy by 10 -5 M Sudan red or Sudan blue in chloroform; 4 x 10 2 -4 x 10 3 Gy by 10 -5 M Sudan red or Sudan Blue in ethyl acetate; 10 3 -3 x 10 4 Gy by 5 x 10 -6 M Sudan red in xylene. (author)

  5. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  6. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  7. Effect of Palm Oil Fiber-TiO_2 Ratio in the Composite on the Reduction of BTX and Formaldehyde in the Air

    International Nuclear Information System (INIS)

    Nor Rahafza Abdul Manap; Roslinda Shamsudin; Mohd Norhafsam Maghpor; Muhammad Azmi Abdul Hamid; Azman Jalar

    2016-01-01

    The effect of palm oil fiber-TiO_2 ratio in the composite on the reduction of benzene, toluene, xylene and formaldehyde in the air is studied. The ratio was set at 1:0, 1:9 and 5:5. The combination of adsorption process by palm oil fiber and photooxidation of volatile organic compounds by titanium dioxide was revealed. The composite were prepared by using mechanical milling technique. The performance of the composite was characterized in terms of percentage of recovery of benzene, toluene and xylene (BTX) using GC/ FID and formaldehyde concentration reduction using formaldehyde meter. The results of recovery of the BTX by palm oil fiber/ titanium dioxide composite were more than 90 %. The palm oil fiber/ titanium dioxide composite has successfully reduced the concentration of formaldehyde by up to 66.7 %. Therefore, the palm oil mesocarp fiber/ titanium dioxide composite produced is able to reduce the concentration of volatile organic compounds. (author)

  8. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower...

  9. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants. Volume 2

    Science.gov (United States)

    1984-10-01

    INFORMATION EFFECTS ON HUMANS Inhalation of fluorocarbons during the ye_-.s 1960-1970 was a prominent cause of abusive death among teen -agers. Severe...a man was exposed at 60-350 ppm to mixed solvents containing 75% xylene and experienced giddiuess, anorexia , And vomiting (Glass, 1961). In a similar

  10. Practical Cost-Optimization of Characterization and Remediation Decisions at DNAPL Sites with Consideration of Prediction Uncertainty

    Science.gov (United States)

    2011-05-01

    transverse dispersivity [m] BTEX benzene, toluene, ethylbenzene, and xylene B lumped parameter defined as /cal calB J M β= CDM Camp Dresser ...Groundwater at Fort Lewis generally flows to northwest in the Vashon aquifer and west- southwest in the SLA aquifer. A simplified geologic cross section of the

  11. Use of GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - Standardized Protocol for On-Site Evaluation of Vapor Intrusion

    Science.gov (United States)

    2014-07-01

    Testing a Sealed Crack in a Concrete Floor .................................................................. 14 Figure 5: VOC Responses to...Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives, paints, gasoline Bonide Tree Sprays and...expansion joints, plumbing penetrations, or cracks . 3 Note that if indoor air concentrations are

  12. Synthesis of triblock and random copolymers of 4- acetoxystyrene and styrene by living atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela

    1997-01-01

    Triblock copolymers containing polystyrene (PSt) and poly(4-acetoxystyrene) (PAcOSt) segments have been prepared by atom transfer radical polymerization (ATRP). In the first step one of the two monomers was polymerized in bulk using the initiating system alpha,alpha'-dibromo-p-xylene/CuBr/2,2'-bi...

  13. 16 CFR 1500.14 - Products requiring special labeling under section 3(b) of the act.

    Science.gov (United States)

    2010-01-01

    ... percent or more by weight of toluene or xylene may cause systemic injury, such products shall bear the... or more by weight of such turpentine, in addition to oral toxicity resulting in systemic poisoning..., and metal. (B) For purposes of LHAMA enforcement policy, the Commission will enforce against materials...

  14. Characterization of secondary organic aerosol from photo-oxidation of gasoline exhaust and specific sources of major components.

    Science.gov (United States)

    Ma, Pengkun; Zhang, Peng; Shu, Jinian; Yang, Bo; Zhang, Haixu

    2018-01-01

    To further explore the composition and distribution of secondary organic aerosol (SOA) components from the photo-oxidation of light aromatic precursors (toluene, m-xylene, and 1,3,5-trimethylbenzene (1,3,5-TMB)) and idling gasoline exhaust, a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was employed. Peaks of the molecular ions of the SOA components with minimum molecular fragmentation were clearly observed from the mass spectra of SOA, through the application of soft ionization methods in VUV-PIMS. The experiments comparing the exhaust-SOA and light aromatic mixture-SOA showed that the observed distributions of almost all the predominant cluster ions in the exhaust-SOA were similar to that of the mixture-SOA. Based on the characterization experiments of SOA formed from individual light aromatic precursors, the SOA components with molecular weights of 98 and 110 amu observed in the exhaust-SOA resulted from the photo-oxidation of toluene and m-xylene; the components with a molecular weight of 124 amu were derived mainly from m-xylene; and the components with molecular weights of 100, 112, 128, 138, and 156 amu were mainly derived from 1,3,5-TMB. These results suggest that C 7 -C 9 light aromatic hydrocarbons are significant SOA precursors and that major SOA components originate from gasoline exhaust. Additionally, some new light aromatic hydrocarbon-SOA components were observed for the first time using VUV-PIMS. The corresponding reaction mechanisms were also proposed in this study to enrich the knowledge base of the formation mechanisms of light aromatic hydrocarbon-SOA compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Protection efficacy of gloves against components of the solvent in a sprayed isocyanate coating utilizing a reciprocating permeation panel.

    Science.gov (United States)

    Ceballos, Diana M; Reeb-Whitaker, Carolyn; Sasakura, Miyoko; Dills, Russell; Yost, Michael G

    2015-04-01

    Determine protection effectiveness of 5-mil natural rubber latex (0.13-mm), 5-mil nitrile rubber (0.13-mm), and 13-mil butyl rubber (0.33-mm) glove materials against solvents present in a commonly used automotive clear coat formulation using a novel permeation panel. The latex and nitrile gloves were the type commonly used by local autobody spray painters. Glove materials were tested by spraying an automotive clear coat onto an automated reciprocating permeation panel (permeation panel II). Temperature, relative humidity, and spray conditions were controlled to optimize clear coat loading homogeneity as evaluated by gravimetric analysis. Solvent permeation was measured using charcoal cloth analyzed by the National Institute for Occupational Safety and Health 1501 method. Natural rubber latex allowed 3-5 times the permeation of solvents relative to nitrile rubber for all 10 solvents evaluated: ethyl benzene, 2-heptanone, 1-methoxy-2-propyl acetate, o-xylene, m-xylene, p-xylene, n-butyl acetate, methyl isobutyl ketone, petroleum distillates, and toluene. There is a distinct behavior in solvent permeation before and after the coating dry time. Solvent permeation increased steadily before coating dry time and remained fairly constant after coating dry time. Butyl was not permeated by any of the solvents under the conditions tested. Commonly used 5-mil thick (0.13-mm) latex and nitrile gloves were ineffective barriers to solvents found in a commonly used clear coat formulation. Conversely, 13-mil (0.33-mm) butyl gloves were found to be protective against all solvents in the clear coat formulation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. An efficient BTX sensor based on ZnO nanoflowers grown by CBD method

    Science.gov (United States)

    Acharyya, D.; Bhattacharyya, P.

    2015-04-01

    In this paper, sensing performance of ZnO nanoflower like structures derived by chemical bath deposition method (CBD), towards Benzene Toluene and Xylene (BTX) vapors is reported. Relatively higher bath temperature (110 °C) and high pH value (pH: 11) of solution escort to higher growth rate along [0 0 0 1] plane of ZnO, which eventually resulted in pointed edge nanorod based flower like structures after 3 h. After detailed structural characterizations (field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD)), existence of different defect states (viz. oxygen vacancy (Vo), Zinc vacancy (VZn) and Zinc interstitials (Zni)) were authenticated by Photoluminescence (PL) spectroscopy. BTX sensing performance, employing the nanoflowers as the sensing layer, was carried out in resistive mode with two Pd lateral electrodes. The sensor study was performed at different temperatures (150-350 °C) in the concentration range of 0.5-700 ppm of the respective vapors. The highest normalized resistance response (NRR%) was achieved at 200 °C. At this optimum temperature, normalized resistance responses (39.3/92.6%, 45.8/96.9%, and 47.8/99% respectively) were found to be promising towards 0.5/700 ppm of benzene, toluene and xylene. The response time of the sensor towards the target species were also found to be appreciably fast (15 s, 6 s, and 5 s) towards 700 ppm of benzene, toluene and xylene respectively. Detailed sensing mechanism for BTX with such flower like ZnO structures was explained with the help of interaction of band structures (of ZnO) with the corresponding highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the target species.

  17. Structure-property relationships for n-alkyl-isocyanate-containing polymers

    Science.gov (United States)

    Aronson, Carl Lawrence

    Poly(n-hexyl isocyanate) (PHIC), poly(n-butyl-isocyanate) (PBIC), poly(n-butyl-co-cyclohexyl isocyanate) (PBCHIC), poly(n-hexyl isocyanate-b-isoprene) (HI), poly(n-butyl isocyanate-b-isoprene) (BI) and poly(n-hexyl isocyanate-b-isoprene- b-styrene) (MS) were synthesized and characterized with respect to composition, molecular Weight and polydispersity. PHIC, HI and HIS were found to be lyotropic liquid crystalline whereas PBIC, PBCHIC and BI were found to be non-lyotropic. A lyotropic-nematic liquid crystalline phase diagram was determined for the PHIC/xylene system. A novel and reversible electric-field-induced biphasic-paranematic phase transition was found for the PHIC/xylene system from the dynamics of topological defects. The electric-field-induced phase diagram for PHIC/xylene agreed with the theoretically predicted field-induced phase diagram of Khokhlov and Semenov for semiflexible-persistent polymers. The dielectric characteristics, steady-state electrically induced birefringence and steady-state electroheological (ER) activity of PHIC, PBIC and PBCHIC solutions were compared as a function of polymer concentration. The role of lyotropic liquid crystalline ordering in the functional ER mechanism of poly( n-hexyl isocyanate) solutions is presented. PBCHIC was found to thermally decompose by a first-order rate process which became slower with increasing cyclohexyl isocyanate content from thermal gravimetric analysis. Competition between monomer dissociation and degradative trimerization as well as a non-alternating sequence distribution were determined for PBCHIC from direct pyrolysis/mass spectrometry. The Arrhenius activation energy, pre-exponential factor and entropy for diffusion and evaporation of xylene from PHIC, were found to be functions of initial polymer concentration whereas the intrinsic diffusion coefficient of the solvent was found to be independent of initial polymer concentration. The cross polarized/magic angle spinning solid state 13C

  18. Effect of chemical modification on behavior of various organic vanadium forms during analysis by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2007-01-01

    The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 deg. C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for

  19. An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark

    DEFF Research Database (Denmark)

    Rügge, K.; Bjerg, P.L.; Pedersen, J.K.

    1999-01-01

    toluene and o-xylene, respectively. The rates for the chlorinated aliphatic compounds, tetrachloromethane, 1,1,1-trichloroethane, tetrachloroethylene, and trichloroethylene, were >0.7 d(-1), 0.0044-0.0054 d(-1), 0.0012-0.0038 d(-1), and 0.0003-0.001 d(-1), respectively. Long lag periods and slow...

  20. upstream region of the myostatin gene in four chicken breeds and its ...

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... DNA Engine® Peltier Thermal cycler. For single-strand conformation polymorphism (SSCP) analysis, 2 μl of each amplification product was mixed with 7 μl denaturing buffer: 98% formamide, 0.025% bromophenol blue, 0.025% xylene cyanole FF, 10 mmol/L ethylenediaminetetraacetic (EDTA) (pH 8.0),.

  1. Inhibition of vascular response in inflammation by crude aqueous ...

    African Journals Online (AJOL)

    dose-dependent reduction in the carrageenin-induced increase in paw volume in rats and also reduced xylene- induced increase in blood flow in mice pinna arteries. Phenylephrine enhanced the decrease in capillary permeability and vasodilatation caused by low dose extract but not that caused by high dose extract or ...

  2. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  3. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    Science.gov (United States)

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  4. Genetic identification of a dwarf mutant in cucumber (Cucumis ...

    African Journals Online (AJOL)

    madam mine

    2012-03-08

    Mar 8, 2012 ... and 5% acetic acid, v/v (FAA). The samples were dehydrated in a graded ethanol series and were then embedded in paraffin after a transition through xylene. Thin sections (5 mm) of specimens from each sample for microscopic observation were cut by an ultramicrotome (PowerTome-XL, RMC, USA), ...

  5. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Directory of Open Access Journals (Sweden)

    Elizabeth Barksdale Boyle

    2016-03-01

    Full Text Available Epidemiologic studies can measure exposure to volatile organic compounds (VOCs using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS. We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking and by observations by a trained data collector (presence of scented products in homes. We found several significant (p < 0.01 relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite

  6. Air pollution exposure and preeclampsia among US women with and without asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mendola, Pauline, E-mail: pauline.mendola@nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Wallace, Maeve [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20852 (United States); Robledo, Candace [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Northern Finland Laboratory Centre NordLab, Oulu (Finland); Department of Clinical Chemistry, University of Oulu, Oulu (Finland); Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 500, 90029 OYS (Finland); Department of Chronic Disease Prevention, National Institute for Health and Welfare, PO Box 310, 90101 Oulu (Finland); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States)

    2016-07-15

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}) and carbon monoxide (CO); PM{sub 2.5} constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO{sub x} and SO{sub 2} and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  7. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  8. Assessment of Exposure to VOCs among Pregnant Women in the National Children's Study.

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M; Wright, David J; Merrill, Lori S; Alwis, K Udeni; Blount, Benjamin C; Mortensen, Mary E; Moye, John; Dellarco, Michael

    2016-03-29

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children's Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  9. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M.; Wright, David J.; Merrill, Lori S.; Alwis, K. Udeni; Blount, Benjamin C.; Mortensen, Mary E.; Moye, John; Dellarco, Michael

    2016-01-01

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  10. Air pollution exposure and preeclampsia among US women with and without asthma

    International Nuclear Information System (INIS)

    Mendola, Pauline; Wallace, Maeve; Liu, Danping; Robledo, Candace; Männistö, Tuija; Grantz, Katherine L.

    2016-01-01

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO x ), sulfur dioxide (SO 2 ) and carbon monoxide (CO); PM 2.5 constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO x and SO 2 and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  11. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  12. Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study

    Science.gov (United States)

    Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.

    2015-01-01

    To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.

  13. Socioeconomic and personal behavioral factors affecting children's exposure to VOCs in urban areas in Korea.

    Science.gov (United States)

    Byun, Hyaejeong; Ryu, Kyongnam; Jang, Kyungjo; Bae, Hyunjoo; Kim, Dongjin; Shin, Hosung; Chu, Jangmin; Yoon, Chungsik

    2010-02-01

    Volatile organic compounds (VOCs) are known to cause adverse health effects. We investigated the relationships between children's VOC exposure and socioeconomic and human activity factors with passive personal samplers, questionnaires, and time-activity diaries (TAD). Statistical analyses were conducted using SAS 9.1, and the results were organized using SigmaPlot 8.0 software. Chemicals such as benzene, toluene, 2-butanone, ethylbenzene, xylene, chloroform, n-hexane, heptane, and some kinds of decanes, which are known to adversely affect public health, were identified in measured samples. These were mainly emitted from outdoor sources (e.g., vehicular traffic) or indoor sources (e.g., household activities such as cooking and cleaning) or both. We concluded that region was the most important socioeconomic factor affecting children's VOC exposure, and the significant compounds were n-hexane (p = 0.006), 1,1,1-trichloroethane (p = 0.001), benzene (p = 0.003), toluene (p = 0.002), ethylbenzene (p = 0.020), m-, p-xylene (p = 0.014), dodecane (p = 0.003), and hexadecane (p = 0.001). Parental education, year of home construction and type of housing were also slightly correlated with personal VOC exposure. Only the concentration of o-xylene (p = 0.027) was significantly affected by the parental education, and the concentrations of benzene (p = 0.030) and 2-butanone (p = 0.049) by the type of housing. Also, tridecane (p = 0.049) and n-hexane (p = 0.033) were significantly associated with the year of home construction. When household activities such as cooking were performed indoors, children's VOC concentrations tended to be higher, especially for n-hexane, chloroform, heptane, toluene (p factors simultaneously, socioeconomic factors such as region had a greater effect on children's VOC exposures than indoor activities. From this study, we can suggest that socioeconomic factors as well as environmental factors should be considered when formulating environmental policy to

  14. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.

    Science.gov (United States)

    Robertson, W J; Franzmann, P D; Mee, B J

    2000-02-01

    Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.

  15. Role of diluent on the separation of {sup 90}Y from {sup 90}Sr by solvent extraction and supported liquid membrane using T2EHDGA as the extractant

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S. [Planning and Coordination Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India); Raut, D.R. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India); Mohapatra, P.K., E-mail: mpatra@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2012-04-15

    The separation behaviour of {sup 90}Y from {sup 90}Sr was investigated by diluent variation using solvent extraction and supported liquid membrane techniques employing N,N,N Prime ,N Prime -tetra-2-ethylhexyldiglycolamide (T2EHDGA) as the extractant. Both D{sub Y} (distribution ratio of Y(III)) and S.F. (separation factor) were found to be high in the solvent extraction studies when chloroform was used as the diluent. Subsequent supported liquid membrane (SLM) studies using PTFE flat sheet membranes containing 0.2 M T2EHDGA in various diluents indicated the trend of Y transport as xylene>hexone>chloroform>carbon tetrachloride>n-dodecane+30% iso-decanol mixture. However, the Sr(II) transport rates were also high with xylene, hexone, and carbon tetrachloride as the diluents which led us to carry out subsequent studies using chloroform and n-dodecane+30% iso-decanol mixture. Acid variation studies in chloroform system indicated an interesting phenomena of increasing Y(III) transport and decreasing Sr(II) transport with increasing acid concentration. Separation of {sup 90}Y from a mixture of {sup 90}Sr and {sup 90}Y was also attempted. - Highlights: Black-Right-Pointing-Pointer SLM studies using PTFE flat sheet membranes containing T2EHDGA as carrier was carried out for Y-90 separation from Sr-90. Black-Right-Pointing-Pointer The trend of Y transport as xylene>hexone>chloroform>carbon tetrachloride>n-dodecane+30% iso-decanol mixture. Black-Right-Pointing-Pointer Acid variation studies in chloroform system indicated an interesting phenomena of increasing Y(III) transport and decreasing Sr(II) transport with increasing acid concentration. Black-Right-Pointing-Pointer The present studies suggested that T2EHDGA-SLM show limited promise if coupled to another separation method such as extraction chromatography.

  16. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the following... type Average organic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1% xylene...

  17. A new analytical method for 32P. Liquid scintillation counting with solvent extraction

    International Nuclear Information System (INIS)

    Liyanage, J.A.; Yonezawa, C.

    2003-01-01

    Trace determination of phosphorus has been studied using neutron activation analysis. Radioactivity of 32 P in tri-n-octylamine phosphomolybdate complex was measured using liquid scintillation counting by extracting the complex into xylene. Phosphorus can be quantitatively determined from 16.7 to 600 μg/10 ml by using the radiochemical analysis method described. (author)

  18. Formation of highly oxygenated organic molecules from aromatic compounds

    Science.gov (United States)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  19. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2007-01-01

    Full Text Available Boundary layer concentrations of several volatile organic compounds (VOC were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m−2 h−1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  20. Authentication of fattening diet of Iberian pigs according to their volatile compounds profile from raw subcutaneous fat.

    Science.gov (United States)

    Narváez-Rivas, M; Pablos, F; Jurado, J M; León-Camacho, M

    2011-02-01

    The composition of volatile components of subcutaneous fat from Iberian pig has been studied. Purge and trap gas chromatography-mass spectrometry has been used. The composition of the volatile fraction of subcutaneous fat has been used for authentication purposes of different types of Iberian pig fat. Three types of this product have been considered, montanera, extensive cebo and intensive cebo. With classification purposes, several pattern recognition techniques have been applied. In order to find out possible tendencies in the sample distribution as well as the discriminant power of the variables, principal component analysis was applied as visualisation technique. Linear discriminant analysis (LDA) and soft independent modelling by class analogy (SIMCA) were used to obtain suitable classification models. LDA and SIMCA allowed the differentiation of three fattening diets by using the contents in 2,2,4,6,6-pentamethyl-heptane, m-xylene, 2,4-dimethyl-heptane, 6-methyl-tridecane, 1-methoxy-2-propanol, isopropyl alcohol, o-xylene, 3-ethyl-2,2-dimethyl-oxirane, 2,6-dimethyl-undecane, 3-methyl-3-pentanol and limonene.

  1. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    Science.gov (United States)

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  2. Destruction of pesticides and their formulations in water using short wavelength UV light

    International Nuclear Information System (INIS)

    Peterson, D.; Watson, D.; Winterlin, W.

    1990-01-01

    The presence of toxic materials in surface and ground water is a problem of growing significance. Increasingly, toxic anthropogenic chemicals are being detected in water supplies resulting in public concern and regulatory restrictions. Clearly, there is a need to develop methods to decontaminate not only drinking water supplies, but also the sources of contamination. Decontamination of water poses economic and logistical challenges since the pollutants are usually present in low concentrations and distributed over a wide area. A number of strategies have been proposed and tested to destroy toxic materials in water. In this study, the authors examined the effectiveness of a photoreactor equipped with a high pressure mercury vapor lamp for the destruction of three pesticides and the inert ingredient m-xylene in water. Captan, chlordane, PCNB, and m-xylene in aqueous solutions were selected as model compounds for this study based on their use, resistance to UV degradation, and potential presence in formulated pesticide materials. The factors that influence the performance of the system were investigated

  3. Research on release rate of volatile organic compounds in typical vessel cabin

    Directory of Open Access Journals (Sweden)

    ZHANG Jinlan

    2018-02-01

    Full Text Available [Objectives] Volatile Organic Compounds (VOC should be efficiently controlled in vessel cabins to ensure the crew's health and navigation safety. As an important parameter, research on release rate of VOCs in cabins is required. [Methods] This paper develops a method to investigate this parameter of a ship's cabin based on methods used in other closed indoor environments. A typical vessel cabin is sampled with Tenax TA tubes and analyzed by Automated Thermal Desorption-Gas Chromatography-Mass Spectrometry (ATD-GC/MS. The lumped mode is used and the release rate of Benzene, Toluene, Ethylbenzene and Xylene (BTEX, the typical representatives of VOCs, is obtained both in closed and ventilated conditions. [Results] The results show that the content of xylene and Total Volatile Organic Compounds (TVOC exceed the indoor environment standards in ventilated conditions. The BTEX release rate is similar in both conditions except for the benzene. [Conclusions] This research builds a method to measure the release rate of VOCs, providing references for pollution character evaluation and ventilation and purification system design.

  4. Formation of highly oxygenated organic molecules from aromatic compounds

    Directory of Open Access Journals (Sweden)

    U. Molteni

    2018-02-01

    Full Text Available Anthropogenic volatile organic compounds (AVOCs often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs, such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene and ethylbenzene, as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  5. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  6. Study of gel formation in polypropylene modified by gamma irradiation

    International Nuclear Information System (INIS)

    Oliani, W.L.; Parra, D.F.; Fermino, D.M.; Lima, L.F.C.P.; Lugao, A.B.; Riella, H.G.

    2010-01-01

    The linearity of the chains of iPP (isotactic polypropylene) confers to this, low melt strength. This fact limits the use of iPP in processes that demand high stretching. The graft of branches confers improvements in its extensional viscosity, resulting in Polypropylene with High Melt Strength (HMS-PP). Preparation process of the HMS-PP, included iPP in pellets, conditioned in plastic container containing acetylene under pressure of 110 kPa and radiation with γ source of 60 Co in the doses of 5, 12.5 and 20 kGy. The gel fraction of the samples was determined by the extraction of soluble components in xylene under boiling for 12 hours at 138 deg C. The soluble part of the samples was decanted with the total volatilization of the xylene to the room temperature (25 deg C) and deposition in glass blades. These samples had been characterized by Optic Microscopy, Scanning Electron Microscopy and Infrared Spectroscopy. In this study of the morphology, we obtained the formation of gel and microgel of polypropylene with higher incidence in HMS-PP 20 kGy. (author)

  7. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    Science.gov (United States)

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.

  8. Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains.

    Science.gov (United States)

    Raza, Waseem; Wei, Zhong; Ling, Ning; Huang, Qiwei; Shen, Qirong

    2016-06-10

    Three organic fertilizers made of different animal and plant waste materials (BOFs) were evaluated for their effects on the production of antibacterial volatile organic compounds (VOCs) by two Bacillus amyloliquefaciens strains SQR-9 and T-5 against the tomato wilt pathogen Ralstonia solanacearum (RS). Both strains could produce VOCs that inhibited the growth and virulence traits of RS; however, in the presence of BOFs, the production of antibacterial VOCs was significantly increased. The maximum inhibition of growth and virulence traits of RS by VOCs of T-5 and SQR-9 was determined at 1.5% BOF2 and 2% BOF3, respectively. In case of strain T-5, 2-nonanone, nonanal, xylene, benzothiazole, and butylated hydroxy toluene and in case of strain SQR-9, 2-nonanone, nonanal, xylene and 2-undecanone were the main antibacterial VOCs whose production was increased in the presence of BOFs. The results of this study reveal another significance of using organic fertilizers to improve the antagonistic activity of biocontrol agents against phytopathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Science.gov (United States)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  10. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  11. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-03-01

    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  12. Alteraciones hematológicas en trabajadores expuestos ocupacionalmente a mezcla de benceno- tolueno-xileno (BTX en una fábrica de pinturas Blood disorders among workers exposed to a mixture of benzene-toluene-xylene (BTX in a paint factory

    Directory of Open Access Journals (Sweden)

    Luis Haro-García

    2012-06-01

    Full Text Available Objetivos. Evaluar las tres series celulares sanguíneas e identificar la presencia de hipocromía, macrocitosis, leucopenia, linfocitopenia y trombocitopenia en un grupo de trabajadores expuestos a la mezcla de benceno-tolueno-xileno (BTX. Materiales y métodos. Estudio transversal donde se incluyó a 97 trabajadores de una empresa de pinturas de México a los que se les realizó una biometría hemática convencional y les fue estimada la exposición a través de la dosis diaria potencial acumulada para vapores de BTX. Resultados. Del total de trabajadores, 19,6%, mostró macrocitosis, 18,6%, linfocitopenia, 10,3% hipocromía, 7,2% trombocitopenia y 5,2% leucopenia. La asociación cruda de macrocitosis con exposición a dosis alta de mezcla de BTX fue la única significativa (OR:3,6; IC95%: 1,08 - 13,9; p=0,02 y en la que se estructuró un modelo de regresión logística (OR:6,7; IC95%: 1,33 - 13,55; p:0,02 ajustada por edad, consumo de alcohol y tabaquismo. Conclusiones. Todos los componentes citohemáticos analizados mostraron cambios leves; que podrían estar asociados con la exposición a la mezcla de BTX. De ellos, la macrocitosis podría constituirse en una manifestación precoz que merece ser vigilada.Objectives. Evaluate the three blood cell series and identify the presence of hypochromia, macrocytosis, leucopenia, lymphopenia, and thrombocytopenia in a group of workers exposed to the mixture of benzene-toluene-xylene (BTX. Materials and methods. A cross-sectional study which included 97 workers from a paint factory in Mexico. The participants underwent conventional blood count and tests for potential cumulative daily dose of BTX fumes, to estimate exposure. Results. From the total of workers, 19.6% showed macrocytosis, 18.6%, lymphopenia, hypochromia 10.3%, 7.2% and 5.2% thrombocytopenia leukopenia. The crude association of macrocytosis with exposure to high doses of BTX mixture was the only with statistical significance (OR: 3.6, 95

  13. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 4 Table 4 to Subpart RRRR of Part 63—Default Organic HAP Mass... Average organic HAP mass fraction Typical organic percent HAP, by mass Aliphatic 2 0.03 1% Xylene, 1...

  14. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Large Appliances Pt. 63, Subpt. NNNN, Table 4 Table 4 to Subpart NNNN of Part 63—Default Organic HAP... type Average organic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1% Xylene...

  15. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 7 Table 7 to Subpart KKKK of Part 63—Default Organic HAP Mass... Averageorganic HAP mass fraction Typicalorganic HAP, percent by mass Aliphatic b 0.03 1% Xylene, 1% toluene, and...

  16. Characterization of acid tar waste from benzol purification | Danha ...

    African Journals Online (AJOL)

    The use of concentrated sulphuric acid to purify benzene, toluene and xylene produces acidic waste known as acid tar. The characterization of the acid tar to determine the composition and physical properties to device a way to use the waste was done. There were three acid tars two from benzene (B acid tar), toluene and ...

  17. Assessing the adsorption selectivity of linker functionalized, moisture-stable metal-organic framework thin films by means of an environment-controlled quartz crystal microbalance.

    Science.gov (United States)

    Bétard, Angélique; Wannapaiboon, Suttipong; Fischer, Roland A

    2012-11-04

    The stepwise thin film deposition of the robust, hydrophobic [Zn(4)O(dmcapz)(3)](n) (dmcapz = 3,5-dimethyl-4-carboxy-pyrazolato) is reported. The adsorption of small organic probe molecules, including alkanols, toluene, aniline and xylenes, was monitored by an environment-controlled quartz crystal microbalance setup. The adsorption selectivity was tuned by introducing alkyl side chains in the dmcapz linker.

  18. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein

    DEFF Research Database (Denmark)

    Schuh, K.; Kleist, W.; Høj, Martin

    2014-01-01

    Flame spray pyrolysis (FSP) of Bi(III)-and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides alpha-Bi2Mo3O12 and gamma-Bi2MoO6, FSP gave direct access to the metastable beta-Bi2Mo2O9 phase with high surfa...

  19. Measurement of Activity Coefficients of Solvents in Poly ( ethylene oxide ) Using Gas-Chromatographic Method and Correlation by Polymer-ASOG; Poriechirenokishido chu no yobai katsuryo keisu no gasukuromatogurafu ho ni yoru sokutei to Polymer-ASOG ni yoru sokan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kurita, S.; Ohashi, M. [Yuki Gosei Kogyo Co. LTd., (Japan); Kojima, K. [Nihon University, Tokyo (Japan). Department of Industrial Chemistry

    1997-09-01

    Infinite dilution activity coefficients (353.15-393.15 K) of six solvents (benzene, toluene, p-xylene, cyclohexane, acetone and methylethylketone) and activity coefficient at finite concentrations (353.15 K, 373.15 K) of these solvents in poly (ethylene oxide) are measured using gas-chromatographic method. The experimental data are then correlated by a polymer-ASOG model. 18 refs., 2 figs., 3 tabs.

  20. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  1. Study on fluorescence-sensitization of 3 variations of scintillators in high speed autoradiography

    International Nuclear Information System (INIS)

    Wang Zhenli; Liu Guimin

    1993-01-01

    The sensitizing effects of POPOP, PBD and PPO were compared in 3 H-TdR incorporation experiment, 3 H-TdR low and high concentration twice labelling experiment and a cell migration tracer experiment. The results indicate that 7.5% PPO in xylene with an exposure time of 48 h is most satisfactory. The efficiency was increased for 15-20 times

  2. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    Science.gov (United States)

    2015-05-01

    the In Situ Sampler (IS2). The finished product provides an account of the theory, the engineering design process, and the first field data generated...38 Figure 27. Concentrations of ethylbenzene and isopropylbenzene reported in the demonstration well using samples...Realignment and Closure BTEX benzene, toluene, ethylbenzene , and xylenes CAS Chemical Abstract Service COTS commercial off-the-shelf DC direct

  3. Application of Advanced Sensor Technology to DoD Soil Vapor Intrusion Problems

    Science.gov (United States)

    2012-10-01

    Technical material contained in this report has been approved for public release. Mention of trade names or commercial products in this...found in a number of common household products (Agency for Toxic Substances and Disease Registry [ATSDR], 1997; Colorado Department of Public Health and...benzene, TCE, tetrachloroethylene (PCE), ethylbenzene and meta (m)-xylene, as well as several of their response patterns. a) b

  4. Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Bertelsen, Christian Vinther; Andersen, Niels Hessel

    2014-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors dissolved in xylene. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c...

  5. Determination of the gaseous emission of toxic substances in the Curva de Rodas sanitary landfill in Medellin

    International Nuclear Information System (INIS)

    Garcia Renteria, Francisco Fernando; Agudelo Garcia, Ruben Alberto

    2005-01-01

    Results of the investigation conducted at the sanitary landfill Curva de Rodas, aimed to determine the emission and migration of toxic substances are presented. Traces of benzene, toluene, hexane, vinyl chloride and xylene were found. Concentrations of these substances were, however, below threshold limits at the landfill and below detectable limits in the air of populated areas adjacent to the sanitary landfill

  6. Evaluation of volatile organic compound (VOC) blank data and application of study reporting levels to groundwater data collected for the California GAMA Priority Basin Project, May 2004 through September 2010

    Science.gov (United States)

    Fram, Miranda S.; Olsen, Lisa D.; Belitz, Kenneth

    2012-01-01

    Volatile organic compounds (VOCs) were analyzed in quality-control samples collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. From May 2004 through September 2010, a total of 2,026 groundwater samples, 211 field blanks, and 109 source-solution blanks were collected and analyzed for concentrations of 85 VOCs. Results from analyses of these field and source-solution blanks and of 2,411 laboratory instrument blanks during the same time period were used to assess the quality of data for the 2,026 groundwater samples. Eighteen VOCs were detected in field blanks or source-solution blanks: acetone, benzene, bromodichloromethane, 2-butanone, carbon disulfide, chloroform, 1,1-dichloroethene, dichloromethane, ethylbenzene, tetrachloroethene, styrene, tetrahydrofuran, toluene, trichloroethene, trichlorofluoromethane, 1,2,4-trimethylbenzene, m- and p-xylenes, and o-xylene. The objective of the evaluation of the VOC-blank data was to determine if study reporting levels (SRLs) were needed for any of the VOCs detected in blanks to ensure the quality of the data from groundwater samples. An SRL is equivalent to a raised reporting level that is used in place of the reporting level used by the analyzing laboratory [long‑term method detection level (LT-MDL) or laboratory reporting level (LRL)] to reduce the probability of reporting false-positive detections. Evaluation of VOC-blank data was done in three stages: (1) identification of a set of representative quality‑control field blanks (QCFBs) to be used for calculation of SRLs and identification of VOCs amenable to the SRL approach, (2) evaluation of potential sources of contamination to blanks and groundwater samples by VOCs detected in field blanks, and (3) selection of appropriate SRLs from among four potential SRLs for VOCs detected in field blanks and application of those SRLs to the groundwater data. An important conclusion from this study is that to ensure the

  7. A Novel Approach for Prediction of Industrial Catalyst Deactivation Using Soft Sensor Modeling

    Directory of Open Access Journals (Sweden)

    Hamed Gharehbaghi

    2016-06-01

    Full Text Available Soft sensors are used for fault detection and prediction of the process variables in chemical processing units, for which the online measurement is difficult. The present study addresses soft sensor design and identification for deactivation of zeolite catalyst in an industrial-scale fixed bed reactor based on the process data. The two main reactions are disproportionation (DP and transalkylation (TA, which change toluene and C9 aromatics into xylenes and benzene. Two models are considered based on the mass conservation around the reactor. The model parameters are estimated by data-based modeling (DBM philosophy and state dependent parameter (SDP method. In the SDP method, the parameters are assumed to be a function of the system states. The results show that the catalyst activity during the period under study has approximately a monotonic trend. Identification of the system clearly shows that the xylene concentration has a determining role in the conversion of reactions. The activation energies for both DP and TA reactions are found to be 43.8 and 18 kJ/mol, respectively. The model prediction is in good agreement with the observed industrial data.

  8. Anti-inflammatory and antipyretic activities of artesunate in experimental animals

    Directory of Open Access Journals (Sweden)

    Ette Ettebong

    2016-09-01

    Full Text Available Objective: To evaluate the anti-inflammatory and antipyretic potentials of artesunate in albino wistar mice and rats respectively. Methods: For the anti-inflammatory activity, artesunate (5 mg/kg was administered orally against egg albumin- and xylene-induced inflammation in mice using ibuprofen (50 mg/kg as standard drug. To assess antipyretic activity, artesunate (5 mg/kg was administered orally against amphetamine- and 2, 4-dinitrophenol-induced pyrexia in rats using ibuprofen (15 mg/ kg as standard drug. Results: The result showed that artesunate significantly (P < 0.001–0.010 reduced inflammation induced by egg albumin and xylene in a time-dependent manner. It also significantly (P < 0.001–0.050 and time-dependently reduced pyrexia induced by amphetamine and 2, 4-dinitrophenol. These reductions were similar to those produced by the standard drug ibuprofen, and thereby demonstrating that artesunate possesses antiinflammatory and antipyretic activities. Conclusions: These results further support the rationale for the use of artesunate in the treatment of malaria, a disease characterized by fever and inflammation and open up possibilities of its usefulness in other inflammatory and feverish diseases.

  9. Development of a Small, Inexpensive, and Field-deployable Gas Chromatograph for the Automated Collection, Separation, and Analysis of Gas-phase Organic Compounds

    Science.gov (United States)

    Skog, K.; Xiong, F.; Gentner, D. R.

    2017-12-01

    The identification and quantification of gas-phase organic compounds, like volatile organic compounds (VOCs), in the atmosphere relies on separation of complex mixtures and sensitive detection. Gas chromatography (GC) is widely applied, but relies on the need for high-purity compressed gases for separation and, often for detection. We have developed a low-cost, compact GC-based system for the collection and quantitative chemical speciation of complex mixtures of common atmospheric VOCs without the need for compressed high-purity gases or expensive detectors. We present results of lab and field testing against a commercially-available GC system. At optimized linear velocities challenging VOC pairs of similar volatility were resolved within 30 minutes, including n- and i-pentane; n-pentane and isoprene; and ethylbenzene and m/p-xylene. For 5-30 minute samples, we observe ppt-level detection limits for common VOCs such as benzene, toluene, ethylbenzene, xylenes, alpha-pinene, and limonene. We also present results of in-field use for VOC measurements. In all, this instrument is accurate, precise, small, and inexpensive (<$2500). Its lack of compressed gas cylinders make it ideal for field deployment and has been demonstrated to produce similar quality data to available GC technology.

  10. Effects of the organic solvents addition about crude oil rheological behavior from 'Reconcavo Baiano' (Brazil); Efeito da adicao de solventes organicos sobre o comportamento reologico do petroleo cru oriundo do 'Reconcavo Baiano' (Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Luis A.P. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Faculdade de Engenharia Quimica; Vieira, Jacyara M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Faculdade de Engenharia de Minas; Almeida, Yeda M.B.; Sarmento, Sandra M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    The crude oil rheological properties are quite important in its transport and refining processes. They can affect the head losses and, thus, the pressure within a refining unit. These properties can be affected by the temperature and the chemical composition as well as by solvents added to the crude oil. The current work studied the rheological behaviour of both a crude oil from the Reconcavo Baiano (Brazil) and mixture of this crude oil with organic solvents (toluene and xylene). The solvent type and concentration effects on the rheological parameters, were studied. The Brookfield viscometer, model LDVD-II, was used. The results brought to light that the crude oil and the crude oil-solvent mixtures behaved, discretely, as thixotropic fluids. The model of Herschel-Bulkley for viscoplastic fluid was the best in fitting the experimental data for both crude oil and crude oil - solvent mixture. The toluene was found to be more efficient in reducing both the apparent viscosity and apparent yield stress of the crude oil than the xylene for a given concentration. The solvent concentration affects indirectly the rheological properties of the crude oil. (author)

  11. Complexometric determination of trivalent rare earths and actinides with diethylene-triaminepentaacetic acid

    International Nuclear Information System (INIS)

    Timofeev, G.A.; Simakin, G.A.; Baklanova, P.F.; Kuznetsov, G.F.; Ivanov, V.I.

    1976-01-01

    Optimal conditions have been found for the separate quantitative determination of 200 to 500 mcg of trivalent Eu, La, Nd, Pr, Am and Cm by complexometric titration with diethylenetriaminepentaacetic acid. The final titration point (FTP) has been determined by using one of the following three methods, namely by visual inspection with the aid of xylene orange as an indicator, spectrophotometrically at pH 4.5-4.7 with xylene orange and potentiometrically at pH 4.0-5.5 through the backward titration of the excess complexone with the solution of Fe(3) in HNO 3 . The relative standard errors Ssub(r)=0.004 (Eu), 0.011 Cm with the visual indication of FTP; Ssub(r)=0.005 (Am) with the spectrophotometric indication of FTP; Ssub(r)=0.0O9 (Eu), 0.011 (Pr) and 0.02 (Am) with the potentiometric indication of FTP. Determination of trivalent lanthanides and actinoids is adversely affected by tetravalent actinoids, Zr, U(6), Hg(2) and Fe(3). Titration conditions chosen have been checked in the analysis of the mixture containing the sum of trivalent rare earths, Am and Cm [ru

  12. Strippable coating used for the TMI-2 reactor building decontamination

    International Nuclear Information System (INIS)

    Adams, J.W.; Dougherty, D.R.; Barletta, R.E.

    1984-01-01

    Strippable coating material used in the TMI-2 reactor building decontamination has been tested for Sr, Cs, and Co leachability, for radiation stability, thermal stability, and for resistance to biodegradation. It was also immersion tested in water, a water solution saturated with toluene and xylene, toluene, xylene, and liquid scintillation counting (LSC) cocktail. Leach testing resulted in all of the Cs and Co activity and most of the Sr activity being released from the coating in just a few days. Immersion resulted in swelling of the coating in all of the liquids tested. Gamma irradiation and heating of the coating did not produce any apparent physical changes in the coating to 1 x 10 8 rad and 100 0 C; however, gas generation of H 2 , CO, CO 2 was observed in both cases. Biodegradation of the coating occurred readily in soils as indicated by monitoring CO 2 produced from microbial respiration. These test results indicate that strippable coating radwaste would have to be stabilized to meet the requirements for Class B waste outlined in 10 CFR Part 61 and the NRC Draft Technical Position on Waste Form

  13. Computational Fluid Dynamics (CFD Analysis of Phthalic Anhydride’s Yield Using Lab Synthesized and Commercially Available (V2O5/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    A. Sarosh

    2018-04-01

    Full Text Available V2O5/TiO2 is an important catalyst used in many industrial reactions like selective oxidation of o-xylene to phthalic anhydride, selective catalytic reduction of NOx, selective oxidation of alkanes, etc. The partial oxidation of o-xylene to synthesize phthalic anhydride is an exothermic reaction and leaves hot spots on the catalyst’s surface. The yield of phthalic anhydride strongly depends on the activity and stability of the catalyst. In this work, a computational fluid dynamics (CFD analysis has been conducted to compare the yield of lab prepared catalyst with the commercially used catalyst. This work is first attempt to simulate V2O5/TiO2 catalyst for cracking heavy hydrocarbons in the petrochemical industry using k- ε turbulence and species transport models in CFD. The results obtained are in the form of scaled residuals, area-weighted average, and contours of pressure and temperature. Simulation results of lab synthesized and commercially used catalysts, applying finite volume method (FVM are compared, which emphasize the scope of CFD modeling in the catalytic cracking process of petrochemical industry.

  14. Study of gel formation in polypropylene modified by gamma irradiation; Estudo da formacao de geis em polipropileno modificado por irradiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, W.L.; Parra, D.F.; Fermino, D.M.; Lima, L.F.C.P.; Lugao, A.B., E-mail: washoliani@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2010-07-01

    The linearity of the chains of iPP (isotactic polypropylene) confers to this, low melt strength. This fact limits the use of iPP in processes that demand high stretching. The graft of branches confers improvements in its extensional viscosity, resulting in Polypropylene with High Melt Strength (HMS-PP). Preparation process of the HMS-PP, included iPP in pellets, conditioned in plastic container containing acetylene under pressure of 110 kPa and radiation with {gamma} source of {sup 60}Co in the doses of 5, 12.5 and 20 kGy. The gel fraction of the samples was determined by the extraction of soluble components in xylene under boiling for 12 hours at 138 deg C. The soluble part of the samples was decanted with the total volatilization of the xylene to the room temperature (25 deg C) and deposition in glass blades. These samples had been characterized by Optic Microscopy, Scanning Electron Microscopy and Infrared Spectroscopy. In this study of the morphology, we obtained the formation of gel and microgel of polypropylene with higher incidence in HMS-PP 20 kGy. (author)

  15. Tandem on-line continuous separations for atomic spectroscopic indirect analysis: iodide determination by ICP-AES

    International Nuclear Information System (INIS)

    Garcia, A.M.; Sanchez Uria, J.E.; Sanz-Medel, A.; Quintero Ortega, M.C.; Bautista, J.C.

    1992-01-01

    A sensitive and selective indirect determination of iodide by inductively coupled plasma emission spectrometry (ICP-AES) based on the principle of tandem on-line continuous separations as an alternative means of introducing samples into plasmas is proposed. Iodide is continuously extracted as an ion-pair into xylene by mixing the sample with Hg(II) and dipyridil solutions. The organic phase (containing the analyte in [Hg(Dipy) 2 ]I 2 form) is on-line continuously mixed with NaBH 4 (in DMF) and acetic acid solutions. Mercury vapour continuously generated from this organic phase is separated in a classical U-type gas-liquid separation device. The system has been optimized for the continuous extraction of KI, for the direct generation of cold mercury vapour from xylene and for the final ICP-AES determination of mercury. The optimised method has been applied to the determination of iodide (detection limit 20 ng/ml of iodide) in table salt and in synthetic samples. Very good agreement between found and certified results was observed. The usefulness and convenience of such alternative sample chemical pretreatment/presentation to the ICP is thus demonstrated for indirect determinations to be carried out by atomic spectroscopy methods. (authors)

  16. Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil

    Science.gov (United States)

    de Castro, Barbara Prestes; de Souza Machado, Gladson; Bauerfeldt, Glauco Favila; Nunes Fortes, Julio Domingos; Martins, Eduardo Monteiro

    2015-03-01

    In this work, the contribution of evaporative emissions from light passenger vehicles to the degradation of the air quality was investigated on the basis of the indoor quantification of the monoaromatic volatile compounds Benzene, Toluene, Ethylbenzene and Xylenes (BTEX), specifically, a confined shopping mall parking area in the northern zone of Rio de Janeiro, a site that represents the reality of the vehicular fleet of the Metropolitan Region of Rio de Janeiro. In order to evaluate the concentration of the BTEX compounds, samples were collected, by an active sampling system using charcoal cartridge as adsorbent. The samples were extracted with organic solvent and subsequently analyzed by gas chromatography-mass spectrometry (GCMS). The average results were 54.14 μg m-3 (benzene), 209.24 μg m-3 (toluene), 45.87 μg m-3 (ethylbenzene) and 118.93 μg m-3 (xylenes). These results are compared with results from the literature of vehicular emissions in confined spaces such as garages and tunnels. Possible correlations with emissions from moving vehicles, obtained from previous studies in a tunnel of large circulation and emissions obtained in other underground parkings, are also investigated. The results suggest different emission sources.

  17. Development of California Public Health Goals (PHGs) for chemicals in drinking water.

    Science.gov (United States)

    Howd, R A; Brown, J P; Morry, D W; Wang, Y Y; Bankowska, J; Budroe, J D; Campbell, M; DiBartolomeis, M J; Faust, J; Jowa, L; Lewis, D; Parker, T; Polakoff, J; Rice, D W; Salmon, A G; Tomar, R S; Fan, A M

    2000-01-01

    As part of a program for evaluation of environmental contaminants in drinking water, risk assessments are being conducted to develop Public Health Goals (PHGs) for chemicals in drinking water, based solely on public health considerations. California's Safe Drinking Water Act of 1996 mandated the development of PHGs for over 80 chemicals by 31 December 1999. The law allowed these levels to be set higher or lower than federal maximum contaminant levels (MCLs), including a level of zero if data are insufficient to determine a specific level. The estimated safe levels and toxicological rationale for the first 26 of these chemicals are described here. The chemicals include alachlor, antimony, benzo[a]pyrene, chlordane, copper, cyanide, dalapon, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-D, diethylhexylphthalate, dinoseb, endothall, ethylbenzene, fluoride, glyphosate, lead, nitrate, nitrite, oxamyl, pentachlorophenol, picloram, trichlorofluoromethane, trichlorotrifluoroethane, uranium and xylene(s). These risk assessments are to be considered by the State of California in revising and developing state MCLs for chemicals in drinking water (which must not exceed federal MCLs). The estimates are also notable for incorporation or consideration of newer guidelines and principles for risk assessment extrapolations.

  18. Studies on the recovery of 233U from phosphate containing aqueous waste using DBDECMP as extractant

    International Nuclear Information System (INIS)

    Sagar, V.B.; Oak, M.S.; Pawar, S.M.; Sivaramakrishnan, C.K.; Patil, S.K.

    1990-01-01

    A method for the recovery and purification of 233 U from phosphate containing analytical waste is developed. Extraction studies with Di-butyl N,N-diethylcarbamoylmethylphosphonate (DBDECMP) in xylene were carried out to explore the feasibility of separation and purification of 233 U from such wastes. Based on the data obtained, optimum conditions for the recovery of 233 U are suggested. (author) 11 refs.; 1 fig.; 3 tabs

  19. Extraction of plutonium from phosphate containing nitric acid solutions using DHDECMP as extractant (Preprint no. SSC-03)

    International Nuclear Information System (INIS)

    Sagar, V.B.; Pawar, S.M.; Joshi, A.R.; Kasar, U.M.; Sivaramkrishnan, C.K.

    1991-01-01

    Distribution data for the extraction of Pu(IV) by DHDECMP (Di-hexyl, N-N-diethylcarbamoylmethylphosphonate) in xylene from aqueous nitric acid and its mixtures with sulphuric acid and phosphoric acid were obtained to explore the feasibility of recovery of Pu(IV) from analytical waste generated in the laboratory. Based on the data obtained, conditions for recovery of plutonium are suggested. (author). 3 refs., 3 tabs

  20. Measurement of the stress affecting drivers and passengers induced by dust and vehicle exhausts of metropolitan traffic

    International Nuclear Information System (INIS)

    Roemmelt, H.; Hoeppe, P.; Praml, G.; Schierl, R.; Zielinsky, M.

    1993-01-01

    The metropolitan traffic stresses in like manner the bus driver and the passenger by raised concentrations of traffic emissions. We will determine quantitatively the concentrations of dust, dust adsorbed elements (lead, platinum, PAH's), anorganic noxious gases (carbon monoxide, nitrogen dioxide, sulfur dioxide) and the organic poisonous gases ( a.o. benzene, toluene, xylenes) in their distribution in place and time in buses and trams. (orig.) [de

  1. Fabrication and characterization of nanocomposites reinforced by carbon nanotubes - (1) synthesis of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hseuh Hsiangming; Tai Nyanhwa; Perng Tongping [Dept. of Material Science, National Tsing-Hwa Univ., TW (China); Chyou Sander [Taiwan Power Research Inst., Taiwan Power Co., Taipei (China)

    2003-07-01

    Multi-walled carbon nanotubes (MWCNTs) produced by floating catalyst method were used for reinforcing material in polymeric nanocomposites. Five different kinds of carbon sources (benzene, toluene, xylene, cyclo-hexane, n-hexane) were used as precursors in the thermal chemical vapor deposition process. The products were collected and examined by Raman, HRTEM, and FESEM. The differences in microstructure and morphologies among these products are analyzed and discussed. (orig.)

  2. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    Science.gov (United States)

    2011-12-01

    solutions include deactivated fused silica-lined tubing provided by Sigma-Aldrich. The internal wall of these tubes is covered by a thin layer of fused... Ser 809 S. Marshfield, RM 520, Chicago, IL 60612 USACE HUMPHREYS ENGR CTR SPT ACTIVITY Attn: CECT-HC 7701 Telegraph Road Alexandria, VA 22315...Model, m-Xylene Oxidation, Phenyl + Acetylene, Phenyl Pyrolysis, Gas Chromatography , Potential Energy Surface, Ab-Initio Calculations. None 133

  3. Female Reproductive Effects of Exposure to Jet Fuel at U.S. Air Force Bases

    Science.gov (United States)

    2001-05-01

    System of Tank Entry Workers" (See Appendix VI). James Kesner ( National Institute of Occupational Safety and Health) has received NIOSH support to evaluate...time employment at the Centers for Disease Control’s National Institutes for Occupational Safety and Health. Another doctoral quantitative... Neurasthenic symptoms in workers occupationally exposed to jet fuel. Acta Psychiat Scand 60:39-49 (1979). (29) Langman JM. Xylene: its toxicity

  4. Opioid Abuse after TBI

    Science.gov (United States)

    2015-09-01

    analysis. Cresyl violet histochemistry Cresyl violet histological processing of tissue stains Nissl substance, which is composed mostly of rough...dried overnight before staining . Sections were dehydrated through graded alcohol to xylene for two changes of 5 min each, and then rehydrated through...four minutes, followed by differentiation in 95% ethanol with 0.2% HCl for 14    five minutes. Differentiation was timed such that both Nissl

  5. Method for Processing Liver Spheroids Using an Automatic Tissue Processor

    Science.gov (United States)

    2016-05-01

    alcohol dehydration and hot liquid wax infiltration. After the water in the tissue is replaced with wax and cooled, it then becomes possible to cut...effective for processing and preparing microscopy slides of liver spheroids. The general process involved formalin fixation, dehydration in a...DPBS);  formalin (37% neutral buffer formaldehyde);  series of alcohol solutions: 70, 80, 95, and 100% ethanol in water; 2  xylene

  6. Asymmetric synthesis of a functionalized tricyclo[6.2.0.0 ]decane ring ...

    Indian Academy of Sciences (India)

    reaction mixture was again brought to −78. ◦. C and to ... cuprous triflate (10 mg) was added to the reaction mix- ture. .... propionic acid (0.2 mL) and xylene (5 mL) was heated in a sealed tube at ..... ous HCl was extracted with diethyl ether (2×3 mL). Removal of .... nesium bromide and DMP oxidation of the resulting carbinol.

  7. An analytical system for the measurement of stable hydrogen isotopes in ambient volatile organic compounds

    Science.gov (United States)

    Meisehen, T.; Bühler, F.; Koppmann, R.; Krebsbach, M.

    2015-10-01

    Stable isotope measurements in atmospheric volatile organic compounds (VOCs) are an excellent tool to analyse chemical and dynamical processes in the atmosphere. While up to now isotope studies of VOCs in ambient air have mainly focussed on carbon isotopes, we herein present a new measurement system to investigate hydrogen isotope ratios in atmospheric VOCs. This system, consisting of a gas chromatography pyrolysis isotope ratio mass spectrometer (GC-P-IRMS) and a pre-concentration system, was thoroughly characterised using a VOC test mixture. A precision of better than 9 ‰ (in δ 2H) is achieved for n-pentane, 2-methyl-1,3-butadiene (isoprene), n-heptane, 4-methyl-pentane-2-one (4-methyl-2-pentanone), methylbenzene (toluene), n-octane, ethylbenzene, m/p-xylene and 1,2,4-trimethylbenzene. A comparison with independent measurements via elemental analysis shows an accuracy of better than 9 ‰ for n-pentane, n-heptane, 4-methyl-2-pentanone, toluene and n-octane. Above a minimum required pre-concentrated compound mass the obtained δ 2H values are constant within the standard deviations. In addition, a remarkable influence of the pyrolysis process on the isotope ratios is found and discussed. Reliable measurements are only possible if the ceramic tube used for the pyrolysis is sufficiently conditioned, i.e. the inner surface is covered with a carbon layer. It is essential to verify this conditioning regularly and to renew it if required. Furthermore, influences of a necessary H3+ correction and the pyrolysis temperature on the isotope ratios are discussed. Finally, the applicability to measure hydrogen isotope ratios in VOCs at ambient levels is demonstrated with measurements of outside air on 5 different days in February and March 2015. The measured hydrogen isotope ratios range from -136 to -105 ‰ forn-pentane, from -86 to -63 ‰ for toluene, from -39 to -15 ‰ for ethylbenzene, from -99 to -68 ‰ for m/p-xylene and from -45 to -34 ‰ for o-xylene.

  8. Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets

    Science.gov (United States)

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2011-09-01

    Exposures to volatile organic compounds (VOCs) are ubiquitous due to emissions from personal, commercial and industrial products, but quantitative and representative information regarding long term exposure trends is lacking. This study characterizes trends from 1988 to 2004 for the 15 VOCs measured in blood in five cohorts of the National Health and Nutrition Examination Survey (NHANES), a large and representative sample of U.S. adults. Trends were evaluated at various percentiles using linear quantile regression (QR) models, which were adjusted for solvent-related occupations and cotinine levels. Most VOCs showed decreasing trends at all quantiles, e.g., median exposures declined by 2.5 (m,p-xylene) to 6.4 (tetrachloroethene) percent per year over the 15 year period. Trends varied by VOC and quantile, and were grouped into three patterns: similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper quantiles (ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, tetrachloroethene); and fastest declines at central quantiles (1,4-dichlorobenzene). These patterns reflect changes in exposure sources, e.g., upper-percentile exposures may result mostly from occupational exposure, while lower percentile exposures arise from general environmental sources. Both VOC emissions aggregated at the national level and VOC concentrations measured in ambient air also have declined substantially over the study period and are supportive of the exposure trends, although the NHANES data suggest the importance of indoor sources and personal activities on VOC exposures. While piecewise QR models suggest that exposures of several VOCs decreased little or any during the 1990's, followed by more rapid decreases from 1999 to 2004, questions are raised concerning the reliability of VOC data in several of the NHANES cohorts and its applicability as an exposure indicator, as demonstrated by the modest correlation between VOC levels in blood and personal air

  9. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].

    Science.gov (United States)

    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong

    2013-12-01

    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality

  10. Descrição do padrão de venação foliar em Spathicarpa Hook. (Araceae Description of leaf venation pattern in Spathicarpa Hook. (Araceae

    Directory of Open Access Journals (Sweden)

    Luciano Coêlho Milhomens Fonsêca

    2007-03-01

    tool for taxonomic recognition of Spathicarpa Hook. species. In general, the leaf clearing technique initially involved placing leaves in 70% ethyl alcohol with commercial detergent, sodium hydroxide (5% and sodium hypochloride for clearing and whitening, respectively. The leaves were then run through an ethanol dehydration series (10 to 100% and through a xylene series (xylene-ethanol 100% 1:1 and xylene. Lastly, leaves were died with safranin and again placed in xylene-ethanol 100% 1:1 to differentiate. Of the four species, only Spathicarpa lanceolata Engl. presented diagnostic vegetative characteristics. It was not possible to distinguish amongst the other species based only on leaf architecture.

  11. Biotransformation of citrinin to decarboxycitrinin using an organic solvent-tolerant marine bacterium, Moraxella sp. (MB1)

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Naik, C.G.; Rodrigues, C.

    and Bhosle, 2003), are reported to grow in media containing various amounts of organic solvents (cyclohexane, p-xylene, 1-octanol, toluene, 1-heptanol, benzene etc.). These bacteria have mechanisms available to cope with the deleterious effects..., when compared to their chemical counterparts, offer the advantages of high selectivity and mild operating conditions. For example esterases are being increasingly recognized as useful for stereospecific manipulation of esters (Cornec et al., 1998...

  12. Fort Devens Feasibility Study for Group 1A Sites. Final Feasibility Study Shepley’s Hill Landfill Operable Unit Data Item A009

    Science.gov (United States)

    1995-02-01

    WELL LOCATIONS MONITORING PARAMETERS SHL-3 Volatile Organic Compounds SHL-4 USEPA Method 624 plus acetone, 2-butanone, 2- methyl pentanone, and xylenes...pines ( Pinus strobus) in addition to red maple (Acer rubrum). The understory in this area contains american hazelnut, cinnamon fern, and3 clubmoss...NAME STATUS* Trees URed Maple Acer rubrum FAC Gray Birch Betula populifolia FAG Green Ash Fraxinus pennsylvanica FACW` Red Pine Pinus resinosa FACU White

  13. Study by dynamic light scattering of an o/w emulsion of an epoxi resin dispersed in water by means of a triblock copolymer of type PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Uscanga, E. H.; Rio, J. M. del; Avendano-Gomez, J. R.

    2009-01-01

    The curing epoxy resins are widely used in various fields of chemical industry, such as adhesives, automotive, coatings, etc. The process operation consisting of flow and mixing of epoxy resins become difficult due to their high viscosity. One solution is to dissolve the epoxy resin in volatile organic solvents (VOS) such as toluene, xylene or benzene. However, the use of VOS is not only expensive but harmful to the environment. (Author)

  14. Improved Method for the Synthesis of New 1,5-Benzothiazepine Derivatives as Analogues of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    L. Prakash

    1997-09-01

    Full Text Available (±cis-2-(4-Methoxyphenyl-3-hydroxy/methoxy-2,3-dihydro-1,5-benzothiazepin-4[5H/5-chloroacetyl/5-(4'-methylpiperazino-1'acetyl]-ones have been synthesized by the condensation of 2-aminobenzene thiols with methyl(±trans-3-(4-methoxyphenylglycidate in xylene. The synthesized compounds have been characterized by elemental analyses and spectral data and screened for their antimicrobial activity.

  15. Technical Guide for Indoor Air Quality Surveys

    Science.gov (United States)

    2014-07-24

    concern [18]. Other VOCs commonly found in the workplace are heavy alkanes (7 to 11 carbons in a hydrocarbon chain), aromatics (toluene, xylene...leave data from civilian timekeepers and subtracting out sick leave obviously unrelated to the building, such as pregnancy , injury, or alcohol abuse...outbrief, call or visit the building and talk to the individuals who were noted to have symptoms or conditions that may be related to the workplace

  16. Cell surface hydrophobicity of dental plaque microorganisms in situ.

    OpenAIRE

    Rosenberg, M; Judes, H; Weiss, E

    1983-01-01

    The cell surface hydrophobicity of bacteria obtained directly from human tooth surfaces was assayed by measuring their adherence to liquid hydrocarbons. Fresh samples of supragingival dental plaque were washed and dispersed in buffer. Adherence of the plaque microorganisms to hexadecane, octane, and xylene was tested turbidimetrically and by direct microscopic observation. The results clearly show that the vast majority of bacteria comprising dental plaque exhibit pronounced cell surface hydr...

  17. Temperature Dependence of the Inhibition of Positronium by Chlorine- Substituted Hydrocarbons in Non-Polar Liquids

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O.E.; Pedersen, Niels Jørgen

    1984-01-01

    Positron annihilation lifetime spectra were measured for solutions of 1,2,3,5-C6H2Cl4 in hexane, toluene, m-xylene and mesitylene, CCl4 in hexane and toluene, and C2HCl3 in n-hexane for concentrations below 1 M and at various temperatures between −30°C and 67°C. The Ps inhibition by C6H2Cl4 was r...

  18. Studies on Hydrogenation of Liquid Natural Rubber Using Diimide

    Directory of Open Access Journals (Sweden)

    Nur Hanis Adila Azhar

    2015-01-01

    Full Text Available Liquid natural rubber (LNR is a depolymerized natural rubber (NR which consists of shorter polymeric chains and lower molecular weight (Mw90% was achieved by manipulating the reaction parameters such as sources of diimide, TSH concentration, solvent, and reaction time. The optimum condition was 3 : 1 weight ratio of TSH/LNR in o-xylene at 130°C in 4-hour reaction period.

  19. Generation and Cycloaddition of o-Quinodimethane in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Margarete F. da Silva

    2001-04-01

    Full Text Available o-Quinodimethane can be generated from =α,α'-dihalo-o-xylenes using zinc in aqueous solution. In the presence of activated dienophiles cycloadducts can be obtained directly. Catalysis with tris-triphenylphosphine ruthenium(II dichloride reduces side reactions such as reduction and polymerisation and improves the yield. This is the first example of an organometallic cyclisation in aqueous medium using dihalo compounds.

  20. The Hour of Truth: The Conflict in Ukraine - Implications for Europe’s Energy Security and the Lessons for the U.S. Army

    Science.gov (United States)

    2015-11-01

    pollution. Hydraulic fracturing ( fracking ) is alleged to produce aromatic compounds such as ben- zene and xylene, which allegedly has been the case in... Hydraulic Fracturing. The main problems for the EU when it comes to developing its own shale gas resources are the lack of natural resources legislation...States. Furthermore, it suffers from the lack of public understanding of and education about shale gas production and hydraulic fracturing safety, from

  1. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature.

    Science.gov (United States)

    Bhunia, Subhajit; Banerjee, Biplab; Bhaumik, Asim

    2015-03-25

    We have designed a new hypercrosslinked supermicroporous polymer (HMP-1) with a BET surface area of 913 m(2) g(-1) by FeCl3 via a catalyzed Friedel-Crafts alkylation reaction between carbazole and α,α'-dibromo-p-xylene. Upon sulfonation HMP-1 yielded a very efficient solid acid catalyst for the production of biodiesels via esterification/transesterification of free fatty acids (FFA)/esters at room temperature.

  2. A Meta-Analysis Of Corrosion Studies for Maritime Patrol and Reconnaissance Aircraft (MPRA)

    Science.gov (United States)

    2016-09-01

    performed onsite. Aircraft rating was based upon the presence and/or extent of paint adhesion, paint cracking , clean ability, fluid damage, oxidation...because of corrosion control maintenance. No significant issues were observed related to paint cracking , fluid damage, corrosion, and clean ability of...HEXAMETHYLENEDIISOCYANATE 822-06-0 83194 X-310A; POLYURETHANE CATALYST XYLENE 1330-20-7 82649 X-530; HS EPOXY ENAMEL CURING SOLUTION BUTANOL 71-36-3

  3. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  4. Surfactant use with nitrate-based bioremediation

    International Nuclear Information System (INIS)

    Wilson, B.H.; Hutchins, S.R.; West, C.C.

    1995-01-01

    This study presents results of an initial survey on the effect of six surfactants on the biodegradation of petroleum hydrocarbons in bioremediation applications using nitrate as the electron acceptor. Aquifer material from Park City, Kansas, was used for the study. The three atomic surfactants chosen were Steol CS-330, Dowfax 8390 and sodium dodecylbenzene sulfonate (SDBS); the three nonionic surfactants were T-MAZ-60, Triton X-100, and Igepal CO-660. Both Steol CS-330 and T-MAZ-60 biodegraded under denitrifying conditions. The Steol inhibited biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEXTMB). Only toluene was rapidly degraded in the presence of T-MAZ-60. Biodegradation of all compounds, including toluene, appears to be inhibited by Dowfax 8390 and SDBS. No biodegradation of Dowfax 8390 or SDBS was observed. SDBS inhibited denitrification, but Dowfax 8390 did not. For the microcosms containing Triton X-100 or Igepal CO-660, removal of toluene, ethylbenzene, m-xylene, 1,3,5-TMB, and 1,2,4-TMB were similar to their removals in the no-surfactant treatment. These two surfactants did not biodegrade, did not inhibit biodegradation of the alkylbenzenes, and did not inhibit denitrification. Further studies are continuing with aquifer material from Eglin Air Force Base

  5. Investigation on the anti- inflammatory and analgesic effects of Olea europaea L. metanolic extract on male NMRI mouse

    Directory of Open Access Journals (Sweden)

    Elaheh Tekye

    2012-04-01

    Full Text Available Background: Different mediators are involved in pain and edema induction during different stages of inflammation. Then, treatment of them encounters some difficulties. Medicinal plants are an important source of substances which are claimed to induce anti-inflammatory effects. This study was aimed to investigate anti-inflammatory and analgesic effects of Olea europaea L.methanolic extract on male NMRI mouse. Methods: Methanolic extraction was done for leaf of Olea europaea L. and different doses (200, 300 and 400 mg/kg were intraperitoneally (i.p. adminstered to male NMRI mice. Analgesic and anti-inflammatory effects of extract was measured during both phases of Formalin test, Acetic acid induced visceral pain and xylene inflammation tests. A standard analgesic and anti-inflammatory drug such as indomethacin, dexamethasone and morphine were administered in positive control groups where appropriates. Results: Results indicated significant dose-dependent analgesic and anti-inflammatory effects of methanolic extract of Olea europaea L. leaf on pain which induced by formalin (both phase and acetic acid, and inflammation caused by xylene. Conclusion: Our findings Showed that administration of methanolic extract of Olea europaea L.leaf can suppress pain and inflammation dose dependently which, may mediate via different components of extract. However, more investigations need to be done.

  6. Secondary organic aerosol formation from phenolic compounds in the absence of NOx

    Directory of Open Access Journals (Sweden)

    D. Cocker III

    2011-10-01

    Full Text Available SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C indicating that applying constant density (e.g., 1.4 g cm−3 to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.

  7. Bioremediation potential of toxics by manipulation of deep terrestrial subsurface ecosystems

    International Nuclear Information System (INIS)

    Phelps, T.J.

    1990-01-01

    Mixed physiological types of bacteria in consortia recovered from subsurface contaminated sediments degrade mixed organic wastes containing carbon-rich (benzene, xylene, toluene) and halogenated hydrocarbon substrates (chlorobenzene, trichloroethylene, dichloroethylenes, vinyl chloride) in column bioreactors when provided with oxygen and methane and/or propane substrates. In expanded bed bioreactors degradation proceeds to 99% completion for several organic and chlorocarbon contaminants (60% for tetrachloroethylene) to carbon dioxide on repeated cycles in 21 days with little loss of volatiles in the control bioreactor except for a 70% loss of vinyl chloride in the control. Biodegradation is most efficient when the microbial consortia is maintained in a suboptimal nutritional state which can be monitored by ratios of endogenous storage lipid (poly beta-hydroxy alkanoic acid, PHA) to total phospholipid ester-linked fatty acids (PLFA). Under the best conditions the efficiency of biodegradation was 50-65 moles substrate (propane or propane + methane)/mole of TEC degraded. The microbial communities showed a rich diversity of microbes based on PLFA biomarkers. The effects of adding methane and/or propane in inducing specific subsets of the microbial community can readily be detected in the PLFA biomarker. Despite the presence of carbon rich substrates (benzene, toluene, xylene) in the mixed wastes, no evidence of plugging of interstitial spaces by exopolysaccharide was detected

  8. Application of new least-squares methods for the quantitative infrared analysis of multicomponent samples

    International Nuclear Information System (INIS)

    Haaland, D.M.; Easterling, R.G.

    1982-01-01

    Improvements have been made in previous least-squares regression analyses of infrared spectra for the quantitative estimation of concentrations of multicomponent mixtures. Spectral baselines are fitted by least-squares methods, and overlapping spectral features are accounted for in the fitting procedure. Selection of peaks above a threshold value reduces computation time and data storage requirements. Four weighted least-squares methods incorporating different baseline assumptions were investigated using FT-IR spectra of the three pure xylene isomers and their mixtures. By fitting only regions of the spectra that follow Beer's Law, accurate results can be obtained using three of the fitting methods even when baselines are not corrected to zero. Accurate results can also be obtained using one of the fits even in the presence of Beer's Law deviations. This is a consequence of pooling the weighted results for each spectral peak such that the greatest weighting is automatically given to those peaks that adhere to Beer's Law. It has been shown with the xylene spectra that semiquantitative results can be obtained even when all the major components are not known or when expected components are not present. This improvement over previous methods greatly expands the utility of quantitative least-squares analyses

  9. Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions.

    Science.gov (United States)

    Carvajal, Andrea; Akmirza, Ilker; Navia, Daniel; Pérez, Rebeca; Muñoz, Raúl; Lebrero, Raquel

    2018-05-15

    Anoxic mineralization of BTEX represents a promising alternative for their abatement from O 2 -deprived emissions. However, the kinetics of anoxic BTEX biodegradation and the interactions underlying the treatment of BTEX mixtures are still unknown. An activated sludge inoculum was used for the anoxic abatement of single, dual and quaternary BTEX mixtures, being acclimated prior performing the biodegradation kinetic tests. The Monod model and a Modified Gompertz model were then used for the estimation of the biodegradation kinetic parameters. Results showed that both toluene and ethylbenzene are readily biodegradable under anoxic conditions, whereas the accumulation of toxic metabolites resulted in partial xylene and benzene degradation when present both as single components or in mixtures. Moreover, the supplementation of an additional pollutant always resulted in an inhibitory competition, with xylene inducing the highest degree of inhibition. The Modified Gompertz model provided an accurate fitting for the experimental data for single and dual substrate experiments, satisfactorily representing the antagonistic pollutant interactions. Finally, microbial analysis suggested that the degradation of the most biodegradable compounds required a lower microbial specialization and diversity, while the presence of the recalcitrant compounds resulted in the selection of a specific group of microorganisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  11. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    Science.gov (United States)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  12. Matrix perdeuteration effects on the 3ππ→S0 phosphorescence of p-chlorobenzaldehyde at 4.2degreeK. I. Phenomenology

    International Nuclear Information System (INIS)

    Khalil, O.S.; Goodman, L.

    1976-01-01

    The effect of matrix perdeuteration and variation of cooling rate on the phosphorescence vibrational structure of p-chlorobenzaldehyde (PCB) are studied in methylcyclohexane (MCH) and p-xylene. PCB shows very different phosphorescence spectra in slowly cooled MCH-h 14 and MCH-d 14 , generally broad spectra in fast cooled samples, and a mixture of the two phosphorescences (observed in the slow cooled sample) in intermediate cooled MCH-d 14 . In p-xylene, no change in the phosphorescence vibrational structure is observed on matrix perdeuteration. These observations are interpreted by postulating two crystalline modifications for methylcyclohexane, one of them stable in slowly cooled MCH-h 14 , the other stable in slowly cooled MCH-d 14 . The spectra of PCB is different in the two modifications. The anomalous response of the PCB phosphorescence vibrational structure to the crystalline modifications of MCH is indicative of a large degree of distortability in its 3 ππ* state. The distortability is interpreted as originating from vibrational--electronic interactions between the closely spaced 3 ππ*-- 3 nπ* states. Support for this view is found in the phosphorescence spectra of various deuterated derivatives of PCB in perprotonated and perdeuterated MCH. The apparent distortability of the emitting state varies with the extent of deuteration

  13. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    Science.gov (United States)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  14. Técnica Alternativa para Montagem de Insetos em Lâminas Permanentes para Visualização em Microscopia Óptica

    Directory of Open Access Journals (Sweden)

    Franziska Huber

    2011-03-01

    Abstract. Various chemicals are used in the mounting of insects on permanent slides for optical microscopy. The high cost, little availability in ordinary commerce and the dangers make their use impractical for some studies. Among the various chemicals used for the microscopic mounting of insects are Xylene, Canada Balsam, Hydroxide Potassium, Alcohols, Phenol and Creosote. All these chemicals present, individually or collectively, some risks to human health. In order to find alternative materials of easy access and low toxicity, for the permanent mout of insects, this study tested the efficacy of some alternatives materials. Were tested: Colorless varnish (Acrilex ® as a substitute for Canada balsam and solvent (Acrilex ®, Immersion Oil for microscopy (Merck ® and Xylene as substitutes for creosote. There were mounted especimens of Ctenocephalides sp., Aedes aegypti (Linnaeus and Pediculus sp.. The use of Varnish Colorless proved to be an efficient and cheap substitute to Canada Balsam because it offered transparency, optimal visualization, and rapid drying. The immersion oil might be used instead of Creosote, both mounted in Balsam, as in varnish. The last combination was more advantageous due to rapid drying of the varnish. Solvent did not get good results appearing to damage insect chitin, an effect observed especially when combined with the varnish.

  15. Anti-Inflammatory Activity of Polysaccharide Fraction of Curcuma longa Extract (NR-INF-02).

    Science.gov (United States)

    Illuri, Ramanaiah; Bethapudi, Bharathi; Anandakumar, Senthilkumar; Murugan, Sasikumar; Joseph, Joshua A; Mundkinajeddu, Deepak; Agarwal, Amit; Chandrasekaran, C V

    2015-01-01

    The aim of the study was to investigate the safety and anti-inflammatory effects of polysaccharide fraction (F1) of Curcuma longa extract (NR-INF-02) in classical rodent models of inflammation. F1 was evaluated for its acute oral toxicity and found to be safe upto 5000 mg/kg body weight in rats. The anti-inflammatory activity of F1 was evaluated in acute (carrageenan - induced paw edema; xylene - induced ear edema) and chronic (cotton pellet - induced granuloma) models of inflammation. The results of the study demonstrated that F1 significantly (p ≤ 0.05) inhibited carrageenan-induced paw edema at 1 h and 3 h at doses of 11.25, 22.5 and 45 mg/kg body weight in rats. Also, F1 at doses of 15.75, 31.5 and 63 mg/kg significantly inhibited the xylene induced ear edema in mice. In a chronic model, F1 at 11.25, 22.5 and 45 mg/kg doses produced significant reduction of wet and dry weights of cotton pellets in rats. Overall results indicated that F1 of NR-INF-02 significantly attenuated acute and chronic inflammation in rodent models. This study emphasizes on the importance of Curcuma longa polysaccharide's role in acute and chronic inflammation.

  16. Multicomponent Matrimid Membrane for Gas Separation

    KAUST Repository

    Irerua, Olayinka

    2012-07-01

    Matrimid was utilized for the preparation of membranes with asymmetric structures. A combination of well-known solvents for Matrimid which include 1- methyl-2-Pyrrolidone (NMP), tetrahydrofuran (THF), dichloromethane, tetrachloroethane as well as non-solvents n-butanol, xylene, and acetic acid were used. Cast solutions were prepared at room temperature for different combinations and compositions of polymer/solvent/non-solvent systems. PEG and Octa-(amino phenyl) POSS were introduced in some of the cast solutions. The membranes obtained were characterized by permeation test for gas permeabilities and selectivities, Scanning Electron Microscopy (SEM) and Nuclear Magnetic Resonance (NMR) Spectroscopy. The gas permeation test showed that the use of mixture of dichloromethane and tetrachloroethane as solvents with xylene non-solvent and acetic acid as stabilizer gave membranes with very high gas selectivity of 133 for CO2/N2 and 492 for CO2/CH4. Also, cast solutions containing PEG resulted in membranes with slightly enhanced selectivities from 30 to 42 for CO2/N2. Permeation results for CO2, N2 and H2 and the selectivities for gas pairs such as CO2/N2, CO2/CH4, are discussed in relation to the effect of pressure on the membrane permeance, they are also compared with existing results.

  17. Is Traffic Still an Important Emitter of Monoaromatic Organic Compounds in European Urban Areas?

    Science.gov (United States)

    Borbon, Agnès; Boynard, Anne; Salameh, Thérèse; Baudic, Alexia; Gros, Valérie; Gauduin, Julie; Perrussel, Olivier; Pallares, Cyril

    2018-01-16

    Trends of long-term observations and emission inventories suggest that traffic emissions will no longer dominate the concentrations of monoaromatic compounds (i.e., TEX - toluene, xylenes, and ethylbenzene) in European urban areas. But the split limit between traffic and other emission sector contributions such as solvent use remains tenuous. Here long-term observations of an extensive set of hydrocarbons, including TEX, at traffic and urban background sites in London, Paris and Strasbourg were combined to estimate the relative importance of traffic emissions on TEX in every city. When analyzing the urban enhancement emission ratios of TEX-to-benzene on a seasonal basis, two potential source signatures other than traffic could be differentiated in all cities (1) summertime evaporation from fuel and/or solvent and (2) wintertime domestic heating. However, traffic emissions still unambiguously dominate the concentration levels of TEX in every city despite the reduction of their emissions at exhaust pipe over the last two decades. Traffic explains between 60% and 96% (at ±20%) of TEX levels while it is less clear for xylenes at some locations. Our results provide a basis to evaluate regional emission inventories. The method is applicable at any urban area where speciated hydrocarbon monitoring is available.

  18. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene.

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Sen Zhao; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-15

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  19. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  20. Radiochemical separation and ICP-AES determination of some common metallic elements in ThO2 matrix

    International Nuclear Information System (INIS)

    Adya, V.C.; Hon, N.S.; Bangia, T.R.; Sastry, M.D.; Iyer, R.H.

    1997-01-01

    Radioactive tracer and also ICP-AES studies have been carried out to determine Al, Cd, Ca, Cr, Co, Cu, Mn, Mo and Pd in ThO 2 matrix after chemical separation. Di-2-ethyl-hexyl phosphoric acid/xylene/HNO 3 extraction system was used for quantitative separation of thorium. The recovery of elements as determined by tracers and ICP-AES was found to be quantitative within experimental error. (author). 3 refs., 1 tab