WorldWideScience

Sample records for x-ray emission spectroscopy

  1. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  2. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  3. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  4. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    Science.gov (United States)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  5. Hard X-ray emission spectroscopy with pink beam

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Rossberg, Andre; Exner, Joerg; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    Valence-band X-ray emission spectroscopy (XES) with a ''pink beam'', i.e. a beam with large energy bandwidth produced by a double-multilayer monochromator, is introduced here to overcome the weak count rate of monochromatic beams produced by conventional double-crystal monochromators. Our results demonstrate that - in spite of the large bandwidth in the order of 100 eV - the high spectral resolution of the Johann-type spectrometer is maintained, while the two orders of magnitude higher flux greatly reduces the required counting time. The short working distance Johann-type X-ray emission spectrometer and multilayer monochromator is available at ROBL.

  6. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  7. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  8. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  9. X-ray Emission Line Spectroscopy of Nearby Galaxies

    Science.gov (United States)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  10. Resonant X-ray emission spectroscopy in Dy compounds

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Okada, Kozo; Kotani, Akio.

    1994-01-01

    The excitation spectrum of the L 3 -M 5 X-ray emission of Dy compounds in the pre-edge region of Dy L 3 X-ray absorption near edge structure (L 3 -XANES) is theoretically investigated based upon the coherent second order optical formula with multiplet coupling effects. The spectral broadening of the excitation spectrum is determined by the M 5 core hole lifetime, being free from the L 3 core hole lifetime. The fine pre-edge structure of the L 3 edge due to the 2p→4f quadrupole transition can be seen in the excitation spectrum, while this structure is invisible in the conventional XANES, in agreement with the recent experimental results. We clarify the conditions for the excitation spectrum to be regarded as the absorption spectrum with a smaller width. The resonant X-ray emission spectra for various incident photon energies around the L 3 edge are also calculated. (author)

  11. Resonant soft X-ray emission spectroscopy of liquids

    International Nuclear Information System (INIS)

    Guo, J.-H.; Augustsson, A.; Englund, C.-J.; Nordgren, J.

    2004-01-01

    We present now a possible way to carry out soft-x-ray fluorescence spectroscopy of liquids. The liquid cell has a window to attain compatibility with UHV conditions of the spectrometer and beamline. The synchrotron radiation enters the liquid cell through a 100nm-thick silicon nitride window and the emitted x-rays exit through the same window. This allows in particular liquid solid interfaces to be studied. Such a liquid cell has been used to study the electronic structure of a variety of systems ranging from water solutions of inorganic salts and inertial drugs to nano materials and actinide compounds in their wet conditions

  12. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  13. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  14. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  15. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  16. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  17. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  18. NuSTAR Hard X-ray Survey of the Galactic Center Region. I. Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    DEFF Research Database (Denmark)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman

    2015-01-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). Nu...

  19. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  20. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  1. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations...... and more subtle features at the highest energies reflect changes in the frontier orbital populations....

  2. Soft X-ray synchrotron radiation investigations of actinide materials systems utilizing X-ray emission spectroscopy and resonant inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-01

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies

  3. Soft X-ray emission spectroscopy of liquids and lithium battery materials

    International Nuclear Information System (INIS)

    Augustsson, Andreas

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  4. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  5. X-ray emission spectroscopy of well-characterised non-LTE plasmas

    International Nuclear Information System (INIS)

    Bourgaux, A C; Bastiani-Ceccotti, S; Audebert, P; Marquès, J R; Vassura, L; Vinci, T; Jacquemot, S; Dorchies, F; Leguay, P M; Chung, H K; Bowen, C; Dervieux, V; Renaudin, P; Silvert, V

    2016-01-01

    This paper will present an experimental platform developed on LULI2000 to measure x-ray emission of non-LTE plasmas in well-defined hydrodynamic conditions thanks to implementation of a whole set of diagnostics, including time-resolved electronic and ionic Thomson scattering and self-optical pyrometry. K-, L- and M-shell spectra will be presented and the methodology, that has been developed to analyze them, discussed. (paper)

  6. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  7. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hong, Jaesub [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max-Planck-Institut f. extraterrestrische Physik, HEG, Garching (Germany); Bauer, Franz [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusets Institute of Technology, Cambridge, MA 02139 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Forster, Karl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Giommi, Paolo, E-mail: kaya@astro.columbia.edu [ASI Science Data Center, Via del Politecnico snc I-00133, Roma (Italy); and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  8. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  9. Electronic structure of multiferroic BiFeO3 by resonant soft-x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Tohru; Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, Jinghua; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; Yogo, T.; Hattori, T.

    2008-07-11

    The electronic structure of multiferroic BiFeO{sub 3} has been studied using soft-X-ray emission spectroscopy. The fluorescence spectra exhibit that the valence band is mainly composed of O 2p state hybridized with Fe 3d state. The band gap corresponding to the energy separation between the top of the O 2p valence band and the bottom of the Fe 3d conduction band is 1.3 eV. The soft-X-ray Raman scattering reflects the features due to charge transfer transition from O 2p valence band to Fe 3d conduction band. These findings are similar to the result of electronic structure calculation by density functional theory within the local spin-density approximation that included the effect of Coulomb repulsion between localized d states.

  10. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  11. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  12. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  13. Theory of X-ray absorption and emission spectra

    International Nuclear Information System (INIS)

    Mukoyama, Takeshi

    2004-01-01

    Theoretical studies on X-ray absorption and emission spectroscopy are discussed. Simple expressions for X-ray emission rate and X-ray absorption cross section are presented in the dipole approximation. Various atomic models to obtain realistic wave functions and theoretical calculations for X-ray absorption cross sections and X-ray emission rates are described. In the case of molecules and solids, molecular orbital methods for electronic structures and molecular wave functions are discussed. The emphasis is on the procedures to obtain the excited-state and continuum wave functions for molecules and to calculate the multi-center dipole matrix elements. The examples of the calculated X-ray absorption and emission spectra are shown and compared with the experimental results

  14. Elemental trace analysis of hepatomas and normal tissues by proton induced x-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Shishido, Fumio; Sera, Koichiro; Sato, Tachio; Morita, Tasuku.

    1977-01-01

    Specimens taken from liver, brain, serum and ascites hepatoma 130 in rats, were bombarded with 3.5 MeV protons accelerated by a Van de graaff generator, and the induced x-ray fluorescence was analysed with a Si(Li) detector. Absolute concentrations were determined with reference to a known concentration of uranium in the specimen. Small amounts of Ga, Yb and Tl which are known as metals having tumor affinity were injected into rats implanted with ascites hepatoma and several of its derivatives. Twenty-four hours after injection, liver, brain, serum and hepatoma were removed from the rats and these specimens were analysed by the same method. Relative concentrations of Fe, Cu, Zn and Br in liver, brain, serum and hepatoma specimens showed characteristic patterns. Patterns of liver and ascites hepatoma were quite similar, but the total amount of metals in liver was greater. The serum contained a large quantity of Br. Each AH 130 tumor cell line and its derivatives showed a different accumulation rate for Ga, Yb and Tl. Tl accumulated peculiarly in the brain. There was excellent co-relation between the concentrations of the elements and the biological characteristics of the tumor. (Evans, J.)

  15. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  16. Proton induced X-ray emission analysis

    International Nuclear Information System (INIS)

    Khan, Rashiduzzman

    1976-09-01

    The developments in proton induced X-ray emission analysis are reviewed. Techniques for analyzing thick and thin samples of different origin are described. Discussions on the application of proton induced X-ray emission analysis in different fields, comparison of the sensitivity of this method with other analytical techniques, its limitations and possible improvements are presented

  17. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  18. Protonium X-ray spectroscopy

    CERN Document Server

    Gotta, D

    1999-01-01

    The Lyman and Balmer transitions from antiprotonic hydrogen and deuterium were studied extensively at the low-energy-antiproton ring LEAR at CERN in order to determine the strong interaction effects. A first series of experiments $9 was performed with semiconductor and gaseous X-ray detectors. In the last years of LEAR operation using a Bragg crystal spectrometer, strong interaction parameters in the 2p states of antiprotonic hydrogen and deuterium were measured $9 directly. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (39 refs).

  19. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  20. Magnetic linear dichroism in x-ray emission spectroscopy: Yb in Yb3 Fe5 O12

    NARCIS (Netherlands)

    Groot, F.M.F. de; Krisch, M.H.; Sette, F.; Vogel, J.

    2000-01-01

    A magnetic linear dichroism MLD effect of up to 5% has been observed in the 2p 1/2 4d x-ray emission spectrum of Yb in Yb 3 Fe 5 O 12 . The spectral shape is well reproduced with an atomic multiplet calculation of the 4d to 2p decay. It is shown that the details of the spectral shapes are

  1. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  2. X-ray spectroscopy an introduction

    CERN Document Server

    Agarwal, Bipin K

    1979-01-01

    Rontgen's discovery of X-rays in 1895 launched a subject which became central to the development of modern physics. The verification of many of the predic­ tions of quantum theory by X-ray spectroscopy in the early part of the twen­ tieth century stimulated great interest in thi's area, which has subsequently influenced fields as diverse as chemical physics, nuclear physics, and the study of the electronic properties of solids, and led to the development of techniques such as Auger, Raman, and X-ray photoelectron spectroscopy. The improvement of the theoretical understanding of the physics underlying X-ray spectroscopy has been accompanied by advances in experimental techniques, and the subject provides an instructive example of how progress on both these fronts can be mutually beneficial. This book strikes a balance between his­ torical description, which illustrates this symbiosis, and the discussion of new developments. The application of X-ray spectroscopic methods to the in­ vestigation of chemical b...

  3. Metrology and X-rays emissions

    International Nuclear Information System (INIS)

    Chancel, C.; Schirmann, D.

    1993-01-01

    This scientific journal explains different technologies used to study X-rays emissions hot dense plasmas created by laser at the Dam center of Limeil-Valenton (CEL-V) or created by nuclear fire in the Pacific

  4. Advances in X-ray spectroscopy contributions in honour of professor Y. Cauchois

    CERN Document Server

    Bonnelle, C

    1982-01-01

    Advances in X-Ray Spectroscopy covers topics relevant to the advancement of X-ray spectroscopy technology. The book is a collection of papers written by specialists in X-ray spectroscopy and pays tribute to the scientific work of Prof. Yvette Cauchois. The text is organized into four parts. Part I covers the analysis of X-ray transitions between atomic levels and relativistic theories of X-ray emission satellites and electron BremsStrahlung. Part II reviews the means provided by X-ray spectroscopy for the determination of the electronic structure of solids, while Part III discusses methods of

  5. Superconductive junctions for x-ray spectroscopy

    International Nuclear Information System (INIS)

    Grand, J.B. le; Bruijn, M.P.; Frericks, M.; Korte, P.A.J. de; Houwman, E.P.; Flokstra, J.

    1992-01-01

    Biasing of SIS-junctions for the purpose of high energy resolution x-ray detection is complicated by the presence of a DC Josephson current and AC Josephson current resonances, so that a large magnetic field is normally used for the suppression of these Josephson features. A transimpedance amplifier is proposed for biasing and signal amplification at low magnetic field. X-ray spectroscopy detectors for astronomy require a high detection efficiency in the 0.5-10 keV energy band and a reasonable (∼1 cm 2 ) detector area. Calculations on absorber-junctions combinations which might meet these requirements are presented. (author) 9 refs.; 10 figs

  6. X-ray spectroscopy with EBIT

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Cauble, R.; Chen, M.; DelGrande, N.; Knapp, D.; Marrs, R.; Osterheld, A.; Reed, K.; Schneider, M.; Scofield, J.; Wong, K.; Vogel, D.; Zasadzinski, R.; Chantrenne, S.; Wargelin, B.

    1992-04-01

    X-ray spectroscopy with the Livermore electron beam ion traps provides data on a wide range of atomic physics issues including ionization, recombination, and excitation cross sections, identification of forbidden transitions, and contributions from relatively and quantum electrodynamics to the transition energies. Here we briefly discuss the source characteristics and x-ray instrumentation, and report measurements of the excitation cross sections of the Kα transitions in heliumlike Ti 20+ as a function of beam energy. The measurements allow detailed comparisons with theoretical predictions of the direct electron-impact excitation cross sections, resonance-excitation contributions, and the electron temperature dependence of the ratio of triplet and singlet lines. The results demonstrate the importance of such measurements for increasing the reliability of x-ray diagnostics of laboratory and astrophysical plasmas

  7. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  8. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    Science.gov (United States)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  9. Dual-array valence emission spectrometer (DAVES): A new approach for hard x-ray photon-in photon-out spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Lyndaker, A.; Krawcyk, T.; Conrad, J. [CHESS Wilson Lab, Cornell University, Ithaca, NY 14853 (United States); Pollock, C. J. [Dept. of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-27

    CHESS has developed and successfully deployed a novel Dual Array Valence Emission Spectrometer (DAVES) for high energy resolution, hard x-ray spectroscopy. DAVES employs the simplest method for scanning multiple spherical crystals along a Rowland Circle. The new design achieves unique 2-color collection capability and is built to take special advantage of pixel array detectors. Our initial results show why these detectors greatly improve data quality. The presentation emphasizes flexibility of experimental design offered by DAVES. Prospects and benefits of 2-color spectroscopy are illustrated and discussed.

  10. X-Ray Spectroscopy of Gold Nanoparticles

    Science.gov (United States)

    Nahar, Sultana N.; Montenegro, M.; Pradhan, A. K.; Pitzer, R.

    2009-06-01

    Inner shell transitions, such as 1s-2p, in heavy elements can absorb or produce hard X-rays, and hence are widely used in nanoparticles. Bio-medical research for cancer treatment has been using heavy element nanoparticles, embeded in malignant tumor, for efficient absorption of irradiated X-rays and leading emission of hard X-rays and energetic electrons to kill the surrounding cells. Ejection of a 1s electron during ionization of the element by absorption of a X-ray photon initiates the Auger cascades of emission of photons and electrons. We have investigated gold nanoparticles for the optimal energy range, below the K-edge (1s) ionization threshold, that corresponds to resonant absorption of X-rays with large attenuation coefficients, orders of magnitude higher over the background as well as to that at K-edge threshold. We applied these attenuation coefficients in Monte Carlo simulation to study the intensities of emission of photons and electrons by Auger cascades. The numerical experiments were carried out in a phantom of water cube with a thin layer, 0.1mm/g, of gold nanoparticles 10 cm inside from the surface using the well-known code Geant4. We will present results on photon and electron emission spectra from passing monochromatic X-ray beams at 67 keV, which is the resonant energy for resonant K_{α} lines, at 82 keV, the K-shell ionization threshold, and at 2 MeV where the resonant effect is non-existent. Our findings show a high peak in the gold nanoparticle absorption curve indicating complete absorption of radiation within the gold layer. The photon and electron emission spectra show resonant features. Acknowledgement: Partially supported by a Large Interdisciplinary Grant award of the Ohio State University and NASA APRA program (SNN). The computational work was carried out on the Cray X1 and Itanium 4 cluster at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-ray Irradiation of High-Z Nanoparticles For Cancer Theranostics" (refereed

  11. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water.

    Science.gov (United States)

    Zhovtobriukh, Iurii; Besley, Nicholas A; Fransson, Thomas; Nilsson, Anders; Pettersson, Lars G M

    2018-04-14

    The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1 ) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

  12. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    Science.gov (United States)

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; Nilsson, Anders; Pettersson, Lars G. M.

    2018-04-01

    The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

  13. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T. -C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  14. The advantages of soft X-rays and cryogenic spectrometers for measuring chemical speciation by X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Owen B. [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Ave., L-270, Livermore, CA 94550 (United States); UC Davis, Biophysics Graduate Group, 1 Shields Ave, CA 95616 (United States); LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States); Friedrich, Stephan [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Ave., L-270, Livermore, CA 94550 (United States) and LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States)]. E-mail: friedrich1@llnl.gov; George, Simon J. [LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States); Cramer, Stephen P. [UC Davis, Biophysics Graduate Group, 1 Shields Ave, CA 95616 (United States); LBNL, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 92720 (United States)

    2006-04-15

    We have built a 36-pixel high-resolution superconducting tunnel junction (STJ) soft X-ray spectrometer for chemical analysis of dilute metals by fluorescence-detected X-ray absorption spectroscopy (XAS) at the Advanced Light Source synchrotron. Soft X-ray absorption edges are preferred over traditional hard X-ray spectroscopy at the K-edges, since they have narrower natural linewidths and exhibit stronger chemical shifts. STJ detectors are preferred in the soft X-ray band over traditional Ge or grating spectrometers, since they have sufficient energy resolution to resolve transition metal L and M lines from light element K emission, and sufficient detection efficiency to measure the weak lines of dilute specimens within an acceptable time. We demonstrate the capabilities of our STJ spectrometer for chemical analysis with soft XAS measurements of molybdenum speciation on the Mo M{sub 4,5}-edges.

  15. Goldtraces on wedge-shaped artefacts from late neolithic of south Scandinavia analysed by proton induced x-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Ahlberg, M.; Akselsson, R.; Forkman, B.; Rausing, G.

    1975-01-01

    Visible coloured traces on the surface of two selected wedge-shaped artefacts (pendants) of slate from the late Neolithic of South Scandinavia was analysed by means of proton-induced x-ray emission spectroscopy (PIXE). PIXE is shown to be a feasible tool in investigating surface layers of archeological significance. Three different gold-silver alloys was found on the two pendants. The results indicate that we shall have to reconsider the general accepted theories on the economic basis of the early Bronze Age in the area. (author)

  16. Neutron and X-ray Spectroscopy

    CERN Document Server

    Hippert, Françoise; Hodeau, Jean Louis; Lelièvre-Berna, Eddy; Regnard, Jean-René

    2006-01-01

    Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend thei...

  17. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  18. Ion induced x-ray emission

    International Nuclear Information System (INIS)

    Cohen, D.D.; Clayton, E.

    1989-01-01

    This paper discusses particle induced x-ray emission (PIXE). Its use as a tool for multi-element non-destructive trace element analysis of small samples is addressed. Concepts and details needed for the construction of a PIXE system are offered

  19. Multi-element analysis of the rat hippocampus by proton induced x-ray emission spectroscopy (phosphorus, sulfur, chlorine, potassium, calcium, iron, zinc, copper, lead, bromine, and rubidium)

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Danscher, G.

    1979-01-22

    A technique for multi-element analysis of brain tissue by proton induced x-ray emission spectroscopy (PIXE) is described and data from analysis of fixed and unfixed samples from rat hippocampus, neocortex, amygdala, and spinal cord are presented and commented on. The atoms present in the tissue are bombarded with protons which cause the ejection of electrons from the inner shells. When the holes are refilled with electrons from outer shells, x-ray quanta characteristic for each element are emitted. Using a high resolution energy dispersive detector, a complete x-ray spectrum of the specimen can be recorded in a single measurement. Detection limits less than or approximately 5 ppM of dry matter are obtained for most elements with atomic number greater than 14 (silicon). Around 13 elements were found in concentrations above the detection limits. The grand means for non-fixed hippocampi were e.g., for Zn-120 ppM; Rb-20 ppM; Fe-150 ppM; Pb-3 ppM; Ni-5 ppM.

  20. X-ray emission from hot plasma

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Kato, Takako.

    1979-01-01

    X-ray emission from hot plasmas is discussed with a critical review of different theories. The results given in the present paper are complementary to those given by Kato in the sense that the present paper is introductory to the paper by Kato. The contents of the present paper are; 1. Introduction 2. Ionization and Recombination Rate Coefficients 3. Relative Abundances of Ions 4. Intensity and Spectra of Radiation 5. Comparison with Earlier Results 6. Emission and Absorption Lines (author)

  1. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  2. Soft X-ray emission spectroscopy used for the characterization of a-C and CN{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nepijko, S.A., E-mail: nepijko@uni-mainz.de [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Chernenkaya, A. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz (Germany); Medjanik, K.; Chernov, S.V. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Klimenkov, M. [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Vlasenko, O.V. [Sumy State University, Rimsky-Korsakov str. 2, 40007 Sumy (Ukraine); Petrovskaya, S.S. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krzhizhanovsky str. 3, 03142 Kiev (Ukraine); Odnodvorets, L.V. [Sumy State University, Rimsky-Korsakov str. 2, 40007 Sumy (Ukraine); Zaulichnyy, Ya.V. [National Technical University of Ukraine (KPI), Pobedy Av. 37, 03056 Kiev (Ukraine); Schönhense, G. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany)

    2015-02-27

    We present the results of a soft X-ray emission spectroscopy study of a-C and CN{sub x} films on a Si(100) substrate. Also for the characterization of the homogeneity in depth of these films electron energy loss spectroscopy measurements with localization better than 4 nm were carried out. In case of CN{sub x} films the highest diamond-like modification occurs in the region close to the Si(100) substrate. The film density decreases with increasing distance from the substrate and becomes almost constant in range of thicknesses more than ~ 2 nm. - Highlights: • CN{sub x} and a-C film densities decrease with the increase of thickness. • Density increases with the decrease of Si(100) substrate temperature at preparation. • Highest concentration of the diamond-like structure is in the substrate vicinity. • It reduces further from the substrate and stabilizes at thickness ≥ 2 nm.

  3. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  4. Particle induced X-ray emission

    International Nuclear Information System (INIS)

    Cohen, D.D.

    1991-08-01

    The accelerator based ion beam technique of Particle Induced X-ray Emission (PIXE) is discussed in some detail. This report pulls together all major reviews and references over the last ten years and reports on PIXE in vacuum and using external beams. The advantages, limitations, costs and types of studies that may be undertaken using an accelerator based ion beam technique such as PIXE, are also discussed. 25 refs., 7 tabs., 40 figs

  5. Hole distribution in (Sr, Ca, Y, La)14Cu24O41 compounds studies by x-ray absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Kabasawa, Eiki; Nakamura, Jin; Yamada, Nobuyoshi; Kuroki, Kazuhiko; Yamazaki, Hisashi; Watanabe, Masamitsu; Denlinger, Jonathan D.; Shin, Shik; Perera, Rupert C.C.

    2008-01-01

    The polarization dependence of soft x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) near the O 1s absorption edge was measured on two-leg ladder single-crystalline samples of (Sr, Ca, Y, La) 14 Cu 24 O 41 (14-24-41). The hole distributions in 14-24-41 compounds are determined by polarization analysis. For samples with less than or equal to 5 holes/chemical formula (c.f.), all holes reside on the edge-shared chain layer. In the case of Sr 14-x Ca x Cu 24 O 41 (6 holes/c.f.), there is approximately one hole on the two-leg ladder layer, with about five holes remaining on the edge-shared chain layer. By Ca substitution for Sr in the Sr 14-x Ca x Cu 24 O 41 samples, 0.3 holes transfer from the edge-shared chain to the two-leg ladder layer. It is possible that some of the holes on the two-leg ladder layer move from the rung sites to the leg sites upon Ca substitution. (author)

  6. X-Ray Emission Properties of Supernova Remnants

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    X-ray emission from supernova remnants can be broadly divided into thermal X-ray emission from the shock-heated plasmas and in nonthermal (synchrotron) emission caused by very high-energy (10–100 TeV) electrons moving in the magnetic fields of the hot plasmas. The thermal X-ray emission of young

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  8. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...... environment with limited ligand selectivity. To address this limitation, we have investigated the enhancement of XAS features using valence-to-core (VtC)-detected XAS, whereby XAS spectra are measured by monitoring fluorescence from valence-to-core X-ray emission (VtC XES) events. VtC emission corresponds...... to transitions from filled ligand orbitals to the metal 1s core hole, with distinct energetic shifts for ligands of differing ionization potentials. VtC-detected XAS data were obtained from multiple valence emission features for a series of well-characterized Mn model compounds; taken together, these data...

  9. X-ray spectroscopy from fusion plasmas

    International Nuclear Information System (INIS)

    Glenzer, S H.

    1998-01-01

    Our understanding of laser energy coupling into laser-driven inertial confinement fusion targets largely depends on our ability to accurately measure and simulate the plasma conditions in the underdense corona and in high density capsule implosions. X-ray spectroscopy is an important technique which has been applied to measure the total absorption of laser energy into the fusion target, the fraction of laser energy absorbed by hot electrons, and the conditions in the fusion capsule in terms of density and temperature. These parameters provide critical benchmarking data for performance studies of the fusion target and for radiation-hydrodynamic and laser-plasma interaction simulations. Using x-ray spectroscopic techniques for these tasks has required its application to non-standard conditions where kinetics models have not been extensively tested. In particular, for the conditions in high density implosions, where electron temperatures achieve 1 - 2 keV and electron densities reach 10 24 cm -3 evolving on time scales of 21 cm -3 and which am independently diagnosed with Thomson scattering and stimulated Raman scattering. We find that kinetics modeling is in good agreement with measured intensities of the dielectronic satellites of the He-β line (n= l-3) of Ar XVII. Applying these findings to the experimental results of capsule implosions provides additional evidence of temperature gradients at peak compression

  10. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  11. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  12. X-ray spectroscopy from exotic atoms

    International Nuclear Information System (INIS)

    Hartmann, F.J.

    1994-01-01

    Why do experimentalists study exotic atoms, in particular antiprotonic atoms? The answer is simple: the information about electromagnetic, weak, and strong interactions that can be obtained by doing X-ray spectroscopy from exotic atoms is really worth the effort. It is possible to (1) enlarge the knowledge about the properties of exotic particles (such as mass and magnetic moment); (2) open a possibility to test quantum electrodynamics; (3) get detailed insight into the shape of nuclei (characterized by the nuclear radium and higher momenta) and even into the neutron distribution in the nucleus (neutron halo); and (4) use it as a powerful tool to learn about the strong interaction at very low relative hadron-nucleon velocities

  13. Application of X-ray spectroscopy in nondestructive photon activation analysis

    International Nuclear Information System (INIS)

    Weise, H.-P.; Segebade, Chr.

    1977-01-01

    The use of X-ray spectroscopy for the qualitative and quantitative analysis of samples activated by 30 MeV bremsstrahlung from an electron linear accelerator. Detection limits are calculated from the measured X-ray spectra and compared with those for γ-ray spectroscopy. In general, the detection limits for γ-ray and X-ray spectroscopy are comparable. Higher sensitivities for X-ray spectroscopy are observed when only low intensity γ-rays are emitted by the activation products. X-ray spectroscopy should be applied in three cases: (a) low γ-ray emission probability, (b) extremely complicated γ-ray spectrum, (c) overlapping of γ-ray lines from different elements. γ-ray spectroscopy should be preferred for the analysis of light elements for two reasons: very strong absorption of low energy X-rays (low Z) within the sample, low X-ray emission probability for the activation products of light elements. Therefore no attempt was made to use X-ray spectroscopy for the analysis of elements below Ti. Some practical applications of X-ray spectroscopy in nondestructive multielement analysis are quoted. (T.G.)

  14. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...

  15. Proton Induced X-ray Emission Spectroscopy of Red Wine Samples Using the Union College Pelletron Accelerator

    Science.gov (United States)

    Schuff, Katie; Labrake, Scott

    2010-11-01

    A 1-megavolt tandem electrostatic Pelletron particle accelerator housed at Union College was used to measure the elemental composition and concentration of homemade Cabernet and Merlot red wine samples. A beam of 1.8-MeV protons directed at an approximately 12-μm thin Mylar substrate onto which 8-μL of concentrated red wine was dried caused inner shell electrons to be ejected from the target nuclei and these vacancies are filled through electronic transitions of higher orbital electrons accompanied by the production of an x-ray photon characteristic of the elemental composition of the target. This is the PIXE Method. Data on the intensity versus energy of the x-rays were collected using an Amptek silicon drift detector and were analyzed to determine the elemental composition and the samples were found to contain P, S, K, Cl, Ca, Sc, Mn, Al, Fe, & Co. Elemental concentrations were determined using the analysis package GUPIX. It is hypothesized that the cobalt seen is a direct result of the uptake by the grapes and as a product of the fermentation process a complex of vitamin B12 is produced.

  16. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray...... crystallography and X-ray absorption spectroscopy (XAS) applied to studying different hexameric insulin conformations. (iii) The structures of polymorphs of strontium ranelate and the distribution of strontium in bone tissue. A procedure for fast identification and verification of protein powders using XRPD...... was correction for disordered bulk-solvent, but also correction for background and optimization of unit cell parameters have to be taken into account. A sample holder was designed for collecting powder diffraction data on a standard laboratory X-ray powder diffractometer. The background was reduced by use...

  17. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  18. High resolution X-ray spectroscopy from the Einstein Observatory

    International Nuclear Information System (INIS)

    Winkler, P.F.; Canizares, C.R.; Clark, G.W.; Markert, T.H.; Berg, C.; Jernigan, J.G.; Schattenberg, M.L.; Massachusetts Inst. of Tech., Cambridge

    1980-01-01

    This paper is devoted to a discussion of some results which we have recently obtained from the fourth of the principal intruments on board the Einstein Observatory: M.I.T.'s Focal Plane Crystal Spectrometer (FPCS). We shall begin whith a few general remarks about X-ray spectroscopy, followed by a brief description of the FPCS instrument. The results we present here deal primarily with supernova remnants (SNRs): Puppis A and Cas A in the Galaxy, and N132D and N63A in the Large Magellanic Cloud. In addition we shall briefly discuss a member of the other class of thermal X-ray source under discussion at present; namely, to report our detection of oxygen emission from the vicinity of M87 in the Virgo Cluster. (orig.)

  19. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry.

    Science.gov (United States)

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H; Zhang, Jin Z; Bergmann, Uwe; Yachandra, Vittal K; Jaramillo, Thomas F; Yano, Junko

    2015-04-14

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.

  20. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  1. (EXAFS) X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1983-01-01

    The technique EXAFS (Extended X-Ray Absorption Fine Structure) is presented and its applications using the synchrotron radiation as an incidente beam in Science of Materials and Biophysics are shown. (L.C.) [pt

  2. Lifetime-broadening-suppressed X-ray absorption spectrum of β-YbAlB4 deduced from Yb 3d → 2p resonant X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Kawamura, Naomi; Mizumaki, Masaichiro; Kanai, Noriko; Hayashi, Hisashi; Matsuda, Yasuhiro H.; Kuga, Kentaro; Nakatsuji, Satoru; Watanabe, Shinji

    2017-01-01

    In this work, the Yb 3d → 2p (Yb Lα 1,2 ) resonant X-ray emission spectrum of β-YbAlB 4 was acquired using excitation energies around the Yb L 3 -edge, at 2 K. Subsequently, the lifetime-broadening-suppressed (LBS) X-ray absorption structure (XAS) spectrum was obtained using the SIM-RIXS program. This spectrum was found to exhibit clearly resolved pre-edge and shoulder structures. Resonant Lα 1 emission spectra were well reproduced from LBS-XAS profiles over wide ranges of excitation and emission energies. In contrast, noticeable discrepancies appeared between the experimental and simulated Lα 2 emission spectra, suggesting an effect resulting from M 4 M 5 O 1 Coster-Kronig transitions. LBS-XAS, in conjunction with partial fluorescence yield (PFY) XAS and transmission XAS, determined a value for the Yb valence (v) in β-YbAlB 4 of 2.76 ± 0.08 at 2 K. Despite this relatively large uncertainty in v, each method provided a consistent variation in valence (δv) as the temperature was raised from 2 to 280 K: 0.060 ± 0.004 (LBS-XAS), 0.061 ± 0.005 (PFY-XAS) and 0.058 ± 0.007 (transmission XAS). The smaller δv associated with LBS-XAS demonstrates the greater precision of this method. (author)

  3. Recent applications of hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Woicik, Joseph C., E-mail: Joseph.Woicik@NIST.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, Abdul K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pianetta, Piero [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  4. X-ray absorption spectroscopy (EXAFS)

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1983-01-01

    The experimental technics of Extended X-ray Absorption Fine Structure (EXAFS) is presented and several uses of it in atomic, molecular and bio physics are shown. The recent progresses of this technics, both theoretical and experimental, are discussed and the future perspectives on this subject are commented. (L.C.) [pt

  5. Multielement analysis of environmental samples by total-reflection X-ray fluorescence sprectrometry, neutron activation analysis and inductively coupled plasma optical emission spectroscopy

    International Nuclear Information System (INIS)

    Michaelis, W.

    1986-01-01

    In environmental research and protection trace elements have to be determined over a wide range of atomic number, down to very low concentrations, and in quite different matrices. This challenge requires the availability of complementary analytical methods characterized by a high detection power and few sources of systematic errors. Besides, the capacity of multielement detection is often desired since it facilitates the talking of many problems in which numerous trace elements are of direct concern. Total-reflection X-ray fluorescence, neutron activation analysis and inductively coupled plasma optical emission spectroscopy, in principle fulfill these requirements quite well. However, each method has its domain, and the application to certain sample species may be less promising. Under this aspect, the paper summarizes some recent developments and investigations, including intercomparisons as far as possible. Various matrices are considered : rainwater and airborne particulates, soil samples, river sediments and suspended particulate matter, river water filtrates, ozean water, and organic matrices. Capabilities and limitations are discussed. Sample preparation techniques are described if they are new or essential for achieving the results given. (orig.) [de

  6. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  7. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  8. Depth profiling of thin film solar cell components by synchrotron excited Soft X-ray emission spectroscopy (SXES)

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Harry; Grimm, Alexander; Lux-Steiner, Martha; Saez-Araoz, Rodrigo; Fischer, Christian-Herbert [Freie Universitaet Berlin (Germany); Baer, Markus [University of Las Vegas (United States); Camus, Christian; Ennaoui, Ahmed; Kaufmann, Christian; Koerber, Paul; Kropp, Timo; Lauermann, Iver; Lehmann, Sebastian; Muenchenberg, Tim; Pistor, Paul; Puttnins, Stefan; Schock, Hans-Werner; Sokoll, Stefan [Hahn-Meitner-Institut Berlin (Germany); Jung, Christian [BESSY GmbH Berlin (Germany)

    2007-07-01

    Depending on the elemental composition of a material, SXES provides an information depth of 50-1000 nm. For studies of thin multilayer structures tuning of this parameter is highly desirable. One possibility is the variation of the excitation energy, which is accompanied by variation of photoionisation cross sections. Alternatively, we performed angle resolved SXES on the solar cell absorber material Cu(In,Ga)Se{sub 2} covered by CdS or Zn(S,O) buffer layers (10-50 nm). Due to our setup geometry, the emission spectra clearly display increased surface sensitivity at small (grazing exit) and large (grazing incidence) exit angles. A model based on Beer-Lamberts law and setup geometry is in reasonable agreement with our experimental data.The presented results show that angle resolved SXES measurements yield depth-dependent information on multilayer structures. The increased surface sensitivity at grazing exit and grazing incidence angles allows the detection of extremely thin cover layers at reasonable recording times.

  9. Chandra ACIS-S imaging spectroscopy of anomalously faint X-ray emission from Comet 103P/Hartley 2 during the EPOXI encounter

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Dennerl, K.; Bodewits, D.; Combi, M. R.; Lepri, S. T.; Zurbuchen, T. H.; Li, J. Y.; Dello-Russo, N.; Belton, M. J. S.; Knight, M. M.

    2013-02-01

    We present results from the Chandra X-ray Observatory's characterization of the X-ray emission from Comet 103P/Hartley 2, in support of NASA's Deep Impact Extended close flyby of the comet on 04 November 2010. The comet was observed 4 times for a total on target time of ˜60 ks between the 17th of October and 16th of November 2010, with two of the visits occurring during the EPOXI close approach on 04 November and 05 November 2010. X-ray emission from 103P was qualitatively similar to that observed for collisionally thin Comets 2P/Encke (Lisse, C.M. et al. [2005]. Astrophys. J. 635, 1329-1347) and 9P/Tempel 1 (Lisse, C.M. et al. [2007]. Icarus 190, 391-405). Emission morphology offset sunward but asymmetrical from the nucleus and emission lines produced by charge exchange between highly stripped C, N, and O solar wind minor ions and coma neutral gas species were found. The comet was very under-luminous in the X-ray at all times, representing the 3rd faintest comet ever detected (LX = 1.1 ± 0.3 × 1014 erg s-1). The coma was collisionally thin to the solar wind at all times, allowing solar wind ions to flow into the inner coma and interact with the densest neutral coma gas. Localization of the X-ray emission in the regions of the major rotating gas jets was observed, consistent with the major source of cometary neutral gas species being icy coma dust particles. Variable spectral features due to changing solar wind flux densities and charge states were also seen. Modeling of the Chandra observations from the first three visits using observed gas production rates and ACE solar wind ion fluxes with a charge exchange mechanism for the emission is consistent with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma. The X-ray emission during the 4th visit on 16 November 2010 is similar to the unusual behavior seen for Comet 17P/Holmes in 2007 (Christian, D.J. et

  10. Chemical effects in x-ray emission spectra

    International Nuclear Information System (INIS)

    Fernandes, N.G.

    1982-01-01

    The chemical bond influence in X-ray emission spectra of hafnium, iodine, iron, sulphur, aluminium and magnesium is detected. The position of one X-ray emission line is determined by three methods: parabolic profile; Gaussian distribution and extra-heavy maximum. (author)

  11. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  12. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  13. X-ray and photoelectron spectroscopy of light rare earths

    International Nuclear Information System (INIS)

    Fuggle, J.C.

    1983-01-01

    Core level photoelectron spectroscopy, X-ray absorption spectroscopy, bremsstrahlung isochromat spectroscopy and valence band studies are discussed. Particular emphasis is placed on cerium. Correlation effects, multiplet structure, screening effects and the dynamics of the processes involved are illustrated with selected examples. (Auth.)

  14. The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes.

    Science.gov (United States)

    Roper, Ian P E; Besley, Nicholas A

    2016-03-21

    The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.

  15. Electronic structures of B 2p and C 2p levels in boron-doped diamond films studied using soft x-ray absorption and emission spectroscopy

    Science.gov (United States)

    Nakamura, Jin; Kabasawa, Eiki; Yamada, Nobuyoshi; Einaga, Yasuaki; Saito, Daisuke; Isshiki, Hideo; Yugo, Shigemi; Perera, Rupert C. C.

    2004-12-01

    X-ray absorption (XAS) and emission (XES) spectroscopy near B K and C K edges have been performed on metallic ( ˜0.1at.% B, B-diamond) and semiconducting ( ˜0.03at.% B and N, BN-diamond) doped diamond films. Both B K XAS and XES spectra show a metallic partial density of states (PDOS) with the Fermi energy of 185.3eV , and there is no apparent boron-concentration dependence in contrast to the different electric property. In C K XAS spectrum of B-diamond, the impurity state ascribed to boron is clearly observed near the Fermi level. The Fermi energy is found to be almost same with the top of the valence band of nondoped diamond: EV=283.9eV . C K XAS of BN-diamond shows both the B-induced shallow level and N-induced deep and broad levels as the in-gap states, in which the shallow level is in good agreement with the activation energy (Ea=0.37eV) estimated from the temperature dependence of the conductivity; namely, the change in C2p PDOS of impurity-induced metallization is directly observed. The electric property of this diamond is ascribed mainly to the electronic structure of C2p near the Fermi level. The observed XES spectra are compared with the discrete variational Xα ( DVXα ) cluster calculation. The DVXα result supports the strong hybridization between B2p and C2p observed in XAS and XES spectra, and suggests that the small amount of boron (⩽0.1at.%) in diamond occupies the substitutional site rather than interstitial site.

  16. Radio and X-ray emission from supernova remnants

    International Nuclear Information System (INIS)

    Asvarova, A.I.; Novruzova, H.I.; Ahmedova, S.I.

    2010-01-01

    In this paper it was studied the statistical correlation between radio and X-ray emissions from shell-type supernova remnants (SNR). The primary aim of this study is to test the model of radio emission of shell-type SNRs presented by one of the authors. Based on this model of radio emission, by using the Monte Carlo techniques we have simulated statistical relations radio - X-ray luminosities (not surface brightnesses) which then were compared with the observations. X-ray emission is assumed to be thermal. To have a uniform statistical material it was used observational data on the SNRs in Magellanic Clouds

  17. Kinoform optics applied to X-ray photon correlation spectroscopy.

    Science.gov (United States)

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  18. X-ray and extreme ultraviolet emission from comets

    Science.gov (United States)

    Lisse, C. M.; Cravens, T. E.; Dennerl, K.

    The discovery of high energy X-ray emission in 1996 from C/1996 B2 (Hyakutake) has created a surprising new class of X-ray emitting objects. The original discovery (Lisse et al., 1996) and subsequent detection of X-rays from 17 other comets (Table 1) have shown that the very soft (E < 1 keV) emission is due to an interaction between the solar wind and the comet's atmosphere, and that X-ray emission is a fundamental property of comets. Theoretical and observational work has demonstrated that charge exchange collisions of highly charged solar wind ions with cometary neutral species is the best explanation for the emission. Now a rapidly changing and expanding field, the study of cometary X-ray emission appears to be able to lead us to a better understanding of a number of physical phenomena: the nature of the cometary coma, other sources of X-ray emission in the solar system, the structure of the solar wind in the heliosphere, and the source of the local soft X-ray background.

  19. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Higley, Daniel J., E-mail: dhigley@stanford.edu; Yuan, Edwin [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Lutman, Alberto A.; Coslovich, Giacomo; Hart, Philip; Hoffmann, Matthias C.; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Stöhr, Joachim; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Liu, Tianmin; MacArthur, James P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); and others

    2016-03-15

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L{sub 3,2}-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  20. X-ray emission from Centaurus A

    International Nuclear Information System (INIS)

    Terrell, J.

    1984-01-01

    The X-ray strength of Cen A (NGC 5128) was monitored for 10 years by Vela 5B, beginning in 1979. The 1973 to 1975 period of exceptional activity and strength was especially well covered, and was characterized by numerous rapid changes in intensity, in agreement with other data, indicating that the nucleus of Cen A is small but massive. 16 references, 3 figures

  1. Future projects of light kaonic atom X-ray spectroscopy

    International Nuclear Information System (INIS)

    Tatsuno, H.; Bazzi, M.; Beer, G.; Bellotti, G.; Berucci, C.; Bragadireanu, A.M.; Bosnar, D.; Cargnelli, M.; Curceanu, C.; Butt, A.D.; D’Uffizi, A.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Sandri, P. Levi; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Vidal, A. Romero; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.L.; Sirghi, F.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2016-01-01

    X-ray spectroscopy of light kaonic atoms is a unique tool to provide precise information on the fundamental K̄N interaction at the low-energy limit and the in-medium nuclear interaction of K"−. The future experiments of kaonic deuterium strong-interaction shift and width (SIDDHARTA-2 and J-PARC E57) can extract the isospin dependent K"−N interaction at threshold. The high-resolution X-ray spectroscopy of kaonic helium with microcalorimeters (J-PARC E62) has the possibility to solve the long-standing potential-strength problem of the attractive K"−-nucleus interaction. Here, the recent experimental results and the future projects of X-ray spectroscopy of light kaonic atoms are presented.

  2. X-ray Emission from the Guitar Nebula

    OpenAIRE

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I. -A.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  3. X-Ray Emission from the Guitar Nebula

    Science.gov (United States)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  4. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  5. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  6. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  7. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  8. Theory of the 4d → 2p X-ray emission spectroscopy in Ce2O3, Pr2O3 and Dy2O3

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Ogasawara, Haruhiko; Okada, Kozo; Kotani, Akio.

    1995-01-01

    The 4d → 2p X-ray emission spectra (XES) of Ce 2 O 3 , Pr 2 O 3 and Dy 2 O 3 have been calculated with an impurity Anderson model with the full multiplet couplings, following the Kramers-Heisenberg formula in the second order optical process. Experimental results have been well reproduced with this model by using a constant value for the 4d core hole lifetime damping Γ(4d) in the case of Ce 2 O 3 and Pr 2 O 3 , while in the case of Dy 2 O 3 it is necessary to take into account the term dependence of Γ(4d), which is consistent with the previous theoretical analyses of 4d X-ray photoemission spectra. It was also shown that both the spin-orbit couplings of the 4d core level in the final state and the 4f level in the initial state are key factors to cause the branching ratio in the L γ line larger than that in the L β line. The phase matching of the wave functions between the intermediate and final states smears out the hybridization effect in the 4d → 2p XES in Ce 2 O 3 and Pr 2 O 3 . (author)

  9. Nuclear and x-ray spectroscopy with radioactive sources

    International Nuclear Information System (INIS)

    Fink, R.W.

    1977-01-01

    Research in nuclear chemistry for 1977 is reviewed. The greatest part of the effort was directed to nuclear spectroscopy (systematics, models, experimental studies), but some work was also done involving fast neutrons and x rays from radioactive sources. Isotopes of Tl, Hg, Au, and Eu were studied in particular. Personnel and publications lists are also included. 5 figures, 1 table

  10. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  11. Unitary bases for x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Patterson, C.W.; Harter, W.G.; Schneider, W.D.

    1979-01-01

    A Gelfand basis is used to derive the coefficients of fractional parentage (CFP's) used to calculate intensities for x-ray photoelectron spectroscopy of atoms. Using associated Gelfand bases, we show that it is easy to derive the Racah CFP relations between particles and holes

  12. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  13. Single atom identification by energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-01-01

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  14. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    Directory of Open Access Journals (Sweden)

    Majed Chergui

    2016-05-01

    Full Text Available The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES at synchrotrons; (ii the X-ray free electron lasers (XFELs are a game changer and have allowed the first femtosecond (fs XES and resonant inelastic X-ray scattering experiments to be carried out; (iii XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  15. Characterization of X-ray emission from laser generated plasma

    Science.gov (United States)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  16. Characterization of X-ray emission from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Cannavò Antonino

    2018-01-01

    Full Text Available X-ray emission from laser generated plasma was studied at low (1010 W/cm2 and high (1018 W/cm2 intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  17. European X-ray spectroscopy and polarimetry payload for Spacelab

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, R D; Whitcomb, G [European Space Research and Technology Centre, Noordwijk (Netherlands); Brinkman, A C [Space Research Laboratory, Utrecht, The Netherlands; Beuermann, K [Max-Planck-Institut fuer Physik und Astrophysik, Garching/Muenchen (Germany, F.R.). Inst. fuer Extraterrestrische Physik; Culhane, J L [University Coll., London (UK). Mullard Space Science Lab.; Griffiths, R [Leicester Univ. (UK); Manno, V [ESA Headquarters, Paris, France; Rocchia, R [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1976-08-01

    A group of instruments for X-ray spectroscopy and polarimetry studies of a number of cosmic X-ray sources is being designed for possible use on Spacelab. Large area Bragg spectrometers and polarimeters for photon energies above 2 keV are described. For the energy range below 2 keV, both dispersive and non-dispersive spectrometers are employed at the common focus of a nested array of paraboloids. Following a brief outline of the scientific background to the mission, the properties of the individual instruments are discussed.

  18. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  19. Circumstellar X-ray Emission from SN1978K

    Science.gov (United States)

    Schlegel, Eric M.; Colbert, E.; Petre, R.

    1995-02-01

    We present the X-ray light curve in the 0.2 2.4 keV band based on fiveROSAT observations of SN1978K in NGC 1313. The X-ray emission is believed to arise from the interaction of the reverse shock and the expanding debris from the supernova. The reverse shock becomes established after the outgoing shock runs into circumstellar matter.

  20. Many-electron effects in Lγ/sub 2,3/ x-ray emission spectroscopy of rare-earth elements

    International Nuclear Information System (INIS)

    Ohno, M.; LaVilla, R.E.

    1989-01-01

    The Lγ/sub 2,3/(2s/sup -1/→4p/sup -1/) x-ray emission spectra of Nd 2 O 3 and Sm 2 O 3 were measured in order to study the strong configuration interaction between a 4p hole level and the double 4d hole 4f/sup (//sup n//sup +1)/ electron levels. The spectra are calculated also using the Green's function method. The agreement between theory and experiment is qualitatively good. The spectrum can be interpreted in terms of the spectral function of the final 4p hole where it is shown that the one-electron picture of the 4p hole breaks down due to the strong 4p/sup -1/left-right-arrow4d/sup -2/4f/sup (n+1)/ super Coster-Kronig process

  1. Ultrafast X-Ray Spectroscopy of Conical Intersections

    Science.gov (United States)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  2. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  3. Is X-ray emissivity constant on magnetic flux surfaces?

    International Nuclear Information System (INIS)

    Granetz, R.S.; Borras, M.C.

    1997-01-01

    Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)

  4. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  5. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  6. Observations of EUV and X-ray Emission from Comets

    Science.gov (United States)

    Lisse, C.

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations have shown that the very soft (best fit thermal bremsstrahlung model kT0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the more than 15 comets detected to date in x-rays, I report here on the latest results on cometary x-ray emission, including new results from Chandra, and show that charge exchange between highly ionized minor ions in the solar wind and neutral gases in the cometary coma is the most likely operative mechanism. I then use this result to study a number of problems of astrophysical interest: the nature of the cometary coma, other possible sources of x-ray emission in the solar system, the structure of the solar wind in the heliosphere, and the source of the local x-ray background.

  7. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-gap determination in bulk and nanoscale itinerant electron semiconductors such as CdS and ZnO, but this approach has not been established for materials such as iron oxides that possess band-edge electronic structure dominated by electron correlations. We performed soft x-ray spectroscopy at the oxygen K...

  8. Depth-profiling using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Pijolat, M.; Hollinger, G.

    1980-12-01

    The possibilities of X-ray photoelectron spectroscopy (or ESCA) for depth-profiling into shallow depths (approximately 10-100 A) have been studied. The method of ion-sputtering removal has first been investigated in order to improve its depth-resolution (approximately 50-150 A). A procedure which eliminates the effects due to the resolution function of the instrumental probe (analysed depth approximately 50 A) has been settled; but it is not yet sufficient, and the sputter - broadening due to the ion-induced damages must be taken into account (broadening function approximately 50 A for approximately 150 A removal). Because of serious difficulties in estimating the broadening function an alternative is to develop non destructive methods, so a new method based on the dependence of the analysed depth with the electron emission angle is presented. The extraction of the concentration profile from angular distribution experiments is achieved, in the framework of a flat-layer model, by minimizing the difference between theoretical and experimental relative intensities. The applicability and limitations of the method are discussed on the basis of computer simulation results. The depth probed is of the order of 3 lambda (lambda being the value of the inelastic mean free path, typically 10-20 A) and the depth-resolution is of the order of lambda/3 [fr

  9. X-ray emission spectroscopic determination of iron in a polyurethane encapsulant curing agent

    International Nuclear Information System (INIS)

    Carter, J.M.; Kling, E.N.

    1979-01-01

    Presented is a procedure for determining the iron content in a polyurethane encapsulant curing agent by x-ray emission spectroscopy. Standards were prepared by adding ferric acetyl acetonate to a curing agent of identical composition to that being analyzed, but containing no iron. Results show that x-ray emission spectroscopy is feasible for determination of iron in the 30 to 50 ppM range. This range could probably be extended by the preparation of additional standards. Precision of the method is approximately 1.2 ppM at the 99 percent confidence level

  10. I20; the Versatile X-ray Absorption spectroscopy beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Diaz-Moreno, S; Hayama, S; Amboage, M; Freeman, A; Sutter, J; Duller, G

    2009-01-01

    The Versatile Spectroscopy beamline at Diamond Light Source, I20, is currently under construction and aims to begin operation in late 2009 and early 2010. The beamline aims to cover applications from physics, chemistry and biology through materials, environmental and geological science. Three very distinctive modes of operation will be offered at the beamline: scanning X-ray Absorption spectroscopy (XAS), XAS in dispersive mode, and X-ray emission spectroscopy (XES). To achieve this, the beamline has been designed around two independent experimental end-stations operating from a pair of canted wigglers located in a 5m diamond straight section. One branch of the beamline will deliver monochromatic x-ray radiation of high spectral purity to one of the experimental hutches, whilst the other branch will constitute an energy dispersive spectrometer. The novel design of the beamline allows both branches to operate simultaneously.

  11. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  12. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  13. X-ray spectroscopy of electronic structure of amorphous silicon and silicyne

    International Nuclear Information System (INIS)

    Mashin, A.I.; Khokhlov, A.F.; Mashin, N.I.; Domashevskaya, Eh.P.; Terekhov, V.A.

    2001-01-01

    SiK β and SiL 23 emission spectra of crystalline silicon (c-Si), amorphous hydrogenated silicon (α-Si:H) and silicyne have been studied by X-ray and ultrasoft X-ray spectroscopy. It is observed that SiL 23 emission spectra of silicyne displays not two maximums, as it usually observed for the c-Si and α-Si:H, but three ones. The third one is seen at high energies near 95.7 eV, and has an intensity about 75%. An additional maximum in the short- wave part of SiK β emission spectrum is observed. This difference of shapes of X-ray spectra between α-Si:H and silicyne is explained by the presence in silicyne a strong π-component of chemical bonds of a silicon atoms in silicyne [ru

  14. X-ray spectroscopy of electronic structure of amorphous silicon and silicyne

    CERN Document Server

    Mashin, A I; Mashin, N I; Domashevskaya, E P; Terekhov, V A

    2001-01-01

    SiK subbeta and SiL sub 2 sub 3 emission spectra of crystalline silicon (c-Si), amorphous hydrogenated silicon (alpha-Si:H) and silicyne have been studied by X-ray and ultrasoft X-ray spectroscopy. It is observed that SiL sub 2 sub 3 emission spectra of silicyne displays not two maximums, as it usually observed for the c-Si and alpha-Si:H, but three ones. The third one is seen at high energies near 95.7 eV, and has an intensity about 75%. An additional maximum in the short- wave part of SiK subbeta emission spectrum is observed. This difference of shapes of X-ray spectra between alpha-Si:H and silicyne is explained by the presence in silicyne a strong pi-component of chemical bonds of a silicon atoms in silicyne

  15. X-ray excited optical luminescence, photoluminescence, photostimulated luminescence and x-ray photoemission spectroscopy studies on BaFBr:Eu

    CERN Document Server

    Subramanian, N; Govinda-Rajan, K; Mohammad-Yousuf; Santanu-Bera; Narasimhan, S V

    1997-01-01

    The results of x-ray excited optical luminescence (XEOL), photoluminescence (PL), photostimulated luminescence (PSL) and x-ray photoemission spectroscopy (XPS) studies on the x-ray storage phosphor BaFBr:Eu are presented in this paper. Analyses of XEOL, PL and PSL spectra reveal features corresponding to the transitions from 4f sup 6 td sup 1 to 4f sup 7 configurations in different site symmetries of Eu sup 2 sup +. Increasing x-ray dose is seen to lead to a red shift in the maximum of the PL excitation spectrum for the 391 nm emission. The XEOL and XPS spectra do not show any signature of Eu sup 3 sup + in the samples studied by us, directly raising doubts about the model of Takahashi et al in which Eu sup 2 sup + is expected to ionize to Eu sup 3 sup + upon x-ray irradiation and remain stable until photostimulation. XEOL and PSL experiments with simultaneous x-ray irradiation and He - Ne laser excitation as well as those with sequential x-ray irradiation and laser stimulation bring out the competition betwe...

  16. Total reflection X-ray photoelectron spectroscopy: A review

    International Nuclear Information System (INIS)

    Kawai, Jun

    2010-01-01

    Total reflection X-ray photoelectron spectroscopy (TRXPS) is reviewed and all the published papers on TRXPS until the end of 2009 are included. Special emphasis is on the historical development. Applications are also described for each report. The background reduction is the most important effect of total reflection, but interference effect, relation to inelastic mean free path, change of probing depth are also discussed.

  17. Phosphoramidates: synthesis, spectroscopy, and X-ray crystallography

    Czech Academy of Sciences Publication Activity Database

    Shariatinia, Z.; Sohrabi, M.; Yousefi, M.; Kovaľ, Tomáš; Dušek, Michal

    2012-01-01

    Roč. 23, č. 5 (2012), s. 478-485 ISSN 1042-7163 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : phosphoramidates * X-ray diffraction * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.577, year: 2012

  18. X-ray spectroscopy with normal and exotic atoms

    International Nuclear Information System (INIS)

    Qureshi, I.E.

    1995-01-01

    X-ray spectroscopy is a powerful analytical tool for elemental analysis and also for the study of nuclear properties. In recent years these has been extensive utilization of x-ray spectral analysis for the purpose of plasma diagnostics. These studies are vital for the development of controlled nuclear fusion technology. The formation of special atoms containing particles heavier than electrons is another area in which x-ray spectra give detailed knowledge of the sizes and shapes of atomic nuclei, masses and magnetic momenta of bound particles and the nature of interaction between bound particle and the nucleus. All these aspects make x-ray spectra of uniquely rich source of information on material and nuclear properties. The present article provides some glimpses of how this information is extracted. The choice of topics is biased towards nuclear physics. The presentation is not attempted to the exhaustive and is aimed at conveying the essential physical ideas without going into technical details. (author) 6 figs

  19. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, Pieter, E-mail: glatzel@esrf.fr [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Weng, Tsu-Chien; Kvashnina, Kristina; Swarbrick, Janine; Sikora, Marcin [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Gallo, Erik [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Department of Inorganic, Physical and Materials Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino (Italy); Smolentsev, Nikolay [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Research Center for Nanoscale Structure of Matter, Southern Federal University, str. Zorge 5, 344090 Rostov-on-Don (Russian Federation); Mori, Roberto Alonso [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-06-15

    Highlights: ► Overview of some recent developments in hard X-ray RXES/RIXS. ► Evaluation of spectral line broadening in RXES/RIXS. ► Modelling of RXES/RIXS by ground state DFT calculations. ► Discussion on when HERFD provides a good approximation to XAS. -- Abstract: An increasing community of researchers in various fields of natural sciences is combining X-ray absorption with X-ray emission spectroscopy (XAS–XES) to study electronic structure. With the applications becoming more diverse, the objectives and the requirements in photon-in/photon-out spectroscopy are becoming broader. It is desirable to find simple experimental protocols, robust data reduction and theoretical tools that help the experimentalist to understand their data and learn about the electronic structure. This article presents a collection of considerations on non-resonant and resonant XES with the aim to guide the experimentalist to make good use of this technique.

  20. Observational Trends of Cometary X-ray Emission

    Science.gov (United States)

    Lisse, C. M.

    2001-05-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999, Lisse et a. 2001, Dennerl et al. 2001) have shown that the very soft (best fit thermal bremsstrahlung model kT = 0.23 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the more than 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma and solar wind flux. As-observed morphologies, spectra, and light curves will be discussed. We also report on the status of current cometary observations using the new powerful x-ray observatories Chandra and XMM. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  1. Radio search for pulsed emission from X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    delli Santi, F S; Delpino, F [Bologna Univ. (Italy). Ist. di Astronomia; Inzani, P; Sironi, G [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Mandolesi, N; Morigi, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE

    1981-05-01

    An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329 + 54, used a testing object, has been detected successfully.

  2. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  3. Probing deeper by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P.; Renault, O., E-mail: olivier.renault@cea.fr; Martinez, E.; Delaye, V. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); Detlefs, B. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Zegenhagen, J. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gaumer, C. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Grenet, G. [Institut des Nanotechnologies de Lyon (INL), UMR CNRS 5270, Ecole Centrale de Lyon, 36, avenue Guy de Collongue 69 134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  4. Arsenic speciation in solids using X-ray absorption spectroscopy

    Science.gov (United States)

    Foster, Andrea L.; Kim, Chris S.

    2014-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS) is an in situ, minimally-destructive, element-specific, molecular-scale structural probe that has been employed to study the chemical forms (species) of arsenic (As) in solid and aqueous phases (including rocks, soils, sediment, synthetic compounds, and numerous types of biota including humans) for more than 20 years. Although several excellent reviews of As geochemistry and As speciation in the environment have been published previously (including recent contributions in this volume), the explosion of As-XAS studies over the past decade (especially studies employing microfocused X-ray beams) warrants this new review of the literature and of data analysis methods.

  5. X-ray spectroscopy of laser imploded targets

    International Nuclear Information System (INIS)

    Yaakobi, B.; Skupsky, S.; McCrory, R.L.; Hooper, C.F.; Deckman, H.; Bourke, P.; Soures, J.M.

    1981-01-01

    X-ray spectroscopy provides a variety of means for studying the interaction of lasers with plasmas, in particular the interaction with imploding targets in inertial confinement fusion. A typical fusion target is composed of materials other than the thermonuclear fuel which play a variety of roles (tamping, shielding, thermal isolation, etc.). These structural elements emit characteristic X-ray lines and continua, and through their spectral and spatial distributions can yield very valuable information on the interaction and implosion dynamics. Examples are the study of heat conductivity, the mixing of different target layers, and the determination of temperature and density at the compressed target core. Results will be shown for electron densities Nsub(e) approximately equal to 10 24 cm -3 and temperatures T approximately equal to 1 keV measured during compression of argon-filled targets with a six-beam laser of peak power 2 TW. (author)

  6. X-ray emission from hot subdwarfs with compact companions

    Directory of Open Access Journals (Sweden)

    Esposito P.

    2013-03-01

    Full Text Available We review the X-ray observations of hot subdwarf stars. While no X-ray emission has been detected yet from binaries containing B-type subdwarfs, interesting results have been obtained in the case of the two luminous O-type subdwarfs HD 49798 and BD + 37° 442. Both of them are members of binary systems in which the X-ray luminosity is powered by accretion onto a compact object: a rapidly spinning (13.2 s and massive (1.28  M⊙ white dwarf in the case of HD 49798 and most likely a neutron star, spinning at 19.2 s, in the case of BD + 37° 442. Their study can shed light on the poorly known processes taking place during common envelope evolutionary phases and on the properties of wind mass loss from hot subdwarfs.

  7. Applications of particle induced X-ray emission

    International Nuclear Information System (INIS)

    Akselsson, K. R.

    1978-01-01

    In Particle Induced X-ray Emission (PIXE) analysis samples are bombarded by protons or α-particles of a few MeV/u. The induced characteristic x-rays are detected with a x-ray detector e.g. a Si(Li)-detector. The energies of the x-ray peaks are characteristic for the elements in the samples and the intensities of the x-ray transitions are proportional to the abundances of the elements. The research area which first attracted those of us working with PIXE was the study of sources, transport and deposition of airborne particulates. Sources, transport, wet deposition, other applications where PIXE is already known to be competitive are trace elemental analysis of water below the ppb-level and analyses requiring a space resolution of 1-10μ. However, there is still much to do for physicists in developing the full potential of low-energy accelerators as analytical tools in multidisciplinary teams. (JIW)

  8. X-ray emission from the Pleiades cluster

    Science.gov (United States)

    Agrawal, P. C.; Singh, K. P.; Riegler, G. R.

    1983-01-01

    The detection and identification of H0344+24, a new X-ray source located in the Pleiades cluster, is reported, based on observations made with HEAO A-2 low-energy detector 1 in the 0.15-3.0-keV energy band in August, 1977. The 90-percent-confidence error box for the new source is centered at 03 h 44.1 min right ascension (1950), near the center star of the 500-star Pleiades cluster, 25-eta-Tau. Since no likely galactic or extragalactic source of X-rays was found in a catalog search of the error-box region, identification of the source with the Pleiades cluster is considered secure. X-ray luminosity of the source is calculated to be about 10 to the 32nd ergs/sec, based on a distance of 125 pc. The X-ray characteristics of the Pleiades stars are discussed, and it is concluded that H0344+24 can best be explained as the integrated X-ray emission of all the B and F stars in the cluster.

  9. X-ray emission lines from photoionized plasmas

    International Nuclear Information System (INIS)

    Liedahl, D.A.

    1992-11-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae, which are likely to exist in the circumsource environments of compact X-ray sources. X-ray line production in a photoionized plasma is primarily the result of radiative cascades following recombination. Through the development of atomic models of several highly-charged ions, this work extends the range of applicability of discrete spectral models to plasmas dominated by recombination. Assuming that ambient plasma conditions lie in the temperature range 10 5 --10 6 K and the density range 10 11 --10 16 cm -3 , X-ray line spectra are calculated over the wavelength range 5--45 angstrom using the HULLAC atomic physics package. Most of the work focuses on the Fe L-shell ions. Line ratios of the form (3s-2p)/(3d-2p) are shown to characterize the principal mode of line excitation, thereby providing a simple signature of photoionization. At electron densities exceeding 10 12 cm -3 , metastable state populations in the ground configurations approach their LTE value, resulting in the enrichment of the Fe L-shell recombination spectrum and a set of density-sensitive X-ray line ratios. Radiative recombination continua and emission lines produced selectively by Δn = 0 dielectronic recombination are shown to provide two classes of temperature diagnostics. Because of the extreme overionization, the recombination continua are expected to be narrow (ΔE/E much-lt 1), with ΔE = kT. Dielectronic recombination selectively drives radiative transitions that originate on states with vacancies in the 2s subshell, states that are inaccessible under pure RR population kinetics

  10. Proton-induced X-ray emission analysis of Jordanian cigarettes

    International Nuclear Information System (INIS)

    Hallak, A.B.

    1981-01-01

    Proton-induced X-ray emission spectroscopy was applied to determine the concentration of 11 elements in cigaretta tobacco of four brands commercially made in Jordan, and one foreign brand. The results are expressed in absolute amount per cigarette. Cigarette wrapping paper and cigarette smoke were also anlayzed. The significance of some of the elements found in the samples are discussed. (author)

  11. The X-ray emission spectrum of gaseous acetylene

    International Nuclear Information System (INIS)

    Brammer, R.; Rubensson, J.E.; Wassdahl, N.; Nordgren, J.

    1987-01-01

    The X-ray emission spectrum of acetylene in the gas phase has been recorded using a 10 m grazing incidence spectrometer. Analysis of the spectrum is made based on calculations of total energies, potential curves and Franck-Condon vibrational intensities. Four emission bands are seen with the 1 π u band exhibiting vibrational structure. Analysis of the vibrations gives the CIs ionization energy. High energy satellite structure is observed and interpreted. (orig.)

  12. Trace analysis in cadmium telluride by heavy ion induced X-ray emission and by SIMS

    International Nuclear Information System (INIS)

    Scharager, C.; Stuck, R.; Siffert, P.; Cailleret, J.; Heitz, Ch.; Lagarde, G.; Tenorio, D.

    1979-01-01

    The possibilities of using both selective heavy ion induced X-ray emission and secondary ion mass spectroscopy (SIMS), for the identification of impurities present at low concentrations in cadmium telluride are examined. The relative concentrations of the impurities along CdTe crystals have been determined by exciting the X-ray emission of the elements in several slices with Ar and Kr ions and by comparing the relative characteristic X-ray emission yields. As a consequence of the quasimolecular inner shell ionization mechanism in heavy ion-atom collisions, Ar and Kr ions allow a strong excitation of the main impurities seen by SIMS namely Si, Cl and Ge, As, with only a minor contribution of Cd and Te. From the changes of the concentrations of the various impurities along the crystal, informations about segregation coefficients and compensation can be obtained

  13. X-ray Absorption Spectroscopy in Mineralogy: A Review

    International Nuclear Information System (INIS)

    Mottana, Annibale

    2003-01-01

    The number of mineral species known to date rapidly approaches 4000, and yet they represent but a small fraction of all the known inorganic and organic compounds. Nevertheless, minerals represent an ideal field of activity for X-ray absorption spectroscopy (XAS), because the investigation of their crystal-chemical peculiarities takes an enormous advantage of the property of this method of being atom-selective, even in the presence of a wide range of competing atoms located in similar structural environments. As a matter of fact, XAS on minerals proved to be a useful probing method as early as for W. Kossel's pioneer studies of in the 1930's, just after the fine structures occurring at and near the absorption edge had been first detected. However, XAS did not really become consolidated in mineral studies until the 1980's, when synchrotron sources became available to users. A concise, but complete review of the historical and recent applications of XAS to minerals and to their analogues synthesized for geological/geophysical purposes i.e., to better understand the mechanisms by which the Earth evolves, is here given. Special reference will be made to transition metals (Ca, Ti, Cr, Mn, Fe, Ni) which absorb in the hard X-ray spectral region (> 4 KeV) and to the geologically-significant elements (O, Na, Mg, Al, Si, S and K) which absorb in the soft X-ray region (500-4000 eV)

  14. X-ray emission and the winds of cataclysmic variables

    International Nuclear Information System (INIS)

    Cordova, F.A.

    1985-01-01

    X-ray and ultraviolet observations of cataclysmic variable stars reveal a variety of exotic behavior - pulsations, winds, and episodic outbursts - are these related, what do they tell us about the nature of the outburst, about the environment of the accreting white dwarf. The author summarizes the observed changes in the x-ray and uv continuum and spectral features through the outbursts of the dwarf novae. The author then discusses how the modeling of these data have refined our ideas about the location and nature of the emissions, and the source of the outbursts. The author shows how comparisons of the x-ray and uv properties of cataclysmic variables with similar phenomena in other astronomical systems - the solar corona, OB stars, and Be stars - suggest ways in which the x-ray and uv emissions in CVs may be related, and point to further, specific observations that would elucidate our understanding of the behavior and role of the white dwarf in the outburst. 26 references

  15. LNLS soft x-ray spectroscopy (SXS) beamline

    International Nuclear Information System (INIS)

    Tolentino, Helio; Rocha, Milton C.; Tamura, Edilson; Cezar, Julio C.; Vicentin, Flavio C.; Giles, Carlos; Compagnon-Cailhol, Valerie; Abbate, Miguel; Cruz, Daniela Z.N.; Mocellin, Alexandra

    1996-01-01

    The Soft X-ray Spectroscopy beamline will be dedicated to the study of structural, electronic and magnetic properties of materials by using photoabsorption and photoemission techniques, X-ray dischroism will be used to study magnetism of transition metals and rare earths compounds. This beamline is one of the first seven beamlines which were decided to start operation along with the storage ring. Part of the beamline - mostly importations - has been granted by fundings from the state of Sao Paulo (Fapesp). The electron energy analyser came through EEC from a cooperation with a French group at LURE. All components of the beamline are either constructed or bougth and being mounted at the storage ring. The monochromator has already been commissioned under UHV, attaining the specification of 5x10 -9 Torr. To cover the whole energy range, from 800 eV up to 4000 eV, many crystals have been bought, cut and tested. The mirror has been specified in order to focus the source in both directions. Simulations using the Shadow code (source simulation and ray tracing technique) were performed in order to optimize the performance of the optics. We expert to focus 10 mrad down to a spot of 3.0x1.5 mm 2 . The mirror chamber has already been constructed and commissioned under UHV conditions (pressure -9 Torr). The mechanics (mechanical feedthroughs, stability, etc..) has been tested using an X-ray source and has been approved. The experimental chamber has already been used for photoemission experiments using a conventional AL/Mg X-ray source. Many results have been obtained and two master thesis have been performed using this set-up. (author)

  16. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  17. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    DeMasi, A.; Piper, L; Zhang, Y; Reid, I; Wang, S; Smith, K; Downes, J; Pelkekis, N; McGuinness, C; Matsuura, A

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  18. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    Science.gov (United States)

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  19. X-Ray Absorption Spectroscopy of Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  20. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  1. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  2. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  3. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  4. Electron emission regulator for an x-ray tube filament

    International Nuclear Information System (INIS)

    Daniels, H.E.; Randall, H.G.

    1982-01-01

    An x-ray tube ma regulator has an scr phase shift voltage regulator supplying the primary winding of a transformer whose secondary is coupled to the x-ray tube filament. Prior to initiation of an x-ray exposure, the filament is preheated to a temperature corresponding substantially to the electron emissivity needed for obtaining the desired tube ma during an exposure. During the preexposure interval, the phase shift regulator is controlled by a signal corresponding to the sum of signals representative of the voltage applied to the filament transformer, the desired filament voltage and the space charge compensation needed for the selected x-ray tube anode to cathode voltage. When an exposure is initiated, control of the voltage regulator is switched to a circuit that responds to the tube current by controlling the amount of phase shift and, hence, the voltage supplied to the transformer. Transformer leakage current compensation is provided during the exposure interval with a circuit that includes an element whose impedance is varied in accordance with the anode-to-cathode voltage setting so the element drains off tube current as required to cancel the effect of leakage current variations

  5. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  6. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  7. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  8. Quantifying the Exospheric Component of Soft X-ray Emission

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael R.; Snowden, Steven L.; Robertson, Ina; Hansen, Kenneth; Cravens, Thomas

    2007-01-01

    High charge state heavy ions in the solar wind exchange charge with ambient neutral gas. This process creates a product ion in an excited state. During the radiative cascade process, EUV and X-ray photons are emitted with energies in the range of about 100 eV to 1 keV. Because the terrestrial exospheric density at the nominal magnetopause location is relatively high, approx. 10 cu cm, solar wind charge exchange, or SWCX, can be observed by Earth-orbiting soft X-ray instruments such as the ROSAT Position Sensitive Proportional Counters (PSPC). In this presentation, we will compare simulated and observed soft Xray emission during an event on August 18-19, 1991 and discuss the role of exospheric SWCX emission for this and other events.

  9. Modelling of X-ray emission supernova remnants observed by the European satellite XMM-Newton

    International Nuclear Information System (INIS)

    Cassam-Chenai, G.

    2004-01-01

    This thesis deals with the X-ray emission of supernova remnants (SNRs) observed by the European satellite XMM-Newton. In SNRs, the matter heated to millions of degrees shines brightly in X-rays. This emission depends on the hydrodynamical evolution of the SNR, on the chemical composition of the ejected matter and on the ambient medium. Moreover, the blast-wave is considered to be the prime site of the production and the acceleration of cosmic-rays in our Galaxy. XMM-Newton is one of the first to allow the investigation of these different aspects thanks to its spatially-resolved spectroscopy and its very good sensitivity. l first studied Kepler's SNR (SN 1604) whose X-ray emission is dominated by the ejecta. Its observation has allowed to obtain information on the nucleosynthesis products, on their spatial distribution and on the temperature structure in the shocked ejecta. This gives strong constraints on the physics of the explosion and on the progenitor's type. l have shown also that the X-ray emission at the shock is likely to be non-thermal. Then, l studied the SNR G347.3-0.5 whose X-ray emission is entirely due to the synchrotron radiation of relativistic (TeV) electrons accelerated at the shock. From five pointing, l made a full mapping of the X-ray emission characteristics (brightness, absorption and spectral index) at small scale. Combined to radio observations, these results have indicated a clear interaction between the SNR and molecular clouds located at 1 kpc and not at 6 kpc as previously estimated. Lastly, in the framework of a self-similar hydrodynamical model coupled with non-linear particle acceleration, l have obtained the synchrotron emission profile in SNRs, including the adiabatic and radiative losses of the accelerated electrons. (author) [fr

  10. Analysis of Atmospheric Aerosols Collected in an Urban Area in Upstate NY Using Proton Induced X-ray Emission (PIXE) Spectroscopy

    Science.gov (United States)

    Smith, Jeremy; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We examined atmospheric aerosol samples collected in Schenectady NY for evidence of pollution. We collected aerosol samples using a nine stage cascade impactor which distributes the particulate matter by aerodynamic size onto 7.5 μm Kapton foils. We then used a 1MV electrostatic Pelletron accelerator to produce a 2.2 MeV proton beam to hit the impacted foils. X-ray intensity versus energy spectra were collected using an Amptek x-ray detector where the x-rays are produced from the proton beam interacting with the sample. This is called PIXE. The elemental composition and concentrations of the elements present in the aerosol samples were determined using a software package called GUPIX. We have found elements ranging from Al to Pb and in particular have found significant amounts of Pb and Br on some of our impacted foils, with a Br/Pb ratio of 0.6 +/- 0.2 which agrees with previous studies. This result suggests the presence of leaded aviation fuel perhaps due to the proximity of the collection site to a small airport with a significant amount of general aviation traffic. Union College.

  11. Soft X-ray Absorption Spectroscopy of Liquids and Solutions.

    Science.gov (United States)

    Smith, Jacob W; Saykally, Richard J

    2017-12-13

    X-ray absorption spectroscopy (XAS) is an electronic absorption technique for which the initial state is a deeply buried core level. The photon energies corresponding to such transitions are governed primarily by the binding energies of the initial state. Because the binding energies of core electrons vary significantly among atomic species, this makes XAS an element-selective spectroscopy. Proper interpretation of XA spectra can provide detailed information on the local chemical and geometric environment of the target atom. The introduction of liquid microjet and flow cell technologies into XAS experiments has enabled the general study of liquid samples. Liquids studied to date include water, alcohols, and solutions with relevance to biology and energy technology. This Review summarizes the experimental techniques employed in XAS studies of liquid samples and computational methods used for interpretation of the resulting spectra and summarizes salient experiments and results obtained in the XAS investigations of liquids.

  12. X-ray Spectroscopy and Magnetism in Mineralogy

    Science.gov (United States)

    Sainctavit, Philippe; Brice-Profeta, Sandrine; Gaudry, Emilie; Letard, Isabelle; Arrio, Marie-Anne

    The objective of this paper is to present the kind of information that can be gained in the field of mineralogy from the use of x-ray magnetic spectroscopies. We review some of the questions that are unsettled and that could benefit from an interdisciplinary approach where magnetism, spectroscopy and mineralogy could be mixed. Most of the attention is focused on iron and some other 3d transition elements. The mineralogy of planetary cores and its relation with known meteorites are exemplified. The various oxide phases in the mantle and the nature of iron in these phases is also underlined. The presence of transition elements in insulating minerals and its relation with macroscopic properties such as the color of gemstones are reviewed. Finally an introduction to paleomagnetism is given with a special attention to nanomaghemites.

  13. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    Science.gov (United States)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  14. Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

    Directory of Open Access Journals (Sweden)

    Kyoung-Ae Seo

    2013-06-01

    Full Text Available We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×1022 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

  15. Scaling of x-ray emission and ion velocity in laser produced Cu ...

    Indian Academy of Sciences (India)

    Laser plasma; x-ray emission; conversion efficiency; ion velocities. ... fits from this kind of optimization studies are in the fields of x-ray lithography, x-ray lasers etc. .... formula between the x-ray conversion rate versus different parameters of the ...

  16. Relative probabilities of the uranium isotopes for thorium x-ray emission and fluorescence of uranium x-rays

    International Nuclear Information System (INIS)

    Parker, J.L.

    1991-01-01

    Both thorium x-rays from decaying uranium isotopes and self-fluoresced uranium x-rays are prominent in high-resolution gamma-ray spectra of uranium-bearing materials. Useful application of the information carried by those x-rays has been curtailed because the probabilities of the uranium isotopes for thorium x-ray emission and for uranium x-ray fluorescence have not been known. By analyzing enrichment-meter geometry spectra from uranium oxide standards whose enrichments ranged from 0.7% to 91%, relative values, primarily, have been obtained for the probabilities of both processes. Thorium x-ray emission is very heavily dominated by 235 U. In all ordinarily occurring uranium isotopic distributions, thorium x-rays may be used as a valid 235 U signature. The probability for a thorium K α1 x-ray to be emitted in the decay of a 235 U atom is 0.048 ±0.002. In infinitely thick uranium oxide materials, the relative ratios of effectiveness for self-fluorescence, on a per unit mass basis, are approximately 234 U : 235 U : 236 U : 238 U = 1.13 : 1.00 : 0.52 : 0.028. on a per decay basis, the approximate ratios are 0.00039 : 1.00 : 0.017 : 0.18. These results imply that, contrary to what has often been stated, gamma rays are far more important than alpha particles in the self-fluorescence of uranium. Because of the importance of gamma-ray self-fluorescence, the uranium x-ray yield will be somewhat influenced by the size, shape, and composition of the materials. 4 refs., 1 fig

  17. Colliding Stellar Winds Structure and X-ray Emission

    Science.gov (United States)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  18. X-ray spectroscopy of the mixed morphology supernova remnant W 28 with XMM-Newton

    Science.gov (United States)

    Nakamura, Ryoko; Bamba, Aya; Ishida, Manabu; Yamazaki, Ryo; Tatematsu, Ken'ichi; Kohri, Kazunori; Pühlhofer, Gerd; Wagner, Stefan J.; Sawada, Makoto

    2014-06-01

    We report on spatially resolved X-ray spectroscopy of the north-eastern part of the mixed morphology supernova remnant (SNR) W 28 with XMM-Newton. The observed field of view includes a prominent and twisted shell emission forming the edge of this SNR as well as part of the center-filled X-ray emission brightening toward the south-west edge of the field of view. The shell region spectra are in general represented by an optically thin thermal plasma emission in collisional ionization equilibrium with a temperature of ˜ 0.3 keV and a density of ˜ 10 cm-3, which is much higher than the density obtained for inner parts. In contrast, we detected no significant X-ray flux from one of the TeV γ-ray peaks with an upper-limit flux of 2.1 × 10-14 erg cm-2 s-1 in the 2-10 keV band. The large flux ratio of TeV to X-ray, larger than 16, and the spatial coincidence of the molecular cloud and the TeV γ-ray emission site indicate that the TeV γ-ray of W 28 is π0-decay emission originating from collisions between accelerated protons and molecular cloud protons. Comparing the spectrum in the TeV band and the X-ray upper limit, we obtained a weak upper limit on the magnetic field strength B ≲ 1500 μG.

  19. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    Science.gov (United States)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  20. [Diffraction gratings used in x-ray spectroscopy]: Final report

    International Nuclear Information System (INIS)

    Smith, H.I.

    1988-01-01

    This subcontract was initiated in order to facilitate the development at MIT of technologies for fabricating the very fine diffraction grating required in x-ray spectroscopy at Lawrence Livermore Laboratory (LLL). These gratings are generally gold transmission gratings with spatial periods of 200 nm or less. The major focus of our efforts was to develop a means of fabricating gratings of 100 nm period. We explored two approaches: e-beam fabrication of x-ray lithography masks, and achromatic holographic lithography. This work was pursued by Erik Anderson as a major component of his Ph.D. thesis. Erik was successful in both the e-beam and holographic approaches. However, the e-beam method proved to be highly impractical: exposure times of about 115 days would be required to cover an area of 1 cm 2 . The achromatic holography, on the other hand, should be capable of exposing areas well in excess of 1 cm 2 in times under 1 hour. Moreover, 100 nm-period gratings produced by achromatic holography are coherent over their entire area whereas gratings produced by e-beam lithography are coherent only over areas /approximately/100 μm. The remainder of this report consists of portions excerpted from Erik Anderson's thesis. These contain all the details of our work on 100 nm period gratings. 26 refs., 17 figs

  1. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  2. Prospects for supermirrors in hard x-ray spectroscopy

    DEFF Research Database (Denmark)

    Joensen, Karsten D.; Gorenstein, Paul; Christensen, Finn Erland

    1994-01-01

    . The measured x-ray reflectivities are well accounted for by the standard dynamical theories of multilayer reflection. Hard x ray applications that could benefit from x-ray supermirror coatings include focusing and imaging instrumentation for astrophysics, collimating and focusing devices for synchrotron...

  3. X-ray emission from clusters and groups of galaxies

    Science.gov (United States)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  4. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    Science.gov (United States)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  5. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    the crystalline quality through full-width at half-maximum values. .... angular divergence of ∆α = 12 arc sec. X-rays generated from the monochromator were diffracted from (0 0 6) LiNbO3 atomic planes with the (+, −, −, +, +) geometry. [8].

  6. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    International Nuclear Information System (INIS)

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d 10 4f n → 3d- 9 4f n+1 transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO 4 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations

  7. Uranium concentrate analysis by X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.; Roca, R.

    1978-01-01

    The determination of As, Ca, Fe, Mo, P, S, Si. Th, V and U in uranium concentrates by X-ray fluorescence spectroscopy has been studied. As and U are determined in nitric solutions and for the rest of elements analysis is performed by a bead fusion technique using Li 2 B 4 O 7 and Li 2 CO 3 as fluxes. Although the uranium matrix minimizes the absorption and enhancement effects, because of the content variations of this element it is advisable to operate at a constant level of U 3 O 8 . Despite the high matrix absorption and the large dilution of the samples, sensitivity and speed are found to be satisfactory as the result of the use of a high sensitivity automatic spectrometer. The spectral interferences of Mo on S and P, and of Pb on As have been particularly considered. (author) [es

  8. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  9. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  10. Exotic x-ray emission from dense plasmas

    Czech Academy of Sciences Publication Activity Database

    Rosmej, F.B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, Michal; Renner, Oldřich

    2015-01-01

    Roč. 48, č. 22 (2015), s. 224005 ISSN 0953-4075 R&D Projects: GA MŠk ED1.1.00/02.0061 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101208 Institutional support: RVO:68378271 Keywords : hollow ions * x-ray spectroscopy * atomic physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.833, year: 2015

  11. Quality assurance challenges in x-ray emission based analyses

    International Nuclear Information System (INIS)

    Papp, T.

    2005-01-01

    Complete text of publication follows. There is a large scatter in the results of X-ray analysis with solid-state detectors suggesting methodological origin. Although the PIXE (proton induced X-ray emission) analytical technique can work without relation to any physics, as was commented at the recent PIXE conference, one could argue that if the same technique is used for measuring physical quantities reveals problems, then perhaps potential methodological issues can not apriory be excluded. We present a simple example which could be interpreted as indications for methodological considerations. Recently an inter-comparison was made of analysis of the spectra measured at the laboratory of the International Atomic Energy Agency (IAEA). Four participating analytical software packages were used to evaluate the X-ray spectra. There are several thin metal samples spectra, for which common energy scale could not be established. The quality of the spectrum can be judged from the line shape. The line shape is parametrized by the full widths at half maximum (FWHM) of a peak and the so-called low energy tailing. Fitting the spectra individually we obtained FWHM squared values at different energies and determined the linear regression parameters. The parameters suggest a rather poor detector performance. It is generally assumed that the (FWHM) 2 values have a first order polynomial form as a function of X-ray energy. Having done a linear regression analysis, we can plot the standard residual, presented in Fig. 1, which clearly shows a three-sigma deviation. The probability to having a three-sigma deviation is 1%. In other words, the probability that these spectra are in accordance with the expected FWHM functional form is less than 1%. The main problem is that, although the composite spectra were analyzed using four different programs, the difficulty in interpreting the spectra was not commented upon by any of the participants in the inter-comparison. (author)

  12. Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy

    Science.gov (United States)

    Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo

    2017-10-01

    We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.

  13. Hybridized electronic states in potassium-doped picene probed by soft x-ray spectroscopies

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamane

    2012-12-01

    Full Text Available The electronic structure of the unoccupied and occupied states of potassium (K-doped and undoped picene crystalline films has been investigated by using the element-selective and bulk-sensitive photon-detection methods of X-ray absorption and emission spectroscopies. We observed the formation of the doping-induced unoccupied and occupied electronic states in K-doped picene. By applying the inner-shell resonant-excitation experiments, we observed the evidence for the orbital hybridization between K and picene near the Fermi energy. Furthermore, the resonant X-ray emission experiment suggests the presence of the Raman-active vibronic interaction in K-doped picene. These experimental evidences play a crucial role in the superconductivity of K-doped picene.

  14. Analysis of sludge using Proton induced X-ray emission

    International Nuclear Information System (INIS)

    Aspiazu, J.; Moreno, E.; Andrade, E.; Miranda, J.; Citalan, S.; Moeller, G.; Soler, F.

    1996-01-01

    Regulations to control the huge amounts of sludge produced by wastewater are needed. Sludge generated in conventional sedimentators or anaerobic digesters were characterized by Proton Induced X-ray Emission (PIXE). It was possible to determine the presence of macro nutrient elements, such as P and K, and secondary nutrients like Ca, S, and Mg. Moreover, heavy elements like Cu, Zn, and Pb were also found. The sludge treatment in anaerobic digesters increased the amount of certain elements Al, Si, S, Cl, and K; decrease in Ca, Ti, and Cu, and no change in V, Cr, and Zn. Possible uses of this sludge are also suggested

  15. Design and fabrication of multigrid X-ray collimators. [For airborne x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Acton, L W; Joki, E G; Salmon, R J [Lockheed Missiles and Space Co., Palo Alto, Calif. (USA). Lockheed Palo Alto Research Lab.

    1976-08-01

    Multigrid X-ray collimators continue to find wide application in space research. This paper treats the principles of their design and fabrication and summarizes the experience obtained in making and flying thirteen such collimators ranging in angular resolution from 10 to 0.7 arc min FWHM. Included is a summary of a survey of scientist-users and industrial producers of collimator grids regarding grid materials, precision, plating, hole quality and results of acceptance testing.

  16. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    Science.gov (United States)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  17. Analyais of solar X-ray emission line profiles

    International Nuclear Information System (INIS)

    Burek, A.J.; Marrus, D.M.; Blake, R.L.; Fenimore, E.E.

    1981-01-01

    We report results of the analysis of the X-ray emission line profiles for the Ne X La and Fe XVII 4d 1 P 1 lines produced in an active region that was undergoing a radio and X-ray gradual rise and fall (GRF) in intensity. The spectra were obtained with collimated Bragg spectrometers launched on a rocket from White Sands Missile Range on 1976 March 26. Using a crystal of ammonium acid phthalate, we have fully resolved the Ne X La and Fe XVII 4d 1 P 1 lines, permitting an accurate determinination of the Ne X La intensity and allowing Doppler broadened profiles for lines formed from ions having greatly different atomic mass and charge to be measured. An isothermal model derived from the Ne IX/Ne X resonance line intensity ratio gives an electron temperature of 3.4 x 10 6 K. An isothermal model, however, fails to account for the intensities of all lines and continuum observed. All multitemperature models that do reproduce the observed relative line intensities require the presence of a hot plasma component with an electron temperature in excess of 5 x 10 6 K. The presence of a high temperature component is also suggested by the measured line to continuum ratio of 3.6 in the 12--15 A wavelength interval. Interpretation of the line profiles in terms of a multitemperature model requires an rms turbulence velocity of 48 +- 15 km s -1 for Fe XVII 1 P 1 and 74 +- 54 km s - 2exclamation for Ne X La at the 95% confidence level. Collimated scans across the active region show the presence of a compact source of intense X-ray emission close to the magnetic neutral line, which is very probably the GRF plasma

  18. Studies of soft x-ray emission during solar flares

    International Nuclear Information System (INIS)

    Anandaram, M.N.

    1973-01-01

    Solar flare soft x-ray emission from 0.5 A to 8.5 A was observed during 1967-68 by Bragg crystal (LiF and EDDT) spectrometers aboard the OSO-4 satellite and also by NRL broad-band ionization detectors aboard the OGO-4 satellite. In this work, instrumental parameters for the LiF crystal spectrometer based on experimental values have been determined and used in the data analysis. The total continuum emission in the 0.5 to 3 A and the 1 to 8 A broad band segments has been determined from OGO-4 data for 21 flares. In doing this, a simple and approximate method of converting the total emission based on the gray body approximation (in which the OGO-4 data are reported) to one based on the thermal continuum spectrum has been developed. (author)

  19. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  20. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  1. Nuclear X-ray emission after fusion of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Christian; Muecher, Dennis; Gernhaeuser, Roman; Faestermann, Thomas [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Henning, Walter [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Argonne National Laboratory (United States); Morita, Kosuke; Morimoto, Kouji; Kaji, Daija [RIKEN, Research Group for Superheavy Elements (Japan)

    2015-07-01

    The goal is to establish in-beam K-X-ray spectroscopy as a sensitive tool to identify super heavy elements (SHEs) produced in fusion reactions via their proton number. SHEs, formed after cold or hot fusion, are usually identified via the alpha-decay products, which have to be connected to well-known elements. In case of hot fusion, the daughter nuclei quickly undergo spontaneous fission, so that the identification of the produced SHEs is difficult. Using the hot fusion approach in our first test experiments, the resultant products will be analysed by the gas-filled GARIS separator at the RILAC facility at RIKEN. As the X-ray detector is required to have superior energy and timing resolution to best identify the rare events at highest masses and to supress random coincidences as sufficient as possible, we chose a thin and planar geometry, which also reduces the damage caused by fast neutrons. We show first measurements using the MINIBALL Ge array at Munich. Additionally we report on our feasibility studies and on first tests using the new detector at high count rates together with a powerful DAQ system and transistor reset preamplifiers.

  2. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; Andersson, Klas J.; Araki, Tohru; Benzerara, Karim; Brown, Gordon E.; Dynes, Jay J.; Ghosal, Sutapa; Gilles, Mary K.; Hansen, Hans C.; Hemminger, J. C.; Hitchcock, Adam P.; Ketteler, Guido; Kilcoyne, Arthur L.; Kneedler, Eric M.; Lawrence, John R.; Leppard, Gary G.; Majzlam, Juraj; Mun, B. S.; Myneni, Satish C.; Nilsson, Anders R.; Ogasawara, Hirohito; Ogletree, D. F.; Pecher, Klaus H.; Salmeron, Miquel B.; Shuh, David K.; Tonner, Brian; Tyliszczak, Tolek; Warwick, Tony; Yoon, T. H.

    2006-02-01

    We present examples of the application of synchrotron-based spectroscopies and microscopies to environmentally-relevant samples. The experiments were performed at the Molecular Environmental Science beamline (11.0.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Examples range from the study of water monolayers on Pt(111) single crystal surfaces using X-ray emission spectroscopy and the examination of alkali halide solution/water vapor interfaces using ambient pressure photoemission spectroscopy, to the investigation of actinides, river-water biofilms, Al-containing colloids and mineral-bacteria suspensions using scanning transmission X-ray spectromicroscopy. The results of our experiments show that spectroscopy and microscopy in the soft X-ray energy range are excellent tools for the investigation of environmentally relevant samples under realistic conditions, i.e. with water or water vapor present at ambient temperature.

  3. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  4. Application of X-ray emission techniques for monitoring environmental pollution

    International Nuclear Information System (INIS)

    Bernasconi, G.; Danesi, P.R.; Dargie, M.; Haselberger, N.; Markowicz, A.; Tajani, A.

    1997-01-01

    X-ray emission techniques are versatile and powerful methods used for multielement non-destructive analysis. They include X-ray fluorescence (XRF), particle induced X-ray emission (PIXE), scanning electron microscopy combined with X-ray spectrometry and electron probe microanalysis (EPMA). Since many years the IAEA has utilised and promoted these techniques for the analysis of environmental, biological and geological samples. In this paper recent progress at our laboratory in selected aspects related to the application of X-ray emission techniques is briefly overviewed. (authors)

  5. Electron-electron correlation, resonant photoemission and X-ray emission spectra

    International Nuclear Information System (INIS)

    Parlebas, J.C.; Kotani, Akio; Tanaka, Satoshi.

    1991-01-01

    In this short review paper we essentially focus on the high energy spectroscopies which involve second order quantum processes, i.e., resonance photoemission, Auger and X-ray emission spectroscopies, denoted respectively by RXPS, AES and XES. First, we summarize the main 3p-RXPS and AES results obtained in Cu and Ni metals; especially we recall that the satellite near the 3p-threshold in the spectra, which arises from a d-hole pair bound state, needs a careful treatment of the electron-electron correlation. Then we analyze the RXPS spectra in a few Ce compounds (CeO 2 , Ce 2 O 3 and CeF 3 ) involving 3d or 4d core levels and we interpret the spectra consistently with the other spectroscopies, such as core XPS and XAS which are first order quantum processes. Finally within the same one-impurity model and basically with the same sets of parameters, we review a theory for the Ce 5p→3d XES, as well as for the corresponding RXES, where (1) the incident X-ray is tuned to resonate with the 3d→4f transition and (2) the X-ray emission due to the 5p→3d transition is actually observed. The paper ends with a general discussion. (author) 77 refs

  6. Resonant x-ray emission from gas-phase TiCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hague, C.F.; Tronc, M. [Universite Pierre et Marie Curie, Paris (France); De Groot, F. [Univ. of Groningen (Netherlands)] [and others

    1997-04-01

    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, {+-}2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d {yields}2p emission spectrum of TiCl{sub 4} over the 450 to 470 eV region.

  7. Resonant x-ray emission from gas-phase TiCl4

    International Nuclear Information System (INIS)

    Hague, C.F.; Tronc, M.; De Groot, F.

    1997-01-01

    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, ±2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d →2p emission spectrum of TiCl 4 over the 450 to 470 eV region

  8. Diffraction peaks in x-ray spectroscopy: Friend or foe?

    International Nuclear Information System (INIS)

    Tissot, R.G.; Goehner, R.P.

    1992-01-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample

  9. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    Science.gov (United States)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  10. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  11. Probing interfacial characteristics of rubrene/pentacene and pentacene/rubrene bilayers with soft X-ray spectroscopy.

    Science.gov (United States)

    Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N

    2007-08-16

    The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.

  12. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    International Nuclear Information System (INIS)

    Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.

    2004-01-01

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed

  13. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bottigli, U. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Sezione INFN di Cagliari (Italy); Brunetti, A. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Golosio, B. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy) and Sezione INFN di Cagliari (Italy)]. E-mail: golosio@uniss.it; Oliva, P. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Stumbo, S. [Istituto di Matematica e Fisica dell' Universita di Sassari, via Vienna 2, 07100, Sassari (Italy); Vincze, L. [Department of Chemistry, University of Antwerp (Belgium); Randaccio, P. [Dipartimento di Fisica dell' Universita di Cagliari and Sezione INFN di Cagliari (Italy); Bleuet, P. [European Synchrotron Radiation Facility, Grenoble (France); Simionovici, A. [European Synchrotron Radiation Facility, Grenoble (France); Somogyi, A. [European Synchrotron Radiation Facility, Grenoble (France)

    2004-10-08

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed.

  14. Neutron and X-ray emission studies in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaullah, M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Murtaza, G. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Qamar, S. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Ahmad, I. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Beg, M.M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics

    1996-03-01

    In a low energy Mather-type plasma focus energized by a single 32 {mu}F capacitor, the X-ray and neutron emission is investigated using time-integrated and time-resolved detectors. The X-ray emission profile has a width (FWHM) of 40-50 ns. The neutron emission profile is broader compared to the X-ray emission profile and also delayed by 30-40 ns. To identify different regimes of X-ray emission, an X-ray pin-hole camera along with different absorption filters is employed. While the X-ray emission is high within a narrow pressure range of 2.0-2.5 mbar, the neutron emission is intense for a wider range of 1.0-4.5 mbar. The intense X-ray emission seems to originate from the axially moving shock wave. These results also indicate rather different production mechanisms for X-ray and neutron emission. Also on comparing the X-ray images with Al(2 {mu}m), Al(5 {mu}m), Al(9 {mu}m) filters, we find that the bulk of X-rays from the focus filament have energies less than 2 keV. (orig.).

  15. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    International Nuclear Information System (INIS)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre; Jordan, Inga; Wörner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van

    2013-01-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented

  16. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    Science.gov (United States)

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  17. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  18. Potpourri of proton induced x-ray emission analyses

    International Nuclear Information System (INIS)

    Mangelson, N.F.; Nielson, K.K.; Eatough, D.J.; Hansen, L.D.

    1974-01-01

    A proton-induced x-ray emission analysis (PIXE) system using 2-MeV protons was developed. Measurements are being made in connection with several research projects. A study is being conducted to provide ecological baseline information in the region of the Navajo and the proposed Kaiparowits coal-fired electric generating stations. Trace-element measurements in this study are reported on air-particulate samples, small rodent tissues, soils, and plants. In another study air particulates collected near a source of SO 2 are extracted from the collection filter with an HCl solution and sulfate and sulfite ions are determined by calorimetric methods. The extraction solution is also analyzed by PIXE to determine the elemental composition. The latter information is necessary for an understanding of possible interferences with the calorimetric method and also indicates the heavy metals emitted by the source. Studies on human autopsy tissues, archeological artifacts, and in regular graduate and undergraduate laboratory classes are mentioned briefly

  19. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  20. Sawtooth-like X-ray emission observed in EBIT

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Bachmann, P.

    2003-01-01

    The evolution of a mixture of highly charged Ar and Ba ions was measured in an electron beam ion trap (EBIT) by recording the characteristic X-ray emission from trapped ions. A special feature in the spectra are sawtooth-like intensity variations caused by a periodic collapse of the ion inventory in the trap. The effect requires favorable conditions to become present and is very sensitive to the trapping conditions. Analysis of the measurements is based on a time-dependent calculation of the trapping process. Simulations show that sawtooth activity results from the feedback between the low-Z Ar and high-Z Ba ions (Hopf bifurcation). Sawtooth spectra open up a spectroscopic method to test theoretical EBIT models and probe the dynamics in ion traps and sources

  1. Soft X-ray emission studies of biomaterials

    International Nuclear Information System (INIS)

    Kurmaev, E.Z.; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M.

    2004-01-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B 12 and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B 12 is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair π-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon Kα emission spectra of a caries lesion suggest that the CaCO 3 like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack

  2. X-ray emission in heavy ion collisions. Final report

    International Nuclear Information System (INIS)

    Watson, R.L.

    1984-01-01

    A detailed accounting of the yearly activities of the research program entitled X-ray Emission in Heavy Ion Collisions may be found in the annual progress reports submitted in accordance with the terms of the contract. The principal goals of the program to be summarized herein were (a) to delineate the mechanisms whereby highly ionized atoms in the condensed phase deexcite and return to charge neutrality, (b) to investigate the charge quenching processes acting to reduce the charge states of highly ionized projectiles, and (c) to attain a better understanding of the interactions occurring between highly charged ions and solid surfaces. These projects all relate to problems associated with the ultimate application of controlled thermonuclear reactions as a practical energy source

  3. F K-edge soft X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugimura, Tetsuro; Kawai, Jun; Maeda, Kuniko; Fukushima, Akiko; Shin, S.; Motoyama, Muneyuki; Nakajima Tsuyoshi

    2001-01-01

    We measured F X-ray absorption spectra of various fluorine compounds using a synchrotron radiation at KEK-PF. The absorption spectra were measured using X-ray fluorescence yield (XFY) and total electron yield (TEY) methods. Change of the spectral shape has a relation to the metal-fluorine bond distance. By comparing with the experimental spectrum and calculated spectrum, F 2p state density is divined into up and down states. (author)

  4. Multiple scattering approach to X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Benfatto, M.; Wu Ziyu

    2003-01-01

    In this paper authors present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. Authors also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach

  5. Discovery of Hard Nonthermal Pulsed X-Ray Emission from the Anomalous X-Ray Pulsar 1E 1841-045

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Méndez, R.M.

    2004-01-01

    We report the discovery of nonthermal pulsed X-ray/soft gamma-ray emission up to ~150 keV from the anomalous 11.8 s X-ray pulsar AXP 1E 1841-045 located near the center of supernova remnant Kes 73 using Rossi X-Ray Timing Explorer (RXTE) Proportional Counter Array and High Energy X-Ray Timing

  6. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    Science.gov (United States)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  7. Elemental analysis of bronze artifacts by muonic X-ray spectroscopy

    International Nuclear Information System (INIS)

    Ninomiya, Kazuhiko; Shinohara, Atsushi; Kubo, Michael K.; Strasser, Patrick; Nagatomo, Takashi; Kawamura, Naritoshi; Shimomura, Koichiro; Miyake, Yasuhiro; Kobayashi, Yoshio; Ishida, Katsuhiko; Higemoto, Wataru; Suzuki, Takao; Saito, Tsutomu

    2015-01-01

    A quantitative and multi-elemental analysis method for bulk samples based on muonic X-ray spectroscopy was applied to bronze artifacts (Tempo-Tsuho coins and a Seiun-kyo mirror). This method is based on the measurement of the characteristic high-energy muonic X-rays emitted in a sample after muon irradiation. The elemental compositions of these bronze artifacts were determined from muonic X-ray intensities in a non-destructive manner, using the relation between the muonic X-ray intensity and the elemental composition of the Cu–Sn–Pb alloy system. The analyzed values agreed well with those determined by X-ray fluorescence spectroscopy. We also estimated the detection limit of this method in the present experimental setup as 0.81 wt% of the background signal of the muonic X-ray spectra. (author)

  8. Doppler-shift assisted fast ion spectroscopy: a case study for X-ray emission from 277 MeV/u Pb[81+] ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Stachura, Z.; Warczak, A.

    1994-09-01

    Utilizing the different information from spatially separated segments of high-granular photon detectors the measured (LAB) energy of photons emitted by fast moving ions can be corrected individually for the Doppler effect according to the particular observation angles of each detector segment. By a redundant fitting procedure the center of mass photon energy can be determined with high precision. This new Doppler-shift assisted spectroscopy is explained for the case study of 277.4 MeV/u Pb 82+ ions colliding with a N 2 -gas target at the heavy ion storage ring ESR. Spectroscopic information for hydrogenic Pb 81+ ions is given for the ground-state transitions, for the Balmer transitions, as well as for the total K-binding energy. (orig.)

  9. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  10. Introduction to x-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Liesegang, J.; Pigram, P.J.

    1999-01-01

    Full text: XPS is one of several important surface analytical tools. Developed in Sweden in the 1960s, it was originally named by Kai Siegbahn as Electron Spectroscopy for Chemical Analysis or ESCA; and although it is the best method for non-invasively determining the elemental composition of the first 10 nm of any surface, modern XPS systems are capable of much more than elemental chemical analysis. High resolution photoelectron energy analysis (c. 0.2 eV) now permits easy identification of chemical state as well as concentration; angular variation of detection and depth profiling allow quantitative analysis as a function of depth below a sample surface; energy loss mechanisms may be studied; Auger peaks can be measured in an XPS system; and developments in the area of photoelectron imaging allow high resolution (c. 7 μm) mapping of the distribution of elements and their chemical states to be determined spatially on non-homogeneous surfaces. The workshop sessions will outline the link between the physics and chemistry of surfaces and the process of photoemission. The presentation will illustrate the features and capabilities of a newly acquired Kratos (UK) Axis Ultra XPS and Imaging System recently installed in the Centre for Materials and Surface Science at La Trobe University, and its capabilities regarding the foregoing issues. The first part of the presentation will outline the basics of XPS and the second part will illustrate its usefulness, and in particular, will illustrate the power of the instrumentation through the presentation of several applications of both fundamental and industrial significance. Copyright (1999) Australian X-ray Analytical Association Inc

  11. X-ray absorption and emission studies of diamond nanoparticles

    International Nuclear Information System (INIS)

    Van Buuren, T.; Willey, T.; Raty, J.Y.; Galli, G.; Terminello, L.J.; Bostedt, C.

    2004-01-01

    Full text: A new family of carbon nanopaticles produced in detonations, are found to have a core of diamond with a coating fullerene- like carbon. X-ray diffraction and TEM show that the nanodiamond powder is crystalline and approximately 4 nm in diameter. These nano-sized diamonds do not display the characteristic property of other group IV nanoparticles: a strong widening of the energy gap between the conduction and valence bands owing to quantum-confinement effects. For nano-sized diamond with a size distribution of 4 nm, there is no shift of the band energies relative to bulk diamond. Although the C1s core exciton feature clearly observed in the K-edge absorption edge of bulk diamond is shifted and broadening due to increased overlap of the excited electron with the core holein the small particle. Also the depth of the second gap in the nanodiamond spectra is shallower than that of bulk diamond. A feature at lower energy in the X-ray absorption spectra that is not present in the bulk samples is consistent with a fullerene like surface reconstruction. By exposing the diamond nanoparticles to an Argon /Oxygen plasma then annealing in a UHV environment we have obtained a hydrogen free surface. The nanodiamonds processed in this manner show an increase fullerene type contribution in the carbon x-ray absorption pre-edge. High spatial resolution EELS measurements of the empty states of a single nanodiamond particle acquired with a ld emission TEM also show the core of the particle is bulk diamond like where as the surface has a fullerene like structure. Standard density-functional calculations on clusters in which the diamond surface bonds are terminated with hydrogen atoms, show that the bandgap begins to increase above the bulk value only for clusters smaller than 1 nm. Surface hydrogen atoms are found to be about as close as they do in molecular hydrogen and can escape as H 2 , forcing the respective carbon atoms to rearrange. A series of such rearrangements can

  12. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    Energy Technology Data Exchange (ETDEWEB)

    Žitnik, M., E-mail: matjaz.zitnik@ijs.si [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana (Slovenia); Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A. [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); Cao, W. [Research Centre for Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Piancastelli, M.N. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden); Simon, M. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-10-15

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  13. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    International Nuclear Information System (INIS)

    Žitnik, M.; Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A.; Cao, W.; Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E.; Piancastelli, M.N.; Simon, M.

    2015-01-01

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  14. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  15. The nature of 50 Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    Science.gov (United States)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-Álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-06-01

    We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with the Burst Alert Telescope (BAT) instrument onboard the Swift satellite and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star. Based on observations obtained from the following observatories: Cerro Tololo Interamerican Observatory (Chile); Astronomical Observatory of Bologna in Loiano (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Radcliffe telescope of the South African Astronomical Observatory (Sutherland, South Africa); Sloan Digital Sky Survey; Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain) and New Technology Telescope (NTT) of La Silla Observatory, Chile.

  16. Changes of soft X-ray emission spectra of oxygen and copper in high Tc superconductors

    International Nuclear Information System (INIS)

    Fukushima, Sei; Gohshi, Yohichi; Kohiki, Shigemi; Saitoh, Naoki

    1989-01-01

    X-ray induced soft X-ray emission spectroscopy is one of the bulk analysis methods used to characterize high-Tc superconductor. In this report, some observations on the changes in O Kα and Cu L spectra of thin layer LnBa 2 Cu 3 O 7-δ (Ln=Er,Gd) samples are presented. From the measurement of O Kα, no discernible difference was found between those of Gd compounds which were composed single phase or not. It may be said that the electronic structure of p state localized on the O is not sensitive to the change of Tc or zero-resistance temperature. From the measurement of Cu L spectra, it was found that Cu Lα of only Gd containing compounds has a low energy shoulder

  17. X-ray spectroscopy of kaonic atoms at SIDDHARTA

    Directory of Open Access Journals (Sweden)

    Cargnelli M.

    2014-06-01

    Full Text Available The X-ray measurements of kaonic atoms play an important role for understanding the low-energy QCD in the strangeness sector. The SIDDHARTA experiment studied the X-ray transitions of 4 light kaonic atoms (H, D, 3He, and 4He using the DAFNE electron-positron collider at LNF (Italy. Most precise values of the shift and width of the kaonic hydrogen 1s state were determined, which have been now used as fundamental information for the low-energy K−p interaction in theoretical studies. An upper limit of the X-ray yield of kaonic deuterium was derived, important for future K−d experiments. The shifts and widths of the kaonic 3He and 4He 2p states were obtained, confirming the end of the “kaonic helium puzzle”. In this contribution also the plans for new experiments of kaonic deuterium are being presented.

  18. Spectroscopy of X-ray Photoionized Plasmas in the Laboratory

    Science.gov (United States)

    Liedahl, Duane A.; Loisel, Guillaume; Bailey, James E.; Nagayama, Taisuke; Hansen, Stephanie B.; Rochau, Gregory; Fontes, Christopher J.; Mancini, Roberto; Kallman, Timothy R.

    2018-06-01

    The physical processes operating in astrophysical plasmas --- heating, cooling, ionization, recombination, level population kinetics, and radiation transport --- are all accessible to observation in the laboratory. What distinguishes X-ray photoionized plasmas from the more common case of high-temperature collisionally-ionized plasmas is the elevated level of importance of the radiation/matter interaction. The advent of laboratory facilities with the capability to generate high-powered X-ray sources has provided the means by which to study this interaction, which is also fundamental to active galactic nuclei and other accretion-powered objects. We discuss recent and ongoing experiments, with an emphasis on X-ray spectroscopic measurements of silicon plasmas obtained at the Sandia Z Pulsed Power Facility.

  19. Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yano, Junko; Yachandra, Vittal K.

    2007-10-24

    Light-driven oxidation of water to dioxygen in plants, algae and cyanobacteria iscatalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, the structure and the mechanism have remained elusive. X-ray absorption and emission spectroscopy and EXAFS studies have been particularly useful in probing the electronic and geometric structure, and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a setof three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 Angstrom-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-rayspectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under the conditions used for structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the Si-states (i=0-4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formaloxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms that includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structure of the Mn4Ca cluster in the S-states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of the O-O bond formation during the photosynthetic water

  20. Working gas effects on the X-ray emission of a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Cengher, M; Presura, R; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Experiments on the plasma focus device IPF-2/20 operating with argon, neon and mixtures of argon with deuterium were performed and some X-ray emission parameters measured. The time evolution of the X-ray emission and dependence of the X-ray yield on the working gas composition was analyzed. The softer X radiation was measured with time resolution in the energy bands from 4 to 40 keV, and the hard X-rays for energies above 200 keV. In deuterium-argon mixtures the soft X-ray yield increases both with pressure (for the same ratio of argon) and with the quantity of argon added to deuterium at the same total pressure. For argon or neon the hard X-ray yield is lower than for deuterium-heavy gas mixtures. The softer X-ray yield decreases with pressure both for neon and for argon. (author). 4 figs., 5 refs.

  1. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  2. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  3. Variability of X-ray emission from OB stars

    International Nuclear Information System (INIS)

    Collura, A.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Harnden, F.R. JR.; Osservatorio Astronomico, Palermo, Italy; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1989-01-01

    The variability in soft X-ray emission of 12 OB stars is studied. Two different methods of analysis, one more suitable for detecting short-term variations, the other aimed at detecting long time-scale variations, are applied to all stars in the sample. The long-term variability analysis shows that Cyg-OB2 8A Zeta Pup and Delta Ori exhibit significant count rate variations between different data sections. Similar variations are marginally detected in 15 Mon; the count rate variations for the other eight stars are consistent with statistical fluctuations. The light curve of Cyg-OB2 8A suggests the existence of two different emission levels. The short-term variability analysis detects marginal variability in Tau Sco with an effective amplitude of about 30 percent and a time scale of about 50 s. The upper limits to the effective short-term variability amplitude for all other sample stars are in the 10-30 percent range. 30 refs

  4. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    OpenAIRE

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing Sph...

  5. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  6. X-ray emission from National Ignition Facility indirect drive targets

    International Nuclear Information System (INIS)

    Anderson, A.T.; Managan, R.A.; Tobin, M.T.; Peterson, P.F.

    1996-01-01

    We have performed a series of 1-D numerical simulations of the x-ray emission from National Ignition Facility (NIF) targets. Results are presented in terms of total x-ray energy, pulse length, and spectrum. Scaling of x-ray emissions is presented for variations in both target yield and hohlraum thickness. Experiments conducted on the Nova facility provide some validation of the computational tools and methods

  7. Stochastic stimulated electronic x-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Victor Kimberg

    2016-05-01

    → π * transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.

  8. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  9. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  10. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    Science.gov (United States)

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  11. Role of screening and angular distributions in resonant soft-x-ray emission of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.

  12. Effect of Pressure on Valence and Structural Properties of YbFe2Ge2 Heavy Fermion Compound A Combined Inelastic X-ray Spectroscopy, X-ray Diffraction, and Theoretical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ravhi S.; Svane, Axel; Vaitheeswaran; #8741; , Ganapathy; Kanchana, Venkatakrishnan; Antonio, Daniel; Cornelius, Andrew L.; Bauer, Eric D.; Xiao, Yuming; Chow, Paul (Aarhus); (CIW); (Hyderabad - India); (IIT-India); (LANL); (UNLV)

    2016-06-03

    The crystal structure and the Yb valence of the YbFe2Ge2 heavy fermion compound was measured at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. Furthermore, the measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. While the ThCr2Si2-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence from v = 2.72(2) at ambient pressure to v = 2.93(3) at ~9 GPa, where at low temperature a pressure-induced quantum critical state was reported.

  13. Luminosity dependence in the ratio of X-ray to infrared emission of QSOs

    International Nuclear Information System (INIS)

    Worrall, D.M.

    1987-01-01

    The correlation of X-ray and near-infrared luminosity is studied for a sample of radio-quiet QSOs. The X-ray to infrared ratio is found to decrease as the infrared luminosity increases. No preference is found between the correlations of X-ray luminosity with optical or infrared luminosity. This implies that optical and infrared emission are equally good predictors of X-ray emission. Source models which directly link infrared and X-ray emission are discussed, and a preference is found for a specific synchrotron self-Compton model. This model predicts the correct luminosity dependence of the X-ray to infrared ratio if certain conditions apply. 55 references

  14. Charge Exchange of Ne^9+ for X-ray Emission

    Science.gov (United States)

    Lyons, David

    2016-01-01

    Using the molecular-orbital close-coupling (MOCC) method, single electron capture (SEC) cross sections were computed for Ne^9+ colliding with H.Potential energies and nonadiabatic couplings were calculated and used to obtain the MOCC cross sections which are final-quantum-state-resolved including a separation of singlet and triplet states. Atomic-orbital close-coupling, classical trajectory Monte Carlo, and multichannel Landau-Zener (MCLZ) calculations are also performed. Cross sections for more complicated targets including He, H2, N2, H2O, CO, and CO2, were obtained with the MCLZ method. The SEC results are compared with experimental and other theoretical data, where available. The SEC cross sections are being used in cascade models to predict X-ray emission spectra relevant to solar systemand astrophysical environments.D. Lyons, R. S. Cumbee, P. D. Mullen, P. C. Stancil (UGA), D. R. Schultz (UNT), P. Liebermann (Wuppertal Univ.),R. Buenker (NCSU).This work was partially supported by NASA grant NNX09AC46G.

  15. Soft x-ray emission studies of several aluminum alloys

    International Nuclear Information System (INIS)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-01-01

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole

  16. Soft x-ray emission studies of several aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-09-23

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole.

  17. PIXE (proton induced X-ray emission) analysis of caatinger

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Futatsugawa, Shoji; Sera, Kouichiro.

    1995-01-01

    Caatinger (Mimosa acutistipula Benth), which has been a popular wood among the people in north east part of Brazil, was analyzed using PIXE (proton induced X-ray emission). The wood sample was divided into three parts, center, inner and outer side of the wood. Using the wood slice of each part, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Br, Rb, Sr, Y, Ru and Pb were detected. When the wood slices were decomposed with nitric acid, Co and Ni were able to be determined. Two samples, non-destructive and chemically treated sample, of heartwood and sapwood showed the similar concentration of the elements. There was a discrete change of the accumulated elements between heartwood and sapwood. Most of the elements detected tended to be concentrated at sapwood, whereas Ca, Cu and Sr were concentrated at heartwood. At center part, especially, Na, Mg, Fe and Sr were accumulated. Since most of the heartwood and sapwood is dead, discrete change of the element concentration suggests some element movement across the annual ring at heartwood formation. (author)

  18. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  19. Spectral analysis of K-shell X-ray emission of magnesium plasma

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the ...

  20. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  1. Trends in grazing emission x-ray analysis techniques

    International Nuclear Information System (INIS)

    Grieken, R. van; Tsuji, K.; Injuk, J.

    2000-01-01

    In grazing-emission x-ray fluorescence (GEXRF) spectrometry, XRF is made surface-sensitive, not by grazing incidence of the exciting radiation as in total reflection XRF (TXRF), but by detecting only that part of fluorescence radiation that is emitted at grazing angles above a polished sample carrier or above a flat wafer. In case of GEXRF, and contrary to TXRF, wavelength-dispersive (WD) detection can be used. Applications are, in principle, similar to those of (variable angle) TXRF. At the laboratory scale, only prototype instruments are available, and the GEXRF unit can be an accessory to a commercial WD-XRF instrument. The detection limits of GEXRF are in the higher pg range, corresponding to a concentration of between 0.4-3 μg/l, if a sample volume of 100 μl is examined. Because of the WD detection, GEXRF also lends itself for the analysis of low-Z elements, from Z > 5; this is an advantage over conventional TXRF (but similar to TXRF using a thin-window energy-dispersive detector). Since the GEXRF prototype is a sequential rather than a simultaneous instrument, the analysis time is long when many elements have to be determined. Moreover, because the soft characteristic radiation is more strongly absorbed in its longer path through the matrix than in TXRF, the linear response for trace analysis using GEXRF is limited; this was proven by calculating the fluorescence intensities as a function of layer thickness and composition. The specimens are very limited in thickness. The sample preparation procedure for liquid or other samples to be analyzed with the GEXRF unit is thus very problematic. Results for water samples, bio-materials and pigment and aerosol samples have indeed shown that the quantitative nature of GEXRF for trace analysis is poor. The most promising features of GEXRF are in the field of surface and thin-layer analysis. Trace contaminations on silicon wafers can be determined and depth profiling can characterize stratified near-surface layers. But

  2. X-ray spectroscopy and dosimetry with a portable CdTe device

    International Nuclear Information System (INIS)

    Abbene, Leonardo; La Manna, Angelo; Fauci, Francesco; Gerardi, Gaetano; Stumbo, Simone; Raso, Giuseppe

    2007-01-01

    X-ray spectra and dosimetry information are very important for quality assurance (QA) and quality control (QC) in medical diagnostic X-ray systems. An accurate knowledge of the diagnostic X-ray spectra would improve the patient dose optimization, without compromising image information. In this work, we performed direct diagnostic X-ray spectra measurements with a portable device, based on a CdTe solid-state detector. The portable device is able to directly measure X-ray spectra at high photon fluence rates, as typical of clinical radiography. We investigated on the spectral performances of the system in the mammographic energy range (up to ∼40 keV). Good system response to monoenergetic photons was measured (energy resolution of 5% FWHM at 22.1 keV). We measured the molybdenum X-ray spectra produced by a mammographic X-ray unit (GE Senographe DMR) at 28 kV and 30 kV under clinical conditions. The results showed the good reproducibility of the system and low pile-up distortions. Preliminary dosimetric measurements have been regarded as exposure and half value layer (HVL) values obtained from direct measurements and from measured X-ray spectral data, and a good agreement between exposure attenuation curves and the HVL values was obtained. The results indicated that the portable device is suitable for mammographic X-ray spectroscopy under clinical conditions

  3. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the

  4. Novel organophosphorus compounds; synthesis, spectroscopy and X-ray crystallography

    Czech Academy of Sciences Publication Activity Database

    Shariatinia, Z.; Sohrabi, M.; Yousefi, M.; Kovaľ, Tomáš; Dušek, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 125-133 ISSN 1024-1221 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : organophosphorus compounds * NMR * X-ray crystallography * hydrogen bond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.686, year: 2012

  5. A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars

    Science.gov (United States)

    Geske, M.; McKay, T.

    2005-05-01

    Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.

  6. Beam synchronous detection techniques for X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Goujon, Gérard; Rogalev, Andreï; Goulon, José; Feite, Serge; Wilhelm, Fabrice

    2013-01-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  7. Spectral properties of X-ray selected narrow emission line galaxies

    Science.gov (United States)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (Halpha, Hbeta, [NII]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines

  8. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  9. Weak Hard X-Ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-Ray Weakness

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z 330 times weaker than...... expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL...... quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three...

  10. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    Science.gov (United States)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  11. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  12. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  13. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  14. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    International Nuclear Information System (INIS)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-01-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres

  15. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Jia, J.J.; Underwood, J.H. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  16. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    Science.gov (United States)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  17. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  18. Detailed EXOSAT and optical observations of the intermediate polar 3A0729+103: discovery of two medium energy X-ray emission regions

    International Nuclear Information System (INIS)

    McHardy, I.M.; Pye, J.P.; Fairall, A.P.; Menzies, J.W.

    1987-01-01

    EXOSAT observations of the intermediate polar cataclysmic variable 3A0729+103 reveal a strong orbital modulation, with the 2-4KeV X-rays being significantly more modulated than the 4-6keV X-rays, indicative of photoelectric absorption. The 913 second modulation which is very prominent in the optical light curve, is weakly detected in the medium-energy X-ray light curve, confirming that it represents the white dwarf spin period. These observations are well explained by a combination of two sources of medium-energy X-ray emission. The presence of two emission regions is also clearly seen in the optical spectroscopy, particularly in the intensity of the He II4686 line which has two peaks during the orbit. The authors identify the two optical emission regions with the two X-ray emission regions. (author)

  19. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  20. X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

    Science.gov (United States)

    Alkhimova, M. A.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Pikuz, S. A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A. S.; Sagisaka, S.; Dover, N. P.; Kondo, Ko; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S. V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.

    2018-01-01

    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ˜ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.2×1021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

  1. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T., E-mail: ma8@llnl.gov; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Nora, R.; Pak, A.; Scott, H. A.; Spears, B. K.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chung, H.-K. [International Atomic Energy Agency, Vienna (Austria); Lahmann, B.; Sio, H. [Plasma Fusion and Science Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-11-15

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  2. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    Science.gov (United States)

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  3. Paraboloidal X-ray telescope mirror for solar coronal spectroscopy

    Science.gov (United States)

    Brown, W. A.; Bruner, E. C., Jr.; Acton, L. W.; Franks, A.; Stedman, M.; Speer, R. J.

    1979-01-01

    The telescope mirror for the X-ray Spectrograph Spectrometer Telescope System is a sixty degree sector of an extreme off-axis paraboloid of revolution. It was designed to focus a coronal region 1 by 10 arc seconds in size on the entrance slit of the spectrometer after reflection from the gold surface. This paper discusses the design, manufacture, and metrology of the mirror, the methods of precision mechanical metrology used to focus the system, and the mounting system which locates the mirror and has proven itself through vibration tests. In addition, the results of reflection efficiency measurements, alignment tolerances, and ray trace analysis of the effects of misalignment are considered.

  4. X-ray crystal spectroscopy of JET - a design study

    International Nuclear Information System (INIS)

    Bateman, J.E.; Hobby, M.G.; Peacock, N.J.

    1980-02-01

    This study describes the design and specification of a diagnostic system to measure the space- and time-resolved x-ray spectrum from JET discharges with high-resolution crystal spectrometers operating in the wavelength region 1 - 15A. The specification is given in terms of sensitivity, resolving power, detector, and data handling requirements, special attention being given to the problems encountered in interfacing the spectrometer arrays to the torus vacuum system and in their disposition to the machine. Shielding requirements during the active mode are evaluated and a staged diagnostic is proposed to accommodate D - T operation. (U.K.)

  5. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  6. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.

    1998-01-01

    The study of X-ray emission from co-evolving populations of stars in open dusters is extremely important for understanding the dynamo activity among the stars. With this objective, we propose to observe a number of open clusters in the X-ray and UV bands using SPECTRUM-Rontgen-Gamma. The high...... throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  7. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    Science.gov (United States)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  8. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Oskinova, L. M.; Hainich, R.; Sun, W.; Chen, Y.; Evans, C. J.; Hénault-Brunet, V.; Chu, Y.-H.; Gruendl, R. A.; Gallagher, J. S. III; Guerrero, M. A.; Güdel, M.; Silich, S.; Nazé, Y.; Reyes-Iturbide, J.

    2013-01-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  9. A PILOT DEEP SURVEY FOR X-RAY EMISSION FROM fuvAGB STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sanz-Forcada, J.; Sánchez Contreras, C. [Astrobiology Center (CSIC-INTA), ESAC campus, E-28691 Villanueva de la Canada, Madrid (Spain); Stute, M. [Institute for Astronomy and Astrophysics, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen (Germany)

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ∼(0.002–0.2) L{sub ⊙} and the X-ray-emitting plasma temperatures are ∼(35–160) × 10{sup 6} K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  10. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  11. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    International Nuclear Information System (INIS)

    Zhao, W.; Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y.; Zhou, D.W.; Shi, N.; Marcelli, A.; Niu, L.W.; Teng, M.K.; Gong, W.M.; Benfatto, M.; Wu, Z.Y.

    2007-01-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations

  12. A DEEP X-RAY VIEW OF THE BARE AGN ARK 120. I. REVEALING THE SOFT X-RAY LINE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, J. N.; Braito, V. [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Porquet, D. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Nardini, E. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST5 5BG (United Kingdom); Lobban, A. [Dept of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Turner, T. J., E-mail: jreeves@umbc.edu, E-mail: j.n.reeves@keele.ac.uk [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2016-09-10

    The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra /High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our own Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ∼5000 km s{sup −1}, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n {sub e} ∼ 10{sup 11} cm{sup −3}, while the photoionization calculations infer that the emitting gas covers at least 10% of 4 π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical–UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.

  13. X-ray emission from supernova remnants with particular reference to the Cygnus Loop

    International Nuclear Information System (INIS)

    Gronenschild, E.H.B.M.

    1979-01-01

    Observational or theoretical results related to the study of supernova remnants (SNRs) are described. Some background information is given by reviewing the present status of our knowledge of supernovae and supernova remnants, both from theory and observations. Also the distribution of all known radio, optical, and X-ray SNRs in the Galaxy is shown and a comparison is made. The X-ray observations of the well-known X-ray SNR the Cygnus Loop are discussed in detail and the discovery of a new X-ray emitting SNR W44 is described. Other radio sources are investigated, and the observed X-ray emission of SNRs are analysed using thermal spectra like exponential or bremsstrahlung spectra. The X-ray line spectrum that emerges from SNRs is described in detail. (Auth.)

  14. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  15. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  16. X-Ray Emission of Cataclysmic Variables Observed by Integral

    Czech Academy of Sciences Publication Activity Database

    Gális, R.; Eckert, D.; Paltani, S.; Münz, F.; Kocka, Matúš

    2009-01-01

    Roč. 18, 3-4 (2009), s. 321-326 ISSN 1392-0049 Grant - others:ESA(XE) ESA- PECS project No. 98023; VEGA(SK) 2/0078/10 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries starss * cataclysmic * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.032, year: 2009

  17. X-ray Emission Characteristics of Flares Associated with CMEs ...

    Indian Academy of Sciences (India)

    tics of solar flares and their relationship with the dynamics of CMEs have ... lation between X-ray peak intensity of the flares with linear speed as well ... shear angle (θ1, measured at the flare onset), the final shear angle (θ2, measured at the.

  18. X-ray photoelectron spectroscopy of the uranium/oxygen system

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1986-10-01

    Other authors have presented evidence to show that the oxidised surface layer which forms on UO 2 at 25 0 C is amorphous UO 3 . In the present study X-ray photoelectron spectroscopy, infra-red spectroscopy and X-ray diffraction have been used to characterise the higher oxides α-UO 3 , β-UO 3 , γ-UO 3 and δ-UO 3 . While the infra-red and X-ray diffraction results may be used to characterise each oxide the X-ray photoelectron spectra for each phase are very similar. During reduction of the oxide surface in the spectrometer changes in the spectra were observed which were shown to be associated with particular oxidation states of the metal rather than different uranium atom coordination sites within the oxide. A close structural relationship is demonstrated between these oxides and the product at the surface of air-oxidised UO 2 fuel. (author)

  19. Electronic structure of human hemoglobin: ultrasoft X-ray emission study

    International Nuclear Information System (INIS)

    Soldatov, A.V.; Kravtsova, A.N.; Fedorovich, E.N.; Kurmaev, E.Z.; Moewes, A.

    2004-01-01

    Full text: The iron L 2,3 and carbon, nitrogen and oxygen Kα X-ray emission spectra (XES) of human hemoglobin have been recorded at the soft X-ray spectroscopy endstation on Undulator Beam line 8.0 at Advanced Light Source (ALS) located at the Lawrence Berkeley National Laboratory. The theoretical calculations of Fe L 3 -XES have been performed using ab initio code FEFF8.2. The calculations have been carried out for the structure of hemoglobin presented in PDB (entry 3HHB) as well as for the molecule with symmetrical heme plane. It was found that the Fe L 3 emission spectrum calculated for the ideal molecule agrees slightly better with the experiment as compared with those calculated for the real molecule. Thus, one can use the structure of the ideal molecule for theoretical Fe L 3 -XES simulations. The theoretical analysis has shown that the fist peak of experimental Fe L 3 - emission spectrum is enhanced by the nearest nitrogen atoms lying in heme plane around the central iron atom. The theoretical C K- and N K-XES spectra of hemoglobin have been calculated. A good agreement between theoretical and experimental spectra has been obtained. The distribution of the partial electronic densities of states in the valence and conduction bands of hemoglobin has been determined

  20. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  1. X-ray Spectroscopy for Quality Control of Chemotherapy Drugs

    International Nuclear Information System (INIS)

    Greaves, E. D.; Barros, H.; Bermudez, J.; Sajo-Bohus, L.; Angeli-Greaves, M.

    2007-01-01

    We develop a method, employing Compton peak standardization and the use of matrix-matched spiked samples with Total Reflection X-ray Fluorescence (TXRF), for the determination of platinum plasma concentrations of patients undergoing chemotherapy with Pt-bearing drugs. Direct blood plasma analysis attains Pt detection limits of 70 ng/ml. Measurement results of prescribed drug doses are compared to achieved blood Pt concentrations indicating a lack of expected correlations. Direct analysis of Pt-containing infused drugs from a variety of suppliers indicates cases of abnormal concentrations which raises quality control issues. We demonstrate the potential usefulness of the method for pharmacokinetic studies or for routine optimization and quality control of Pt chemotherapy treatments

  2. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    International Nuclear Information System (INIS)

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-01-01

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  3. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  4. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVSilicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02X-ray pin-hole camera technique has allowed space resolved X-ray spectroscopy with a spatial resolution down to 30 μm and an energy resolution down to 140 eV at 5.9 keV . In parallel, imaging in the optical range and spectroscopic measurements have been carried out. Relative abundances of H/H2 atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  5. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    International Nuclear Information System (INIS)

    Vink, Jacco

    2009-01-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  6. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    Science.gov (United States)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  7. Cylindrical Crystal Imaging Spectrometer (CCIS) for cosmic X-ray spectroscopy

    Science.gov (United States)

    Schnopper, H. W.; Taylor, P. O.

    1981-01-01

    A "stigmatic" focusing, Bragg crystal spectrometer was developed and used for high spectral resolution X-ray emission line diagnostics on hot laboratory plasmas. The concept be applied at the focal plane of an orbiting X-ray telescope where it offers several advantages over conventional spectrometers, i.e., mechanical simplicity, high resolving power and sensitivity, simultaneous measurement of an extended segment of spectrum, and good imaging properties. The instrument features a simple, unambiguous, non-scanning spectrum readout that is not adversely affected by either spacecraft pointing error or source extent. The performance of the instrument is estimated in the context of the Advanced X-Ray Astrophysical Facility mission.

  8. News on the X-ray emission from hot subdwarf stars

    Directory of Open Access Journals (Sweden)

    Palombara Nicola La

    2017-12-01

    Full Text Available In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star, as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  9. A deep view in cultural heritage - confocal micro X-ray spectroscopy for depth resolved elemental analysis

    International Nuclear Information System (INIS)

    Kanngiesser, B.; Malzer, W.; Mantouvalou, I.; Sokaras, D.; Karydas, A.G.

    2012-01-01

    Quantitative X-ray fluorescence (XRF) and particle induced X-ray emission (PIXE) techniques have been developed mostly for the elemental analysis of homogeneous bulk or very simple layered materials. Further on, the microprobe version of both techniques is applied for 2D elemental mapping of surface heterogeneities. At typical XRF/PIXE fixed geometries and exciting energies (15-25 keV and 2-3 MeV, respectively), the analytical signal (characteristic X-ray radiation) emanates from a variable but rather extended depth within the analyzed material, according to the exciting probe energy, set-up geometry, specimen matrix composition and analyte. Consequently, the in-depth resolution offered by XRF and PIXE techniques is rather limited for the characterization of materials with micrometer-scale stratigraphy or 3D heterogeneous structures. This difficulty has been over-passed to some extent in the case of an X-ray or charged particle microprobe by creating the so-called confocal geometry. The field of view of the X-ray spectrometer is spatially restricted by a polycapillary X-ray lens within a sensitive microvolume formed by the two inter-sectioned focal regions. The precise scanning of the analyzed specimen through the confocal microvolume results in depth-sensitive measurements, whereas the additional 2D scanning microprobe possibilities render to element-specific 3D spatial resolution (3D micro-XRF and 3D micro-PIXE). These developments have contributed since 2003 to a variety of fields of applications in environmental, material and life sciences. In contrast to other elemental imaging methods, no size restriction of the objects investigated and the non-destructive character of analysis have been found indispensable for cultural heritage (CH) related applications. The review presents a summary of the experimental set-up developments at synchrotron radiation beamlines, particle accelerators and desktop spectrometers that have driven methodological developments and

  10. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  11. Review of x-ray spectroscopy from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    1987-09-01

    Recent progress in x-ray spectroscopy from laser plasmas is reviewed. Advances in the use of K-shell spectra as a diagnostic tool is discussed. Much activity in understanding complex spectra especially from Ne I and Ni I isoelectronic series have been made. Much of the progress has been due to observation of amplification from Δn = O transitions from these configurations. The spectroscopy will be discussed and examples of spectra of the amplified lines will be shown. Finally, recent work on using x-ray spectroscopy to diagnose high density implosions will be discussed. 33 refs

  12. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  13. Precision X-ray spectroscopy on 8.5 MeV/amu heavy ions

    International Nuclear Information System (INIS)

    Dietrich, D.D.; Chandler, G.A.; Fortner, R.J.; Hailey, C.J.; Stewart, R.E.

    1985-01-01

    A new experimental capability has been developed at the Lawrence Berkeley Laboratory Super-HILAC to investigate questions relating to high resolution atomic spectroscopy. A key element of these measurements is a dual arm Johann spectrometer. The ion beam passes inside the Rowland circle of two curved crystals which are mounted such that diffracted X-rays have equal and opposite linear Doppler shifts. The X-ray lines are detected with high speed X-ray film mounted on the Rowland circle. The beam-crystal geometry is arranged so a spectral range thetasub(B)proportional30 0 -70 0 is detected. The spectrometer efficiency is high with useful exposures obtained with only 10 mC of beam. A wavelength calibration is obtained by simultaneously exposing the film with diffracted K and L X-rays from an X-ray tube. X-ray lines from the beam are slanted, with respect to the calibration lines, due to Doppler shifts arising from X-rays incident on the crystal at angles other than perpendicular to the diffraction plane. The slope of these lines provides an independent determination of the beam velocity, which is used to correct for the transverse Doppler shift. Typical results are presented. (orig.)

  14. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    International Nuclear Information System (INIS)

    Poletto, L.; Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-01-01

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented

  15. Soft x-ray emission from classical novae in outburst

    International Nuclear Information System (INIS)

    Starrfield, S.; Krautter, J.; MacDonald, J.

    1989-01-01

    Theoretical modeling of novae in outburst predicts that they should be active emitters of radiation at soft x-ray wavelengths twice during their outburst. The first time occurs very early in the outburst when only a very sensitive all sky survey will be able to detect them. This period lasts only a few hours for the very fastest novae. They again become bright in x-rays late in the outburst when the remnant object becomes very hot and is still luminous. Both simulations and observations show that novae can remain very hot for months to years. It is important to observe them at these late times because a measurement both of the flux and temperature can provide information about the mass of the white dwarf, the turn-off time scale, and the energy budget of the outburst. 8 refs., 2 figs

  16. Coaxial gun parameters and X-ray emission

    International Nuclear Information System (INIS)

    Soliman, H.M.; El-Aragi, G.M.; Saudy, A.H.; Masoud, M.M.

    1994-01-01

    The paper presents the results of investigation with 3 kJ coaxial plasma gun, which operated with argon gas at pressure 0.8 torr. The coaxial plasma gun parameters are investigated by pick up coils, double electric probe, and x-ray probe. The mean electron temperature and density of the ejected plasma are 25 eV and 10 15 cm -3 respectively. The maximum kinetic pressure of the ejected plasma in the expansion chamber appears after 10 μs from the start of the discharge current. The energetic electrons is detected by an x-ray probe which showed a single pulse of electrons with energy ≅ 3 Kev. (orig.)

  17. Nonlinear QED effects in X-ray emission of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri, Soroush [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Haghighat, Mansour [Department of Physics, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122, Pescara (Italy)

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarization characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.

  18. AGN X-Ray emission and black holes (Kelly+, 2008)

    DEFF Research Database (Denmark)

    Kelly, B. C.; Bechtold, J.; Trump, J. R.

    2009-01-01

    In this analysis we combine 169 RQQs from Kelly et al. (2007ApJ...665.1489K) with 149 RQQs from the main SDSS sample of Strateva et al. (2005, Cat. J/AJ/130/387) to create a sample of 318 RQQs. Out of these 318 sources, 276 (86.8%) are detected in the X-ray. (1 data file)....

  19. Alpha Particle Induced X-ray Emission in the Classroom

    International Nuclear Information System (INIS)

    Lopez, Jorge A.; Borunda, Mario F.; Morales, Jaime

    2003-01-01

    We report on an experimental demonstration in an introductory modern physics course to elucidate the X-ray line spectra, and how they arise from transitions of electrons to inner shells. We seek to determine the effect of limited use of an interactive component as a supplement to a traditional lecture, and how it would improve the student achievement. In this preliminary study the students were exposed to traditional lectures on X-ray production and Bohr's model, they then were given a homework on the abc of X-ray spectra, after which they were given a pre-test on the materials, followed by an in-class demonstration, and a final post-exam. The gain, as measured from pre- to post-exams appears to remark the differences in how students approached the subject before and after the use of the demonstration. This initial study shows the validity of in-class demonstrations as teaching tools and opens a wide new area of research in modern physics teaching

  20. The influence of temperature and X-ray dose on the deprotonation of lyophilized phenylalanine during X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Juan F. [Department of Chemistry, P.O. Box 1033, Blindern, N-0315 Oslo (Norway)]. E-mail: juan.cardenas@kjemi.uio.no; Groebner, Gerhard [Biophysical Chemistry, Umea University, 90187 Umea (Sweden)

    2006-06-15

    Lyophilized phenylalanine (LP) samples were prepared from aqueous solutions at pH {approx} 1.3 and subsequently analysed using X-ray photoelectron spectroscopy (XPS) in combination with cryogenics. When samples are measured at temperatures above {approx}0 deg. C deprotonation occurs, which gradually proceeds with X-ray bombardment. In addition, deprotonation scales linearly with the difference between the Cl and the Na concentration, which strongly suggests that HCl sublimates from the sample.

  1. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  2. A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kóspál, Ágnes [Konkoly Observatory, Research Center for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Salter, Demerese M. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2016-12-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.

  3. The measurement of X-rays radiation temperature with a new developed filter-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chuanfei; Lin Libin; Lou Fuhong; Peng Taiping

    2001-01-01

    The author introduces how to measure the energy spectra of X-rays by filter-fluorescence spectroscopy. The design principle and structure of new-developed double diaphragms and filter-fluorescence spectroscopy with 5 channels are depicted. The parameters of optimized spectroscopy by numerical method are given. The filter-fluorescence spectroscopy designed according as Rousseau balance principle improves signal-noises ratio

  4. Spectral analysis of K-shell X-ray emission of magnesium plasma ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... the experimental spectra with the synthetic spectra generated using .... user to specify the time duration over which the ionic populations ... ied the dependence of X-ray emission spectrum as a function of laser intensity in the.

  5. The determination of light elements in heavy matrix using proton induced X-ray emission

    International Nuclear Information System (INIS)

    Levenets, V.V.; Omel'nik, A.P.; Shchur, A.A.; Chernov, A.E.; Usikov, N.P.; Zats, A.V.

    2007-01-01

    In this report the possibility of determination of light impurities in heavy matrixes is studied using proton induced X-Ray emission. The wide-band X-ray emission filter made from pyrolytic graphite was used in spectrometric scheme of experiment. The results of studying of filter features in energy range of X-ray emission from 4 to 12 keV were presented. The possibilities were examined of application of pyrolytic graphite filter to modify the X-rays spectrum for determination of iron, using characteristic emission of K-series, and hafnium, using L-series, in substances on base of zirconium (glasses, alloys etc.). It was shown, that the using of similar filter allows to reach the significant improving of metrological characteristics of analysis of mentioned impurities: the limits of detection of iron and hafnium were lowered single-order of magnitude. (authors)

  6. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  7. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  8. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  9. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    Science.gov (United States)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.

  10. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  11. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    International Nuclear Information System (INIS)

    Hou, Meicun; Li, Zhiyuan

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10 36 erg s −1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10 35 erg s −1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission

  12. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    Science.gov (United States)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  13. Modeling of X-ray emissions produced by stepping lightning leaders

    OpenAIRE

    Xu , Wei; Celestin , Sebastien; Pasko , Victor P.

    2014-01-01

    International audience; Intense and brief bursts of X-ray emissions have been measured during the stepping processof both natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, we investigatetheoretically the energy spectra of X-rays produced by the bremsstrahlung emission of thermal runawayelectrons accelerated in the inhomogeneous electric field produced around lightning leader tips. The X-rayenergy spectrum depends on the physical properties of the associated l...

  14. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  15. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    Science.gov (United States)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  16. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  17. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  18. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  20. Radio and X-ray emission from newly born remnants

    International Nuclear Information System (INIS)

    Salvati, M.

    1983-01-01

    Radio and X-ray observations of SN 1979c and SN 1980k offer a unique opportunity of monitoring the transition from supernovae to remnants. By means of the two-frequency radio light curves, the hypothesis that these objects are surrounded by circumstellar matter, originated in a presupernova wind, is tested, and the relevant parameters are derived. Then the absorption-corrected light curves are used to test the various proposed models. SN 1980k appears to be powered by a canonical shock, while SN 1979c is a good plerion candidate. An optical pulsar could still be detected at its location. (Auth.)

  1. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  2. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    International Nuclear Information System (INIS)

    Correa, C

    2004-01-01

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060

  3. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  4. Tenth International Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Silver, Eric H.; Kahn, Steven M.

    UV and X-ray spectroscopy of astrophysical and laboratory plasmas draws interest from many disciplines. Contributions from international specialists are collected together in this book from a timely recent conference. In astrophysics, the Hubble Space Telescope, Astro 1 and ROSAT observatories are now providing UV and X-ray spectra and images of cosmic sources in unprecedented detail, while the Yohkoh mission recently collected superb data on the solar corona. In the laboratory, the development of ion-trap facilities and novel laser experiments are providing vital new data on high temperature plasmas. Recent innovations in the technology of spectroscopic instrumentation are discussed. These papers constitute an excellent up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. These proceedings give an up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. Various speakers presented some of the first results from the high resolution spectrograph on the Hubble Space Telescope, the high sensitivity far ultraviolet and X-ray spectrometers of the ASTRO 1 Observatory, the imaging X-ray spectrometer on the ROSAT Observatory, and the high resolution solar X-ray spectrometer on Yohkoh. The development of ion trap devices had brought about a revolution in laboratory investigations of atomic processes in highly charged atoms. X-ray laser experiments had not only yielded considerable insight into electron ion interactions in hot dense plasmas, but also demonstrated the versatility of laser plasmas as laboratory X-ray sources. Such measurements also motivated and led to refinements in the development of large-scale atomic and molecular codes. On the instrumental side, the design and development of the next series of very powerful short wavelength observatories had generated a large number of

  5. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  6. Surface characterization of selected polymer thin films by total-reflection x-ray fluorescence spectroscopy and x-ray reflectivity

    International Nuclear Information System (INIS)

    Innis, Vallerie Ann A.

    2006-01-01

    Development of available x-ray characterizations tools for grazing incidence techniques was done to be able to probe nano-size thin films. Alignment of a Philips x-ray powder diffractometer was improved to let it perform as an x-ray reflectometer. X-ray reflectometry was coupled with total-reflection x-ray fluorescence spectroscopy. Evaluation of the performance of this grazing incidence techniques was done by preparing polymer thin films of carboxymethylcellulose, carrageenan and polyvinylpyrrolidone (PVP). The thickness of the films were varied by varying the process parameters such as concentration, spin speed and spin time. Angle-dispersive total-reflection x-ray fluorescence spectroscopy profiles of three films showed film formation only in carrageenan and PVP. For both carrageenan and PVP, an increase in concentration yielded a corresponding increase in intensity of the fluorescent or scattered peaks. XRR profiles of carrageenan thin films yielded a mean value for the critical angle close to quartz substrate. Thickness measurements of the prepared carrageenan thin films showed that concentration was the main determinant for final film thickness over the other process parameters. Sulfur fluorescent intensity derived from the TXRF measurement showed a linear relationship with the measured thickness by XRR. For PVP, measured critical angle is lower than quartz. Poor adhesion of the polymer onto the substrate yielded a limited number of thickness measurements made from the XRR profiles. (Author)

  7. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    Science.gov (United States)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  8. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kärtner, F.X., E-mail: franz.kaertner@cfel.de [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (United States); Ahr, F. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Calendron, A.-L. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Çankaya, H. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Carbajo, S. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Chang, G.; Cirmi, G. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Dörner, K. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Dorda, U. [DESY, Hamburg (Germany); Fallahi, A. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Hartin, A. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Hemmer, M. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); and others

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  9. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    International Nuclear Information System (INIS)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 10 47 cm –3 and 1.1 × 10 48 cm –3 . Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  10. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    Science.gov (United States)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  11. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Kuzin, S. [P. N. Lebedev Physical Institute (FIAN), Russian Academy of Sciences, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Farnik, F. [Astronomical Institute, Ondrejov Observatory (Czech Republic); Reale, F. [Dipartimento di Fisica, Universita di Palermo, Palermo, Italy, and INAF, Osservatorio Astronomico di Palermo, Palermo (Italy); Phillips, K. J. H., E-mail: js@cbk.pan.wroc.pl [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  12. Microscale X-ray Absorption Spectroscopy on the GSECARS Sector 13 at the APS

    CERN Document Server

    Stephen-Sutto

    2000-01-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotrons radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotrons light source. The research conducted at this facility will advance our knowledge of the composition, structure and properties of earth materials, the processes they control and the processes that produce them. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) x-ray absorption fine structure (XAFS) spectroscopy; (5) x-ray fluorescence microprobe analysis and microspectroscopy; and (6) mic...

  13. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    International Nuclear Information System (INIS)

    Bokarev, S.I.; Hilal, R.; Aziz, S.G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  14. Quantification of arsenic in activated carbon using particle induced X-ray emission

    International Nuclear Information System (INIS)

    Yadav, Nirbhay N.; Maheswaran, Saravanamuthu; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Ngo, Huu H.; Vigneswaran, Saravanamuth

    2006-01-01

    To date, the trace elemental analysis of solids with inhomogeneous internal structure has been limited, particularly in the case of adsorbents. High-energy ion beam based particle induced X-ray emission (PIXE) is an ideal analytical tool suitable for simultaneous quantification of trace elements with high accuracy. In this study, PIXE was used to quantify arsenic in the adsorbents, granular activated carbon (GAC) and powder activated carbon (PAC). Pelletized and unmodified GAC and PAC samples were analyzed along with powder samples deposited on thin teflon filters. These sample preparation methods resulted in samples of various thicknesses and densities. PIXE measurements taken from these samples were compared to results from neutron activation analysis (NAA) and atomic absorption spectroscopy (AAS). There is a good agreement between the values from the NAA and pelletized PIXE measurements and some AAS measurements

  15. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. III. THE GALACTIC HALO X-RAY EMISSION

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2013-01-01

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ∼4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 × 10 6 K, interquartile range = 0.63 × 10 6 K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude (∼(0.4-7) × 10 –3 cm –6 pc and ∼(0.5-7) × 10 –12 erg cm –2 s –1 deg –2 , respectively, with median detections of 1.9 × 10 –3 cm –6 pc and 1.5 × 10 –12 erg cm –2 s –1 deg –2 , respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper

  16. Globular clusters as a source of X-ray emission from the neighbourhood of M87

    International Nuclear Information System (INIS)

    Fabian, A.C.; Pringle, J.E.; Rees, M.J.

    1976-01-01

    It is stated that the X-ray emission from globular clusters may be attributable to accretion on to compact objects, the accreting material being supplied from binary companions, or gas trapped in the potential well of the cluster. Counts of objects in the vicinity of the M87 have revealed that it has an extensive halo of globular clusters, the number of which may exceed 10,000 within a radius of 23 arc min. Most of these clusters may be explicable as a population effect, and the similarity of their optical properties to those of cluster in our own Galaxy suggests that they may also contain X-ray sources. The brighter globular clusters in M87 may, however, be substantially more X-ray luminous, and there may be proportionally more gas available in globular clusters in M87 compared with our Galaxy. The average X-ray luminosity of individual globular clusters may be of the order of 10 38 erg/sec., which raises the possibility that the integrated globular cluster emission may account for a substantial fraction of the X-ray emission observed from the region of M87. In support of this it is noted that the extended X-ray emission from the Virgo cluster is centered on M87, which lies approximately 45 arc min from the cluster centroid, and it is expected that the general X-ray emission from the globular cluster will appear to be smoothly and symmetrically distributed about M87 at moderate spatial resolution. A similar situation may apply to the elliptical galaxy NGC 3311 in Abell 1060 which, as a cluster, has been suggested as the identification for the X-ray source 3 U 1044-40, and it seems possible that that galaxy is surrounded by a similar globular cluster population to that of M87. (U.K.)

  17. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  18. Proton induced X-ray emission (PIXE) analysis at Lucas Heights

    International Nuclear Information System (INIS)

    Cohen, D.; Duerden, P.

    1979-02-01

    The state of the proton induced X-ray emission (PIXE) work at Lucas Heights is reported together with a full description of the experimental arrangement and its use for analysis of trace elements (Z >or= 14). The fundamentals of PIXE are examined in detail with a view to understanding not only the background continuum but also the X-ray production mechanisms. Quantitative predictions for the number of X-rays detected after proton bombardment of the target have been made and these compare well with experiments

  19. Time correlation between plasma behaviour and soft x-ray emission in a plasma focus

    International Nuclear Information System (INIS)

    Hirano, Katsumi; Tagaya, Yutaka; Shimoda, Katsuji; Okabe, Yushiro; Yamamoto, Toshikazu

    1986-01-01

    Soft X-rays emitted from a plasma focus are investigated experimentally. In contrast to single-pulsive burst of neutron, hard X-rays, ion- and electron beams, the soft X-rays are observed from the collapse phase to the decay phase of the plasma column, and have typically three successive peaks in its signal. Each peak corresponds to the maximum compression, the disruption and the decay phase of plasma column. It is revealed that the first and the second peaks are radiated by plasma itself, whereas the third peak is caused by emission from the inner electrode face. (author)

  20. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  1. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt...... outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre....

  2. Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids

    Science.gov (United States)

    Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian

    2018-04-01

    X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7 ×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG . We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG .

  3. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    Science.gov (United States)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  4. Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces

    International Nuclear Information System (INIS)

    Wadati, H.; Fujimori, A.

    2013-01-01

    Highlights: •Photoemission spectroscopy is a powerful technique to study the electronic structures of transition-metal oxides. •Hard X-ray photoemission spectroscopy (HXPES) is a new type of photoemission spectroscopy which can probe bulk states. •HXPES is very suitable for studying oxide thin films such as the composition dependence and the film thickness dependence. -- Abstract: Photoemission spectroscopy is a powerful experimental technique to study the electronic structures of solids, especially of transition-metal oxides. Recently, hard X-ray photoemission spectroscopy (HXPES) has emerged as a more relevant experimental technique to obtain clear information about bulk states. Here, we describe how HXPES can be conveniently applied to study the interesting subjects on oxide thin films such as the composition dependence and the film thickness dependence of the electronic structures and the interfacial electronic structure of multilayers

  5. Energy-modulation spectroscopy in hard X-ray region

    CERN Document Server

    Suzuki, M; Ishikawa, T

    2001-01-01

    An energy-modulation technique has been developed for XAFS spectroscopies requiring high energy resolution and high precision. Fast energy switching at 40 Hz has been achieved by adopting a Si channel-cut crystal as a second monochromator together with a piezo-driven oscillation stage, and the resulting variation in sample absorption was detected using an amplifier locked to the energy-modulation frequency. An energy-derivative XAFS spectrum was directly obtained at the Mn K-edge, and illustrated the advantages of this technique in high energy resolution and noise reduction.

  6. Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Casta, R., E-mail: castaromain@gmail.com, E-mail: romain.casta@irsamc.ups-tlse.fr; Champeaux, J.-P.; Moretto-Capelle, P.; Sence, M.; Cafarelli, P. [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, CNRS, UMR 5589 (France)

    2015-01-15

    In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.

  7. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  8. Some implications of excess soft X-ray emission from Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Fabian, A.C.; Guilbert, P.W.; Arnaud, K.A.; Shafer, R.A.; Tennant, A.F.; Ward, M.J.

    1986-01-01

    The X-ray spectrum of Seyfert 1 galaxies is characterized by a hard power-law spectrum. It is often postulated that this maintains a Compton-heated two-phase Broad-Line Region (BLR) around the central source. It is shown here that the strong excess soft X-ray emission observed in MKN 841 and other Seyfert galaxies invalidates this model if the BLR is spherically symmetric. Alternatives are proposed. (author)

  9. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  10. Elemental analysis of coal by proton-induced x-ray emission analysis

    International Nuclear Information System (INIS)

    Cronch, S.M.; Ehmann, W.D.; Laumer, H.W.; Gabbard, F.

    1976-01-01

    Proton-induced x-ray emission was used to determine elemental concentrations in solid coal samples. The coal samples were irradiated with 2.5 to 5.5 MeV protons. Concentrations were determined from characteristic x-ray yields taking into account matrix absorption. The precision is shown by replicate analysis and the accuracy by comparison with results obtained by other laboratories using different techniques

  11. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  12. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  13. X-ray absorption spectroscopy of CuO.sub.2./sub. chains

    Czech Academy of Sciences Publication Activity Database

    Drechsler, S.L.; Hu, Z.; Málek, Jiří; Rosner, H.; Neudert, R.; Knupfer, M.; Golden, M. S.; Fink, J.

    2003-01-01

    Roč. 131, 3/4 (2003), s. 369-373 ISSN 0022-2291 Institutional research plan: CEZ:AV0Z1010914 Keywords : X-ray absorption spectroscopy * exact diagonalization techniques Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.171, year: 2003

  14. X-ray absorption spectroscopy of U (VI) sorbed onto alumina

    International Nuclear Information System (INIS)

    Kumar, Sumit; Jain, Aishwarya; Tomar, B.S.; Manchanda, V.K.; Poswal, A.K.; Jha, S.N.; Sabharwal, S.C.

    2009-01-01

    Sorption of U (VI) by alumina varying pH has been studied by X-ray absorption Spectroscopy. The experiments were carried out using the EXAFS beamline (BL-8) of INDUS-2 at Raja Ramanna Centre for Advanced Technology, Indore. The absorption intensity was found to increase with the increasing pH of the suspension. (author)

  15. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  16. Exploration of X-ray and charged-particle spectroscopy with CCDs and PSDs

    NARCIS (Netherlands)

    Simons, D.P.L.; Mutsaers, P.H.A.; IJzendoorn, van L.J.; Voigt, de M.J.A.

    1998-01-01

    Two alternative detector types have been studied for use in the Eindhoven Scanning Ion Microprobe set-up. First, the applicability of a Charge Coupled Device (CCD) system for X-ray spectroscopy has been explored. Second, some properties of the SiTek type 1L30 Position Sensitive Detector (PSD) for

  17. New frontiers in X-ray spectroscopy of FeZSM-5

    NARCIS (Netherlands)

    Heijboer, Willem Matthijs

    2005-01-01

    The aim of the research described in this work is two-fold. Firstly, new techniques based on X-ray spectroscopy have been introduced in the field of heterogeneous catalysis. As a consequence, a more advanced characterization of catalytic solids could be pursued. Secondly, the application of these

  18. Moessbauer spectroscopy, X-ray diffraction and infrared studies of prehistoric materials from Minas Gerais

    International Nuclear Information System (INIS)

    Jesus Filho, M.F. de; Costa, G.M. da; Prous, A.

    1988-01-01

    Eight samples of pigmented materials from an archaelogical site in Santana do Riacho (Minas Gerais, Brazil) were studied by X-ray diffraction, infrared and Moessbauer spectroscopy. These three techniques and the results of chemical analysis allowed the approximated composition of each sample to be proposed. No trace of organic material was found in any sample. (author)

  19. X-ray Photoelectron Spectroscopy Investigation on Electrochemical Degradation of Proton Exchange Membrane Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind Morten

    2015-01-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot p...

  20. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  1. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    Science.gov (United States)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  2. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  3. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10/sup 6/ rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd/sup 3 +/ is substituted for Na/sup +/. Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins.

  4. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10 6 rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd 3+ is substituted for Na + . Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins

  5. A novel probe of intrinsic electronic structure: hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Takata, Y.; Tamasaku, K.; Nishino, Y.; Miwa, D.; Yabashi, M.; Ikenaga, E.; Horiba, K.; Arita, M.; Shimada, K.; Namatame, H.; Nohira, H.; Hattori, T.; Soedergren, S.; Wannberg, B.; Taniguchi, M.; Shin, S.; Ishikawa, T.; Kobayashi, K.

    2005-01-01

    We have realized hard X-ray (HX) photoemission spectroscopy (PES) with high throughput and high-energy resolution for core level and valence band studies using high-energy and high-brilliance synchrotron radiation at SPring-8. This is a brand new method because large escape depth of high-energy photoelectrons enables us to probe intrinsic bulk states free from surface condition. By use of a newly developed electron energy analyzer and well-focused X-rays, high-energy resolution of 75 meV (E/ΔE 79,000) was realized for 5.95 keV photoelectrons

  6. X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy

    International Nuclear Information System (INIS)

    Fraile Rodriguez, A.; Nolting, F.; Bansmann, J.; Kleibert, A.; Heyderman, L.J.

    2007-01-01

    Photoemission electron microscopy (PEEM) was employed for X-ray imaging and absorption spectroscopy of individual cobalt nanoparticles as small as 8 nm grown using an arc ion cluster source. Using lithographic markers on the samples we were able to identify the same particles with PEEM and scanning electron microscopy. Significant variations in the shape of the X-ray absorption spectra between different cobalt particles were detected. Furthermore, our data suggest that distinctive spectral information about the individual particles, such as the quenching of oxide-related features and changes in the cobalt L 3 -edge intensity, cancel out and cannot be detected in the measurement over an ensemble of particles

  7. Nuclear and x-ray spectroscopy with radioactive sources. Fifteenth annual progress report

    International Nuclear Information System (INIS)

    Rink, R.W.; Wood, J.L.

    1979-01-01

    Research during the year is summarized briefly for the following areas: nuclear spectroscopy (including nuclear systematics and models and experimental studies of heavy-nucleus decays), x rays from radioactive sources (including L-subshell x-ray fluorescence and Coster-Kronig yields and the measurement of tailing corrections in low-energy coincidence intensity determinations), and miscellaneous topics concerning computer codes and equipment. One may assume publication of completed work in the usual channels. Lists of personnel, publications, etc., are included. 7 figures

  8. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  9. The X-Ray Microscopy And Micro-Spectroscopy Facility At The ESRF

    International Nuclear Information System (INIS)

    Susini, J.; Somogyi, A.; Barrett, R.; Salome, M.; Bohic, S.; Fayard, B.; Eichert, D.; Dhez, O.; Bleuet, P.; Martinez-Criado, G.; Tucoulou, R.

    2004-01-01

    Among the 40 beamlines in operation at the European Synchrotron Radiation Facility, three beamlines are fully dedicated to X-ray microscopy and micro-spectroscopy techniques in the multi-keV range. Offering a unique combination of non destructive analytical techniques which aim to satisfy the growing demand from experimental research fields such as medicine, geology, archaeology, earth, planetary and environmental sciences. Following a brief discussion on the strengths and weaknesses of X-ray microscopy and spectro-microscopy techniques in the 1-20keV range, characteristics of the beamlines are briefly described. Examples of applications are given in the reference list

  10. Material analysis with the aid of particle induced X-ray emission

    International Nuclear Information System (INIS)

    Stadler, E.

    1984-12-01

    Material analysis are discussed on the basis of PIXE and Rutherford scattering spectroscopy. Various problems including cross-section changes, energy changes, count rate and deadtime, background, escape peaks and perturbations and overlap are discussed in relation to PIXE, while the influence of the energy loss of the projectile, the mass of the projectile, the cinematic factor, projectile energy, the scattering angle and the solid angle are discussed in terms of Rutherford scattering spectroscopy. X-ray production theory and x-ray detectors are also briefly discussed. The effect of elastically scattered protons on the energy resolution of the x-ray detector is discussed. The application of PIXE and Rutherford scattering spectroscopy to the analysis of air particle samples, and to the determination of the efficiency of the filters used for the collection of air-particle samples is also discussed

  11. Microwave and X-Ray emission during a isentropic expansion and its application to solar bursts

    International Nuclear Information System (INIS)

    Piazza, L.R.

    1983-01-01

    The gyro-synchrotron emission in microwaves and the free-free emission in X-rays of a plasma enclosed in a cylinder coincident with a magnetic force tube were calculated for an isentropic self-similar expansion, with plane and cylindrical symmetries. This expansion model was applied to a region of the low solar corona, and the results were compared to the emission observed in some simple solar events of low intensity. The calculations show satisfactory coincidence with the events in X-rays for energies around 10 29 ergs. The solar events analyzed in microwaves, which are not the same that were studied in X-rays, in general do not fit the theoretical results. The origin of the discrepancy is probably the formulation of the processes of emission applied to the expansion. (Author) [pt

  12. X-ray analysis and mapping by wavelength dispersive X-ray spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Tanaka, Miyoko; Takeguchi, Masaki; Furuya, Kazuo

    2008-01-01

    A compact and easy-to-use wavelength dispersive X-ray spectrometer using a multi-capillary X-ray lens attached to a scanning (transmission) electron microscope has been tested for thin-film analysis. B-K spectra from thin-film boron compounds (B 4 C, h-BN, and B 2 O 3 ) samples showed prominent peak shifts and detailed structural differences. Mapping images of a thin W/Si double-layer sample resolved each element clearly. Additionally, a thin SiO 2 film grown on a Si substrate was imaged with O-K X-rays. Energy and spatial resolution of the system is also discussed

  13. Hard x ray imaging and the relative contribution of thermal and nonthermal emission in flares

    International Nuclear Information System (INIS)

    Holman, G.D.

    1986-01-01

    The question of whether the impulsive 25 to 100 keV x ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard x ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard x ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard x ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard x ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism

  14. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  15. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  16. Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Boero, G; Mouaziz, S; Rusponi, S; Bencok, P; Nolting, F; Stepanow, S; Gambardella, P

    2008-01-01

    We report on the measurement of element-specific magnetic resonance spectra at gigahertz frequencies using x-ray magnetic circular dichroism (XMCD). We investigate the ferrimagnetic precession of Gd and Fe ions in Gd-substituted yttrium iron garnet, showing that the resonant field and linewidth of Gd precisely coincide with Fe up to the nonlinear regime of parametric excitations. The opposite sign of the Gd x-ray magnetic resonance signal with respect to Fe is consistent with dynamic antiferromagnetic alignment of the two ionic species. Further, we investigate a bilayer metal film, Ni 80 Fe 20 (5 nm)/Ni(50 nm), where the coupled resonance modes of Ni and Ni 80 Fe 20 are separately resolved, revealing shifts in the resonance fields of individual layers but no mutual driving effects. Energy-dependent dynamic XMCD measurements are introduced, combining x-ray absorption and magnetic resonance spectroscopies

  17. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Kimmerle, B.; Baiker, A.

    2009-01-01

    available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina...... pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure...... metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used...

  18. Influence of experimental conditions on atom column visibility in energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dycus, J.H.; Xu, W.; Sang, X. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way Engineering Building 1, Raleigh, NC 27606 (United States); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); LeBeau, J.M., E-mail: jmlebeau@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way Engineering Building 1, Raleigh, NC 27606 (United States)

    2016-12-15

    Here we report the influence of key experimental parameters on atomically resolved energy dispersive X-ray spectroscopy (EDX). In particular, we examine the role of the probe forming convergence semi-angle, sample thickness, lattice spacing, and dwell/collection time. We show that an optimum specimen-dependent probe forming convergence angle exists to maximize the signal-to-noise ratio of the atomically resolved signal in EDX mapping. Furthermore, we highlight that it can be important to select an appropriate dwell time to efficiently process the X-ray signal. These practical considerations provide insight for experimental parameters in atomic resolution energy dispersive X-ray analysis. - Highlights: • Impacts of microscope operating conditions on EDX signal and atom column contrast are demonstrated. • Influence of sample thickness and lattice spacing is shown. • Conditions for obtaining optimal signal and contrast for different sample types are discussed. • Effects of dwell time during EDX acquisition are discussed.

  19. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    Science.gov (United States)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  20. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    International Nuclear Information System (INIS)

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  1. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    Science.gov (United States)

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  2. X ray emission: a tool and a probe for laser - clusters interaction

    International Nuclear Information System (INIS)

    Prigent, Ch.

    2004-12-01

    In intense laser-cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute X-ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the X-ray production very low (∼ 2.10 14 W/cm 2 for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute X-ray yields has been found. Moreover, we have observed a saturation of the X-ray emission probability below a critical cluster size. (author)

  3. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  4. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    International Nuclear Information System (INIS)

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-01

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., on the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.

  5. Infrared-x-ray pump-probe spectroscopy of the NO molecule

    International Nuclear Information System (INIS)

    Guimaraes, F.F.; Felicissimo, V.C.; Kimberg, V.; Gel'mukhanov, F.; Aagren, H.; Cesar, A.

    2005-01-01

    Two color infrared-x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation

  6. Infrared x-ray pump-probe spectroscopy of the NO molecule

    Science.gov (United States)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  7. Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N

    Science.gov (United States)

    Muramatsu, Yasuji

    Theoretical B K, C K and N K x-ray emission/absorption spectra of three possible graphitic-structured BC2N clusters are predicted based on the B2p-, C2p-, and N2p- density-of-states (DOS) calculated by discrete variational (DV)-X[alpha] molecular orbital calculations. Several prominent differences in DOS spectral features among BC2Ns, h-BN, and graphite are confirmed from comparison of calculated B2p-, C2p-, and N2p-DOS spectra. These variations in the spectra allow BC2N structures to be positively identified by high-resolution x-ray emission/absorption spectroscopy in the B K, C K, and N K regions.

  8. Quantitative X-ray spectroscopy of sodium Z-pinch plasmas for Na/ne photopumping

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Mehlman, G.; Apruzese, J.P.; Newman, D.A.; Scherrer, V.E.; Young, F.C.; Stephanakis, S.J.; Hinshelwood, D.D.

    1990-01-01

    Spectra of sodium K-shell x-ray emission were measured for implosions of sodium-bearing plasmas produced on the Naval Research Laboratory Gamble II pulsed-power generator. Sodium fluoride from a capillary discharge provided the initial plasma for these fast Z-pinch implosions. Spatially-resolved images, corresponding to sodium K-shell x-rays from a 3 to 4 cm long plasma column, were recorded with a curved-crystal spectrograph. Non-uniform emission was observed along this column. The diameter of the plasma along the column (1-5 mm) was determined from time-integrated pinhole-camera images, and the duration of the x-ray emission (15-23 ns FWHM) was measured with a vacuum x-ray diode. Absolute emissivities were determined for X-rays from the n=2-1 and n=3-1 transitions in Na X and Na XI. Emissivities calculated using a collisional-radiative equilibrium model were fitted to these measurements to determine plasma temperatures of 230 to 550 eV and electron densities of 0.2 to 4.0 x 10 20 cm -3 at several locations along the plasma column. The slope of the recombination continuum was also used to determine temperatures of 200 to 300 eV and 200 to 400 eV for Na X and Na XI ions, respectively. Absolute intensity measurements of the n=2-1 line emissions from Na X and Na XI, averaged over the entire plasma length, indicated shot-to-shot variations of more than a factor of two in these implosions. (author)

  9. A Non-thermal Pulsed X-Ray Emission of AR Scorpii

    Science.gov (United States)

    Takata, J.; Hu, C.-P.; Lin, L. C. C.; Tam, P. H. T.; Pal, P. S.; Hui, C. Y.; Kong, A. K. H.; Cheng, K. S.

    2018-02-01

    We report the analysis result of UV/X-ray emission from AR Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and an M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M star surface rather than that from the accretion column on the white dwarf’s (WD) star, which is similar to usual IPs. Additionally, the observed X-ray emission also modulates with the WD’s spin with a pulse fraction of ∼14%. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR Scorpii are accelerated to a relativistic speed and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M star surface heats up the plasma to a temperature of several keV and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WD’s closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.

  10. Time Variabilities of Solar Wind Ion Fluxes and of X-ray and EUV Emissions from Comet Hyakutake

    Science.gov (United States)

    Neugebauer, M.; Cravens, T.; Lisse, C.; Ipavich, F.; von Steiger, R.; Shah, P.; Armstrong, T.

    1999-01-01

    Observations of X-ray and extreme ultraviolet (EUV) emissions from comet C/Hyakutake 1996 B2 made by the Rontgen X-ray satellite (ROSAT) and the Extreme Ultraviolet Explorer (EUVE) revealed a total X-ray luminosity of about 500 MW.

  11. X-ray spectroscopy of plasmas created by the Nike KrF laser

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Deniz, A.; Hardgrove, J.; Seely, J.; Brown, C.; Feldman, U.; Pawley, C.; Gerber, K.; Bodner, S.; Obenschain, S.; Lehmberg, R.; McLean, E.; Pronko, M.; Sethian, J.; Stamper, J.; Schmitt, A.; Sullivan, C.; Holland, G.; Laming, M.

    1997-01-01

    The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser was characterized using spectroscopic instruments. The targets were thin foils of aluminum and titanium and were irradiated by laser energies in the range 100 endash 1500 J. Using a spherical-crystal imaging spectrometer operating in the 1 endash 2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 μm in the direction perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface

  12. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    Science.gov (United States)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  13. Electron and X-ray emission in collisions of multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Woerlee, P.H.

    1979-01-01

    The author presents experimental results of electron and X-ray emission following slow collisions of multiply charged ions and atoms. The aim of the investigation was to study the mechanisms which are responsible for the emission. (G.T.H.)

  14. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  15. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    Science.gov (United States)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  16. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  17. A study of x-ray emission from the anode region in a plasma focus device

    International Nuclear Information System (INIS)

    Jia Wang; Tsinchi Yang

    1988-01-01

    The physical process of x-ray emission from the anode region in a plasma focus device due to the interaction of a powerful electron beam with the metal anode and with ionised metallic vapour from the anode is investigated. The influence of the magnetic field of the beam is taken into consideration. A MC-PIC model (Monte Carlo-particle in cell) is proposed for the process, in which an electron-photon collision cascade is simulated by the MC approach and the time-dependent state of metallic vapour is determined by PIC computation. The time-resolved energy spectra and angular distributions of x-ray emission from the extending anode region are calculated. The time-integrated characteristics of the x-ray emission can be compared with the results of experiments as far as they are available. (author)

  18. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  19. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Li, Y.; Li, P.; Lu, Z.-H.

    2018-03-01

    A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  20. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-03-01

    Full Text Available A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS and x-ray photoelectron spectroscopy (XPS investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  1. Design of solar cell materials via soft X-ray spectroscopy

    DEFF Research Database (Denmark)

    Himpsel, F.J.; Cook, P.L.; de la Torre, G.

    2013-01-01

    This overview illustrates how spectroscopy with soft X-rays can assist the development of new materials and new designs for solar cells. The starting point is the general layout of a solar cell, which consists of a light absorber sandwiched between an electron donor and an electron acceptor....... There are four relevant energy levels that can be measured with a combination of X-ray absorption spectroscopy and photoelectron spectroscopy, as illustrated for an organic dye as absorber attached to a p-doped diamond film as donor. Systematic measurements of organometallic dyes (phthalocyanines and porphyrins......) as a function of the metal atom are presented for the metal 2p and N 1s absorption edges. In combination with density functional theory one can discern trends that are useful for tailoring absorber molecules. A customized porphyrin molecule is investigated that combines an absorber with a donor and a linker...

  2. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  3. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  4. Simultaneous emissions of X-rays and microwaves from long laboratory sparks and downward lightning leaders

    Science.gov (United States)

    Montanya, J.; Oscar, V. D. V.; Tapia, F. F.

    2017-12-01

    Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave

  5. Molecular environment of iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlegel, Michel L.; Mercier-Bion, Florence; Barre, Nicole; Reiller, Pascal; Moulin, Valerie

    2006-01-01

    The molecular environment of iodine in reference inorganic and organic compounds, and in dry humic and fulvic acids (HAs and FAs) extracted from subsurface and deep aquifers was probed by iodine L-3-edge X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) of iodine spectra from HAs and FAs resembled those of organic references and displayed structural features consistent with iodine forming covalent bonds with organic molecules. Simulation of XANES spectra by linear combination of reference spectra suggested the predominance of iodine forming covalent bonds to aromatic rings (aromatic-bound iodine). Comparison of extended X-ray absorption fine structure (EXAFS) spectra of reference and samples further showed that iodine was surrounded by carbon shells at distances comparable to those for references containing aromatic-bound iodine. Quantitative analysis of EXAFS spectra indicated that iodine was bound to about one carbon at a distance d(I-C) of 2.01(4)-2.04(9) angstrom, which was comparable to the distances observed for aromatic-bound iodine in references (1.99(1)-2.07(6) angstrom), and significantly shorter than that observed for aliphatic-bound iodine (2.15(2)-2.16(2) angstrom). These results are in agreement with previous conclusions from X-ray photoelectron spectroscopy and from electro-spray ionization mass spectrometry. These results collectively suggest that the aromatic-bound iodine is stable in the various aquifers of this study. (authors)

  6. Optical spectroscopy of the Be/X-ray binary V850 Centauri/GX 304-1 during faint X-ray periodical activity

    Science.gov (United States)

    Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.

    2017-07-01

    Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (I ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.

  7. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  8. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    International Nuclear Information System (INIS)

    Velázquez, P. F.; Rodríguez-González, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J.

    2013-01-01

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  9. Calculation of X-ray emission produced by a quasi-monoenergetic electron distribution

    International Nuclear Information System (INIS)

    Fanaei, M.; Sadighi-Bonabi, R.

    2010-01-01

    Complete text of publication follows. By using an intense ultrafast laser interaction with plasma, generation of accelerated relativistic electrons with quasi monoenergetic spectrum has been possible. Analytic expressions for spectra and emission efficiencies of x-rays bremsstrahlung and characteristic line emission produced by a quasi-monoenergetic electron distribution from several targets are investigated. In this work, a Gaussian profile is assumed for the quasi-monoenergetic electron spectrum. The produced x-ray radiations are compared with the previous achieved results for a Maxwellian electron profile. These results and achievements are discussed in detail. Also, the outcomes can be evaluated with the experimental and simulated results.

  10. Study of x-ray emission enhancement via high contrast femtosecond laser interacting with solid foil

    International Nuclear Information System (INIS)

    Chen, Liming; Kando, Masaki; Bulanov, S.V.; Koga, James K.; Tajima, Toshiki; Xu M.H.; Yuan X.H.; Li Y.T.; Dong Q.L.; Zhang J.

    2007-01-01

    We studied the hard x-ray emission and the Kα x-ray conversion efficiency (η K ) produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu Kα photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu η K shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10 -4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of η K . (author)

  11. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [Planetary Exploration Branch, Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Wolk, S. J. [Chandra X-ray Center, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Günther, H. M. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, NE83-569, Cambridge, MA 02139 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Grady, C. A., E-mail: carey.lisse@jhuapl.edu, E-mail: damian.christian@csun.edu, E-mail: swolk@cfa.harvard.edu, E-mail: hgunther@mit.edu, E-mail: cchen@stsci.edu, E-mail: carol.a.grady@nasa.gov [Eureka Scientific and Goddard Space Flight Center, Code 667, NASA-GSFC, Greenbelt, MD 20771 (United States)

    2017-02-01

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  12. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    International Nuclear Information System (INIS)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Günther, H. M.; Chen, C. H.; Grady, C. A.

    2017-01-01

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10 29 erg s −1 , consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L x  > 6 × 10 25 erg s −1 within 2′ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT Apec  = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L x  ∼ 2 × 10 29 erg s −1 argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10 6 years. At 10 28 –10 29 erg s −1 X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  13. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  14. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    Energy Technology Data Exchange (ETDEWEB)

    Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Hickox, R. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fiore, F. [Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  15. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  16. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Powell, C.J.

    2017-01-01

    Highlights: • Effective attenuation lengths (EALs) for determination of surface composition by XPS. • Considerable difference from EALs used for overlayer thickness measurements. • New analytical algorithms for calculating the effective attenuation length. - Abstract: The effective attenuation length (EAL) is normally used in place of the inelastic mean free path (IMFP) to account for elastic-scattering effects when describing the attenuation of Auger electrons and photoelectrons from a planar substrate by an overlayer film. An EAL for quantitative determination of surface composition by Auger-electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) is similarly useful to account for elastic-scattering effects on the signal intensities. We calculated these EALs for four elemental solids (Si, Cu, Ag, and Au) and for energies between 160 eV and 1.4 keV. The XPS calculations were made for two instrumental configurations while the AES calculations were made from the XPS formalism after “switching off” the XPS anisotropy. The EALs for quantitative determination of surface composition by AES and XPS were weak functions of emission angle for emission angles between 0 and 50°. The ratios of the average values of these EALs to the corresponding IMFPs could be fitted to a second-order function of the single-scattering albedo, a convenient measure of the strength of elastic-scattering effects. EALs for quantitative determination of surface composition by AES and XPS for other materials can be simply found from this relationship.

  17. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  18. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  19. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  20. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    Science.gov (United States)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  1. K and L X-ray emission intensities of some radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H R; Pal, D [Punjabi Univ., Patiala (India). Dept. of Physics

    1985-01-01

    The K and L x-ray emission intensities per 100 disintegrations have been calculated for some radionuclides using the latest adopted data for gamma-ray intensities, electron capture and internal conversion coefficients for the parent nuclides, fluorescence yield values, Coster-Kronig transition probabilities, average total number of primary L shell vacancies produced in the decay of K shell vacancies and emission rates for various shells and subshells for the daughter nuclei. The results are in good agreement with theoretical and experimental values for the K x-ray intensities. There are no experimental results available to compare with the present calculations for the L x-ray intensities; however, there is a marked discrepancy in the L..cap alpha.. and L..beta.. intensities available on the basis of theoretical estimates.

  2. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  3. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    Science.gov (United States)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  4. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ∼100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented

  5. Double resonance capacitance spectroscopy (DORCAS): A new experimental technique for assignment of X-ray absorption peaks to surface sites of semiconductor

    CERN Document Server

    Ishii, M

    2003-01-01

    As a new microspectroscopy for semiconductor surface analysis using an X-ray beam, double resonance capacitance spectroscopy (DORCAS) is proposed. For a microscopic X-ray absorption measurement, a local capacitance change owing to X-ray induced emission of localized electrons is detected by a microprobe. The applied bias voltage V sub b dependence of the capacitance also provides information on the surface density of state. The resonance of the Fermi energy with a surface level by V sub b control makes possible the selection of the observable surface site in the X-ray absorption measurements, i.e. site-specific spectroscopy. The double resonance of the surface site selection (V sub b resonance) and the resonant X-ray absorption of the selected site (photon energy h nu resonance) enhances the capacitance signal. The DORCAS measurement of the GaAs surface shows correlation peaks at h nu=10.402 keV and V sub b =-0.4 V and h nu=10.429 keV and V sub b =+0.1 V, indicating that these resonant X-ray absorption peaks ...

  6. X-ray spectroscopy of the photosynthetic oxygen-evolving complex

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Ken; Yano, Junko; Yachandra, Vittal K

    2007-04-05

    Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn4Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.

  7. Retention Characteristics of CBTi144 Thin Films Explained by Means of X-Ray Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Biasotto

    2010-01-01

    Full Text Available CaBi4Ti4O15 (CBTi144 thin films were grown on Pt/Ti/SiO2/Si substrates using a soft chemical solution and spin-coating method. Structure and morphology of the films were characterized by the X-ray Diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, Raman analysis, X-ray photoemission spectroscopy (XPS, and transmission electron microscopy (TEM. The films present a single phase of layered-structured perovskite with polar axis orient. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. XPS measurements were employed to understand the nature of defects on the retention behavior of CBTi144 films. We have observed that the main source of retention-free characteristic of the capacitors is the oxygen environment in the CBTi144 lattice.

  8. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  9. Soft x-ray emission from gamma-ray bursts observed with ginga

    International Nuclear Information System (INIS)

    Yoshida, Atsumasa; Murakami, Toshio; Itoh, Masayuki

    1989-01-01

    The soft X-ray emission of gamma-ray bursts below 10 keV provides information about size, location, and emission mechanism. The Gamma-ray Burst Detector (GBD) on board Ginga, which consists of a proportional counter and a scintillation detector, covers an energy range down to 1.5 keV with 63 cm 2 effective area. In several of the observed gamma-ray bursts, the intensity of the soft X-ray emission showed a longer decay time of 50 to 100s after the higher energy gamma-ray emission had ended. Although we cannot rule out other models, such as bremsstrahlung and thermal cyclotron types, due to poor statistics, the soft X-ray spectra are consistent with a blackbody of 1 to 2 keV in the late phase of the gamma-ray bursts. This enables us to estimate the size of the blackbody responsible for the X-ray emission. (author)

  10. Electronic structure of molecules of substituted benzenes by x-ray spectroscopy. I. Nitrobenzene

    International Nuclear Information System (INIS)

    Yumatov, V.D.; Murakhtanov, V.V.; Salakhutdinov, N.F.; Okotrub, A.V.; Mazalov, L.N.; Logunova, L.G.; Koptyug, V.A.; Furin, G.G.

    1988-01-01

    The electronic structure of the nitrobenzene molecule has been studied by x-ray spectroscopy with the aid of quantum-chemical calculations. The structure of the molecular orbitals of nitrobenzene has been compared with the structure of benzene and nitrogen dioxide. It has been shown in the framework of a fragment-by-fragment analysis that the interaction of the highest occupied π orbitals of the benzene ring and the nitro group is weak

  11. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  12. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  13. X-ray and γ-ray spectroscopy of solids under pressure

    International Nuclear Information System (INIS)

    Ingalls, R.L.

    1990-01-01

    This report briefly describes our studies of various materials at high pressures by means of x-ray and γ-ray absorption spectroscopy. High pressure provides a very effective means of studying materials. Virtually every property is altered from the color and crystal structure to the electrical and magnetic properties. The fundamental reason, of course, is that the quantum levels depend upon the atomic spacing so that both the electronic and vibrational structure is affected

  14. X-ray continuum and iron K emission line from the radio galaxy 3C 390.3

    Science.gov (United States)

    Inda, M.; Makishima, K.; Kohmura, Y.; Tashiro, M.; Ohashi, T.; Barr, P.; Hayashida, K.; Palumbo, G. G. C.; Trinchieri, G.; Elvis, M.

    1994-01-01

    X-ray properties of the radio galaxy 3C 390.3 were investigated using the European X-ray Observatory Satellite (EXOSAT) and Ginga satellites. Long-term, large-amplitude X-ray intensity changes were detected over a period extending from 1984 through 1991, and high-quality X-ray spectra were obtained especially with Ginga. The X-ray continuum spectra were described with power-law model with photon slope in the range 1.5-1.8, and the slope flattened as the 2-20 keV luminosity decreased by 40%. There was a first detection of the iron emission line from this source at the 90% confidence level. An upper limit was derived on the thermal X-ray component. X-ray emission mechanisms and possible origins of the long-term variation are discussed.

  15. X-ray emission in heavy-ion collisions. Progress report, April 1, 1979-March 31, 1980

    International Nuclear Information System (INIS)

    Watson, R.L.

    1980-04-01

    Recent research in the cyclotron institute and department of chemistry at Texas A and M University on the x-ray emission in heavy-ion collisions is described. Areas covered include: spectra of Ka x-rays from 64 MeV sulfur ions traveling in solids; foil-excited Ka x-ray transitions in few-electron sulfur ions; high-resolution study of the target thickness dependence of x-ray emission from 65 MeV sulfur ions; dynamic screening of highly stripped sulfur ions in solids; Mg Ka x-ray satellites excited by ion bombardment, multiplet structure and dependence on projectile and chemical environment; angular distributions of beam and target Ka x-rays; chemical effects on K x-ray satellites of fluorine compounds; and a non-linear least-squares peak-fitting program employing Voight functions

  16. Moessbauer spectroscopy and X-ray diffraction study of 304 L stainless steel thin films

    International Nuclear Information System (INIS)

    Boubeker, B.; Eymery, J.P.; Goudeau, P.; Sayouty, E.H.

    1994-01-01

    304 L stainless steel films (SS) were elaborated using an ion-beam sputtering technique. The target material was a sheet of commercial grade 304 L SS. The starting material was first analysed by both conversion electron Moessbauer spectroscopy (CEMS) and X-ray diffraction. The nonmagnetic state and f.c.c. structure of this material were confirmed. The films were deposited on various substrates with thicknesses in the 175-800 nm range. The films are found to have both b.c.c. structure and ferromagnetic character. X-ray diffraction technique was also used in order to determine the residual stresses developed during the deposition process. The second stage of the work is devoted to the evolution of the film structure as a function of annealing treatments. So isochronal and isothermal kinetics at temperatures higher than 913 K have allowed to follow the alpha --> gamma phase transformation using X-ray diffraction and CEMS technique.The X-ray diffractograms reveal the existence of both b.c.c. and f.c.c. phases. Similar results can be deduced from Moessbauer spectra due to the single line coming from the non-magnetic phase and the sextet coming from the ferromagnetic phase. In addition the CEMS spectra reveal that the ferromagnetic component is split into two parts which indicates the existence of two iron sites. 1 fig., 4 refs.(author)

  17. Soft x-ray spectroscopy optimisation for the direct determination of valence

    International Nuclear Information System (INIS)

    Wison, N.C.; MacRae, C.M.; Nelson, S.

    2002-01-01

    Full text: Measuring the valence of elements and mapping their occurrence throughout a sample can give important insights into the chemistry of complex systems. The toxic nature of Cr 6+ gives great concern over its disposal in the environment. Being able to resolve Cr 6+ from Cr 3+ allows us to tackle these important problems. The electron probe micro-analyser (EPMA) is routinely used to provide micron resolution chemical analysis. However it is often possible to resolve changes in soft X-ray peak shape and position that reflect changes in the chemical state and crystal structure. A soft x-rays is usually considered to be one of less than 1.5 keV in energy In this study we have compared a range of Cr containing compounds, and measured the differences in the Cr Lα line. In some samples, the Cr L line can be 'relatively weak, so to maximise its excitation probability, a set of Monte Carlo simulations were performed using the CASINO V2.0 package and the most efficient excitation voltage was determined. We also investigate the soft x-ray spectroscopy using electronic structure calculations to produce theoretical Density of States (DOS) for comparison with the measured spectra. The theoretical calculations can aid in understanding spectrum shape and polarisation of the soft x-ray signal in unknown samples, when a full range of standards is not available. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  19. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy

    International Nuclear Information System (INIS)

    Bernadotte, Stephan; Atkins, Andrew J.; Jacob, Christoph R.

    2012-01-01

    For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.

  20. The role of total-reflection x-ray fluorescence in atomic spectroscopy

    International Nuclear Information System (INIS)

    Toelg, G.; Klockenkaemper, R.

    1993-01-01

    Total-reflection X-ray fluorescence (TXRF) is a universal and economic method for the simultaneous determination of elements with atomic numbers > 11 down to the lower pg-level. It is a microanalytical tool for the analysis of small sample amounts placed on flat carriers and for contaminations on flat sample surfaces. Analyses of stratified near-surface layers are made possible by varying the incident angle of the primary beam in the region of total-reflection. This non-destructive method is especially suitable for thin layers of a few nanometres, deposited on wafer material although not usable as a microprobe method with a high lateral resolution. Furthermore, depth profiles of biological samples can be recorded by means of microtome sectioning of only a few micrometres, as, for example in the gradient analysis of human organs. In addition to micro- and surface-layer analysis, TXRF is effectively applied to element trace analysis. Homogeneous solutions, for example aqueous solutions, high-purity acids or body fluids, are pipetted onto carriers and, after evaporation, the dry residues are analyzed directly down to the pg/ml region. Particularly advantageous is the absence of matrix effects, so that an easy calibration can be carried out by adding a single internal standard element. A digestion or separation step preceding the actual determination becomes necessary if a more complex matrix is to be analysed or especially low detection limits have to be reached. A critical evaluation of the recent developments in atomic spectroscopy places TXRF in a leading position. Its outstanding features compete with those of e.g. electrothermal atomic absorption spectrometry (ETAAS), microwave induced plasma optical emission spectroscopy (MIP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) in the field of micro- and trace analysis and with Rutherford backscattering (RBS) and secondary ion mass spectrometry (SIMS) in the surface-layer analysis. (author)

  1. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques

    Science.gov (United States)

    Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca

    2014-03-01

    The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

  2. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune 411 007 (India); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation); Fransson, Claes [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M., E-mail: poonam@ncra.tifr.res.in [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  3. Positron emission CT and X-ray CT findings in chronic obstructive pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshikazu; Murata, Kiyoshi; Ito, Harumi; Senda, Michio; Yonekura, Yoshiharu; Konishi, Junji; Nishimura, Koichi; Izumi, Takahide; Oshima, Shunsaku

    1987-08-01

    Positron emission CT and X-ray CT were performed in fifteen patients with emphysema confirmed SAB and twelve patients with clinical DPB. In patients with emphysema, 20 of 36 areas showed a central pattern and their perfusion scintigrams showed stripe-signs. On the other hand, the patients with DPB showed outer layer progression of the disease.

  4. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Intense XUV soft x-ray emission from laser-produced plasma sources is currently ... absorption edges of oxygen and carbon respectively) is particularly attractive as it permits ... ability of the target element producing intense discrete lines in the water .... ficient due to Pert [17] and dielectronic recombination coefficient due to ...

  5. Cometary X-ray Emission: the View After the First Chandra Observations

    Science.gov (United States)

    Lisse, C. M.

    2002-01-01

    The unexpected discovery of x-ray emission from Comet Hyakutake in March 1996 (Lisse et al. 1996) has produced a number of questions about the physical mechanism producing the radiation. The original detection and subsequent observations (Dennerl et al. 1997, Mumma et al. 1997, Krasnopolsky et al. 1998, Owens et al. 1998, Lisse et al. 1999) have shown that the very soft (best fit thermal bremsstrahlung model kT ~ 0.2 keV) emission is due to an interaction between the solar wind and the comet's atmosphere. Using the results from the 15 comets detected to date in x-rays, we report on the latest results on cometary x-ray emission, including new results from Chandra and XMM. As-observed morphologies, spectra, and light curves will be discussed. Our emphasis will be on understanding the physical mechanism producing the emission, and using this to determine the nature of the cometary coma, the structure of the solar wind in the heliosphere, and the source of the local soft x-ray background. This work has been graciously supported by grants from the NASA Planetary Astronomy and Astrophysical Data Programs.

  6. Correlation between X-ray and high energy gamma-ray emission form Cygnus X-3

    International Nuclear Information System (INIS)

    Weekes, T.C.; Danaher, S.; Fegan, D.J.; Porter, N.A.

    1981-01-01

    In May-June 1980, the 4.8 hour modulated X-ray flux from Cygnus X-3 underwent a significant change in the shape of the light curve; this change correlates with the peak in the high-energy (E > 2 x 10 12 eV) gamma ray emission at the same epoch. (orig.)

  7. X-ray emission from reverse-shocked ejecta in supernova remnants

    Science.gov (United States)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  8. The application of proton induced X-ray emission in criminalistics

    International Nuclear Information System (INIS)

    Li Zhenyuan; Xie Shuxian

    1993-01-01

    The determination method of trace elements in high pure gold by proton induced X-ray emission is reported. The target preparation, design of physical experiment, data proceeding and the analysis of gold samples by the internal standard of single-standard are discussed. Using this determination method, the identification of a sample of high pure gold is performed

  9. Interpretation of x-ray emission from lithium-like ions in collisions with helium

    International Nuclear Information System (INIS)

    Armen, G.B.; Aaberg, T.

    1994-01-01

    We consider the continuous x-ray distribution on the low-energy side of the K α line in projectile spectra coincident with single-electron loss in collision of lithium-like ions with helium. We demonstrate that the observed distributions are due to two-photon emission rather than to the radiative Auger effect. (author)

  10. Proton induced X-ray emission analysis of trace elements in human blood serum

    International Nuclear Information System (INIS)

    Cheek, D.B.; Hay, H.J.; Newton, C.S.

    1979-01-01

    Proton induced x-ray emission has been used for quantitative analyses of trace elements in blood serum samples. This work is part of a survey concerned with Zn, Cu, Fe, Cr, Mn and Se in Australian Aboriginal people not receiving optimal diet. Special attention is being directed to Cr because of the high incidence of diabetes mellitus in these people

  11. Qualitative analysis of a powdered diamond sample by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Mabida, C.; Annegarn, H.J.; Renan, M.J.; Sellschop, J.P.F.

    The main purpose of this analysis was to determine whether nickel is present in diamond powder as a trace element. Particle induced X-ray emission (PIXE) showed unambiguously that nickel was present. Due to the convenience of PIXE in multielemental analysis, the investigations also include a number of other trace elements in the sample

  12. X-ray Emission from the Radio Jet in 3C 120

    DEFF Research Database (Denmark)

    Harris, D. E.; Hjorth, J.; Sadun, A. C.

    1999-01-01

    We report the discovery of X-ray emission from a radio knot at a projected distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for the knot preclude a simple power law extension of the radio...

  13. 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015")

    Science.gov (United States)

    Przybyłowicz, Wojciech Józef; Pineda-Vargas, Carlos

    2015-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015") that was held in Somerset West (South Africa) from 25th February to 3rd March 2015.

  14. The Relationship Between Solar Radio and Hard X-Ray Emission

    Science.gov (United States)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  15. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

    International Nuclear Information System (INIS)

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-01-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  16. Multi-elemental analysis of marine sediments of Sorsogon Bay using x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gonzales, Ralph Roly A.; Quirit, Leni L.; Rosales, Colleen Marciel F.; Pabroa, Preciosa Corazon B.; Sta Maria, Efren J.

    2011-01-01

    Metal composition and nutrient loadings of our bodies of water, when uncontrolled, may cause harmful bacterial contamination and pose threats in aquatic and human life. Toxic and trace element inputs in Sorsogon Bay sediments were determined using nuclear analytical techniques, more specifically, x-ray fluorescence spectrometry, in this study. Pre-treated marine sediment samples from Sorsogon Bay were homogenized using SPEX # 8000 mixer/mill and agate mortar and pestle, pelletized into 31-mm flat discs using SPEX 3630 X-Press and analyzed using PAN Analytical Epsilon 5 EDX X-ray Fluorescence Spectrometer with the emission and transmission method using silver and germanium secondary targets. Spectrum fitting performed using AXIL (Analysis of X-ray Spectra by Iterative Least-Squares Fitting), a subprogram in Quantitative X-ray Analysis System developed by the International Atomic Energy Agency and Quantitative Analysis of Environmental Samples program, was used for quantification of results. Results indicate generally moderate to high metal enrichment, specifically manganese, lead, cadmium, zinc and copper. Mercury and iron level enrichment are found to be low, marking an improvement from previous studies indicating high enrichment of these metals. (author)

  17. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  18. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  19. Al{sub 0.2}Ga{sub 0.8}As X-ray photodiodes for X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, M.D.C., E-mail: M.Whitaker@sussex.ac.uk; Lioliou, G.; Butera, S.; Barnett, A.M.

    2016-12-21

    Three custom-made Al{sub 0.2}Ga{sub 0.8}As p-i-n mesa X-ray photodiodes (200 µm diameter, 3 µm i layer) were electrically characterised and investigated for their response to illumination with soft X-rays from an {sup 55}Fe radioisotope X-ray source (Mn Kα = 5.9 keV; Mn Kβ = 6.49 keV). The AlGaAs photodiodes were shown to be suitable for photon counting X-ray spectroscopy at room temperature. When coupled to a custom-made low-noise charge-sensitive preamplifier, a mean energy resolution (as quantified by the full width at half maximum of the 5.9 keV photopeak) of 1.24 keV was measured at room temperature. Parameters such as the depletion width (1.92 µm at 10 V), charge trapping noise (61.7 e{sup −} rms ENC at 5 V, negligible at 10 V) and the electronic noise components (known dielectric noise (63.4 e{sup −} rms), series white noise (27.7 e{sup −} rms), parallel white noise (9.5 e{sup −} rms) and 1/f series noise (2.2 e{sup −} rms) at 10 V reverse bias) affecting the achieved energy resolution were computed. The estimated charge trapping noise and mean energy resolution were compared to similar materials (e.g. Al{sub 0.8}Ga{sub 0.2}As) previously reported, and discussed. These results are the first demonstration of photon counting X-ray spectroscopy with Al{sub 0.2}Ga{sub 0.8}As reported to date.

  20. Trace element analysis in liquids by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Deconninck, G.

    Proton induced x-ray emission (PIXE) from liquid has been developed for quantitative and simultaneous analysis of trace elements. Liquid drops and trickles are bombarded at atmospheric pressure, x-rays are detected in a non dispersive Si(Li) solid state detector. Absolute determinations are made by comparison with standard solutions. Detection limits in a 5 minutes run are in the ppm range for a single drop (0.05 ml). The application of this technique to the determination of trace elements in biological liquids is investigated (Cr, Mn, Fe, Co, Ni, Cu, Zn, in plant extracts, haemocyanine, albumins...). (author)

  1. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  2. Observation of hard X-rays line emission from Her X-1

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; la Padula, C.; Ubertini, P.; Vialetto, G.; Manchanda, R.K.; Damle, S.V.

    1982-04-01

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm/sup 2/ sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum.

  3. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  4. X-ray fluorescence analysis and optical emission spectrometry of an roman mirror from Tomis, Romania

    International Nuclear Information System (INIS)

    Belc, M.; Bogoi, M.; Ionescu, D.; Guita, D.; Caiteanu, S.; Caiteanu, D.

    2000-01-01

    The miscellaneous population of Roman Empire, their diverse cultural tradition, their ability to assimilate the roman civilization spirits, had determined a permanent reassessment superimposed upon the roman contribution. Analysis was undertaken using optical emission spectrometry and non-destructive X-ray fluorescence. X-ray fluorescence analysis is a well-established method and is often used in archaeometry and other work dealing with valuable objects pertaining to the history of art and civilization. Roman mirror analysed has been found not to be made of speculum (a high tin bronze). (authors)

  5. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  6. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Cibin, G. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX110DE (United Kingdom); IMONT/EIM, Ente Italiano della Montagna, P.za dei Caprettari 70, 00176 Roma (Italy); Universita' degli Studi di Roma Tre, Dipartimento di Scienze Geologiche, L.go S. Leonardo Murialdo 1, 00146 Roma (Italy)], E-mail: giannantonio.cibin@diamond.ac.uk; Marcelli, A. [INFN - Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Roma) (Italy); Maggi, V. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Sala, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Universita degli Studi di Milano, Dipartimento di Scienze della Terra ' A. Desio' , Sez. Mineralogia, Via Mangiagalli 34, 20133 Milano (Italy); Marino, F.; Delmonte, B. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Albani, S. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Universita degli Studi di Siena, Dottorato in Scienze Polari, via Laterina 8, 53100 Siena (Italy); Pignotti, S. [IMONT/EIM, Ente Italiano della Montagna, P.za dei Caprettari 70, 00176 Roma (Italy)

    2008-12-15

    Aeolian mineral dust archived in polar and mid latitude ice cores represents a precious proxy for assessing environmental and climatic variations at different timescales. In this respect, the identification of dust mineralogy plays a key role. In this work we performed the first preliminary X-ray absorption spectroscopy (XAS) experiments on mineral dust particles extracted from Antarctic and from Alpine firn cores using grazing incidence geometry at the Fe K-edge. A dedicated high vacuum experimental chamber was set up for normal-incidence and total-reflection X-Ray Fluorescence and Absorption Spectroscopy analyses on minor amounts of mineral materials at the Stanford Synchrotron Radiation Laboratory. Results show that this experimental technique and protocol allows recognizing iron inclusion mineral fraction on insoluble dust in the 1-10 {mu}g range.

  7. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores

    International Nuclear Information System (INIS)

    Cibin, G.; Marcelli, A.; Maggi, V.; Sala, M.; Marino, F.; Delmonte, B.; Albani, S.; Pignotti, S.

    2008-01-01

    Aeolian mineral dust archived in polar and mid latitude ice cores represents a precious proxy for assessing environmental and climatic variations at different timescales. In this respect, the identification of dust mineralogy plays a key role. In this work we performed the first preliminary X-ray absorption spectroscopy (XAS) experiments on mineral dust particles extracted from Antarctic and from Alpine firn cores using grazing incidence geometry at the Fe K-edge. A dedicated high vacuum experimental chamber was set up for normal-incidence and total-reflection X-Ray Fluorescence and Absorption Spectroscopy analyses on minor amounts of mineral materials at the Stanford Synchrotron Radiation Laboratory. Results show that this experimental technique and protocol allows recognizing iron inclusion mineral fraction on insoluble dust in the 1-10 μg range

  8. THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Clautice, Devon; Perlman, Eric S. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland—Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Lister, Matthew L.; Hogan, Brandon [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Tombesi, Francesco [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cara, Mihai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kazanas, Demos [NASA’s Goddard Space Flight Center, Astrophysics Science Division, Code 663, Greenbelt, MD 20771 (United States)

    2016-08-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope ( HST ) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR , HST , and Chandra will allow us to further constrain the emission mechanisms.

  9. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  10. Polarization and dipole effects in hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Pauly, N., E-mail: nipauly@ulb.ac.be [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer X-rays are unpolarized or linearly polarized. Black-Right-Pointing-Pointer A difference of polarization implies a variation in path travelled by the photoelectrons. Black-Right-Pointing-Pointer We show the influence of the polarization on the partial intensity distributions. Black-Right-Pointing-Pointer We also point out the influence of the dipole approximation. Black-Right-Pointing-Pointer We use Monte Carlo simulations. - Abstract: Hard X-ray photoelectron spectroscopy (HXPS) using X-rays in the 1.5-15 keV energy range generated by synchrotron sources becomes an increasingly important analysis technique due to its potential for bulk sensitive measurements. However, besides their high energy, another characteristic of photons generated by synchrotron sources is their linear polarization while X-rays from Al K{alpha} or Mg K{alpha} for instance are unpolarized. This difference implies a possible variation in total path travelled by the photoelectrons generated by the X-rays inside the medium and consequently a modification of the resulting spectrum shape. We show the influence of the polarization on the partial intensity distributions, namely the number of electrons escaping after n inelastic scattering events, for photoelectron with energies of 0.5, 1, 2, 3, 4 and 5 keV and originating from Si 1s{sub 1/2}, Cu 1s{sub 1/2}, Cu 2p{sub 3/2}, Au 4d{sub 3/2} and Au 4f{sub 7/2} subshells. Moreover, we point out the influence of the dipole approximation leading to an underestimation of the partial intensity distributions due to the neglect of the forward-backward asymmetry of the angular photoelectron distribution.

  11. X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Ofek, E. O.; Gal-Yam, A.; Yaron, O.; Arcavi, I.; Fox, D.; Cenko, S. B.; Filippenko, A. V.; Bloom, J. S.; Sullivan, M.; Gnat, O.; Frail, D. A.; Horesh, A.; Kulkarni, S. R.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Nugent, P. E.; Kasliwal, M. M.; Bildsten, L.; Poznanski, D.

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (τ ∼> 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model. We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the

  12. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  13. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    Science.gov (United States)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  14. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  15. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  16. Investigation of periodically driven systems by x-ray absorption spectroscopy using asynchronous data collection mode

    Science.gov (United States)

    Singh, H.; Donetsky, D.; Liu, J.; Attenkofer, K.; Cheng, B.; Trelewicz, J. R.; Lubomirsky, I.; Stavitski, E.; Frenkel, A. I.

    2018-04-01

    We report the development, testing, and demonstration of a setup for modulation excitation spectroscopy experiments at the Inner Shell Spectroscopy beamline of National Synchrotron Light Source - II. A computer algorithm and dedicated software were developed for asynchronous data processing and analysis. We demonstrate the reconstruction of X-ray absorption spectra for different time points within the modulation pulse using a model system. This setup and the software are intended for a broad range of functional materials which exhibit structural and/or electronic responses to the external stimulation, such as catalysts, energy and battery materials, and electromechanical devices.

  17. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  18. A new microcalorimeter concept for photon counting X-ray spectroscopy

    International Nuclear Information System (INIS)

    Silver, E.H.; Labov, S.E.

    1989-01-01

    We present an innovative approach for performing photon counting X-ray spectroscopy with cryogenic microcalorimeters. The detector concept takes advantage of the temperature dependence of the dielectric constant in ferroelectric materials. A dielectric calorimeter has many potential advantages over traditional resistive devices, particularly in the reduction of Johnson noise. This makes the energy resolution for photon counting spectroscopy limited only to the noise produced by the intrinsic temperature fluctuations of the device. The detector concept is presented and its predicted performance is compared with resistive calorimeters. Calculations have shown that practical instruments operating with an energy resolution less than 20 eV may be possible at 300 mK. (orig.)

  19. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    Science.gov (United States)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  20. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    Energy Technology Data Exchange (ETDEWEB)

    Toala, J. A.; Guerrero, M. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Arthur, S. J. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia, Apartado Postal 3-72, 58090, Morelia, Michoacan (Mexico); Smith, R. C. [NOAO/CTIO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Snowden, S. L., E-mail: toala@iaa.es [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2012-08-10

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43 keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.