WorldWideScience

Sample records for wt rvfv isolates

  1. Isolating $Wt$ production at the LHC

    CERN Document Server

    White, Chris D; Laenen, Eric; Maltoni, Fabio

    2009-01-01

    We address the issue of single top production in association with a W boson at the Large Hadron Collider, in particular how to obtain an accurate description in the face of the top pair production background given that the two processes interfere with each other. We stress the advantages of an MC@NLO description, and find that for cuts used to isolate the signal, it makes sense to consider Wt as a well-defined production process in that the interference with top pair production is small, and the cross-section of the former is above the scale variation uncertainty associated with the latter. We also consider the case where both Wt and top pair production are backgrounds to a third process (Higgs boson production followed by decay to a W boson pair), and find in this context that interference issues can also be neglected. We discuss the generalization of our results to other situations, aided by a comparison between the MC@NLO approach and a calculation of the WWbb final state matched to a parton shower.

  2. A Novel WT1 Gene Mutation in a Three-Generation Family with Progressive Isolated Focal Segmental Glomerulosclerosis

    Science.gov (United States)

    Caridi, Gianluca; Malaventura, Cristina; Dagnino, Monica; Leonardi, Emanuela; Artifoni, Lina; Ghiggeri, Gian Marco; Tosatto, Silvio C.E.; Murer, Luisa

    2010-01-01

    Background and objectives: Wilms tumor-suppressor gene-1 (WT1) plays a key role in kidney development and function. WT1 mutations usually occur in exons 8 and 9 and are associated with Denys-Drash, or in intron 9 and are associated with Frasier syndrome. However, overlapping clinical and molecular features have been reported. Few familial cases have been described, with intrafamilial variability. Sporadic cases of WT1 mutations in isolated diffuse mesangial sclerosis or focal segmental glomerulosclerosis have also been reported. Design, setting, participants, & measurements: Molecular analysis of WT1 exons 8 and 9 was carried out in five members on three generations of a family with late-onset isolated proteinuria. The effect of the detected amino acid substitution on WT1 protein's structure was studied by bioinformatics tools. Results: Three family members reached end-stage renal disease in full adulthood. None had genital abnormalities or Wilms tumor. Histologic analysis in two subjects revealed focal segmental glomerulosclerosis. The novel sequence variant c.1208G>A in WT1 exon 9 was identified in all of the affected members of the family. Conclusions: The lack of Wilms tumor or other related phenotypes suggests the expansion of WT1 gene analysis in patients with focal segmental glomerulosclerosis, regardless of age or presence of typical Denys-Drash or Frasier syndrome clinical features. Structural analysis of the mutated protein revealed that the mutation hampers zinc finger-DNA interactions, impairing target gene transcription. This finding opens up new issues about WT1 function in the maintenance of the complex gene network that regulates normal podocyte function. PMID:20150449

  3. Simultaneous Genomic Detection of Multiple Enteric Bacterial and Viral Pathogens, Including Sars-CoV and RVFV

    National Research Council Canada - National Science Library

    Payne, S; Peters, C. J. (Clarence James), 1940; Makino, S; Oliver, K; Weiss, C; Kornguth, S; Carruthers, L; Chin, R

    2004-01-01

    ...) associated with the SARS-associated coronavirus (SARS-CoV) and Rift Valley Fever Virus (RVFV) has been developed. This system is based upon the Luminex xMAP" System, a multiplexed assay platform that combines high sample throughput...

  4. Isolation, characterization and in silico docking studies of synergistic estrogen receptor α (ERα anticancer polyphenols from Syzygium alternifolium (Wt. walp.

    Directory of Open Access Journals (Sweden)

    Pulicherla Yugandhar

    2017-09-01

    Full Text Available Aim: The present study is aimed to isolate, characterize and in silico evaluate of anticancer polyphenols from different parts of Syzygium alternifolium. Materials and Methods: The polyphenols were isolated by standard protocol and characterized by using FT-IR, HPLC-PDA detector coupled with ESI-MS/MS. The compounds were elucidated based on retention time and molecular ions (m/z either by [M+H]+/[M-H]- with the comparison of standard phenols as well as ReSpect software tool. Further, ADME/Toxicity properties of selected phenolic scaffolds were screened by using OSIRIS and SwissADME programs which incorporate toxicity risk assessments, pharmacokinetics and RO5 principles. Molecular docking studies were carried out for selected toxicity filtered compounds against breast cancer Estrogen Receptor α structure (PDB-ID: 1A52 through AutoDock scoring functions by PyRx virtual screening program. Results: The obtained results showed two intensive peaks in each polyphenol fraction analyzed with FT-IR, confirms O-H/C-O stretch of the phenolic functional group. A total of 40 compounds was obtained, which categorized as 09 different classes. Among them flavonol group represents more number of polyphenols. In silico studies suggest seven compounds have the possibility to use as future non-toxic inhibitors. Molecular docking studies with ERα revealed the lead molecules unequivocally interact with Leu346, Glu353, Leu391, Arg394, Gly521, Leu525 residues and Phe404 formed atomic π-stacking with dihydrochromen-4-one ring of ligands as like estrodial, that stabilizes the receptor structure and complicated to generate a single mutation for drug resistance. Conclusion: Overall, these results significantly proposed that the isolated phenolics could be served as potential ER mitigators for breast cancer therapy. [J Complement Med Res 2017; 6(3.000: 296-310

  5. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  6. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  7. Photolysis of rhodamine-WT dye

    Science.gov (United States)

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  8. Mechanical Properties of 0.14wt%C – 0.56wt%Mn – 0.13wt%Si ...

    African Journals Online (AJOL)

    Effect of intercritical heat treatment on 0.14wt%C – 0.56wt%Mn – 0.13wt%Si structural steel has been investigated. Specimens for single quenching and those for double quenching were prepared for intercritical heat treatment. The heat treatment of the experimental steel was based on intercritical annealing in the ferrite + ...

  9. Increasing TRIGA fuel lifetime with 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, W F; Cenko, M J; Levine, S H; Witzig, W F [Pennsylvania State University (United States)

    1974-07-01

    In-core fuel management studies have been performed for the Penn State Breazeale Reactor (PSBR) wherein 12 wt % U fuel elements are used to replace the standard 8.5 wt % U TRIGA fuel. The core configuration used to develop a calculational model was a 90-element hexagonal array, which is representative of the PSBR core, and consists of five hexagonal rings surrounding a central thimble containing water. The technique employed for refueling the core fully loaded with 8.5 wt % U fuel involves replacing 8.5 wt % U fuel with 12 wt % U fuel using an in-out reloading scheme. A batch reload consists of 6 new 12 wt % U fuel elements. Placing the 12 wt % U fuel in the B ring produces fuel temperatures ({approx}450 {sup o}C) that are well below the 800{sup o}C maximum limitation when the PSBR is operating at its maximum allowed power of 1 Megawatt. The advantages of using new 12 wt % U fuel to replace the burned up 8.5 wt % U fuel in the B ring over refueling strictly with 8.5 wt % U-Zr TRIGA fuel are clearly delineated in Table 1 where cost calculations used the General Atomic pre-1972 prices for TRIGA fuel, i.e., $1500 and $1650 for an 8.5 and 12 wt % U fuel element, respectively. Experimental results obtained to date utilizing the 12 wt % U fuel elements agree with the computed results. (author)

  10. Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

    Directory of Open Access Journals (Sweden)

    Şelte A.

    2015-06-01

    Full Text Available In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

  11. Phase development in a U-7 wt.% Mo vs. Al-7 wt.% Ge diffusion couple

    Science.gov (United States)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2013-10-01

    Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)3 phase.

  12. Phase development in a U–7 wt.% Mo vs. Al–7 wt.% Ge diffusion couple

    Energy Technology Data Exchange (ETDEWEB)

    Perez, E., E-mail: Emmanuel.Perez@inl.gov [Nuclear Fuels and Materials Development, Idaho National Laboratory, Box 1625, Idaho Falls, ID 83415 (United States); Keiser, D.D. [Nuclear Fuels and Materials Development, Idaho National Laboratory, Box 1625, Idaho Falls, ID 83415 (United States); Sohn, Y.H. [Advanced Materials Processing and Analysis Center, and Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 (United States)

    2013-10-15

    Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U–Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U–7 wt.% Mo in contact with Al–7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe{sub 3} phase and amorphous phases. The UGe{sub 3} phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge){sub 3} phase.

  13. Hardness and microstructure of Al-10.0 wt% Zn-4.0 wt% Mg alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Shaikh, M.A.; Ahmad, W.; Ali, K.L.

    1996-01-01

    Al-Zn-Mg alloys are widely used in industries as these have excellent physical and mechanical properties. However some aspects of the effect of heat treatment on these alloys are not yet clear. In order to understand the precipitation phenomena in these alloys, microstructure of a locally prepared alloy Al-10.0 wt% Zn-4.0 wt% Mg heat treated under different conditions has been examined in scanning electron microscope/electron probe micro analyser. Precipitates MgZn/sub 2/, MgZn/sub 4/ and Mg/sub 2/Zn/sub 11/ have been observed and these are caused by heat treatment. Correlation between these precipitates and Vickers's hardness has also been studied. In the present paper results of this investigation have been presented and discussed. (author)

  14. Temperature behavior of 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levine, S H; Geisler, G C; Totenbier, R E [Pennsylvania State University (United States)

    1974-07-01

    Stainless steel clad 12 wt % U TRIGA fuel elements have been used to refuel the Penn State University's Breazeale Reactor (PSBR). When 12 wt % U fuel containing nominally 55 gms of {sup 235}U per fuel element is substituted for the 8.5 wt % U fuel containing nominally 38 gms {sup 235}U, higher fuel temperatures were produced in the 12 wt % U fuel than in the 8.5 wt % U fuel at the same reactor powers. The higher fuel temperature can be related to the higher power densities in the 12 wt % U fuel. The power density is calculated to be 35% higher in the 12 wt % U fuel when 6 of these fuel elements are substituted for 8.5 wt % U fuel in the innermost ring, the B ring. Temperatures have been calculated for the 12 wt % U fuel in the above configuration for both steady state and pulse conditions, assuming a 35% higher fuel density in the 12 wt % U fuel and the results compare favorably with the experimental measurements. This is particularly true when the comparison is made with temperature data taken after exposing the new fuel elements to a series of pulses. These calculations and data will be presented at the meeting. (author)

  15. Analysis list: Wt1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Wt1 Embryo,Kidney + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Wt1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Wt1.5.tsv http://dbarchive.biosciencedbc.jp/kyush...u-u/mm9/target/Wt1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Wt1.Embryo.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Wt1.Kidney.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kidney.gml ...

  16. WT1 isoform expression pattern in acute myeloid leukemia.

    Science.gov (United States)

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Steady state creep during metastable phase transition in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Youssef, S.B.; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1998-08-16

    The early stages of decomposition of Guinier-Preston zones (G.P. zones) in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys were investigated through creep measurements and electron microscopy observations. It was found that the strengthening and softening of the alloys has been achieved during the formation of metastable phases (G.P. zones and {gamma}`-phase) in the ageing temperature range (428 to 498 K). TEM investigations confirmed that the addition of zirconium to the Al-Ag alloy accelerates the formation and coarsening of the metastable phases. The mean values of activation energy of both alloys were found to be equal to that quoted for precipitate-dislocation interactions. (orig.) 23 refs.

  18. Rhodamine-WT dye losses in a mountain stream environment

    Science.gov (United States)

    Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.

    1983-01-01

    A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).

  19. The stored energy in processed Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg

    International Nuclear Information System (INIS)

    Li, X.F.; Dong, A.P.; Wang, L.T.; Yu, Z.; Meng, L.

    2011-01-01

    Research highlights: → The crystal orientation in processed Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg is deviating from the as-cast specimens and microstrain of the alloy is gradually increasing as the draw ratio rising before η ≤ 6.7. → The dynamic recovery has taken place as 6.7 texture is formed with the draw ratio rising. Meanwhile, the stored energy also increases with the draw ratio rising and a peak is reached with draw ratio of 6.7. The release of stored energy is primarily due to the decrease of dislocation density. The flow stress estimated from the stored energy has a similar variation trend with the measured data with a stress difference ∼20 to 120 MPa. The main strengthening effect is attributed to dislocation mechanism.

  20. Effect of superimposed low frequency oscillations on the static creep behaviour of Al-1 wt%Si and Al-1 wt%Si-0.1 wt%Zr-0.1 wt%Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Beshai, M.H.N. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Deaf, G.H. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Abd El Khalek, A.M. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Physics Dept., University Coll. for Women, Ain Shams Univ., Cairo (Egypt)

    1997-05-16

    Torsional oscillations of increasing frequencies with constant torsional strain amplitude, {theta}, of 3.1 x 10{sup -4} were superimposed on wires of Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys, while being crept under constant stress (52.3 MPa) and different testing temperatures. It was found that increasing the frequency of oscillations resulted in an increase of both transient and steady state creep. In the transient stage, while the exponent n is increasing with frequency v, the parameter {beta} decreases. Zirconium and titanium addition generally reduced the rate of creep. A value of 20 kJ/mol was found for the activation energy of the mechanism operating in the transient and steady state stages which was ascribed as being due to dislocation intersection. (orig.)

  1. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    Science.gov (United States)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  2. Effects of Mo on microstructure of as-cast 28 wt.% Cr–2.6 wt.% C–(0–10) wt.% Mo irons

    Energy Technology Data Exchange (ETDEWEB)

    Imurai, S. [Department of Physics and Materials Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thanachayanont, C.; Pearce, J.T.H. [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Tsuda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chairuangsri, T., E-mail: tchairuangsri@gmail.com [Department of Industrial Chemistry, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-04-01

    Microstructures of as-cast 28 wt.% Cr–2.6 wt.% C irons containing (0–10) wt.% Mo with the Cr/C ratio of about 10 were studied and related to hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the iron with about 10 wt.% Mo was eutectic/peritectic, whereas the others with less Mo content were hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. Mo addition promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C. At 1 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3}, M{sub 23}C{sub 6} and M{sub 6}C were observed. M{sub 23}C{sub 6} existed as a transition zone between eutectic M{sub 7}C{sub 3} and M{sub 6}C, indicating a carbide transition as M{sub 7}C{sub 3}(M{sub 2.3}C) → M{sub 23}C{sub 6}(M{sub 3.8}C) → M{sub 6}C. At 6 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3} and M{sub 23}C{sub 6} were observed together with fine cellular/lamellar M{sub 6}C aggregates. In the iron with 10 wt.% Mo, only eutectic/peritectic M{sub 23}C{sub 6} and M{sub 6}C were found without M{sub 7}C{sub 3}. Mo distribution to all carbides has been determined to be increased from ca. 0.4 to 0.7 in mass fraction as the Mo content in the irons was increased. On the other hand, Cr distribution to all carbides is quite constant as ca. 0.6 in mass fraction. Mo addition increased Vickers macro-hardness of the irons from 495 up to 674 HV{sub 30}. High Mo content as solid-solution in the matrix and the formation of M{sub 6}C or M{sub 23}C{sub 6} aggregates were the main reasons for hardness increase, indicating potentially improved wear performance of the irons with Mo addition. - Highlights: • Mo promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C in the irons with Cr/C ratio of about 10

  3. Effects of W on microstructure of as-cast 28 wt.%Cr–2.6 wt.%C–(0–10)wt.%W irons

    Energy Technology Data Exchange (ETDEWEB)

    Imurai, S. [Department of Physics and Materials Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thanachayanont, C.; Pearce, J.T.H. [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Tsuda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chairuangsri, T., E-mail: tchairuangsri@gmail.com [Department of Industrial Chemistry, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-01-15

    Microstructures of as-cast 28 wt.%Cr–2.6 wt.%C irons containing (0–10)wt.%W with the Cr/C ratio about 10 were studied and related to their hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the irons with 1 to 10 wt.%W addition was hypereutectic containing large primary M{sub 7}C{sub 3}, whereas the reference iron without W addition was hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. The volume fractions of primary M{sub 7}C{sub 3} and the total carbides increased, but that of eutectic carbides decreased with increasing the W content of the irons. W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M{sub 23}C{sub 6}. At about 4 wt.%W, two eutectic carbides including M{sub 7}C{sub 3} and M{sub 6}C were observed together with primary M{sub 7}C{sub 3}. At 10 wt.%W, multiple carbides including primary M{sub 7}C{sub 3}, fish-bone M{sub 23}C{sub 6}, and M{sub 6}C were observed. M{sub x}C where x = 3 or less has not been found due possibly to the high M/C ratio in the studied irons. W distribution to all carbides has been determined increasing from ca. 0.3 to 0.8 in mass fraction as the W content in the irons was increased. W addition led to an increase in Vickers macro-hardness of the irons up to 671 kgf/(mm){sup 2} (HV30/15) obtained from the iron with 10 wt.%W. The formation of primary M{sub 7}C{sub 3} and aggregates of M{sub 6}C and M{sub 23}C{sub 6} were the main reasons for hardness increase, indicating potentially improved wear performance of the as-cast irons with W addition. - Highlights: • W addition at 1 up to 10 wt.%W to Fe–28Cr–2.6C produced “hypereutectic” structure. • W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M

  4. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  5. TRIGA high wt -% LEU fuel development program. Final report

    International Nuclear Information System (INIS)

    West, G.B.

    1980-07-01

    The principal purpose of this work was to investigate the characteristics of TRIGA fuel where the contained U-235 was in a relatively high weight percent (wt %) of LEU (low enriched uranium - enrichment of less than 20%) rather than a relatively low weight percent of HEU (high enriched uranium). Fuel with up to 45 wt % U was fabricated and found to be acceptable after metallurgical examinations, fission product retention tests and physical property examinations. Design and safety analysis studies also indicated acceptable prompt negative temperature coefficient and core lifetime characteristics for these fuels

  6. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  7. Technicolor dynamics corrections to Wt-barb coupling

    International Nuclear Information System (INIS)

    Yue Chongxing; Huang Jinshu; Lu Gongru; Yang Zhengtao

    1998-01-01

    The authors consider the contributions of new gauge bosons to Wt-barb coupling in one generation technicolor (OGTC) model and topcolor assisted multiscale technicolor (TOPCMTC) model. The authors find that the exchange of diagonal extended technicolor (ETC) gauge boson has no contribution to Wt-barb coupling. Using the LEP value of R b , the authors calculate the corrections to the CKM matrix element V tb which arise from the sideways ETC gauge boson in OGTC model and the sideways ETC gauge bosons and color exchange in TOPCMTC model. The authors find that the δV tb is significantly large for a certain set of the parameters of either OGTC model or TOPCMTC model which might be detected in the Fermilab Tevatron Run 3 experiments

  8. Physical properties of monolithic U8 wt.%-Mo

    Science.gov (United States)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  9. Multiscale modeling of a low magnetostrictive Fe-27wt%Co-0.5wt%Cr alloy

    Science.gov (United States)

    Savary, M.; Hubert, O.; Helbert, A. L.; Baudin, T.; Batonnet, R.; Waeckerlé, T.

    2018-05-01

    The present paper deals with the improvement of a multi-scale approach describing the magneto-mechanical coupling of Fe-27wt%Co-0.5wt%Cr alloy. The magnetostriction behavior is demonstrated as very different (low magnetostriction vs. high magnetostriction) when this material is submitted to two different final annealing conditions after cold rolling. The numerical data obtained from a multi-scale approach are in accordance with experimental data corresponding to the high magnetostriction level material. A bi-domain structure hypothesis is employed to explain the low magnetostriction behavior, in accordance with the effect of an applied tensile stress. A modification of the multiscale approach is proposed to match this result.

  10. Detection, isolation, and genetic characterization of Rift Valley fever virus from Anopheles (Anopheles) coustani, Anopheles (Anopheles) squamosus, and Culex (Culex) antennatus of the Haute Matsiatra region, Madagascar.

    Science.gov (United States)

    Ratovonjato, Jocelyn; Olive, Marie-Marie; Tantely, Luciano Michael; Andrianaivolambo, Lala; Tata, Etienne; Razainirina, Josette; Jeanmaire, Elisabeth; Reynes, Jean-Marc; Elissa, Nohal

    2011-06-01

    Following veterinary alerts of Rift Valley fever (RVF) in the districts of Fianarantsoa I and II in November 2008 and in the district of Ambalavao in April 2009, entomological and virological investigations were carried out to identify the mosquito species that could act as RVF virus (RVFV) vectors in the region. A total of 12,785 adult mosquitoes belonging to 5 genera and 21 species were collected. After identification, mosquitoes were pooled by species, sex, and female status (fed or unfed) and then stored at -80°C. Of 319 pools of unfed monospecific female mosquito tested by real-time RT-polymerase chain reaction, RVFV was detected in 1 pool of Anopheles coustani, 5 pools of An. squamosus, and 2 pools of Culex antennatus mosquitoes. The virus was isolated in mosquito cell lines from two of the five Real Time-RT-polymerase chain reaction (real time-RT-PCR) positive pools of An. squamosus mosquitoes. From the eight RVFV strains detected, partial S, M, and L genome segments sequences were obtained. The phylogenetic analysis of these sequences showed that the strains circulating in mosquitoes were genetically close to those that circulated in livestock and humans during RVF outbreaks in 2008 and 2009. This study, therefore, provides strong evidence that An. squamosus, An. coustani, and Cx. antennatus could play a role as vectors of the RVFV during the disease outbreaks in 2008-2009. Bioecological, genetic, and RVF transmission studies on these three mosquito species are needed to address this question and thus improve prevention and control of future RVF outbreaks in Madagascar, where these species are present.

  11. Top Polarisation in H-t and Wt production

    International Nuclear Information System (INIS)

    Godbole, R.M.; Hartgring, L.; Niessen, I.; White, C.D.

    2012-01-01

    We consider laboratory frame observables (like the azimuthal angle between the top quark and its decay lepton or the polar angle between the top quark and leptonic directions) obtained from leptonic decay products of top quarks produced in association with a charged Higgs or W boson. These are robust against QCD corrections to top quark decay, and can be used to pin down the parameter space of a charged Higgs boson, or reduce backgrounds in H - t and (Standard Model) Wt production. Polarisation information can efficiently be used to distinguish single top quark production processes from their backgrounds, as well as to pin down the parameters of a charged Higgs boson model

  12. Optimization of Surrounding Reflector Material for Hyb-WT

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Hong, Song Hee; Kim, Myung Hyun

    2013-01-01

    The choice of reflector material is crucial for fusion and hybrid reactors as it was for the fission reactors. Multiple reflector materials were studied for pure fusion blanket design. The purpose of reflector in fusion blanket is to enhance the tritium breeding ratio (TBR). In fusion fission hybrid blanket the roll of reflector is slightly changed as it include the fission core and the performance of fission core also needs to be optimized and evaluated with the choice of reflector material, along with the enhancement of TBR. The performance parameters of Hyb-WT are significantly influenced by the choice of reflector material. TiC is best for TRU transmutation, TBR and reduced the neutron wall loading and graphite is best for FP transmutation. Strategy of multi reflector materials gives the best TRU and FP transmutation performance and also enhanced TBR with reduced neutron wall loading and it is a better choice for Hyb-WT reflector. The neutron flux is primarily dominated by the fission neutrons

  13. Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing

    Science.gov (United States)

    Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen

    2016-10-01

    Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement

  14. Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 Wt to 2 Wt %

    Directory of Open Access Journals (Sweden)

    Lucia Lattanzi

    2018-03-01

    Full Text Available In recent years, the influence of Ni on high-temperature mechanical properties of casting Al alloys has been extensively examined in the literature. In the present study, room temperature mechanical properties of an A356 alloy with Ni additions from 0.5 to 2 wt % were investigated. The role of Ni-based compounds and eutectic Si particles in reinforcing the Al matrix was studied with image analysis and was then related to tensile properties and microhardness. In the as-cast condition, the formation of the 3D network is not sufficient to determine an increase of mechanical properties of the alloys since fracture propagates by cleavage through eutectic Si particles and Ni aluminides or by the debonding of brittle phases from the aluminum matrix. After T6 heat treatment the increasing amount of Ni aluminides, due to further addition of Ni to the alloy, together with their brittle behavior, leads to a decrease of yield strength, ultimate tensile strength, and Vickers microhardness. Despite the fact that Ni addition up to 2 wt % hinders spheroidization of eutectic Si particles during T6 heat treatment, it also promotes the formation of a higher number of brittle Ni-based compounds that easily promote fracture propagation.

  15. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  16. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  17. Optimization of Graphene Conductive Ink with 73 wt% Graphene Contents.

    Science.gov (United States)

    Xu, Chang-Yan; Shi, Xiao-Mei; Guo, Lu; Wang, Xi; Wang, Xin-Yi; Li, Jian-Yu

    2018-06-01

    With the pace of development accelerating in printed electronics, the fabrication and application of conductive ink have been brought into sharp focus in recent years. The discovery of graphene also unfolded a vigorous research campaign. In this paper, we prepared graphene conductive ink and explored the feasibility of applying the ink to flexible paper-based circuit. Since experimental study concentrating upon ink formulation was insufficient, orthogonal test design was used in the optimization of preparation formula of conductive ink for the first time. The purpose of this study was to determine the effect of constituent dosage on conductivity of graphene conductive ink, so as to obtain the optimized formula and prepare graphene conductive ink with good conductivity. Characterization of optimized graphene conductive ink we fabricated showed good adhesion to substrate and good resistance to acid and water. The graphene concentration of the optimized ink reached 73.17 wt% solid content. Particle size distribution of graphene conductive ink was uniform, which was about 1940 nm. Static surface tension was 28.9 mN/m and equilibrium contact angle was 23°, demonstrating that conductive ink had good wettability. Scanning Electron Microscope (SEM) analysis was also investigated, moreover, the feasibility of lightening a light-emitting diode (LED) light was verified. The graphene conductive ink with optimized formula can be stored for almost eight months, which had potential applications in flexible paper-based circuit in the future.

  18. Effect of conventional and subzero treating on the mechanical properties of aged martensitic Fe-12 wt.% Ni-X wt.% Mn alloys

    International Nuclear Information System (INIS)

    Nedjad, S. Hossein; Nili-Ahmadabadi, M.; Mahmudi, R.; Farhangi, H.

    2003-01-01

    Fe-Ni-Mn maraging alloys are suffering from sever embrittlement after aging. Mechanism of the embrittelement has not been well understood yet. Segregation of Mn atoms or formation of Austenite particles at prior Austenite grain boundaries (PAGBs) have been reported as embrittelement mechanisms while it remains controversial now. For better understanding of embrittelement behavior, effect of subzero treating after aging, double aging and modification of alloy composition on the mechanical properties and fracture behavior were investigated. Alloys of chemical compositions Fe-11.9 wt.% Ni-6.3 wt.% Mn and Fe-10.5 wt.% Ni-5.8 wt.% Mo-3 wt.% Mn were studied. Double solution annealing was performed at 1223 and 1093 K for 3.6 ks followed by water quenching. After aging at 723 K for 0.9 ks (under aging) and 172.8 ks (over aging), tensile properties of specimens heat treated conventionally and cryogenically were measured. Double aging was done at 623 K for 3.6 ks followed by a step aging at 753, 783 and 803 K. Aging behavior and tensile properties of Fe-10.5 wt.% Ni-5.8 wt.% Mo-3 wt.% Mn were investigated after aging at 773 K. Results showed that alloy modification yields reasonable tensile properties while subzero treatment and double aging couldn't improve tensile properties. An insight toward more investigation of the embrittelement mechanism was made on the basis of this study

  19. Hot deformation of U-9 wt% Mo

    International Nuclear Information System (INIS)

    Kapoor, R.; Thota, M.K.; Chakravartty, J.K.; Basak, C.B.; Jha, S.K.; Hussain, M.M.

    2016-01-01

    Uranium – 9 wt% molybdenum in the as-extruded condition was deformed in compression in vacuum at temperatures from 850 to 1000 °C and strain rates from 3 × 10"−"3 to 1 s"−"1. The strain rate sensitivity (m) was computed and plotted as iso-strain rate sensitivity contour plots. m was around 0.33 at 950–1000 °C at strain rate of 3 × 10"−"3 s"−"1. Electron backscatter diffraction showed that at 1000 °C–3 × 10"−"3 s"−"1 grains refined, fraction of high angle boundaries increased and the average local misorientation reduced, all indicative of the occurrence of dynamic recrystallization. In comparison, at 950 and 900 °C both the fraction of low angle boundaries and local misorientation was higher. At 1000 °C–3 × 10"−"3 s"−"1 the [111] direction was aligned along the compression axis, whereas at lower temperature of 900 °C and 3 × 10"−"3 s"−"1 it was the orientations close to [001]. - Highlights: • U-9Mo was deformed from 850 to 1000 °C and 3 × 10"−"3 to 1 s"−"1. • Strain rate sensitivity of 0.33 was observed at 1000 °C–3 × 10"−"3 s"−"1. • At 1000 °C the dominant texture was along the compression axis.

  20. BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1

    DEFF Research Database (Denmark)

    Carpenter, Brian; Hill, Kathryn J; Charalambous, Marika

    2004-01-01

    The Wilms' tumor suppressor protein WT1 is a transcriptional regulator that plays a key role in the development of the kidneys. The transcriptional activation domain of WT1 is subject to regulation by a suppression region within the N terminus of WT1. Using a functional assay, we provide direct...... evidence that this requires a transcriptional cosuppressor, which we identify as brain acid soluble protein 1 (BASP1). WT1 and BASP1 associate within the nuclei of cells that naturally express both proteins. BASP1 can confer WT1 cosuppressor activity in transfection assays, and elimination of endogenous...

  1. Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-03-01

    Full Text Available The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a “space-holder” sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthesized by mechanical alloying and annealing mixed with 1.0 mm diameter of saccharose crystals was finally compacted in the form of pellets. In the next step, the saccharose crystals were dissolved in water, leaving open spaces surrounded by metallic-bioceramic scaffold. The sintering of the scaffold leads to foam formation. It was found that 1:1 Ti-10 wt% 45S5 Bioglass-1 wt% Ag/sugar ratio leads to porosities of about 70% with pore diameter of about 0.3–1.1 mm. The microstructure, corrosion resistance in Ringer’s solution of the produced foams were investigated. The value of the compression strength for the Ti-10 wt% 45S5 Bioglass-1 wt% Ag foam with 70% porosity was 1.5 MPa and the Young’s modulus was 34 MPa. Silver modified Ti-10 wt% 45S5 Bioglass composites possess excellent antibacterial activities against Staphylococcus aureus. Porous Ti-10 wt% 45S5 Bioglass-1 wt% foam could be a possible candidate for medical implants applications.

  2. Microstructural morphologies of slag based glass-ceramics nucleated with 5 wt% Cr{sub 2}O{sub 3} and 5 wt% Cr{sub 2}O{sub 3} + 5 wt% TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oevecoglu, M.L.; Oezkal, B. [Istanbul Technical Univ. (Turkey). Dept. of Metallurgical and Materials Enginering; Catakli, E. [Mimar Sinan Univ., Istanbul (Turkey). Faculty of Science and Literature; Erkmen, Z.E. [Istnabul Univ. (Turkey). Dept. of Metallurgical Engineering

    2002-07-01

    Glass-ceramic materials were developed from the blast-furnace slags by mixing 5 wt% Cr{sub 2}O{sub 3} and 5 wt% Cr{sub 2}O{sub 3} + 5 wt% TiO{sub 2}. The samples were nucleated for 18 h at 780 C and crystallized for 20 min. at 905 C, respectively. SEM and SEM/EDS investigations revealed the presence of clover-shaped TiO{sub 2} particles in the glassy matrix of the sample nucleated with 5 wt% Cr{sub 2}O{sub 3} + 5 wt% TiO{sub 2} and polygonal-shaped Cr{sub 2}O{sub 3} platelets for both samples. XRD scans revealed the presence of akermanite (2CaO.MgO.2SiO{sub 2}) and gehlenite (2CaO.Al{sub 2}O{sub 3}.SiO{sub 2}) peaks indicating the existence of the mellilite solid solution for the crystallized glass-ceramic samples. (orig.)

  3. Analysis of aquifer tests conducted in boreholes USW WT-10, UE-25 WT No. 12, and USW SD-7, 1995-96, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1997-01-01

    Single-borehole aquifer tests were conducted in three boreholes in the Yucca Mountain area between March 1995 and January 1996 to obtain estimates of borehole specific capacity and aquifer transmissivity. Analysis of aquifer testing in borehole USW SD-7 also resulted in an estimate of reservoir volume. Aquifer-test data were analyzed with the Cooper and Jacob straight-line method, two modified Theis nonequilibrium equation solutions, and a modified reservoir-limit solution. The highest estimates of transmissivity were in borehole USW WT-10, completed in the Topopah Spring Tuff. Mean transmissivity, based on the results of three drawdown tests, was 1,600 meters squared per day. Mean specific capacity in borehole USW WT-10 after 5 hours of pumping was 1,100 meters squared per day, and was estimated to be 740 meters squared per day after 24 hours of pumping. Aquifer testing in borehole UE-25 WT No. 12 appeared to be significantly affected by well losses. A mean transmissivity of 7 meters squared per day was obtained on the basis of analysis of three drawdown tests in borehole UE-25 WT No. 12. Mean specific capacity in borehole UE-25 WT No. 12, after 24 hours of pumping, was 7 meters squared per day. Borehole UE-25 WT No. 12 seemed to be producing water from fractures that could provide only a limited amount of water to the borehole

  4. Correlation of Thermal and Microstructural Properties of an Al-0.60wt%Mg-0.25wt%Fe-0.05wt%Cu Alloy Unidirectionally Solidified

    Directory of Open Access Journals (Sweden)

    Pedro LAMARÃO

    2014-09-01

    Full Text Available This work aims to study the thermal, mechanical and microstructural properties of an Al-0.60 wt% Mg-0.25 wt% Fe- -0.05 wt% Cu alloy for application as an electrical conductor. The ingots were obtained by unidirectional horizontal casting, and were sectioned in specific positions to the production of test specimens destined to mechanical tests and microstructural characterization. As results, one can observe that it was possible to obtain experimental models of correlation between the average dimple diameters and thermal variables, demonstrating a trend on the formation of smaller fracture dimples where the cooling was more intense. As one can associate smaller dimples with greater ultimate tensile strength, it is important to understand this mechanism. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5015

  5. Influence of the UV Radiation on Rhodamine WT Fluorescence in Water Samples

    OpenAIRE

    , L. Kola; , P. Lazo

    2016-01-01

    The şuorescence ability of Rhodamine WT enables its using as artiŞcial tracer in the water system studies. The problem is dealt with in relation to applying Rhodamine WT (RhWT) to trace and determine water movements within the karstic system and underground waters. Rhodamine WT has been used as an artiŞcial tracer for the Şrst times in our country on Mali me Gropa system study (2002). UV radiation may induce photochemical decomposition of the dye which can cause large measurement errors on me...

  6. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    Science.gov (United States)

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  7. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: Implications for WT1-based cancer therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y.; Do, Priscilla; Baker, Brian M. (Notre)

    2010-09-07

    Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex.

  8. Effect of Ag additions on the β phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T., E-mail: atadorno@iq.unesp.br [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Carvalho, T.M. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Santos, C.M.A.; Magdalena, A.G. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The results suggest a multi-step process involving reversible reactions. • Ag solubilizes preferably at the Cu matrix. • Ag additions decrease the activation energy for the process. - Abstract: The influence of 4 and 5 wt.%Ag additions on the kinetics of β [T{sub 7}-(CuMn){sub 3}Al] phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that the conversion dependence of the activation energy has a descending shape, suggesting a multi-step process involving reversible reactions. The presence of Ag facilitates the formation of the β phase. The results also showed that the Ag precipitates formation includes the dissolution of Mn and Al atoms, thus decreasing the partial fraction of these elements available to react.

  9. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis.

    Directory of Open Access Journals (Sweden)

    Jingyue Xu

    Full Text Available Renal hypoplasia is a common cause of pediatric renal failure and several adult-onset diseases. Recent studies have associated a variant of the OSR1 gene with reduction of newborn kidney size and function in heterozygotes and neonatal lethality with kidney defects in homozygotes. How OSR1 regulates kidney development and nephron endowment is not well understood, however. In this study, by using the recently developed CRISPR genome editing technology, we genetically labeled the endogenous Osr1 protein and show that Osr1 interacts with Wt1 in the developing kidney. Whereas mice heterozygous for either an Osr1 or Wt1 null allele have normal kidneys at birth, most mice heterozygous for both Osr1 and Wt1 exhibit defects in metanephric kidney development, including unilateral or bilateral kidney agenesis or hypoplasia. The developmental defects in the Osr1+/-Wt1+/- mouse embryos were detected as early as E10.5, during specification of the metanephric mesenchyme, with the Osr1+/-Wt1+/- mouse embryos exhibiting significantly reduced Pax2-positive and Six2-positive nephron progenitor cells. Moreover, expression of Gdnf, the major nephrogenic signal for inducing ureteric bud outgrowth, was significantly reduced in the metanephric mesenchyme in Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- littermates. By E11.5, as the ureteric buds invade the metanephric mesenchyme and initiate branching morphogenesis, kidney morphogenesis was significantly impaired in the Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- embryos. These results indicate that Osr1 and Wt1 act synergistically to regulate nephron endowment by controlling metanephric mesenchyme specification during early nephrogenesis.

  10. Evidence that WT1 mutations in Denys-Drash syndrome patients may act in a dominant-negative fashion

    NARCIS (Netherlands)

    Little, M. H.; Williamson, K. A.; Mannens, M.; Kelsey, A.; Gosden, C.; Hastie, N. D.; van Heyningen, V.

    1993-01-01

    The triad of nephropathy, partial gonadal dysgenesis and Wilms' tumour (WT) is known as Denys-Drash syndrome (DDS). The WT predisposition gene WT1, which plays a vital role in both genital and renal development, is known to be mutated in DDS patients. The WT1 mutations in these patients are

  11. WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy.

    Science.gov (United States)

    Rein, Lindsay A M; Chao, Nelson J

    2014-03-01

    The Wilms tumor 1 (WT1) gene was originally identified as a tumor suppressor gene that, when mutated, would lead to the development of pediatric renal tumors. More recently, it has been determined that WT1 is overexpressed in 90% of patients with acute myeloid leukemia (AML) and is mutated in approximately 10% of AML patients. WT1 plays a role in normal hematopoiesis and, in AML specifically, it has oncogenic function and plays an important role in cellular proliferation and differentiation. The ubiquity of WT1 in leukemia has lead to the development of vaccines aimed at employing the host immune system to mount a T-cell response to a known antigen. In this evaluation, the authors discuss the role of WT1 in normal hematopoiesis as well as in the development of hematologic malignancies. Furthermore, the authors discuss the data supporting the development of WT1 vaccines, and the clinical trials supporting their use in patients with acute leukemia. Several small trials have been conducted which support the safety and efficacy of this therapy, although larger trials are certainly warranted. In the authors' opinion, the WT1 vaccination has potential in terms of its application as an adjuvant therapy for patients with AML who are at high risk of relapse or who have detectable minimal residual disease after initial standard therapy.

  12. Comparison of electrochemical performance of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2010-03-15

    A comparative experimental study of the electrochemical features of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys is carried out with a view to applications in the manufacture of lead-acid battery components. The as-cast samples are obtained using a water-cooled unidirectional solidification system. Pb-Sn and Pb-Sb alloy samples having similar coarse cell arrays are subjected to corrosion tests in order to assess the effect of Sn or Sb segregation in the cell boundary on the electrochemical performance. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis are used to evaluate the electrochemical parameters in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Both the experimental and simulated EIS parameters evidence different kinetics of corrosion. The Pb-1 wt.% Sn alloy is found to have a current density which is of about three times lower than that of the Pb-1 wt.% Sb alloy which indicates that dilute Pb-Sn alloys have higher potential for application as positive grid material in maintenance-free Pb-acid batteries. (author)

  13. A survey of the mechanical properties of uranium alloys U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, G.

    1969-04-15

    In a continuing program on the development of soft and ductile uranium alloys for armament applications, two compositions were studied. These gamma extruded uranium alloys were U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%. This study was carried out to determine the influence of tempering heat treatments associated with extrusion on the ductility of these uranium alloys. The mechanical properties of both alloys were measured in the extruded condition, in the extruded and annealed condition and in the quenched and tempered condition. A maximum elongation of 13.7% in tension with a low amount of work hardening was obtained for the U-3Mo-3Nb wt.% alloy after 1 1/2 hours anneal at 1200 deg F (650 deg C) followed by a rapid cooling in water at 70 deg F (21 deg C). A maximum elongation of 17.3% with a large amount of work hardening was obtained for alloy U-5Mo-3Nb wt.% after vacuum annealing, normalizing, gamma phase solubilizing at 1500 deg F (815 deg C) and quenching in water at 700 deg F (210 deg C). The maximum ductility achieved in these two alloys by our approaches is low compared with the ductility of Armco Iron employed for the same applications in the field of ballistics.

  14. Highlighting micrographic structures of uranium alloys containing 0.5 to 10 per cent wt molybdenum

    International Nuclear Information System (INIS)

    Laniesse, J.; Bouleau, M.

    1959-02-01

    The authors report a study which aimed at determining for different uranium molybdenum alloys and with respect to their molybdenum content a polishing method which allows a relatively simple grain examination in the as-cast condition, an as perfect as possible resolution of eutectic decompositions, and the appropriate conditions to highlight structures (beta-alpha and gamma-alpha martensite transformations, beta phase retention and decomposition, transient structures, eutectoid decomposition, and so on). Alloys differ by their molybdenum content: from 0.5 to 1 per cent wt, 1.5 to 3 per cent wt, 5 to 10 per cent wt

  15. Study and characterization of the BNO (BiNbO_4) ceramic added with 3 wt. % CuO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Pires Junior, G.F.M.; Rodrigues, H.O.; Sombra, A.S.B.; Sales, J.C.

    2011-01-01

    The objective of this work is to synthesize and characterize the BNO (BiNbO_4) ceramic added with 3 wt. % CuO to improvements in densification. The BNO was prepared by conventional ceramic method. The powders milled for 2 h were calcined at 850 °C for 3 h. After calcination the powders we re characterized by X-ray diffraction (XRD). The detailed characterization of XRD was performed using the program DBWS9807a which uses the Rietveld method for refinement of crystal structures. The refinement confirmed the acquisition of isolated α-BNO phase with orthorhombic crystal structure (a = 5.6792Å, and b = 11.7081Å c = 4.9823Å; α = β = γ = 90) and density of the unit cell calculated 6.61g/cm3. Micrographs, to analyze densification behavior and grain size were obtained using a Scanning Electron Microscope model TESCAN manufactured by Bruker AXS detector. (author)

  16. Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

    International Nuclear Information System (INIS)

    Lee, Kwang-jin; Woo, Kee-do

    2011-01-01

    Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped β” phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

  17. Preparation and investigation of Al–4 wt % B4C nanocomposite ...

    Indian Academy of Sciences (India)

    cal behaviour including light weight, electrical and thermal conductivity (Boey et ... cle sizes, density, geometries, flow or the development of an electrical charge ... 2. Experimental. Argon gas atomized Al–2 wt % Cu powders with a mean size.

  18. SUSY WT identity in a lattice formulation of 2D N=(2,2) SYM

    International Nuclear Information System (INIS)

    Kadoh, Daisuke; Suzuki, Hiroshi

    2010-01-01

    We address some issues relating to a supersymmetric (SUSY) Ward-Takahashi (WT) identity in Sugino's lattice formulation of two-dimensional (2D) N=(2,2)SU(k) supersymmetric Yang-Mills theory (SYM). A perturbative argument shows that the SUSY WT identity in the continuum theory is reproduced in the continuum limit without any operator renormalization/mixing and tuning of lattice parameters. As application of the lattice SUSY WT identity, we show that a prescription for the Hamiltonian density in this lattice formulation, proposed by Kanamori, Sugino and Suzuki, is justified also from a perspective of an operator algebra among correctly-normalized supercurrents. We explicitly confirm the SUSY WT identity in the continuum limit to the first nontrivial order in a semi-perturbative expansion.

  19. Characterization and property evaluation of U–15 wt%Pu alloy for fast reactor

    International Nuclear Information System (INIS)

    Kaity, Santu; Banerjee, Joydipta; Ravi, K.; Keswani, R.; Kutty, T.R.G.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    The characterization and high temperature behaviour of U–15 wt%Pu alloy has been investigated in this study for the first time. U–15 wt%Pu alloy sample for this study was prepared by following melting and casting route. Microstructural characterization of the alloy was carried out by XRD and optical microscopy. The thermophysical properties like phase transition temperatures, coefficient of thermal expansion and hot hardness of the above alloy were determined. Eutectic temperature between T91 and U–15 wt%Pu was established. Apart from that, the fuel–cladding chemical compatibility of U–15 wt%Pu alloy with T91 grade steel was studied by diffusion couple experiment

  20. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    Science.gov (United States)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at

  1. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    International Nuclear Information System (INIS)

    Clarke, A.J.; Clarke, K.D.; McCabe, R.J.; Necker, C.T.; Papin, P.A.; Field, R.D.; Kelly, A.M.; Tucker, T.J.; Forsyth, R.T.; Dickerson, P.O.; Foley, J.C.; Swenson, H.; Aikin, R.M.; Dombrowski, D.E.

    2015-01-01

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time–temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2–4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  2. Faults detection approach using PCA and SOM algorithm in PMSG-WT system

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine FADDA

    2016-07-01

    Full Text Available In this paper, a new approach for faults detection in observable data system wind turbine - permanent magnet synchronous generator (WT-PMSG, the studying objective, illustrate the combination (SOM-PCA to build Multi-local-PCA models faults detection in system (WT-PMSG, the performance of the method suggested to faults detection in system data, finding good results in simulation experiment.

  3. The transformation behaviour of the beta phase in Zr-2.5 wt% Nb pressure tubes

    International Nuclear Information System (INIS)

    Griffiths, M.; Winegar, J.E.

    1994-12-01

    A temperature-time-transformation (TTT) diagram has been developed for the β-phase in Zr-2.5 wt% Nb pressure tubes. The results show that the morphology and/or physical state of the β-phase in pressure tubes has a significant effect on the transformation behaviour compared with a bulk Zr-19 wt%Nb alloy. (author). 14 refs., 1 tab., 15 figs

  4. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  5. Study on the Mechanical Properties and Corrosion Behaviors of Fe-(20, 45) wt%Gd Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bo Kyeong; Baik, Youl; Choi, Yong [Dankook University, Chungnam (Korea, Republic of); Moon, Byung Moon [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-02-15

    Fe-(20, 45 wt%) Gd intermetallics were vacuum arc melted as the mother alloy of a neutron shielding and absorbing material. The structure of the cast Fe-20 wt%Gd intermetallics had primary dendrites with a short width of about 2 μm, which became coarse with increasing Gd content. The final compositions of the Fe-20 wt%Gd and Fe-45 wt%Gd intermetallics determined by Rietveld refinement were mainly Fe{sub 3}Gd with 26.6 at%Fe{sub 2}Gd, and Fe{sub 3}Gd with various intermetallics like 13.9 at%Fe{sub 2}Gd, 7.3 at%Fe{sub 9}Gd and 3.9 at%Fe{sub 17}Gd{sub 2}, respectively. The micro-hardnesses, yield strength, ultimate compressive strength and elongation of the Fe-20 wt%Gd intermetallics were 629±12 Hv, 753 MPa, 785 MPa and 4%, respectively, and those of the Fe-45 wt%Gd intermetallics were 741±13 Hv, 772 MPa, 823 MPa and 3%. Passivity was not present in artificial sea water at room temperature. The corrosion potentials and the corrosion rates of the Fe-20 wt%Gd and Fe-45 wt%Gd intermetallics were –624 mV{sub SHE}, 2.771 mA/cm{sup 2} , and –804 mV{sub SHE}, 3.397 mA/cm{sup 2} , respectively. The corroded surface of the Fe-Gd intermetallics contained corrosion products like gadolinium with iron, which detached to leave a trail of pits.

  6. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A.J., E-mail: aclarke@lanl.gov; Clarke, K.D.; McCabe, R.J.; Necker, C.T.; Papin, P.A.; Field, R.D.; Kelly, A.M.; Tucker, T.J.; Forsyth, R.T.; Dickerson, P.O.; Foley, J.C.; Swenson, H.; Aikin, R.M.; Dombrowski, D.E.

    2015-10-15

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time–temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2–4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  7. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  8. Wear properties of Ti-13Zr-13Nb (wt.%) near β titanium alloy containing 0.5 wt.% boron in dry condition, Hank's solution and bovine serum

    International Nuclear Information System (INIS)

    Majumdar, P.; Singh, S.B.; Chakraborty, M.

    2010-01-01

    The effect of heat treatment on the microstructure, hardness and sliding wear behaviour of Ti-13Zr-13Nb (wt.%) containing 0.5 wt.% B (TZNB) has been studied and compared with that of Ti-13Zr-13Nb (wt.%) (TZN) alloy. The wear properties were tested in dry condition and in simulated body fluid (Hank's solution and bovine serum) to understand the effect of different medium on wear behaviour of the TZNB alloy. Depending on the heat treatment condition the microstructure of the alloy consisted of α/martensite and TiB in β matrix. In general, the hardness of all the heat treated samples varied in a narrow range and in most of the cases addition of boron to the TZN alloy decreased the hardness. Almost all cases, no significant variation of the wear rate in dry condition with heat treatment was observed. Compared with the wear rate in dry condition, the wear rate in Hank's solution of the all the TZNB samples increased substantially. Moreover, the wear was found to be most severe in bovine serum. Addition of boron to TZN alloy did not result in any improvement in the wear resistance in all the media studied.

  9. White matter fiber-based analysis of T1w/T2w ratio map

    Science.gov (United States)

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D.; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    Purpose: To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. Background: The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. Methods: We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. Results: We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  10. White Matter Fiber-based Analysis of T1w/T2w Ratio Map.

    Science.gov (United States)

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  11. Feasibility of Cancer Immunotherapy with WT1 Peptide Vaccination for Solid and Hematological Malignancies in Children.

    Science.gov (United States)

    Sawada, Akihisa; Inoue, Masami; Kondo, Osamu; Yamada-Nakata, Kayo; Ishihara, Takashi; Kuwae, Yuko; Nishikawa, Masanori; Ammori, Yasuhiro; Tsuboi, Akihiro; Oji, Yusuke; Koyama-Sato, Maho; Oka, Yoshihiro; Yasui, Masahiro; Sugiyama, Haruo; Kawa, Keisei

    2016-02-01

    Advances in cancer immunotherapy in the pediatric field are needed in order to improve the prognosis of children with malignancies. We conducted a prospective phase I/II study of WT1 peptide vaccination for children with relapsed or refractory malignancies. The main eligibility criteria were affected tissues or leukemic cells expressing the WT1 gene, and patients (and donors for allogeneic hematopoietic stem cell transplantation) having HLA-A*24:02. Vaccination using the WT1 peptide (CYTWNQMNL), which was modified for higher affinity to this HLA-type molecule with the adjuvant Montanide ISA51, was performed weekly 12 times. Twenty-six patients were enrolled and 13 (50.0%) completed the vaccination 12 times. Evidence for the induction of WT1-specific cytotoxic T-lymphocyte (CTL) responses without severe systemic side effects was obtained. Two out of 12 patients with bulky disease exhibited a transient clinical effect (one mixed response and one stable disease), three out of six patients with minimal residual disease achieved transient molecular remission, and five out of eight patients without a detectable level of the molecular marker, but with a high risk of relapse, had the best outcome of long-term continuous complete remission. WT1 vaccination is a safe immunotherapy and induced WT1-specific CTL responses in children; however, as a single agent, vaccination only provided patients in remission, but with a high risk of relapse, with "long-term benefits" in the context of its use for relapse prevention. WT1 peptide-based treatments in combination with other modalities, such as anti-tumor drugs or immunomodulating agents, need to be planned. © 2015 Wiley Periodicals, Inc.

  12. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    Science.gov (United States)

    Runkel, Robert L.

    2015-01-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  13. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  14. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong [Chongqing Jiaotong Univ., Chongqing (China). College of Materials Science and Engineering; Tang, Bin [Chongqing City Management College, Chongqing (China). Inst. of Finance and Trade; Gao, Tao [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-09-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C{sub V} and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  15. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Siddique, Muhammad Tariq; Kim, Myung Hyun

    2014-01-01

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  16. Neutron diffraction study of the deformation mechanisms of the uranium-7 wt.% niobium shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [Los Alamos National Lab, Los Alamos, NM 87545 (United States)]. E-mail: dbrown@lanl.gov; Bourke, M.A.M. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Field, R.D. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Hults, W.L. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Teter, D.F. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Thoma, D.J. [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Vogel, S.C. [Los Alamos National Lab, Los Alamos, NM 87545 (United States)

    2006-04-15

    The shape memory effect (SME) has been reported in the uranium-niobium alloy system in the region of the phase diagram surrounding U-6.5 wt.% Nb. In this regime, the material may have either an {alpha}'' monoclinic (U-6 wt.% Nb), or {gamma}{sup 0} tetragonal structure (U-7 wt.% Nb) and is two phase near 6.5 wt.% niobium. In situ neutron diffraction studies during uniaxial compressive loading of U-7 wt.% Nb indicate that strain in the recoverable region is accommodated by both motion of existing twin boundaries within {gamma}{sup 0}-phase and stress-induced phase transformation from the {gamma}{sup 0} to the {alpha}'' structure. The volume fraction of the {gamma}{sup 0}-phase decreases from 100% initially to {approx}26% after 4% total strain and some reversion is observed on release. The initial stress state of the stress-induced {alpha}'' grains will be discussed as well as the load sharing between the two phases.

  17. Microstructural and thermophysical properties of U–6 wt.%Zr alloy for fast reactor application

    International Nuclear Information System (INIS)

    Kaity, Santu; Banerjee, Joydipta; Nair, M.R.; Ravi, K.; Dash, Smruti; Kutty, T.R.G.; Kumar, Arun; Singh, R.P.

    2012-01-01

    Highlights: ► Characterization of U–6%Zr alloy prepared by injection casting route. ► Martensitic to non-martensitic transformation of U–6%Zr alloy occurs at 843 K. ► Specific heat versus temperature curve shows a phase transition at 845 K. ► Average coefficient of thermal expansion is 18.28 × 10 −6 K −1 (298–823 K). ► Hardness versus temperature plot shows a transition at 748 K. - Abstract: The microstructural and high temperature behavior of U–6 wt.%Zr alloy has been investigated in this study. U–6 wt.%Zr alloy sample for this study was prepared by following injection casting route. The thermophysical properties like coefficient of thermal expansion, specific heat, thermal conductivity of the above alloy were determined. The hot-hardness data of the U–6 wt.%Zr alloy was also generated from room temperature to 973 K. Apart from that, the fuel-clad chemical compatibility with T91 grade steel was also studied by diffusion couple experiment. No studies have been reported on U–6 wt.%Zr alloy. This paper aims at filling up the gap on characterization and thermophysical property evaluation of U–6 wt.%Zr alloy.

  18. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    International Nuclear Information System (INIS)

    Yang, Rong; Tang, Bin; Gao, Tao

    2017-01-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C_V and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  19. Thermal expansion of ThO2-2 wt% UO2 by HT-XRD

    International Nuclear Information System (INIS)

    Tyagi, A.K.; Mathews, M.D.

    2000-01-01

    The linear thermal expansion of polycrystalline ThO 2 -2 wt% UO 2 has been investigated from room temperature to 1473 K in flowing helium atmosphere using high temperature X-ray diffractometry. ThO 2 -2 wt% UO 2 shows a marginally higher linear thermal expansion as compared to pure ThO 2 . The average linear and volume thermal expansion coefficients of ThO 2 -2 wt% UO 2 are found to be α-bar a =9.74x10 -6 K -1 and α-bar v =29.52x10 -6 K -1 (298-1473 K). This study will be useful in designing the nuclear reactor fuel assembly based on ThO 2

  20. Study of uranium - 20 Wt per cent plutonium-niobium alloys (1963)

    International Nuclear Information System (INIS)

    Abgrall, J.; Barthelemy, P.; Boucher, R.

    1963-01-01

    U-Pu-Nb alloys containing 20 wt per cent Pu and 10 - 20 - 30 - 40 - 50 or 60 wt per cent Nb have been studied principally to determine the feasibility of their use as fuel element. The fabrication, casting and homogenisation presented certain difficulties due specially to niobium. The transformation temperatures, thermal expansion coefficients and nature of phases have been determined by thermal analysis, dilatometry, micrography and X Rays diffraction. For similar compositions, U-Pu-Mo and U-Pu-Nb alloys have many common points concerning the presence of zeta phase (up to 40 wt per cent Nb), the coefficients of expansion, the good behaviour during thermal cycling and the good resistance to air oxidation in spite of zeta phase. In consequence, irradiation tests in EL 3 reactor (Saclay) will be carried out in the near future. (authors) [fr

  1. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  2. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  3. Studies of Wilms’ Tumor (WT1 Gene Expression in Adult Acute Leukemias in Singapore

    Directory of Open Access Journals (Sweden)

    Che Kang Lim

    2007-01-01

    Full Text Available Biomarkers provide certain values for diagnosis, monitor treatment effi cacy, or for the development of novel therapeutic approach for particular diseases. Thus, the identifi cation of specifi c of biomarkers for specifi c medical problems, including malignant diseases may be valuable in medical practice. In the study, we have used the Wilms’ tumor gene (WT1 as a biomarker to evaluate its expression in local adult patients with newly diagnosed acute leukemia, including both acute myeloid and lymphoid leukemias (AML and ALL.Aim: To investigate WT1 gene expression in adult patients with acute leukemia at diagnosis.Methods: Eighteen patients with acute leukemia diagnosed at Singapore General Hospital, Singapore, between September, 2004 and July, 2005 were included in this study. There were fifteen AML and three ALL cases aged from 18 to 71 years old. Total RNA and DNA was extracted from peripheral blood mononuclear cells (PBMCs. Expression of WT1 was detected by nested reverse-transcription polymerase chain reaction (Nested RT-PCR. K562, and 3T3 cells were used as positive- and negative-controls. The results were revalidated using real-time PCR. HLA-A genotyping was performed using sequence specific oligonucleotide polymorphism (SSOP analysis.Results: WT1 gene was exclusively expressed in all eighteen, including three ALL and fi fteen AML, patients. In contrast with WT1 gene, the HLA-A genotyping was remarkably heterogeneous in these patients.Conclusions: WT1 gene expression was observed in local patients with acute leukemia at diagnosis. It may be used as a potential molecular marker for diagnosis, clinical progression of the diseases or monitoring the response to treatment, as well as a target for the development of novel therapeutic approaches.

  4. Microstructure and adhesion strength of Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu after electrochemical polarization in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.-L. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, Y.-R.; Chang, K.-M. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Liu, C.-Y.; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-08-11

    The microstructure and adhesion strength of the Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu interface after electrochemical polarization have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pull-off testing. The equilibrium potentials of Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu are -1.31 V{sub sce} and -1.22 V{sub sce}, respectively, indicating that Sn-9Zn-1.5Ag-2Bi/Cu has a better corrosion resistance than that of Sn-9Zn-1.5Ag/Cu. The intermetallic compounds of Cu{sub 6}Sn{sub 5}, Cu{sub 5}Zn{sub 8} and Ag{sub 3}Sn are formed at the soldered interface between the Sn-9Zn-1.5Ag-xBi solder alloy and the Cu substrate. The scallop-shaped Cu{sub 6}Sn{sub 5} is close to the Cu substrate and the scallop-shaped Cu{sub 5}Zn{sub 8} is found at the interface in the solder matrix after soldering at 250 deg. C for 10 s. The corrosion products are ZnCl{sub 2}, SnCl{sub 2} and ZnO. On the other hand, pits are also formed on the surface of both solder alloys. The interfacial adhesion strength of the Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu decreases from 8.27 {+-} 0.56 MPa and 12.67 {+-} 0.45 MPa to 4.78 {+-} 0.45 MPa and 8.14 {+-} 0.38 MPa, respectively, after electrochemical polarization in a 3.5 wt% NaCl solution. The fracture path of the Sn-9Zn-1.5Ag-2Bi/Cu is along the solder alloy/ZnO and solder/Cu{sub 6}Sn{sub 5} interfaces.

  5. Characterization and assessment of voltage and power constraints of DFIG WT connected to a weak network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Iov, Florin

    2014-01-01

    This article thoroughly investigates the challenges and constraints raised by the integration of a Doubly-fed Induction generator wind turbine, DFIG WT, into an ac network of extensively varying parameters and very weak conditions. The objective is to mitigate the voltage variations at the point...... of common coupling, PCC, and maximize the wind power penetration into weak networks. As a basis of investigation, a simplified system model is utilized and the respective PCC voltage, active and reactive power stability issues are identified. Besides, a steady-state study for DFIG WT connected to a weak...

  6. Review of Z phase precipitation in 9–12 wt-%Cr steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2016-01-01

    For high temperature applications, 9–12 wt-%Cr steels in fossil fired power plants rely upon precipitate strengthening from (V,Nb)N MX nitrides for long term creep strength. During prolonged exposure at service temperature, another nitride precipitates: Cr(V,Nb)NZ phase. The Z phases lowly replace......MX, eventually causing a breakdown in creep strength. The present paper reviews the Z phase and its behaviour in 9–12 wt-%Cr steels including thermodynamic modelling, crystal structure, nucleation process and precipitation rate as a function of chemical composition. The influence of Z phase precipitation upon...

  7. Al/ B4C Composites with 5 and 10 wt% Reinforcement Content Prepared by Powder Metallurgy

    International Nuclear Information System (INIS)

    Yusof Abdullah; Mohd Reusmaazran Yusof; Azali Muhammad; Nadira Kamarudin; Wilfred Sylvester Paulus; Roslinda Shamsudin; Nasrat Hannah Shudin; Nurazila Mat Zali

    2012-01-01

    The preparation, physical and mechanical properties of Al/ B 4 C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B 4 C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/ B 4 C composites prepared by powder metallurgy was high. (Author)

  8. Effect of Heat Treatments on Microstructures and Tensile Properties of Cu-3 wt%Ag-0.5 wt%Zr Alloy

    Science.gov (United States)

    Chen, Gang; Wang, ChuanJie; Zhang, Ying; Yi, Cen; Zhang, Peng

    2018-03-01

    The microstructures and tensile properties of Cu-3 wt%Ag-0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.

  9. Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al-10 wt% Sn and Al-20 wt% Zn alloys

    International Nuclear Information System (INIS)

    Osorio, Wislei R.; Spinelli, Jose E.; Cheung, Noe; Garcia, Amauri

    2006-01-01

    In general, aluminum alloys provide the most significant part of all shaped casting manufactured. An optimum range of properties can be obtained as a function of different cooling rate processes, such as sand, plaster, investment, permanent molds and die castings. It is well known that the dendritic network affects not only the mechanical properties but also the corrosion resistance. However, the literature is scarce on reports concerning the influences of dendrite arm spacing on corrosion resistance and mechanical behavior. The aim of this study is to investigate the influence of as-cast microstructure features, i.e., dendrite arm spacing and solute redistribution on the corrosion resistance of samples of aluminum alloys. In order to investigate the electrochemical behavior of solute and solvent of different aluminum systems, samples with the same order of magnitude of dendritic spacings were analyzed to permit comparison between Al-10 wt% Sn and Al-20 wt% Zn alloys. A casting water-cooled assembly promoting upward directional solidification was used in order to obtain controlled casting samples of these alloys. In order to characterize the dendritic structure, longitudinal sections from the directionally solidified specimens were analyzed by using optical and electronic microscopy techniques. The corrosion resistance was analyzed by both the electrochemical impedance spectroscopy technique and Tafel extrapolation method conducted in a 3% NaCl solution at room temperature. Although both systems present an Al-rich dendritic matrix, different responses to corrosive action as a function of dendritic spacing have been detected

  10. Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al-10 wt% Sn and Al-20 wt% Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas-UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Spinelli, Jose E. [Department of Materials Engineering, State University of Campinas-UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Cheung, Noe [Department of Materials Engineering, State University of Campinas-UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)]. E-mail: amaurig@fem.unicamp.br

    2006-03-25

    In general, aluminum alloys provide the most significant part of all shaped casting manufactured. An optimum range of properties can be obtained as a function of different cooling rate processes, such as sand, plaster, investment, permanent molds and die castings. It is well known that the dendritic network affects not only the mechanical properties but also the corrosion resistance. However, the literature is scarce on reports concerning the influences of dendrite arm spacing on corrosion resistance and mechanical behavior. The aim of this study is to investigate the influence of as-cast microstructure features, i.e., dendrite arm spacing and solute redistribution on the corrosion resistance of samples of aluminum alloys. In order to investigate the electrochemical behavior of solute and solvent of different aluminum systems, samples with the same order of magnitude of dendritic spacings were analyzed to permit comparison between Al-10 wt% Sn and Al-20 wt% Zn alloys. A casting water-cooled assembly promoting upward directional solidification was used in order to obtain controlled casting samples of these alloys. In order to characterize the dendritic structure, longitudinal sections from the directionally solidified specimens were analyzed by using optical and electronic microscopy techniques. The corrosion resistance was analyzed by both the electrochemical impedance spectroscopy technique and Tafel extrapolation method conducted in a 3% NaCl solution at room temperature. Although both systems present an Al-rich dendritic matrix, different responses to corrosive action as a function of dendritic spacing have been detected.

  11. Effect of strain on evolution of dynamic recrystallization in Nb-1 wt%Zr-0.1 wt%C alloy at 1500 and 1600 °C

    Energy Technology Data Exchange (ETDEWEB)

    Behera, A.N. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India); Kapoor, R., E-mail: rkapoor@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India); Paul, B. [Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-15

    Uniaxial compression tests were carried out on Nb-1 wt%Zr-0.1 wt%C alloy at temperature of 1500 and 1600 °C and strain rate of 0.1 s{sup −1} to study the evolution of dynamic recrystallization with strain. Electron back scatter diffraction was used to quantify the microstructural evolution. Nb-1Zr-0.1C alloy showed a necklace structure at a strain of 0.9 when deformed at 1500 °C and at strain of 0.6 when deformed at 1600 °C, both at strain rate of 0.1 s{sup −1}. This suggested the occurrence of dynamic recrystallization. At 1500 °C and strain of 0.9 the local average misorientation and the grain orientation spread was low confirming the presence of dynamic recrystallization at this deformation condition. At both 1500 and 1600 °C and all measured strains the recrystallized grains had a strong fiber component of <001>. - Highlights: • Necklace formation of dynamically recrystallized grains occurred at strain of 0.6 and 0.9 for 1500 and 1600 °C, respectively. • Equiaxed microstructures were seen with increase in strain for both 1500 and 1600 °C. • At large strains the predominant recrystallized texture evolved to <001> pole.

  12. Effect of La addition on the microstructure and mechanical properties of Mg–6 wt% Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yuzhou, E-mail: duyuzhou@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Mingyi, E-mail: zhenghe@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Qiao, Xiaoguang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Peng, Wenqiang [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999 (China); Jiang, Bailing [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China)

    2016-09-15

    The Mg–6 wt% Zn alloys microalloyed with different amounts of La were cast and extruded. The second phase in the as-cast Mg–Zn alloy is Mg{sub 4}Zn{sub 7}, which was replaced by Mg–Zn–La intermetallics with orthorhombic structure after La addition. Microalloying with La refined the grain size of dynamic recrystallization slightly, which was due to La solute atom in α-Mg alloy. Addition of La weakened the texture and gave rise to the formation of non-basal texture component, attributing to the existence of La in the form of solute atoms in matrix. The ductility was enhanced significantly by adding La to Mg–6 wt% Zn alloy, while the strength was reduced. Such phenomenon was related to the weakening texture of the La containing alloys. The Mg–6Zn–0.2La (wt%) alloy exhibited a superior ductility with the elongation-to-fracture up to 35%. However, with further increasing of La content to 1 wt%, the strength of the as-extruded Mg–Zn–La alloys was not improved but the ductility was reduced, suggesting that small addition of La is preferred for the improvement of mechanical properties.

  13. Effect of Thai saraphi flower extracts on WT1 and BCR/ABL protein ...

    African Journals Online (AJOL)

    In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. Materials and Methods: The ...

  14. Effect of Cu addition on the microstructure and mechanical properties of Al–30 wt% Zn alloy

    International Nuclear Information System (INIS)

    Abd El-Rehim, A.F.; Sakr, M.S.; El-Sayed, M.M.; Abd El-Hafez, M.

    2014-01-01

    Highlights: • This paper describes a novel work on the effect of Cu addition on the Al–30 wt% Zn alloy. • The 1 wt% Cu alloy revealed the best hardness of the alloys. • The results indicated two deformation temperature regions (below and above 548 K). - Abstract: The effect of 0.5, 1, 1.5 and 2 wt% Cu addition on the microstructure and mechanical properties of Al–30 wt% Zn alloy has been investigated by stress–strain tests carried out in the temperature range from 508 to 608 K. The work-hardening parameters of the test alloys decreased with increasing the deformation temperature and exhibited discontinuity at 548 K, resulting two deformation temperature regions, the low-temperature region (below 548 K) and high-temperature region (above 548 K). The activation energy of fracture mechanisms has been calculated and found to be 19.6 and 33.2 kJ/mol at the low and high temperature regions respectively. The operating mechanisms of work-hardening of the test alloys were confirmed by the analysis of X-ray diffraction patterns

  15. Reaction layer between U-7WT%Mo and Al alloys in chemical diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.; Granovsky, M.; Ortiz, M.; Balart, S.; Arico, S.; Gribaudo, L.

    2005-01-01

    Several failures in U-Mo dispersion fuel plates like pillowing and large porosities have been reported during irradiation experiments. These failures have been assigned to the formation of a large (U-Mo)/Al interaction product under high operating conditions. The modification of the matrix by alloying Al to change the interaction layer and improve its irradiation behavior, has been proposed. This paper reports diffusion experiments performed between U-7wt%Mo and various Al alloys containing Mg and / or Si. By the use of Optical Microscopy, SEM and X-Ray diffraction, it was found that with a concentration of 5.2wt% or 7.1 wt%Si the interaction layer is constituted mainly by (U,Mo)(Si,Al) 3 and no (U,Mo)Al 4 is detected. As part of the studies of properties of the U-Mo alloys the time for isothermal transformation start at different temperatures of the γ phase is being evaluated for the present U-7wt%Mo alloy. These results are used to plan the future diffusion program that will include diffusion under irradiation at CNEA RA3 reactor. (author)

  16. Anomalous precipitation hardening in Al-(1 wt%)Cu thin films

    NARCIS (Netherlands)

    Bergers, L. J. C.; De Hosson, J. Th. M.; Geers, M. G. D.; Hoefnagels, J. P. M.

    2018-01-01

    This paper concentrates on the precipitation hardening of Al-(1 wt%)Cu thin films. It is shown that in contrast to bulk, the well-known approach of precipitation hardening in confined systems like thin layers and thin films does not operate in the conventional way. This work analyses and discusses

  17. ADAMS/WT advanced development - version 1.4 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, A.S.; Depauw, T.R. [Mechanical Dynamics, Inc., Mesa, AZ (United States)

    1996-12-31

    ADAMS/WT is an wind-turbine-specific shell for the general-purpose mechanical system simulation package ADAMS5. It was developed under the guidance of the National Renewable Energy Laboratory to give engineers and analysts in the wind turbine community access to the analytical power of ADAMS, without having to become expert in its particular technology. The 1.4 version of ADAMS/WT is the most recent upgrade to the package, incorporating the most up-to-date version of the AeroDyn aerodynamic forcing subroutines from the University of Utah. It is also the first version to be made available on the Windows/NT platform. In version 1.4, ADAMS/WT has been significantly improved throughout and runs much faster. Automatic generation of standardized output has been added. The documentation has been extensively augmented with more detailed descriptions, more figures and more examples. ADAMS/WT remains the most powerful analytical tool available for horizontal-axis wind turbine development. 10 figs.

  18. Diagnostic utility of Wilms′ tumour-1 protein (WT-1 immunostaining in paediatric renal tumours

    Directory of Open Access Journals (Sweden)

    Surbhi Goyal

    2016-01-01

    Interpretation & conclusions: WT1 helps to differentiate Wilms′ tumour from other paediatric renal tumours. It may help in differentiating the two subgroups of Wilms′ tumour which have distinct molecular pathogenesis and biological behaviour, however, further prospective studies are required for validation of this hypothesis.

  19. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  20. Methodological approach to simulation and choice of ecologically efficient and energetically economic wind turbines (WT)

    Science.gov (United States)

    Bespalov, Vadim; Udina, Natalya; Samarskaya, Natalya

    2017-10-01

    Use of wind energy is related to one of the prospective directions among renewed energy sources. A methodological approach is reviewed in the article to simulation and choice of ecologically efficient and energetically economic wind turbines on the designing stage taking into account characteristics of natural-territorial complex and peculiarities of anthropogenic load in the territory of WT location.

  1. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  2. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  3. irradiation growth in annealed Zr2.5wt%Nb at 3530K

    International Nuclear Information System (INIS)

    Rogerson, A.; Murgatroyd, R.A.

    1978-10-01

    Zr 2.5wt%Nb growth specimens have been irradiated at 353 0 K to a fast neutron dose of approximately 4.0 x 10 25 n/m 2 . Specimens were taken from the longitudinal and transverse directions of a nominally annealed, seam-welded tube and irradiated in both the stress relieved and fully annealed conditions. Growth in these specimens is characterised by large positive and negative strains in the longitudinal and transverse directions respectively, with dimensional changes in weld material exhibiting intermediate growth behaviour. The results are compared with growth data on both annealed and cold worked Zircaloy-2 at 353 0 K and discussed in terms of the effect of texture, grain size, and cold work on irradiation growth. It is concluded that the continuation of growth to high doses in annealed Zr-2.5wt%Nb at 353 0 K results from interstitial induced dislocation climb with vacancies diffusing to grain boundaries. (author)

  4. Work hardening characteristics in Al base alloys with 12.6 and 45 wt.% Zn

    International Nuclear Information System (INIS)

    Abd El-Salam, F.; Mostafa, M.M.; Wahab, L.A.; Mostafa, M.T.; Abd El-Aziz, Sh.M.

    2008-01-01

    The stress-strain curves were obtained for Al-Zn alloys of 12.6 wt.% Zn (alloy I) and 45 wt.% Zn (alloy II) with elements of purity (99.99). The monotonic shift of these curves towards lower flow stress and higher ductility was interrupted at the transformation temperatures 483 K (alloy I) and both 543, 603 K (alloy II). By increasing deformation temperature, Young's modulus, Y, yield and fracture stresses, σ y and σ f , respectively, fracture time, t f , the coefficient of parabolic work hardening, χ, decreased while fracture strain, ε f , and dislocation slip distance, L, increased. From the obtained X-rays diffraction patterns the lattice strain, ε, crystallite size, η, and dislocation density, ρ, were obtained at different deformation temperatures around transformation

  5. Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy

    Science.gov (United States)

    Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao

    2018-06-01

    The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.

  6. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Watanabe, Shouichi; Yoshioka, Kenichi; Mitsuhashi, Ishi; Kumanomido, Hironori; Sugahara, Satoshi; Hiraiwa, Kouji

    2009-01-01

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO 2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO 2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO 2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  7. Achados clínicos e genéticos de cinco pacientes com anomalias relacionadas ao gene WT1

    OpenAIRE

    Andrade, Juliana Gabriel R. de; Guaragna, Mara Sanches; Soardi, Fernanda Caroline; Guerra-Júnior, Gil; Mello, Maricilda Palandi de; Maciel-Guerra, Andréa Trevas

    2008-01-01

    AIM: To present phenotypic variability of WT1-related disorders. METHODS: Description of clinical and genetic features of five 46,XY patients with WT1 anomalies. RESULTS: Patient 1: newborn with genital ambiguity; he developed Wilms tumor (WT) and chronic renal disease and died at the age of 10 months; the heterozygous 1186G>A mutation compatible with Denys-Drash syndrome was detected in this child. Patients 2 and 3: adolescents with chronic renal disease, primary amenorrhea and hypergonadotr...

  8. Effect of compound field on horizontal continuous casting of Al-1wt.%Si alloy

    OpenAIRE

    Zhong-tao Zhang; Hong-yun Yue; Jian Zhang

    2015-01-01

    A travelling magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si alloy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single field can enhance the mecha...

  9. Sawtooth control by on-axis electron cyclotron current drive on the WT-3 tokamak

    International Nuclear Information System (INIS)

    Asakawa, M.; Tanabe, K.; Nakayama, A.; Watanabe, M.; Nakamura, M.; Tanaka, H.; Maekawa, T.; Terumichi, Y.

    1999-01-01

    The experiments on control of sawtooth oscillations (STO) by electron cyclotron current drive (ECCD) have been performed on the WT-3 tokamak. Stabilization and excitation of STO are observed for counter-ECCD and co-ECCD, respectively, when the position of the power deposition is located inside the inversion radius. These results are due to the modification of the current profile near the magnetic axis. (author)

  10. A Project Assessment of Stabilizing System of WT Generation using Rechargeable Battery

    Science.gov (United States)

    Kojima, Yasuhiro; Takano, Tomihiro; Tanikawa, Ryoichi; Takagi, Tetsuro; Hirooka, Koutaro; Kumagai, Sadatoshi

    The expansion of the renewable energy introduction is examined as measures for controlling global warming. Wind power generation is expected as effective power resource, but the negative impact from the difficulty of an unstable output is concerned. In recent years, WT generation with contract of cut-of with shorting adjusting power and with rechargeable battery for stabilizing control are examined, but the introduction has not been accelerated yet because there is an influence in WT generation entrepreneur's business. In this paper, we make a brief summary of relation between the fluctuation of wind power generation and stability of electric power operation, and two types of approach; cut-off contract and stabilization using rechargeable battery. For the stabilization using battery, there are two methods, one is reduction control and the other is constant control. We propose a new control method for constant control based on profit optimization considering WT generation forecast and its risk of deviation. We also propose the estimation method for the .limitation of battery installation. Simulation results show the efficiency of our proposed methods.

  11. Low temperature bainite in steel with 0.26 wt% C

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Mohamed, E-mail: mohamed.soliman@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, D38678 Clausthal-Zellerfeld (Germany); Mostafa, Hanaa [Institute of Metallurgy, Clausthal University of Technology, D38678 Clausthal-Zellerfeld (Germany); El-Sabbagh, Ahmed S. [Faculty of Engineering, Ain-Shams University, Cairo (Egypt); Palkowski, Heinz [Institute of Metallurgy, Clausthal University of Technology, D38678 Clausthal-Zellerfeld (Germany)

    2010-11-15

    Research highlights: {yields} Low temperature bainite is produced in 0.26 wt% C steel. {yields} Alloy and process design enable decreasing the carbon content of the alloy. {yields} Generations of bainite are formed at temperatures lower than M{sub S} of the bulk alloy. {yields} Bainite plate thicknesses record values between 90 nm and 164 nm. {yields} Y.S. up to 1570 MPa and U.S. up to 2200 MPa are recorded in compression. - Abstract: Low temperature bainite has been produced in steel with 0.26 wt% C. In this steel the bainite transformation was suppressed, firstly, by adding substitutional solute of about 2 wt% Ni and, secondly, by modifying the conventional single-step bainite transformation. This modification made use of the suppression of martensite start of the undecomposed austenite due to carbon partitioning between that austenite and the formed bainitic ferrite. Consequently, it has been experimentally proved that generations of bainite were formed at temperatures lower than the martensite start of the bulk alloy. Dilatometric measurements were used to design and monitor the bainitic transformation process. The structure was characterized using light optical microscopy, scanning electron microscopy and X-ray diffractometry. In order to investigate the effect of the microstructure parameters on the material's mechanical properties, compression tests have been conducted at room temperature. The results were compared to those obtained by bainitic transformation in single-step process.

  12. Low temperature bainite in steel with 0.26 wt% C

    International Nuclear Information System (INIS)

    Soliman, Mohamed; Mostafa, Hanaa; El-Sabbagh, Ahmed S.; Palkowski, Heinz

    2010-01-01

    Research highlights: → Low temperature bainite is produced in 0.26 wt% C steel. → Alloy and process design enable decreasing the carbon content of the alloy. → Generations of bainite are formed at temperatures lower than M S of the bulk alloy. → Bainite plate thicknesses record values between 90 nm and 164 nm. → Y.S. up to 1570 MPa and U.S. up to 2200 MPa are recorded in compression. - Abstract: Low temperature bainite has been produced in steel with 0.26 wt% C. In this steel the bainite transformation was suppressed, firstly, by adding substitutional solute of about 2 wt% Ni and, secondly, by modifying the conventional single-step bainite transformation. This modification made use of the suppression of martensite start of the undecomposed austenite due to carbon partitioning between that austenite and the formed bainitic ferrite. Consequently, it has been experimentally proved that generations of bainite were formed at temperatures lower than the martensite start of the bulk alloy. Dilatometric measurements were used to design and monitor the bainitic transformation process. The structure was characterized using light optical microscopy, scanning electron microscopy and X-ray diffractometry. In order to investigate the effect of the microstructure parameters on the material's mechanical properties, compression tests have been conducted at room temperature. The results were compared to those obtained by bainitic transformation in single-step process.

  13. Coextrusion of 60 to 80 wt % U3O8 nuclear fuel elements

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1980-01-01

    Aluminum-clad billets with up to 80 wt % U 3 O 8 in U 3 O 8 -Al cores have been coextruded at SRP. However, above 70 wt % U 3 O 8 , yields are low because of core-cracking. Proper selection of materials and extrusion parameters will give process conditions for successful fabrication. Studies were begun of the effects of these parameters on the flow of metal during coextrusion. In coextruded tubes, cracks are formed in large uranium oxide particles. Cracking is caused by the high tensile deformation of these particles that occurs as the cermet material flows through the die. Lower extrusion ratios and larger die angles appear to reduce severe particle cracking and increase fabrication yields. The particle size distribution of the ceramic fuel phase also influences fabricability. Six P/M assemblies with up to 57 wt % U 3 O 8 in U 3 O 8 -Al cores were successfully irradiated to 1.6 x 10 21 fissions per cm 3 of core. No swelling or blistering of the tubes occurred

  14. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    International Nuclear Information System (INIS)

    Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-01

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al 3 Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al 3 Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al 3 Zr crystals were completely dissolved in Al after 20 h. •Cubic Al 3 Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  15. Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite

    Directory of Open Access Journals (Sweden)

    Samaneh Bernoosi

    2014-12-01

    Full Text Available In this study, the elemental powders of aluminum and copper were initially subjected to mechanical alloying using an attrition ball mill under argon atmosphere to produce an Al-4.5 wt% Cu powder alloy. The WC nanoparticles were then added to the powder alloy and milled in a planetary ball mill to explore the role of the WC nanoparticles on the mechanical properties of the fabricated composite powder. The experimental results revealed that a solid solution of Al-Cu could be formed after MA and a good dispersion of the WC nanoparticles in the aluminum matrix was obtained as characterized using X-ray diffraction and scanning electron microscopy, respectively. The results of hardness and compression tests of the hot pressed composites indicated that the MA followed by the hot-press processes was successful to fabricate an alloy and a metal matrix composite with considerable mechanical properties. However, a decreasing trend in the hardness and strength of the composites with the WC contents of more than 5wt% was observed. The maximum values of 260 HV and 575 MPa were obtained for a composite containing 5 wt% of nano ceramic particles.

  16. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm).

    Science.gov (United States)

    Sun, L; Jiang, S; Marciante, J R

    2010-06-07

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .

  17. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients

    NARCIS (Netherlands)

    Segers, H.; Kersseboom, R.; Alders, M.; Pieters, R.; Wagner, A.; van den Heuvel-Eibrink, M. M.

    2012-01-01

    Introduction: In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic

  18. The study of microplasticity mechanism in Ti-50 wt.%Nb alloy with high hydrogen content

    International Nuclear Information System (INIS)

    Golovin, I.S.; Kollerov, M.U.; Schinaeva, E.V.

    1996-01-01

    The upper yield point (∼ 700 MPa) appears at the compression test curves (ε=0.024 sec -1 ) of b.c.c. Nb-50 wt.%Ti due to the increase of hydrogen content from 0 to 0.2 wt.% and more and leads to the non monotonous increase in compressive lower yield stress from 400 to 550 MPa. Taking into account close connection between macro- and microplasticity of metallic materials the low frequency (∼ 2 Hz) amplitude dependent internal friction (ADIF) spectrum (γ = 1. 60.10 -5 ) in hydrogenized Nb-50 wt.% Ti and Nb samples are studied. The ADIF investigation of the closed hysteresis loop ''loading-unloading'' shows the dependence of its width from the hydrogen content which evidences the fact of dislocation unpinning from hydrogen atmospheres in the 1/2 cycle of loading. The study of ADIF spectrum for samples with different hydrogen content before and after torsion deformation (γ ∼ 2%) shows the sharp increase of IF level at γ = 1. 10.10 -5 after ∼1 hour of natural ageing. At that time the ADIF curves change its shape from Γ-shape to U-shape. The amplitude range of the IF increase depends on the hydrogen content. It is the interaction of hydrogen atoms with dislocations that caused the above mentioned effect which has not been observed in hydrogen free samples. The time estimation for the formation of thermodynamically stable hydrogen atmospheres on dislocations shows that hydrogen atmospheres could not follow the dislocation during compressive tests and that leads to the upper yield point appearance. (orig.)

  19. Structure and phase stability of a Pu-0.32 wt% Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.W., E-mail: David.Wheeler@awe.co.uk; Ennaceur, S.M.; Matthews, M.B.; Roussel, P.; Bayer, P.D.

    2016-08-01

    In plutonium-gallium (Pu-Ga) alloys that have a Ga content of 0.3–0.4 wt%, their readiness to transform to α′ renders them of particular interest in efforts to understand the tenuous nature of δ phase stability. The present study is a comprehensive examination of the structure and phase stability of a cast Pu-0.32 wt% Ga alloy, the Ga content being close to the minimum amount needed to retain the δ phase to ambient temperature. The alloy was characterised in both the as-cast condition as well as following a homogenising heat treatment. The 250-h heat treatment at 450 °C was shown to achieve an apparently stable δ-Pu phase. However, the stability of the δ-Pu phase was shown to be marginal: partial transformation to α′-Pu was observed when the alloy was subjected to hydrostatic compression. Similar transformation was also apparent during metallographic preparation as well as during hardness indentation. The results provide new understanding of the nature of δ phase stability. - Highlights: • New insights into the delta phase stability of a Pu-0.32 wt% Ga alloy. • Density and DSC of as-cast alloy both show α-Pu contents of approximately 30%. • The heat-treated alloy has a largely δ-Pu structure at ambient temperature. • Heat-treated alloy susceptible to δ → α transformation during hardness indentation.

  20. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites.

    Science.gov (United States)

    Nath, Shekhar; Kalmodia, Sushma; Basu, Bikramjit

    2010-04-01

    In this paper, we demonstrate how a simple fabrication route, i.e., pressureless sintering of mechanically mixed powders can be employed to develop hydroxyapatite (HAp, Ca(10)(PO(4))(6)(OH)(2))-silver (Ag) bioceramic composites with superior combination of physical (hardness, toughness), non-cytotoxicity, cytocompatiblity and anti-microbial property. The densification results show that such composites can be sintered at 1200 degrees C for 2 h near to theoretical density (>98% rho(th).) An important observation is that the dissociation of HAp phase can be prevented during sintering up to 1300 degrees C for 2 h in HAp-10 wt% Ag composites. The stability of HAp in presence of silver is discussed in reference to the results obtained using XRD, FTIR and Raman spectroscopy. The hardness values of the composites are comparable (approximately 6.5 GPa) to that of pure HAp, despite of the presence of softer Ag particles. The sintered composites exhibit modest crack growth resistance property and their toughness varies in the range of 0.9-1.2 MPa m(0.5), depending on sintering temperature. For selected samples, the in vitro characterization was performed using mouse fibroblast (L929) and human osteosarcoma (MG63) cell lines. The combination of biochemical assays (MTT, ALP and osteocalcin) confirm that HAp-10 wt% Ag biocomposites have comparable or even better cellular viability, osteogenic differentiation and bone mineralization as well as osteoinduction property. Antibacterial experiments involving gram-negative bacteria, Escherichia coli confirm excellent bactericidal property of HAp-10 wt% Ag composites, sintered using mechanically mixed powders.

  1. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-15

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  2. Mechanical alloying of Cu-xCr (x = 3, 5 and 8 wt.%) alloys

    International Nuclear Information System (INIS)

    Aguilar, C.; Ordonez, S.; Guzman, D.; Rojas, P.A.

    2010-01-01

    This work studies the structural evolution of Cu-xCr (x = 3, 5 and 8 wt.%) alloys processed by mechanical alloying using X-ray diffraction profiles, scanning microscopy and microhardness analysis. X-ray diffraction analysis using the modified Williamson-Hall and Warren-Averbach methods were used to determine structural properties, such as crystallite size, stacking fault probability and energy, dislocation density, lattice parameters and crystallite size distribution of metallic powder as a function of Cr amount and milling time. Lattice defects increase the Gibbs free energy and the Gibbs free energy curves shift upward, therefore the solubility limit change.

  3. Reaction layer in U-7WT%MO/Al diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S.

    2003-01-01

    New results of the reaction layer characterization between γ (U-7wt%Mo) alloy and Al, in chemical diffusion couples, are presented. The analysis was performed using optical and scanning electron microscopy with EDAX and X-ray diffraction techniques. Besides the main components (U, Mo)Al 3 and (U, Mo)Al 4 , already reported, two ternary compounds of high Al content have been identified in the reaction layer when it grew in retained or decomposed γ (U, Mo) phase, respectively. The drastic consequence on the interdiffusion behavior due to the thermal instability of the retained γ (U, Mo) phase is discussed. (author)

  4. Radiation-enhanced precipitation in a V-10 wt % Ti alloy

    International Nuclear Information System (INIS)

    Agarwal, S.C.; Taylor, A.

    1976-01-01

    A V-10 wt % Ti alloy was irradiated with 2.7 MeV 51 V + at 650 0 C to doses of 2 to 60 dpa. No void swelling was observed at any dose. The irradiation resulted in an enhancement of a precipitation process similar to that observed in unirradiated materials. The precipitates in irradiated specimens were found to have the NaCl-type cubic crystal structure with a lattice parameter of TiO. The orientation relationship between the matrix and the precipitates was the same as that observed under thermal equilibrium conditions in unirradiated materials

  5. Microanalysis on the Hydrogen Ion Irradiated 50 wt pct TiC-C Films

    Institute of Scientific and Technical Information of China (English)

    Hui JIANG; Yaoguang LIU; Ningkang HUANG

    2007-01-01

    The 50 wt pct TiC-C films were prepared on stainless steel substrates by using a technique of ion beam mixing.These films were irradiated by hydrogen ion beam with a dose of 1×1018 ions/cm2 and an energy of 5 keV.Microanalysis of X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to analyze the films before and after hydrogen ion irradiation and to study the mechanism of hydrogen resistance.

  6. Long-term oxidation of Zr-2.5 wt% Nb alloy

    International Nuclear Information System (INIS)

    Cox, B.

    1976-09-01

    A long-term study of the oxidation of Zr-2.5 wt% Nb alloys in water, steam, air and fused nitrate/nitrite salt has been carried out as a function of material batch, degree of cold-work, and heat treatment. Examination after oxidation was by weight gain, optical microscopy, replica electron microscopy, scanning electron microscopy, oxide impedance measurements, mercury porosimetry and metallographic sectioning. The results are compared with other published work and some hypothetical oxidation mechanisms are proposed and discussed. (author)

  7. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  8. Ammonium nitrate with 15 wt % potassium nitrate-ethylenediamine dinitrate-nitroguanidine system

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W.; Cady, H.H.

    1981-01-01

    The phase diagram for the ternary system ammonium nitrate(AN) with 15 wt % potassium nitrate(AN:15KN)-ethylenediamine dinitrate(EDD)-nitroguanidine(NQ) has been determined from room temperature to the melting point. The ternary eutectic temperature, measured for a mixture containing 67.24, 25.30, and 7.46 mole % of AN:15KN, EDD, and NQ, respectively, was found to be 98.9/sup 0/C. The binary phase diagrams for the systems AN:15KN-EDD, AN:15KN-NQ, and EDD-NQ were also determined.

  9. Environmental impact assessment of a WtE plant after structural upgrade measures.

    Science.gov (United States)

    Passarini, Fabrizio; Nicoletti, Monica; Ciacci, Luca; Vassura, Ivano; Morselli, Luciano

    2014-04-01

    The study focuses on analysing the evolution of environmental impacts caused by a medium-large Italian WtE plant before and after revamping and maintenance operations, with the aim of providing an evaluation of how much these structural upgrade measures may affect the total environmental performance. LCA methodology was applied for the modelling and comparison of six WtE scenarios, each describing the main structural upgrades carried out in the plant over the years 1996-2011. The comparison was conducted by adopting 1ton of MSW as the functional unit, and the net contribution from energy recovery to power generation was distinguished by defining consistent national grid electricity mixes for every year considered. The Ecoindicator99 2.09 impact assessment method was used to evaluate the contribution to midpoint and endpoint categories (e.g. carcinogens, respiratory inorganics and organics, climate change, damage to human health). Lastly, the "Pedigree quality matrix" was applied to verify the reliability and robustness of the model created. As expected, the results showed better environmental scores after both the implementation of new procedures and the integration of operations. However, while a net reduction of air emissions seems to be achievable through dedicated flue gas treatment technologies, outcomes underscored potentials for improving the management of bottom ash through the adoption of alternative options aimed to use that solid residue mainly as filler, and to decrease risks from its current disposal in landfill. If the same effort that is put into flue gas treatment were devoted to energy recovery, the targets for the WtE plant could be easily met, achieving a higher sustainability. This aspect is even more complex: national policies for implementing greener and renewable energy sources would result in a lower impact of the national energy mix and, hence, in a lower net avoided burden from energy recovery. The study confirmed the expected improvements

  10. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  11. Study on the sintered characteristics and properties of nanostructured WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co hard metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: changsh@ntut.edu.tw [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chang, Ming-Hung [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Huang, Kuo-Tsung [Department of Auto-Mechanics, National Kangshan Agricultural Industrial Senior High School, Kaohsiung 82049, Taiwan (China)

    2015-11-15

    In this work, four different vacuum sintering temperatures (1250 °C, 1300 °C, 1350 °C and 1400 °C) were studied to determine the optimal process parameters of nano WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co sintered hard metal alloys. Experimental results showed that the optimal sintering temperatures for nano WC–(Fe–Ni–Co) and WC–Co alloys were 1300 °C and 1350 °C for 1 h, respectively. The sintered nano WC–(Fe–Ni–Co) and WC–Co hard metal alloys showed a good contiguity of 0.44 and 0.42; hardness was enhanced to HRA 90.83 and 90.92; the transverse rupture strength (TRS) increased to 2567.97 and 2860.08 MPa; and K{sub IC} was 16.23 and 12.33 MPa√m, respectively. Although the nano WC–(Fe–Ni–Co) alloys possessed a slightly lower TRS value, they exhibited superior fracture toughness (K{sub IC}) and hardness similar to that of the nano WC–Co material. Significantly, nano WC–(Fe–Ni–Co) alloys could be sintered at a lower temperature and still retained their excellent mechanical properties. - Graphical abstract: The following figure shows the fracture morphology of the WC–(Fe–Ni–Co) and WC–Co specimens by means of high-magnification SEM after the K{sub IC} tests. Fig. a shows that numerous binder phases (Fe–Ni–Co) existed in the crack areas, which resisted the penetration and extension of the cracks. Due to the bridging effect of the binder phase, the stress concentration of the crack tip will be resolved through plastic deformation; thus, the cracks did not continue to extend. Once the deformation reaches a critical value, the crack propagation occurs. Meanwhile, the binder phase can link together the two crack faces through the bridging process. Although parts of the cracked areas also showed the bridging effect in the WC–Co specimens, as shown by the arrows (Fig. b), the crack propagation path was not obviously affected. This result corresponds to the tortuosity phenomenon. Consequently, the bridging process

  12. Thermal compatibility of U-2wt.%Mo and U-10wt.%Mo fuel prepared by centrifugal atomization for high density research reactor fuels

    International Nuclear Information System (INIS)

    Kim Ki Hwan; Lee Don Bae; Kim Chang Kyu; Kuk Il Hyun; Hofman, G.E.

    1997-01-01

    Research on the intermetallic compounds of uranium was revived in 1978 with the decision by the international research reactor community to develop proliferation-resistant fuels. The reduction of 93% 235 U (HEU) to 20% 235 U (LEU) necessitates the use of higher U-loading fuels to accommodate the addition 238 U in the LEU fuels. While the vast majority of reactors can be satisfied with U 3 Si 2 -Al dispersion fuel, several high performance reactors require high loadings of up to 8-9 g U cm -3 . Consequently, in the renewed fuel development program of the Reduced Enrichment for Research and Test Reactors (RERTR) Program, attention has shifted to high density uranium alloys. Early irradiation experiments with uranium alloys showed promise of acceptable irradiation behavior, if these alloys can be maintained in their cubic γ-U crystal structure. It has been reported that high density atomized U-Mo powders prepared by rapid cooling have metastable isotropic γ-U phase saturated with molybdenum, and good γ-U phase stability, especially in U-10wt.%Mo alloy fuel. If the alloy has good thermal compatibility with aluminium, and this metastable gamma phase can be maintained during irradiation, U-Mo alloy would be a prime candidate for dispersion fuel for research reactors. In this paper, U-2w.%Mo and U-10w.%Mo alloy powder which have high density (above 15 g-U/cm 3 ), are prepared by centrifugal atomization. The U-Mo alloy fuel meats are made into rods extruding the atomized powders. The characteristics related to the thermal compatibility of U-2w.%Mo and U-10w.%Mo alloy fuel meat at 400 o C for time up to 2000 hours are examined. (author)

  13. Effect of compound field on horizontal continuous casting of Al-1wt.%Si alloy

    Directory of Open Access Journals (Sweden)

    Zhong-tao Zhang

    2015-03-01

    Full Text Available A travelling magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si alloy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single field can enhance the mechanical properties and reduce the segregation of Si element in Al-1wt.%Si alloy to some extent. The application of a compound field can obtain the best refinement and homogeneity of the Si element in the alloy, leading to the highest increase of tensile strength and elongation among the three applied fields. The mechanism of the action of external fields on the refinement of microstructures and homogeneity of the Si element is discussed and the compound field is considered to be an effective method to achieve high quality Al alloys.

  14. Tests of rhodamine WT dye for toxicity to oysters and fish

    Science.gov (United States)

    Parker, Garald G.

    1973-01-01

    Because of the toxicity to oyster larvae and eggs of rhodamine B dye in concentrations greater than 1 mg/l in earlier tests, there was a concern that rhodamine WT, a similar tracer dye, would have a detrimental effect on marine life being developed under the aquaculture program of the Lummi Indian Tribe near Bellingham, Wash. Tests showed that 48-hour exposures at 24° C of 11,000 oyster eggs per liter and 6,000 12-day-old larvae per liter, in sea water with concentrations of rhodamine WT ranging from 1 μg/l to 10 mg/l, resulted in development of the eggs to normal straight-hinge larvae and no abnormalities in the larvae development. Tests made on the smolt of both silver salmon and Donaldson trout, with the fish held for 17.5 hours in a tankfull of sea water with a dye concentration of 10 mg/l at 22°C showed no mortalities or respiratory problems. With the concentration increased to 375 mg/l, and the time extended an additional 3.2 hours, still no mortalities or abnormalities were noted. The fish remained healthy in dye-free water when last checked a month after the test.

  15. Characterization of the reaction layer in U-7wt%Mo/Al diffusion couples

    Energy Technology Data Exchange (ETDEWEB)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S. E-mail: granovsk@cnea.gov.ar

    2003-11-15

    The reaction layer in chemical diffusion couples U-7wt%Mo/Al was investigated using optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction (XRD) techniques. When the U-7wt%Mo alloy was previously homogenized and the {gamma}(U, Mo) phase was retained, the formation of (U, Mo)Al{sub 3} and (U, Mo)Al{sub 4} was observed at 580 deg. C. Also a very thin band was detected close to the Al side, the structure of the ternary compound Al{sub 20}UMo{sub 2} might be assigned to it. When the decomposition of the {gamma}(U, Mo) took place, a drastic change in the diffusion behavior was observed. In this case, XRD indicated the presence of phases with the structures of (U, Mo)Al{sub 3}, Al{sub 43}U{sub 6}Mo{sub 4}, {gamma}(U, Mo) and {alpha}(U) in the reaction layer.

  16. Susceptibility of cold-worked zirconium-2.5 wt% niobium alloy to delayed hydrogen cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1976-01-01

    Notched tensile specimens of cold-worked zirconium-2.5 wt% niobium alloy have been stressed at 350 K and 520 K. At 350 K, above a possible threshold stress of 200 MPa, specimens exhibited delayed failure which was attributed to hydride cracking. Metallography showed that hydrides accumulated at notches and tips of growing cracks. The time to failure appeared to be independent of hydrogen content over the range 7 to 100 ppm hydrogen. Crack growth rates of about 10 -10 m/s deduced from fractography were in the same range as those necessary to fracture pressure tubes. The asymptotic stress intensity for delayed failure, Ksub(1H), appeared to be about 5 MPa√m. With this low value of Ksub(1H) small surface flaws may propagate in pressure tubes which contain large residual stresses. Stress relieving and modified rolling procedures will reduce the residual stresses to such an extent that only flaws 12% of the wall thickness or greater will grow. At 520 K no failures were observed at times a factor of three greater than times to failure at 350 K. Zirconium-2.5 wt% niobium appears to be safe from delayed hydrogen cracking at the reactor operating temperature. (author)

  17. Evidence of amorphous interdiffusion layer in heavy ion irradiated U–8wt%Mo/Al interfaces

    International Nuclear Information System (INIS)

    Chiang, H-Y.; Zweifel, T.; Palancher, H.; Bonnin, A.; Beck, L.; Weiser, P.; Döblinger, M.; Sabathier, C.; Jungwirth, R.; Petry, W.

    2013-01-01

    U–Mo/Al based nuclear fuels are worldwide considered as the most promising high density fuel for the conversion of high flux research and test reactors from highly enriched uranium to lower enrichment. However in-pile growth of an amorphous interdiffusion layer at the U–Mo/Al interfaces strongly limits the performances of this fuel. Several in-pile tests have been performed to optimize the composition. In this paper, a breakthrough in simulating the U–8wt%Mo/Al behavior under out-of-pile irradiation is reported. It is shown that an amorphous U–8wt%Mo/Al interdiffusion layer (IDL) is obtained by heavy ion irradiation ( 127 I) in a U–Mo/Al diffusion couple under controlled temperature conditions. The properties of this IDL coincide with the results obtained from in-pile tests. This methodological work clearly indicates that heavy ion irradiations could be routinely applied for optimizing composition of U–Mo/Al nuclear fuels. In other words these out-of-pile tests using ion beams could become a representative, efficient and economic step before in-pile irradiation

  18. Partial absence of pleuropericardial membranes in Tbx18- and Wt1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Julia Norden

    Full Text Available The pleuropericardial membranes are fibro-serous walls that separate the pericardial and pleural cavities and anchor the heart inside the mediastinum. Partial or complete absence of pleuropericardial membranes is a rare human disease, the etiology of which is poorly understood. As an attempt to better understand these defects, we wished to analyze the cellular and molecular mechanisms directing the separation of pericardial and pleural cavities by pleuropericardial membranes in the mouse. We found by histological analyses that both in Tbx18- and Wt1-deficient mice the pleural and pericardial cavities communicate due to a partial absence of the pleuropericardial membranes in the hilus region. We trace these defects to a persisting embryonic connection between these cavities, the pericardioperitoneal canals. Furthermore, we identify mesenchymal ridges in the sinus venosus region that tether the growing pleuropericardial membranes to the hilus of the lung, and thus, close the pericardioperitoneal canals. In Tbx18-deficient embryos these mesenchymal ridges are not established, whereas in Wt1-deficient embryos the final fusion process between these tissues and the body wall does not occur. We suggest that this fusion is an active rather than a passive process, and discuss the interrelation between closure of the pericardioperitoneal canals, lateral release of the pleuropericardial membranes from the lateral body wall, and sinus horn development.

  19. Effect of quench rate on the mechanical properties of U-6 wt % Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-03-01

    U-6 wt % Nb conventionally is water quenched from 800 0 C in order to obtain a niobium supersaturated α'' structure having good corrosion resistance and high ductility (125% tensile elongation). The high cooling rate associated with the water quench, however, produces undesirable distortion and residual stress. This study was conducted to determine the extent to which the quench rate could be reduced (in order to minimize the distortion and residual stress problems) without sacrificing properties. The results indicate that quench rate can be reduced by as much as a factor of 10 without any loss of ductility, and that a factor of 100 reduction in quench rate (as is produced by air cooling) still produces material with moderate ductility (> 12% tensile elongation). The results also indicate that supersaturated α'' structures are produced at all of these quench rates. This suggests that these reductions in quench rate should not have drastic adverse effects on corrosion resistance. Hence, it should not be possible to substantially reduce the magnitudes of the distortion and residual stress problems while retaining appreciable ductility and corrosion resistance in U-6 wt % Nb

  20. Evidence of amorphous interdiffusion layer in heavy ion irradiated U–8wt%Mo/Al interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H-Y. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany); Zweifel, T. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany); CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Palancher, H., E-mail: herve.palancher@cea.fr [CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Bonnin, A. [ESRF, 6 rue Jules Horowitz, 38042 Grenoble (France); Beck, L. [Tandembeschleuniger des Maier-Leibnitz-Labors (MLL), Am Coulombwall 6, D-85747 Garching (Germany); Weiser, P. [Walther Schottky Institut, Technische Universität München, Am Coulombwall 4, D-85747 Garching (Germany); Döblinger, M. [Department Chemie, Ludwig-Maximilians-Universität München (LMU), Butenandstr. 11, D-81377 München (Germany); Sabathier, C. [CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Jungwirth, R.; Petry, W. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany)

    2013-09-15

    U–Mo/Al based nuclear fuels are worldwide considered as the most promising high density fuel for the conversion of high flux research and test reactors from highly enriched uranium to lower enrichment. However in-pile growth of an amorphous interdiffusion layer at the U–Mo/Al interfaces strongly limits the performances of this fuel. Several in-pile tests have been performed to optimize the composition. In this paper, a breakthrough in simulating the U–8wt%Mo/Al behavior under out-of-pile irradiation is reported. It is shown that an amorphous U–8wt%Mo/Al interdiffusion layer (IDL) is obtained by heavy ion irradiation ({sup 127}I) in a U–Mo/Al diffusion couple under controlled temperature conditions. The properties of this IDL coincide with the results obtained from in-pile tests. This methodological work clearly indicates that heavy ion irradiations could be routinely applied for optimizing composition of U–Mo/Al nuclear fuels. In other words these out-of-pile tests using ion beams could become a representative, efficient and economic step before in-pile irradiation.

  1. Analytical and experimental studies on the strain rate effects in penetration of 10wt % ballistic gelatin

    International Nuclear Information System (INIS)

    Liu, L; Jia, Z; Ma, X L; Fan, Y R

    2013-01-01

    This work concentrates on modeling the super-elastic behavior of 10wt% ballistic gelatin at 4°C and the mechanical responses at quasi-static and high-speed penetrations. Uniaxial compression and simple shearing experiments were carried out to determine the moduli in Mooney-Rivlin model describing the elastic behavior of gelatin at low strain rates. The failure mode is determined to be elastic fracture as the tensile stretch ratio exceeds a critical value. For high compression strain rates, the available results from the split Hopkinson pressure bar (SHPB) experiments for 10wt% gelatin were carefully examined and assessed. Linear relationship between the moduli and the strain rate is established. Based on these material parameters, an analytic solution of stress for the quasi-static and quasi-dynamic expansion of spherical cavity in gelatin is derived. As a consequence, the work needed to open unit volume of cavity, P s , which is the key parameter in studying penetration problems, is linearly increasing with the characteristic strain rate. The application of P s to our quasi-static and high-speed penetration experiments is discussed and assessed

  2. Outcome of patients with stage III or inoperable WT treated on the second United Kingdom WT protocol (UKWT2); a United Kingdom Children's Cancer Study Group (UKCCSG) study.

    Science.gov (United States)

    Grundy, R G; Hutton, C; Middleton, H; Imeson, J; Pritchard, J; Kelsey, A; Marsden, H B; Vujanic, G M; Taylor, R E

    2004-04-01

    The aims of UKWT2 included consolidating the results for stage III patients obtained in UKWT1 and improving the outcome for patients with inoperable tumours by giving vincristine, actinomycin-D and doxorubicin in an intensive schedule (Intensive AVA). The second UK WT trial (UKWT2) ran between July 1986 and September 1991 accruing 448 patients. One hundred and six patients were diagnosed and treated for stage III disease. Six had clear cell sarcoma of the kidney (CCSK) and seven had rhabdoid tumours of the kidney (RTK) and are analysed separately. One other patient was excluded from overall analysis. Ninety-two patients were followed for a median of 115 months. Seventy-five received standard chemotherapy and abdominal radiotherapy according to protocol. Seventeen had stage III disease at immediate nephrectomy, but radiotherapy was omitted by physician choice. Thirty-three patients had inoperable disease at diagnosis and received pre-nephrectomy chemotherapy. Overall survival (OS) at 4 years for stage III favourable histology (FH) patients receiving abdominal RT was 83% (CI: 73-89). For children with stage III disease in whom RT was omitted the OS was 82% (CI: 59-97) and for inoperable disease 94% (CI: 78-98). The overall and event-free survival (EFS) of children with stage III CCSK was 100% and was achieved with the majority of patients not receiving radiotherapy (CI: 48-100). Three of seven children with RTK are alive EFS and OS 43% (CI: 10-73). For patients treated by abdominal radiotherapy the overall local control rate was 94.4% (CI: 86.4-98.5*%), 96.7% (CI: 88.5-99.6%) for flank RT and 83.3% (51.6-98.0%) for whole abdominal radiotherapy (WRT). The outcome for stage III FH disease was similar to that reported for UKWT1 and NWTS-3. The combination of abdominal RT together with 3-drug chemotherapy achieves a high abdominal tumour control rate. Flank RT is probably sufficient for localised tumour rupture. The high cure rates for children in this trial with

  3. The influence of post-extrusion thermomechanical treatments on the tensile properties of Zr-2.5 wt% Nb alloy

    International Nuclear Information System (INIS)

    Fleck, R.G.; Shek, G.K.

    1983-01-01

    The production routes used for Zr-2.5 wt% Nb pressure tubes are described. Tensile results (UTS) from laboratory tests which simulated modified production routes are presented and compared to UTS values of actual pressure tubes. Strengthening of stress relieved Zr-2.5 wt% Nb is discussed in terms of: a) sub-grain formation; b) transformation of the second phase; and c) reorientation of the second phase relative to the matrix. The strength of cold worked Zr-2.5 wt% Nb is not influenced by the prior cold worked grain size. (author)

  4. Self accommodation morphology of martensite variants in Zr-2.5wt%Nb alloy

    International Nuclear Information System (INIS)

    Srivastava, D.; Madangopal, K.; Banerjee, S.; Ranganathan, S.

    1993-01-01

    The role of self accommodation of the different martensite variants in controlling the morphologies of the Zr-2.5wt%Nb alloy martensite has been examined. Three distinct types of grouping of martensite variants have been found to be predominantly present. Crystallographic descriptions of these groups have been provided and the degrees of self accommodation for these have been estimated and compared with those corresponding to other possible variant groupings around the symmetry axes of the parent phase. The frequently observed 3-variant group, which shows an indentation mark morphology when viewed along β directions in the transmission electron microscope, has been seen to have the highest degree of self accommodation amongst the cases considered. Based on the observations made, a growth sequence leading to the formation of the final martensitic structure has been proposed

  5. Deformation effect on recrystallization of Al-3.94 wt%Cu alloy

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abou-El Nasr, T.Z.A.; Higgy, E.S.M.; Taha, A.M.S.

    1981-01-01

    The effect of cold-work and annealing temperature on the recrystallization of Al-3.94 wt%Cu was studied. As-received materials were annealed at both 400 0 C and 500 0 C before cold rolling. Cold-rolled specimens having 13%, 30%, 51% and 67% coldwork were isothermally annealed till 500 0 C, and then microscopically studied and hardness tested. Recrystallization process was found to be influenced by both deformation and annealing temperature. Grain-size increased with annealing temperature until 400 0 C, after which grain-size decreased. Cold-work decreased grain-size at all annealing temperatures. Hardness decreased with annealing temperature until 400 0 C, after which it increased sharply. Cold-work increased hardness, the increase was more pronounced at annealing temperatures below 400 0 C. (author)

  6. Mechanical properties of Al2O3-doped (2 wt.%) ZnO films

    International Nuclear Information System (INIS)

    Kuriki, Shina; Kawashima, Toshitaka

    2007-01-01

    We report a new method of evaluating the adhesion of Al 2 O 3 -doped (2 wt.%) ZnO (AZO) thin films. The AZO films were deposited by DC reactive magnetron sputtering on plastic film (PET: polyethyleneterephthalate) at various sputtering pressures, power, and reactive gas-flow ratios. The adhesion test of the films was carried out using the nanoindentation system. The fracture point as determined by the load-displacement curve occurred at the time of separation between the thin film and the substrate. The integration value of load and displacement to the fracture point is defined as the degree of adhesion (S W ). The AZO films showed that adhesion increase as sputtering power increases and sputtering pressure decreases

  7. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified

    International Nuclear Information System (INIS)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de

    2010-01-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  8. Measurement of effective solvus temperature of hydrogen in Zr - 2. 5 wt % Nb using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E.; Ambler, J.F.R.

    1978-01-01

    The effect of applied tensile stress on the solvus temperature of hydrogen in cold-worked Zr - 2.5 wt % Nb has been measured using acoustic emission. Hydrides are necessary for delayed hydrogen cracking and the lowest temperature at which hydride cracking cannot be detected by acoustic emission was taken as the solvus temperature. The results show that any effect of tensile stress on terminal solubility, Cs, is undetectable. Between about 2 and 100 ppM hydrogen, the results can be described by: C/sub s/ = 1.40 x 10/sup 5/ exp - (36100/RT) ppM. They also suggest that the equilibrium phase, delta-hydride, is responsible for delayed hydrogen cracking.

  9. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites

    Directory of Open Access Journals (Sweden)

    José-Miguel Molina

    2017-02-01

    Full Text Available The effect of porosity on the thermal conductivity and the coefficient of thermal expansion of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal conductivity of these composites gradually increases with the applied infiltration pressure given the inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in a metallic matrix offers a good estimation of the experimental results. As concerns the coefficient of thermal expansion, the results show a slight increase with saturation being approximately in the range 14.6–15.2 × 10−6 K−1 for a saturation varying from 86% up to 100%. Results lie within the standard Hashin-Strikman bounds.

  10. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites.

    Science.gov (United States)

    Molina, José-Miguel; Rodríguez-Guerrero, Alejandro; Louis, Enrique; Rodríguez-Reinoso, Francisco; Narciso, Javier

    2017-02-14

    The effect of porosity on the thermal conductivity and the coefficient of thermal expansion of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal conductivity of these composites gradually increases with the applied infiltration pressure given the inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in a metallic matrix) offers a good estimation of the experimental results. As concerns the coefficient of thermal expansion, the results show a slight increase with saturation being approximately in the range 14.6-15.2 × 10 -6 K -1 for a saturation varying from 86% up to 100%. Results lie within the standard Hashin-Strikman bounds.

  11. Recovery of the mechanical properties on the Al-4wt%Cu alloy

    International Nuclear Information System (INIS)

    Chemingui, M; Kassis, K; Khitouni, M; Masmoudi, J; Kolsi, A W

    2010-01-01

    The recovery of the mechanical properties on the Al-4%wtCu alloy was investigated by indentation after cold rolling. The microstructural evolution was performed using optical and scanning electron microscopies. The annealing at 200 deg. C of the quenched and rolled alloy gives higher mechanical qualities. At temperatures up to 200 deg. C, the alloy has no softening by recovery, but on the contrary a hardening behaviour was observed. This later is attributed to the presence of the intermediate θ'' and θ' phases. Nevertheless, the ageing in high temperature product the coalescence of iron particles and of Al 2 Cu precipitates. These phases are essentially localized in the grain boundaries, which caused the damage of the alloy.

  12. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  13. δ' precipitation in a binary Al-3.2 Wt % Li alloy

    International Nuclear Information System (INIS)

    Mahadev, V.; Mahalingam, K.; Liedl, G.L.; Sanders, T.H. Jr.

    1992-01-01

    This paper reports on a study of the early stages of Al 3 Li(δ') precipitation in a binary Al-3.2wt% Li alloy that was performed by X-ray scattering experiments. Efforts were made to understand the very early stages of precipitation. Particle size measurements were made on samples in the as quenched state and after isothermally aging for various times ranging from 5 minutes to 10 days at 433K, 453K and 473K. Short range order parameters and average atomic displacements were determined for early aging times. A simple simulation model based upon the particle size distribution is proposed to examine the implications of the experimental observations. This simulation fits the assumption that the particles are fully ordered and coherent with the matrix even in the very early stages of aging. Kinetics of the early stages were found to be consistent with data obtained for longer aging times and supports an early growth stage

  14. Microstructural and mechanical characterization of Cu-0.8 wt.%Y

    International Nuclear Information System (INIS)

    Carro, G.; Muñoz, A.; Monge, M.A.; Savoini, B.; Pareja, R.

    2015-01-01

    Dispersion strengthened Cu-0.8 wt.%Y has been produced by a powder metallurgy route and subsequent consolidation by hot isostatic pressing at 1123 K and 172 MPa. A fully dense alloy has been obtained that exhibits a microstructure characterized by equiaxed grains with sizes ranging from 0.5 to 50 μm. Yttrium-rich particles with an average size of 0.92 μm have been observed inside the grains and decorating the grain boundaries. As expected, the tensile tests carried out from room temperature to 773 K have revealed that both the YS and the UTS decrease with increasing temperature. This alloy exhibits better tensile properties and microhardness than OFHC Cu. This improvement is attributed to the presence of the Y-rich particles.

  15. Microstructural and mechanical characterization of Cu-0.8 wt.%Y

    Energy Technology Data Exchange (ETDEWEB)

    Carro, G., E-mail: gcarro@fis.uc3m.es; Muñoz, A.; Monge, M.A.; Savoini, B.; Pareja, R.

    2015-10-15

    Dispersion strengthened Cu-0.8 wt.%Y has been produced by a powder metallurgy route and subsequent consolidation by hot isostatic pressing at 1123 K and 172 MPa. A fully dense alloy has been obtained that exhibits a microstructure characterized by equiaxed grains with sizes ranging from 0.5 to 50 μm. Yttrium-rich particles with an average size of 0.92 μm have been observed inside the grains and decorating the grain boundaries. As expected, the tensile tests carried out from room temperature to 773 K have revealed that both the YS and the UTS decrease with increasing temperature. This alloy exhibits better tensile properties and microhardness than OFHC Cu. This improvement is attributed to the presence of the Y-rich particles.

  16. Delayed hydride cracking in Zr-2.5% wt Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Haddad, Roberto; Domizzi, Gladys

    2003-01-01

    During service, pressure tubes of CANDU nuclear power reactor are prone to suffer crack growth by delayed hydride cracking (DHC). For a given H 2 plus D 2 concentration there is a critical temperature (T c ) below which DHC may occur. In this work, T c was measured for CCT specimens cut from Zr-2.5 Wt % Nb pressure tubes. Hydrogen was added to the specimens to get concentrations of 40, 59 and 72 ppm. It was found that T c is higher than the corresponding precipitation temperature. The axial crack velocity (V p ) was also measured. Decreasing temperature from T c makes V p increase until a maximum is attained at a temperature close to precipitation temperature. At lower temperatures, in the presence of precipitated hydrides, decreasing temperature implies lower velocities, following an Arrhenius law: Vp=Aexp(-Q/RT), with an activation energy Q= 66 KJ/mol K. (author)

  17. Stress corrosion cracking of 350 maraging steel in 3.5 Wt. % NaCl solution

    International Nuclear Information System (INIS)

    Hussain, I.; Hussain, T.; Tauqir, A.; Hashmi, F.H.; Khan, A.Q.

    1993-01-01

    Stress corrosion behavior of 350 maraging steel in 3.5 wt.% NaCl solution was investigated. The results suggest that the steel is susceptible to stress corrosion cracking as the time to failure was always considerably shorter, as compared to those in air at the same stress level. The fracture mode was nearly intergranular and occasionally transgranular. There was no definite trend for the different modes of failure. The strain rate effect was also considered and the results show that the stress corrosion cracks were absent at strain rate high than 1.97 x 10/sup -4/S/sup -1/ and lower than 1.29 x 10/sup -7/S/sup -1/. The critical strain rate range was found to be between 6.4 x 10/sup -7/ to 3.24 x10/sup -5/S /sup -1/. (author)

  18. The effect of thermomechanical processing on second phase particle redistribution in U-10 wt%Mo

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaohua; Wang, Xiaowo; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-01

    The multi-pass hot-rolling process of an annealed uranium-10 wt% molybdenum coupon was studied by plane-strain compression finite element modeling. Two point correlation function (2PCF) was used to analyze the carbide particle distribution after each rolling reduction. The hot rolling simulation results show that the alignment of UC particles along grain boundaries will rotate during rolling until it is parallel to the rolling direction, to form stringer-like distributions which are typically observed in rolled products that contain inclusions. 2PCF analysis of simulation shows that the interparticle spacing shrinks along the normal direction. The number of major peaks of 2PCF along ND decreases after large reduction. The locations of major peaks indicate the inter-stringer distances.

  19. The Synthesis and Characterization of W- 1wt.% TiC Alloy Using a Chemical Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehee; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The tungsten and its alloys have been used in many applications due to their excellent mechanical and thermal properties such as high melting point, high thermal conductivity, high strength at elevated temperatures, low sputtering yield in radiation environment and low tritium inventory. Moreover, many researchers consider tungsten alloys as the most promising candidate for plasma facing components for future nuclear fusion reactors. Three samples of W – 1.0 wt.% TiC composites with the different fabrication methods were successfully developed. The combined method of the wet chemical method and 3D mixing showed small amount of agglomeration of TiC particles, however, the TiC particle sizes were smaller than 3DM1 sample. Since the WCM1 showed the better mechanical property, microhardness, the main future plan is to achieve the same or improved mechanical property of W3D1.

  20. β-85 wt % Nb precipitates: the effect on in-reactor diametric creep of pressure tubes

    International Nuclear Information System (INIS)

    Sarce, Alicia

    2006-01-01

    By linking the microstructure evolution of an α-Zr crystal with the macroscopic behaviour, the deformation of an in-service reactor pressure tube is calculated. Microstructure evolution is considered through rate theory modelling of the interaction between point defects and sinks. Different densities of β-85 wt % Nb precipitates are proposed to be distributed inside the α grains and act as point defect sinks, doing a screening effect on the grain boundaries. From the interatomic pair potential which is used to describe the material, positive tangential deformation rates (on the other hand negatives) are obtained when these densities in the c-crystal direction are bigger than a minimum value. (author) [es

  1. The variation of work hardening characteristics of Al-5 wt% Mg alloy during phase transition

    International Nuclear Information System (INIS)

    Mahmoud, M.A.; Sobhy, M.; Abd El-Rehim, A.F.; Abdel Rahman, R.M.

    2010-01-01

    The aim of this study is to investigate the effect of aging conditions on the stress-strain behavior along with microstructure changes of the Al-5 wt% Mg alloy. Following solid solution treatment and aging of specimens at temperatures ranging from 373 to 573 K for various aging times (1/4 to 4 h), stress-strain tests were performed at different testing temperatures (313-343 K). The work hardening parameters (σ y , σ f , χ p and Y) were found to decrease continuously with pre-aging times at all aging and testing temperatures, where the softening parameters (ε f and L) oppose this behavior. The variation in stress-strain parameters with increasing aging temperatures and aging times was explained on the basis of structural transformations taking place in the Al-Mg alloy. A precipitate-dislocation intersections mechanism was assumed as the rate-controlling mechanism for alloy.

  2. Mechanical characterization of cemented carbide WC-6Co (%wt) manufactured by SPS (Spark Plasma Sintering

    International Nuclear Information System (INIS)

    Boidi, G.; Tertuliano, A.J.; Machado, I.F.

    2016-01-01

    This work aimed to manufacture cemented carbide (WC-6%wtCo) obtained by SPS (Spark Plasma Sintering) process and to carry out the mechanical characterization by hardness and fracture toughness. The material was consolidated at 1100 deg C for different holding times (1 min, 5 min, 10 min), in order to evaluate the densification. A reference sample was also used to be compared to SPS. Optical and scanning electron microscopy were carried out to characterize the microstructural features of the samples and mechanical properties were obtained by hardness measurements (micro and macro) and instrumented indentation. The fracture toughness was calculated with the method of Palmqvist. Best results were found in the material sintered by SPS for 10 minutes of holding time, in which 97% of relative density and about 1600 HV_1_0 was reached. (author)

  3. Measurement and modeling of room temperature co-deformation in WC-10 wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, V. [MST-8/LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]. E-mail: vlivescu@lanl.gov; Clausen, B. [MST-8/LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Paggett, J.W. [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Krawitz, A.D. [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Drake, E.F. [REEDHycalogTM/Grant Prideco, Houston, TX 77252 (United States); Bourke, M.A.M. [MST-8/LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    In situ neutron diffraction measurements were performed on a tungsten carbide (WC)-10 wt.% cobalt (Co) cemented carbide composite subjected to compressive loading. The sample was subjected to consecutive load/unload cycles to -500, -1000, -2000 and -2100 MPa. Thermal residual stresses measured before loading reflected large hydrostatic tensile stresses in the binder phase and compressive stresses in the carbide phase. The carbide phase behaved elastically at all but the highest load levels, whereas plasticity was present in the binder phase from values of applied stress as low as -500 MPa. A finite element simulation utilizing an interpenetrating microstructure model showed remarkable agreement with the complex mean phase strain response during the loading cycles despite its under-prediction of thermal residual strains.

  4. Investigation of powdering ductile gamma U-10 wt%Mo alloy for dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, R.M., E-mail: lealneto@ipen.br [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Rocha, C.J. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Urano de Carvalho, E. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Riella, H.G. [Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil); Durazzo, M. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil)

    2014-02-01

    This work forms part of the studies presently ongoing at Nuclear and Energy Research Institute – IPEN/CNEN-SP investigating the feasibility of powdering ductile U-10 wt%Mo alloy by hydriding–milling–dehydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following dehydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H{sub 3}. SEM analysis of HMD powder particles revealed equiaxial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested.

  5. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    International Nuclear Information System (INIS)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B.

    2013-01-01

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs

  6. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs.

  7. Active Tension Control for WT Wheelchair Robot by Using a Novel Control Law for Holonomic or Nonholonomic Systems

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2013-01-01

    Full Text Available Interactional characteristics between WT wheelchair robot and stair environment are analyzed, and possible patterns of WT wheelchair robot during the stair-climbing process are summarized, with the criteria of the wheelchair robot for determining the pattern proposed. Aiming at WT wheelchair robot's complicated mechanism with holonomic constraints and combined with the computed torque method, a novel control law that is called active tension control is presented for holonomic or nonholonomic robotic systems, by which the wheelchair robot with a holonomic or nonholonomic mechanism can track the reference input of the constraint forces of holonomic or nonholonomic constraints as well as tracking the reference input of the generalized coordinate of each joint. A stateflow module of Matlab is used to simulate the entire stair-climbing process for WT wheelchair robot. A comparison of output curve with the reference input curve of each joint is made, with the effectiveness of the presented control law verified.

  8. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-10-20

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  9. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  10. Ordering and reaccomodation processes for defects in Fe-6.5wt.% Si and its influence on magnetic properties

    International Nuclear Information System (INIS)

    Cano, J.A; Lambri, O.A; Perez-Landazabal, J.I; Recarte, V

    2004-01-01

    Mechanical spectroscopy (MS) and magnetic hysteresis measurements were carried out in order to thoroughly study the effects of the order and reactions of the super dislocations in commercial alloys of Fe-6.5wt.% Si and Fe-3wt% Si with GOSS [110] texture during 1 hour, in a high vacuum, followed by tempering in water. The test pieces that were measured came from cut sheets provided by NKK Corp. The deadening and elastic module measurements were done with an inverted torsion pendulum, inside of which a 10 -5 Pa vacuum was made, expressed as a function of the temperature, and reaching three different final values: 973K, 1050K and 1273K. The magnetic measurements were carried out with an electromagnetic system that traced the hysteresis cycles. The behavior of deadening and the elastic module spectrum in Fe-6.5wt% Si is controlled by the relationship between the maximum temperature reached in the pendulum and the order-disorder transformation temperature. This dependence does not appear in the Fe-3wt% Si with GOSS [110] texture. The quenching defects recovery effects in Fe-3wt% Si are less than for the Fe-6.5wt% Si because of the absence of super dislocations and anti phase borders (APB) (CW)

  11. Reduction in WT1 gene expression during early treatment predicts the outcome in patients with acute myeloid leukemia.

    Science.gov (United States)

    Andersson, Charlotta; Li, Xingru; Lorenz, Fryderyk; Golovleva, Irina; Wahlin, Anders; Li, Aihong

    2012-12-01

    Wilms tumor gene 1 (WT1) expression has been suggested as an applicable minimal residual disease marker in acute myeloid leukemia (AML). We evaluated the use of this marker in 43 adult AML patients. Quantitative assessment of WT1 gene transcripts was performed using real-time quantitative-polymerase chain reaction assay. Samples from both the peripheral blood and the bone marrow were analyzed at diagnosis and during follow-up. A strong correlation was observed between WT1 normalized with 2 different control genes (β-actin and ABL1, P0.05). A≥1-log reduction in WT1 expression in bone marrow samples taken freedom from relapse (P=0.010) when β-actin was used as control gene. Furthermore, a reduction in WT1 expression by ≥2 logs in peripheral blood samples taken at a later time point significantly correlated with a better outcome for overall survival (P=0.004) and freedom from relapse (P=0.012). This result was achieved when normalizing against both β-actin and ABL1. These results therefore suggest that WT1 gene expression can provide useful information for minimal residual disease detection in adult AML patients and that combined use of control genes can give more informative results.

  12. Strain-softening behavior of an Fe-6.5 wt%Si alloy during warm deformation and its applications

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → An Fe-6.5 wt%Si alloy exhibits strain-softening behavior after large deformation. → The decrease of the order degree is responsible for the strain-softening behavior. → The strain-softening behavior of Fe-6.5 wt%Si alloy can be applied in cold rolling. → An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm is fabricated by cold rolling. - Abstract: An Fe-6.5 wt%Si alloy with columnar grains was compressed at a temperature below its recrystallization temperature. The Vickers hardness and structure of the alloy before and after deformation were investigated. The results showed that with an increase in the degree of deformation, Vickers hardness of the alloy initially increased rapidly and then decreased slowly, indicating that the alloy had a strain-softening behavior after a large deformation. Meanwhile, the work-hardening exponent of the alloy decreased significantly. Transmission electron microscopy confirmed that the decrease of the order degree was responsible for the strain-softening behavior of the deformed alloy. Applying its softening behavior, the Fe-6.5 wt%Si alloy with columnar grains was rolled at 400 deg. C and then at room temperature. An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm was fabricated. The surface of the strip was bright and had no obvious edge cracks.

  13. WT1 Is Necessary for the Proliferation and Migration of Cells of Renin Lineage Following Kidney Podocyte Depletion

    Directory of Open Access Journals (Sweden)

    Natalya V. Kaverina

    2017-10-01

    Full Text Available Wilms' tumor suppressor 1 (WT1 plays an important role in cell proliferation and mesenchymal-epithelial balance in normal development and disease. Here, we show that following podocyte depletion in three experimental models, and in patients with focal segmental glomerulosclerosis (FSGS and membranous nephropathy, WT1 increased significantly in cells of renin lineage (CoRL. In an animal model of FSGS in RenWt1fl/fl reporter mice with inducible deletion of WT1 in CoRL, CoRL proliferation and migration to the glomerulus was reduced, and glomerular disease was worse compared with wild-type mice. To become podocytes, CoRL undergo mesenchymal-to-epithelial transformation (MET, typified by reduced staining for mesenchymal markers (MYH11, SM22, αSMA and de novo expression of epithelial markers (E-cadherin and cytokeratin18. Evidence for changes in MET markers was barely detected in RenWt1fl/fl mice. Our results show that following podocyte depletion, WT1 plays essential roles in CoRL proliferation and migration toward an adult podocyte fate.

  14. Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath

    International Nuclear Information System (INIS)

    Dubent, S.; Mertens, M.L.A.D.; Saurat, M.

    2010-01-01

    Tin-zinc alloy electroplated coatings are recognized as a potential alternative to toxic cadmium as corrosion resistant deposits because they combine the barrier protection of tin with the cathodic protection afforded by zinc. The coatings containing 20 wt.% zinc, balance tin, offer excellent corrosion protection for steel and do not form gross voluminous white corrosion products like pure zinc or high zinc alloy deposits. In this study, the effects of variables of the process (i.e. cathodic current density, pH and temperature) on deposit composition have been evaluated using a Hull cell to obtain 20 wt.% zinc alloy coatings. The tin-20 wt.% zinc deposits, produced with electroplating optimized conditions, were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray fluorescence spectrometry (XRF) and glow discharge optical emission spectrometry (GDOES). On the other hand, the corrosion behaviour of tin-zinc alloy electroplated coatings on steel has been investigated using electrochemical methods in a 3 wt.% NaCl solution and the salt spray test. The performance of the deposits was compared with cadmium and zinc-nickel electrodeposited coatings. The results show that the corrosion resistance of tin-20 wt.% zinc alloy coating is superior to that of cadmium and zinc-12 wt.% nickel coatings. Finally, sliding friction tests were conducted.

  15. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Sikora, R.F.

    1994-01-01

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identified within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am -1 needed to produce the 400 nT low observed at the surface

  16. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients.

    Science.gov (United States)

    Segers, H; Kersseboom, R; Alders, M; Pieters, R; Wagner, A; van den Heuvel-Eibrink, M M

    2012-11-01

    In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic abnormalities. Thus, the absence of phenotypic abnormalities does not exclude the presence of a genetic predisposition, suggesting that more Wilms tumour patients may have a constitutional abnormality. Therefore, we investigated the frequency of constitutional aberrations in combination with phenotype. Clinical genetic assessment, as well as molecular analysis of WT1 and locus 11p15 was offered to a single-centre cohort of 109 childhood Wilms tumour patients. Twelve patients (11%) had a WT1 aberration and eight patients (8%) had an 11p15 aberration. Of the 12 patients with a WT1 aberration, four had WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations and mental retardation), one had Denys-Drash syndrome, four had genitourinary anomalies without other syndromic features and three had bilateral disease with stromal-predominant histology at young age without congenital anomalies. Of the eight patients with an 11p15 aberration, four had Beckwith-Wiedemann syndrome (BWS), two had minor features of BWS and two had no stigmata of BWS or hemihypertrophy. Constitutional WT1 or 11p15 aberrations are frequent in Wilms tumour patients and careful clinical assessment can identify the majority of these patients. Therefore, we would recommend offering clinical genetic counselling to all Wilms tumour patients, as well as molecular analysis to patients with clinical signs of a syndrome or with features that may indicate a constitutional WT1 or 11p15 aberration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of concomitant temozolomide and radiation therapies on WT1-specific T-cells in malignant glioma

    International Nuclear Information System (INIS)

    Chiba, Yasuyoshi; Hashimoto, Naoya; Tsuboi, Akihiro

    2010-01-01

    Immunotherapy targeting the Wilms' tumour 1 gene product has been proven safe and effective for treating malignant glioma in a phase II clinical study. Currently, radiation/temozolomide therapy is the standard treatment with only modest benefit. Whether combining radiation/temozolomide therapy with WT1 immunotherapy will have a negating effect on immunotherapy is still controversial because of the significant lymphocytopaenia induced by the former therapy. To address this issue, we investigated the changes in frequency and number of WT1-specific T-cells in patients with malignant gliomas. Twenty-two patients with newly diagnosed malignant glioma who received standard radiation/temozolomide therapy were recruited for the study. Blood samples were collected before treatment and on the sixth week of therapy. The frequencies and numbers of lymphocytes, CD8 + T-cells, WT1-specific T-cells, regulatory T-cells, natural killer cells and natural killer T-cells were measured and analysed using T-tests. Analysis of the frequency of T lymphocytes and its subpopulation showed an increase in regulatory T-cells, but no significant change was noted in the populations of T-cells, WT1-specific T-cells, natural killer (NK) cells and natural killer T (NKT) cells. Reductions in the total numbers of T-cells, WT1-specific T-cells, NK cells and NKT cells were mainly a consequence of the decrease in the total lymphocyte count. Radiation/temozolomide therapy did not significantly affect the frequency of WT1-specific T-cells, suggesting that the combination with WT1 immunotherapy may be possible, although further assessment in the clinical setting is warranted. (author)

  18. Characterization of laser welds in Al-10 wt.%Si coated ferritic stainless steel

    International Nuclear Information System (INIS)

    Kong, Jong Pan; Park, Tae Jun; Kim, Jeong Kil; Uhm, Sang Ho; Woo, In Su; Lee, Jong Sub; Park, Bong Gyu; Kang, Chung Yun

    2011-01-01

    409L stainless steel hot-dipped with Al-10 wt.%Si was welded using CO 2 laser and the microstructure and hardness of the weld were investigated. When the specimen was welded with laser power of 5 kW and welding speed of 5 m/min, full-penetrated sound weld was obtained. With that specimen, the relationship between the microstructure and hardness of the weld was examined. The hardness of the weld was the highest in the fusion zone (FZ) and decreased to the base metal (BM) via heat affected zone (HAZ). The hardness of the HAZ near bond line was also higher than that near the base metal. The maximum hardness in the fusion zone could be explained by the existence of the precipitates, that is, TiN, Ti(C,N), Al 2 O 3 and Al 2 O 3 + TiN mixed compounds with the size of 500 nm, and solution strengthening due to the elements Al and Si dissolved from the coating layer to the fusion zone. There were subgrains within the HAZ and more in the area near the bond line. In addition, fine TiC particles with the size under 50 nm was precipitated in the sub-grain boundaries. The formation of sub-grain boundaries and the particles precipitated in the boundaries might contributed to the high hardness in the HAZ.

  19. Hydride redistribution and crack growth in Zr-2.5 wt.% Nb stressed in torsion

    International Nuclear Information System (INIS)

    Puls, M.P.; Rogowski, A.J.

    1980-11-01

    The effect of applied shear stresses on zirconium hydride solubility in a zirconium alloy was investigated. Recent studies have shown that zirconium hydride precipiates probably nucleate and grow by means of a shear transformation mechanism. It is postulated that these transformation shear strains can interact with applied shear stress gradients in the same way that the dilatational strains can interact with a dilatational stress gradient, providing a driving force for hydride accumulation, hydride embrittlement and crack propagation. To test this proposition, crack growth experiments were carried out under torsional loading conditions on hydrided, round notched bar specimens of cold-worked Zr-2.5 wt.% Nb cut from Pickering-type pressure tube material. Postmortem metallographic examination of the hydride distribution in these samples showed that, in many cases, the hydrides appeared to have reoriented in response to the applied shear stress and that hydride accumulation at the notch tip had occurred. However, except in a few cases, the rate of accumulation of reoriented hydrides at the notch tip due to applied shear stresses was much less than the rate due to corresponding applied uniaxial stresss. Moreover, the process in shear appears to be more sensitive to the inital hydride size. Attempts to elucidate the fracture mechanism by fractographic examination using scanning and replica transmission electron microscopy proved to be inconclusive because of smearing of the fracture face. (auth)

  20. Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system

    Science.gov (United States)

    Li, Hua-bing; Jiang, Zhou-hua; Feng, Hao; Zhu, Hong-chun; Sun, Bin-han; Li, Zhen

    2013-09-01

    The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400-900°C. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.

  1. Development of rolled joints for zirconium-2.5 wt % niobium pressure tubes

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sinha, R.K.; Samuel, K.A.; Joeman, V.

    1992-01-01

    Due to its higher strength and lower deuterium pick-up rate, as compared to the existing cold worked zircaloy-2 material, cold worked zirconium-2.5 wt% niobium (Zr-2.5%Nb) alloy is to be used as the pressure tube material in all forthcoming Indian PHWRs starting with KAPP-2. These pressure tubes, which carry the fuel bundles are to be joined to the S.S 403 end-fittings through rolled joints. Since the new pressure tubes have a lower wall thickness and higher room temperature yield stress, than zircaloy-2 tubes the design parameters of the rolled joint had to be developed afresh. Further, since Zr-2.5%Nb is susceptible to delayed hydride cracking, it is necessary to limit the residual stress near the rolled joint to a minimum. Since the high residual stress is due to the initial assembly clearance between the pressure tube and end-fitting, a modified rolled joint had to be developed, referred to as zero clearance rolled joint. This paper provides details of the work carried out at Reactor Engineering Division of Bhabha Atomic Research Centre, Bombay towards the development of the design of the rolled joint as well as the tooling and procedures required for achieving zero-clearance fit-ups at site. The requirements to be met by the Zr-2.5% Nb pressure tubes for achieving acceptable rolled joints are highlighted. (author). 5 refs., 6 figs., 3 tabs

  2. In-reactor creep of zirconium-2.5 wt% niobium at 570 K

    International Nuclear Information System (INIS)

    Coleman, C.E.; Causey, A.R.; Fidleris, V.

    1976-01-01

    The effect of fast neutron flux at 570 K on the creep rate of specimens of zirconium-2.5 wt% niobium alloy taken from tubes in various metallurgical conditions has been measured using both constant load tensile creep machines and bent-beam stress relaxation. Creep rates calculated from stress relaxation fit on the trend line for the constant load creep data. Between 114 MPa and 450 MPa the creep rate is proportional to neutron flux. The creep rate of specimens from the longitudinal direction is about twice that of specimens from the circumferential direction of a tube. This anisotropy in creep strength is attributed partly to crystallographic texture and partly to deformation substructure. Cold-work is detrimental to in-reactor creep strength; as-extruded material has higher creep strength. In cold-worked material at stresses below 100 MPa the stress exponent, n, is about 1; n gradually increases with stress being about 10 at 525 MPa and about 100 at 660 MPa. In laboratory tests, rupture ductility correlates inversely with n; the lower n the higher the ductility. In-reactor tests support this correlation thus pressure tubes in CANDU reactors, operating at 117 MPa where n approximately 1, should have good ductility. (Auth.)

  3. Influence of microstructure on the mechanical properties of a Zr-4.6 wt.% Al alloy

    International Nuclear Information System (INIS)

    Raman, V.; Mukhopadhyay, P.; Banerjee, S.

    1978-01-01

    The influence of microstructure on the room temperature mechanical properties of a Zr-4.6 wt.% Al alloy was investigated. Quenching from the beta phase produced a significant solid solution hardening. On aging the alloy at low temperatures for short periods aluminium rejection from the solid solution occurred and a fine dispersion of a metastable Zr 3 Al phase (DO 19 structure) formed. The strengthening caused by the presence of these ordered particles was found to more than compensate the softening brought about by decreasing supersaturation. The high strength corresponding to this structure could be explained in terms of the contributions from the coherency strains associated with and the state of order within the metastable particles. Aging at these temperatures for longer periods or at higher temperatures gave rise to a lamellar distribution of the α-zirconium (aluminium) and the equilibrium Zr 3 Al (Ll 2 structure) phases. The strength associated with this lamellar structure was found to be appreciably lower and to be strongly dependent on the interlamellar spacing. Investigations of the fracture surfaces showed that the modes of fracture associated with these different microstructures were different. An attempt was made to rationalize the observed strength properties in terms of existing theoretical models. (Auth.)

  4. Nb46, 5wt% Ti Eb-melting for AC and DC superconducting applications

    International Nuclear Information System (INIS)

    Bormio, C.; Ramos, M.J.; Pinatti, D.G.

    1990-01-01

    This paper reports on the superconductor alloy Nb46, 5wt % Ti which presents the best superconducting and mechanical properties for the systems Nb-Ti. The greatest difficulty in obtaining this alloy is related to the difference between the raw materials melting temperatures, which is about 700 degrees C. As a result the alloy homogeneity as well as Ti desired content, turn to be hard to control. The authors choose an electrode sandwich type, where Nb and Ti sheets are interposed. The electrode dimensions calculation is based on the Ti evaporation rate, energy balance and superficial tension of liquid titanium between Nb sheets. The ingots were electron beam melted. Herein, we present the following ingot results: Ti, intersticial and trace contents compared to international manufactures as well as its mechanical workability. This alloy will be used in NbTi wire production for AC and DC applications. The AC and DC wires are produced by coswaging and codrawing of NbTi bars and C u Ni-tubes for AC wires and Cu-tubes for DC wires. High area reductions of about 2 x 10 8 are reached without intermediate heat treatment, and they are essential since they are precursors of collective pinning centers, responsible for high critical current densities

  5. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  6. Characterization of dispersion strengthened copper with 3wt%Al2O3 by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rajković Višeslava

    2004-01-01

    Full Text Available The copper matrix has been dispersion strengthened with 3wt.%Al2O3 by mechanical alloying. Commercial alumina powder with an average particle size of 0.75mm was used for alloying. The mechanical alloying process was performed in a planetary ball mill up to 20h in air. After milling all powders were treated in H2 at 4000C for 1h, and finally hot pressing was used for compaction (800oC, 3h, Ar. Structure observations revealed a lamellar structure (Al2O3 particles largely restricted to interlamellar planes between adjacent copper lamellae accompanied also by structure refinement. These structural changes were mostly completed in the early stage of milling, and retained after compaction. Micro hardness was found to progressively increase with milling time. So, after 5h of milling the micro hardness of the Cu+3twt%Al2O3 compact was 1540MPa, i.e. 2.5 times greater than for the as-received electrolytic copper powder (638MPa compacted under identical conditions, while after 20h of milling it was 2370 MPa. However after exposing the tested compact at 800oC up to 5h, the achieved hardening effect vanished.

  7. Porous anodic film formation on an Al-3.5 wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M.A.; Bustos, O.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Wood, G.C.

    2000-03-01

    Anodic film growth has been undertaken on an electropolished Al-3.5 wt % Cu alloy to determine the influence of copper in solid solution on the anodizing behavior. At the commencement of anodizing of the electropolished alloy, in the presence of interfacial enrichment of copper, Al{sup 3+} and Cu{sup 2+} ions egress and O{sup 2{minus}} ion ingress proceed; film growth occurs at the alloy/film interface though O{sup 2{minus}} ion ingress, with outwardly mobile Al{sup 3+} and Cu{sup 2+} ions ejected at the film/electrolyte interface, and field-assisted dissolution proceeding at the bases of pores. Oxidation of copper, in the presence of the enriched layer, is also associated with O{sub 2} gas generation, leading to development of oxygen-filled voids. As a result of significant pressures in the voids, film rupture proceeds, with electrolyte access to the alloy, dissolution of the enriched interfacial layer and re-anodizing. The consequence of such processes in the development of anodic films of increased porosity and reduced efficiency of film formation compared with anodizing of superpure aluminum under similar conditions.

  8. The coarsening process of Ge precipitates in an Al-4 wt.% Ge alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H

    2004-05-01

    In this paper the results of a quantitative transmission electron microscopy (TEM) investigation of the precipitation process of Ge in an Al-4 wt.% Ge alloy are described. Two crystallographic orientation relationships between the irregular germanium precipitate and aluminum matrix were found to be [1 0 0]{sub Ge} || [1 1 0]{sub Al} and [1 1 4]{sub Ge} || [1 0 0]{sub Al}. The irregular germanium precipitates formed on [0 0 1]{sub Al} habit planes. The origin of the irregular shape is due to the existence of a highly anisotropic interfacial energy as well as in an isotropic growth rate along <1 1 0>{sub A1} directions. Particles sizes were determined for variety of isothermal ageing times at 348, 423 and 523 K. The coarsening of the different morphologies of Ge precipitates was found to obey Ostwald ripening kinetics. The TEM results showed that the coarsening of irregular particles was due to the interfacial coalescence between these particles. Nine different morphologies have been distinguished in the form of (i) irregular particles, (ii) spheres, (iii) hexagonal plates, (iv) rods, (v) triangular plates, (vi) laths, (vii) small tetrahedra, (viii) rectangular plates, and (ix) Lamellae shape.

  9. Air pollution control systems in WtE units: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu

    2015-03-15

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.

  10. Hydrogen absorption kinetics in powdered V + 80 wt.% LaNi5 composite

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Tirpude, Amit; Taxak, Manju; Krishnamurthy, Nagaiyar

    2013-01-01

    Highlights: •Vanadium prevents the pulverization of LaNi 5 . •H absorption capacity LaNi 5 –V composite is higher than LaNi 5 . •H absorption kinetics of LaNi 5 –V composite is relatively faster than V and LaNi 5 . •Fermi energy level of LaNi 5 –V composite lowered by vanadium addition. -- Abstract: The hydrogen absorption behavior of V + 80 wt.% LaNi 5 composite, LaNi 5 and V has been investigated. The LaNi 5 –V composite was prepared by high energy ball-milling technique using high pure vanadium and LaNi 5 powder. Lattice expansion of the composite has been observed in X-ray analysis which indicates the solid solution formation. Presence of free V and traces of V 2 O 5 phase were also observed in the composite. The hydrogen absorption capacity and absorption kinetics of the composite showed improvement as compared to LaNi 5 . The improved kinetics of the composite has been co-related to the change in lattices parameter, Fermi energy level and catalytic property of vanadium. Integrity of the composite has found to be effective even after 20 numbers of hydriding and dehydriding cycles due to the presence of vanadium

  11. Microstructure and mechanical properties of an extruded Mg-8Bi-1Al-1Zn (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Shuaiju [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Yu, Hui, E-mail: yuhuidavid@gmail.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of); Zhang, Huixing [Mechanical and Material School, Tianjin Sino-German University of Applied Sciences, Tianjin 300350 (China); Cui, Hongwei [School of Materials Science and Engineering, Shangdong University of Technology, Zibo 255049 (China); Park, Sung Hyuk [School of Materials Science and Engineering, Kyungpook National University, Daegu 702701 (Korea, Republic of); Zhao, Weiming [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); You, Bong Sun [Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of)

    2017-04-06

    In this study, the microstructural evolution and mechanical properties of a newly developed rare earth free Mg-8Bi-1Al-1Zn (BAZ811, in wt%) alloy were investigated and compared with those of a commercial AZ31 alloy. The as-extruded BAZ811 alloy with much finer grain size shows more homogeneous dynamical recrystallized (DRXed) microstructure and weaker basal texture than those of AZ31 alloy. In addition, compared with bimodal structure AZ31 alloy containing only relatively coarse and sparse Al{sub 8}Mn{sub 5} phases, the coexistence of strip-like fragmented Mg{sub 3}Bi{sub 2} precipitate and nano-size Mg{sub 3}Bi{sub 2} particles in the microstructure was observed in BAZ811 alloy. Moreover, the BAZ811 alloy exhibits a tensile yield stress of 291 MPa, an ultimate tensile strength of 331 MPa, an elongation to failure of 14.6% as well as a reduction in yield asymmetry, which is mainly attributed to the combined effects of grain refinement and micro-scale broken Mg{sub 3}Bi{sub 2} particles together with nano-scale spherical Mg{sub 3}Bi{sub 2} precipitates. The strain hardening behavior of both BAZ811 and AZ31 alloys were also discussed in terms of microstructure variation.

  12. Thermal treatment of solid residues from WtE units: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Daniel, E-mail: daniel.lindberg@abo.fi; Molin, Camilla, E-mail: camilla.molin@abo.fi; Hupa, Mikko, E-mail: mikko.hupa@abo.fi

    2015-03-15

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field.

  13. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R. [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); Buesch, C. [Oregon State University, 1500 SW Jefferson St., Corvallis, OR 97331 (United States); Keiser, D.D.; Williams, W.; Miller, B.D.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-07-15

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program. - Highlights: • Automated image processing is used to extract fission gas bubble data from irradiated U−Mo fuel samples. • Verification and validation tests are performed to ensure the algorithm's accuracy. • Fission bubble parameters are predictably difficult to compare across samples of varying compositions. • The 2-D results suggest the need for more homogenized fuel sampling in future studies. • The results also demonstrate the value of 3-D reconstruction techniques.

  14. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Thermal treatment of solid residues from WtE units: A review

    International Nuclear Information System (INIS)

    Lindberg, Daniel; Molin, Camilla; Hupa, Mikko

    2015-01-01

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field

  16. Precipitation under cyclic strain in solution-treated Al4wt%Cu I: mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, Adam M [Los Alamos National Laboratory; Laird, Campbell [UNIV OF PENNSYLVANIA

    2008-01-01

    Solution-treated AL-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviors investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of a continually refreshed dislocation density to provide heterogeneous nucleation sites. Texture effects as characterized by Orientation Imaging Microscopy appear to be responsible for latent hardening in specimens tested at room temperature, with increasing temperatures leading to a gradual hardening throughout life due to precipitation. Specimens exhibiting rapid precipitation hardening appear to show a greater effect of texture due to the increased stress required to cut precipitates in specimens machined from rolled plate at an angle corresponding to a lower average Schmid factor. The accelerated formation of grain boundary precipitates appears to be partially responsible for rapid inter-granular fatigue failure at elevated temperatures, producing fatigue striations and ductile dimples coexistent on the fracture surface.

  17. Air pollution control systems in WtE units: An overview

    International Nuclear Information System (INIS)

    Vehlow, J.

    2015-01-01

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made

  18. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  19. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    Science.gov (United States)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  20. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  1. Differential evolution of a CXCR4-using HIV-1 strain in CCR5wt/wt and CCR5∆32/∆32 hosts revealed by longitudinal deep sequencing and phylogenetic reconstruction.

    Science.gov (United States)

    Le, Anh Q; Taylor, Jeremy; Dong, Winnie; McCloskey, Rosemary; Woods, Conan; Danroth, Ryan; Hayashi, Kanna; Milloy, M-J; Poon, Art F Y; Brumme, Zabrina L

    2015-12-03

    Rare individuals homozygous for a naturally-occurring 32 base pair deletion in the CCR5 gene (CCR5∆32/∆32) are resistant to infection by CCR5-using ("R5") HIV-1 strains but remain susceptible to less common CXCR4-using ("X4") strains. The evolutionary dynamics of X4 infections however, remain incompletely understood. We identified two individuals, one CCR5wt/wt and one CCR5∆32/∆32, within the Vancouver Injection Drug Users Study who were infected with a genetically similar X4 HIV-1 strain. While early-stage plasma viral loads were comparable in the two individuals (~4.5-5 log10 HIV-1 RNA copies/ml), CD4 counts in the CCR5wt/wt individual reached a nadir of 250 cells/mm(3) in the CCR5∆32/∆32 individual. Ancestral phylogenetic reconstructions using longitudinal envelope-V3 deep sequences suggested that both individuals were infected by a single transmitted/founder (T/F) X4 virus that differed at only one V3 site (codon 24). While substantial within-host HIV-1 V3 diversification was observed in plasma and PBMC in both individuals, the CCR5wt/wt individual's HIV-1 population gradually reverted from 100% X4 to ~60% R5 over ~4 years whereas the CCR5∆32/∆32 individual's remained consistently X4. Our observations illuminate early dynamics of X4 HIV-1 infections and underscore the influence of CCR5 genotype on HIV-1 V3 evolution.

  2. Corrosion behavior of Mg–5Al based magnesium alloy with 1 wt.% Sn, Mn and Zn additions in 3.5 wt.% NaCl solution

    Directory of Open Access Journals (Sweden)

    Nguyen Dang Nam

    2014-06-01

    Full Text Available The corrosion properties of four Mg–5Al alloys with M-alloying elements (tin, manganese and zinc in a 3.5 wt.% NaCl solution were examined using electrochemical tests and surface analyses. The electrochemical results indicated that the addition of 1 wt.% M metal decreased the corrosion rate and hydrogen evolution rate of the Mg–5Al specimens. Moreover, the addition of 1Zn resulted in having the best corrosion resistance due to the interaction of Zn oxide with Mg and Al oxides which acted as a corrosion barrier.

  3. Effect of iron addition on the work-hardening characteristics of Al-16 wt%Ag alloy

    International Nuclear Information System (INIS)

    Abd El-Salam, F.; Mahmoud, M.A.; Abd El-Khalek, A.M.; Nada, R.H.

    2002-01-01

    The effect of pre-aging time (up to 120 min) and temperatures (428-498 K) on the stress-strain characteristics of Al-16 wt%Ag and Al-16 wt%Ag-0.28 wt%Fe alloys was investigated at different deformation temperatures in the range 353-413 K. The tensile parameters measured for both alloys showed general increase with increasing pre-aging time at 428 and 458 K, while the samples pre-aged at 498 K showed initial softening up to pre-aging time of 60 min followed by increased hardening for longer pre-aging times. The Fe-free samples were generally harder than the ternary samples. The activation energy of the fracture mechanism in both alloys was around 28 kJ/mol

  4. Microstructural study on gamma phase stability in U-9 wt% Mo alloy system

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Hussain, M.M.; Singh, R.P.; Neogy, S.; Srivastava, D.; Dey, G.K.

    2009-01-01

    Uranium exists in three polymorphic forms viz., orthorhombic α phase - stable up to 667 deg C, tetragonal β phase - stable between 667 deg C and 771 deg C and bcc γ phase - stable above 771 deg C. When alloying of uranium is done, the alloying additions alter the temperature ranges over which the α, β and γ phases are stable. In addition, they frequently retard the rates at which phase transformations occur. As a result, a number of metastable phases can be obtained in uranium alloys. It has been well known among reactor designers that a pure uranium metal is not suitable for power reactor fuel mainly because of (i) phase changes occurring at lower temperatures and (ii) poor irradiation behavior of α phase. γ phase uranium alloys containing small amount of another metal to stabilize the γ-U solid solution provides good prospects in this respect. U-Mo alloy is one of the prospective materials for low enrichment uranium fuel with high U loading because a solid solution of Mo in the γ-U phase possesses acceptable irradiation and mechanical properties and is formed over a wide range of Mo concentration. In the present work vacuum induction melted and cast U-9 wt% Mo alloy was subjected to different thermo mechanical processing to investigate the stability of the γ phase. The as cast alloy was rolled at 550 deg C and then homogenized at 1000 deg C in the γ phase field for 24 hours followed by (i) water quenching and (ii) furnace cooling to generate two different starting conditions. Two of the water-quenched samples were aged at 500 deg C for 5 days and 14 days and one as-rolled sample was aged at 500 deg C for 5 days. The as-cast, as-rolled, homogenized and aged samples were subjected to optical microscopy and X-ray Diffraction (XRD) investigations. All the samples were also subjected to microhardness measurements. The as cast sample contained predominantly the gamma phase along with inclusions. After homogenizing the alloy at 1000 deg C and quenching in

  5. Modification and aging precipitation behavior of hypereutectic Al-21wt.%Si alloy treated by P+Ce combination

    Directory of Open Access Journals (Sweden)

    Liu Pei

    2014-11-01

    Full Text Available In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as Al4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃.

  6. Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    2015-07-15

    Tensile behaviors of strip casting 6.5 wt% Si steel are tested at elevated temperatures ranging from 300 °C to 800 °C. A detailed study of the morphology of the fracture surface and the ordered phase at each deforming temperature is carried out by a scanning electron microscope and a transmission electron microscope. The results show that the deforming temperature rather than the ordered degree determines the tensile properties. As the deforming temperature increases, the stress level in the whole deforming stage continually decreases, whereas the elongation gradually increases. The ductile–brittle transition occurs around 350 °C. The elongation of 2% at 300 °C rapidly increases up to 16.4% at 350 °C and the corresponding fracture mode transforms from the complete cleavage fracture to the mixture of the very limited cleavage fracture, intergranular dimple fracture and the dimple fracture. Serrated flow is observed at 350 °C and 400 °C probably due to the occurrence of dynamic strain aging. Due to the gradually weakened grain boundary cohesion with the deforming temperature increasing, intergranular dimple pattern dominates the fracture surface at 600 °C and the elongation slowly increases from 16.4% at 350 °C to 22.8% at 600 °C. At 700 °C and 800 °C, the much more enhanced dynamic recovery, the substantially decreased stress levels which contribute to the inhibition of the intergranular dimple fracture, the much lower content of the B2 ordered phase at 700 °C, and the completely disordered state at 800 °C give rise to the dramatically improved elongations of 88.8% and 130.8%, respectively.

  7. Theory and practice of corrosion related to ashes and deposits in a WtE boiler.

    Science.gov (United States)

    Verbinnen, Bram; De Greef, Johan; Van Caneghem, Jo

    2018-03-01

    Corrosion of heat-exchanging components is one of the main operational problems in Waste-to-Energy plants, limiting the electrical efficiency that can be reached. Corrosion is mainly related to the devolatilization and/or formation of chlorides, sulphates and mixtures thereof on the heat-exchanging surfaces. Theoretical considerations on this corrosion were already put forward in literature, but this paper now for the first time combines theory with a large scale sampling campaign of several Waste-to-Energy plants. Based on the outcome of elemental and mineralogical analysis, the distribution of Cl and S in ashes sampled throughout the plant during normal operation is explained. Cl concentrations are high (15-20%) in the first empty pass, decrease in the second and third empty pass, but increase again in the convective part, whereas the S concentrations show an inverse behavior, with the highest concentrations (30%) observed in the second and third empty pass. Sampling of deposits on specific places where corrosion possibly occurred, gives a better insight in the mechanisms related to corrosion phenomena in real-scale WtE plants and provides practical evidence for some phenomena that were only assumed on the basis of theory or lab scale experiments before. More specific, it confirms the role of oxygen content, temperatures in the different stages of the boiler, the presence of polysulphates, Pb and Zb, and the concentrations of HCl and SO 2 in the flue gas for different types of boiler corrosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. WT-BIRD. Bird collision monitoring system for multi-megawatt wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wiggelinkhuizen, E.J.; Rademakers, L.W.M.M.; Barhorst, S.A.M. [ECN Wind Energy, Petten (Netherlands); Den Boon, H.J. [E-Connection Project, Bunnik (Netherlands); Dirksen, S. [Bureau Waardenburg, Culemborg (Netherlands)

    2007-05-15

    A new method for detection and registration of bird collisions has been developed that is suitable for continuous remote operation in both onshore and offshore wind farms. The characteristic sound of a collision is detected by sensors in the blades, which triggers the storage of video registrations and sends an alert message to the operator. A prototype has been tested successfully on a Nordex N80/2.5MW turbine at ECN's Wind turbine Test park Wieringermeer. Compared to other methods employed so far this monitoring system will reduce the uncertainty in the number of birds killed by collisions with wind turbines. Further, the system enables the operator to identify species and to study the collision mechanisms. It has been found that this system can also be used for monitoring of other events in order to save costs for inspection and repair after incidents. For offshore wind farms, the WT-Bird system is currently the only alternative to count the number of bird collisions. Functional tests with tennis balls that were shot against rotating blades showed that the majority of the impacts were detected. The flight track of these dummies and the collision events were clearly visible on the video registrations. During the monitoring period of about one year two bird collisions were detected. The video recordings confirmed that a collision took place and showed that the location of both collisions was near the blade root, which resulted that in both cases the bird was not (immediately) killed. Therefore no corpses could be found beneath the turbine after these events. Also during the rest of the monitoring period no corpses were found beneath the turbine.

  9. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    International Nuclear Information System (INIS)

    Moumeni, Hayet; Nemamcha, Abderrafik; Alleg, Safia; Grenèche, Jean Marc

    2013-01-01

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B 1 = 35.0 T and B 2 = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field

  10. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Laboratoire de Chimie Computationnelle et Nanostructures, Département des Sciences de la Matière, Faculté des Mathématiques et de l' Informatique et des Sciences de la Matière, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Nemamcha, Abderrafik [Laboratoire d' Analyses Industrielles et Génie des Matériaux, Faculté des Sciences et de la Technologie, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, Annaba 23000 (Algeria); Grenèche, Jean Marc [Laboratoire de Physique de l' Etat Condensé, UMR CNRS 6087, Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels IRIM2F, FR CNRS 2575, Université du Maine, 72085 Le Mans Cedex 9 (France)

    2013-02-15

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B{sub 1} = 35.0 T and B{sub 2} = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field.

  11. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy

    International Nuclear Information System (INIS)

    Siquieri, R; Emmerich, H; Doernberg, E; Schmid-Fetzer, R

    2009-01-01

    In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al 3 Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.

  12. Prompt neutron decay constant for the Oak Ridge Research Reactor with 20 wt % 235U enriched fuel

    International Nuclear Information System (INIS)

    Ragan, G.E.; Mihalczo, J.T.

    1986-01-01

    This paper describes measurements of the prompt neutron decay constant at delayed criticality for the Oak Ridge Research Reactor (ORR) using 20 wt % 235 U enriched fuel and compares these measurements with similar measurements using 93.2 wt % 235 U enriched fuel. This reactor parameter is of interest because it affects the transient behavior of the reactor in prompt criticality accident situations. This experiment is part of a program to investigate the differences in the performance of research reactors fueled with highly enriched and low enriched uranium. The prompt neutron decay constants were obtained using noise analysis measurement techniques for a core with newly fabricated, unirradiated fuel elements

  13. Isolation World

    OpenAIRE

    Núñez Martín, Eugeni

    2012-01-01

    El trabajo de fin de grado tiene como nombre “Isolation World”, que en su traducción literal significa “Aislamiento del mundo”, un videojuego diseñado y creado desde cero en su totalidad, utilizando herramientas y conocimiento de lógica en programación que se han ido aprendiendo y desarrollando a lo largo de la carrera.

  14. Influence of ZnO nano-particles addition on thermal analysis, microstructure evolution and tensile behavior of Sn–5.0 wt% Sb–0.5 wt% Cu lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.N., E-mail: alynabieh@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, 41522 Ismailia (Egypt); Eid, E.A., E-mail: dr_eid_hti@yahoo.com [Basic Science Department, Higher Technological Institute, 44629 10th of Ramadan City (Egypt)

    2015-04-24

    Sn–5 wt%Sb–0.5 wt%Cu (plain SSC505) and Sn–5 wt%Sb–0.5 wt%Cu–0.5 wt% ZnO (SSC-ZnO) composite solder alloys have been studied. The variation in thermal behavior, microstructure and tensile characteristics associated with mixing of 0.5 wt% ZnO nano-metric particles to plain SSC505 solder were investigated. A slight increment in the melting temperature [ΔT{sub m}=0.89 °C] was recorded using differential scanning calorimetry (DSC) after addition of ZnO. X-Ray diffraction (XRD) analysis confirmed the existence of β-Sn, SbSn and Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) beside some of ZnO planes in SSC-ZnO composite solder. Field emission scanning electronic microscope (FE-SEM) investigation of SSC-ZnO composite solder revealed a homogenous uniform distribution, size refinement of IMCs and β-Sn grains. Addition of ZnO nano-metric particles into the plain SSC505 enhanced the yield stress σ{sub YS} by ~12% and improved the ultimate tensile strength σ{sub UTS} by ~13%. In addition, adding ZnO nano-metric particles was found to be effective for reducing ductility by ~43% of the plain solder due to the refinement of β-Sn grains within SSC-ZnO composite solder. - Highlights: • Melting point of SSC505-ZnO composite solder is slightly increased by 0.89 {sup ο}C compared with the plain SSC505 solder. • XRD and EDX analysis reflect the presence of SbSn, Cu{sub 6}Sn{sub 5} IMCs. • EF-SEM images of SSC-ZnO composite solder revealed homogenous uniform distribution of β-Sn grains and fine IMC particles. • A detectable improvement in the Young modulus, ultimate tensile strength and yield strength were observed after addition of 0.5 wt% ZnO nano-metric particles.

  15. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  16. Effect of Reinforcement Content and Technological Parameters on the Properties of Cu-4 wt.% Ni-TiC Composites

    Science.gov (United States)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh

    2017-10-01

    The present study deals with the synthesis and investigation of microstructure, density, and hardness behavior of Cu-4 wt.% Ni-TiC metal matrix composites, produced by high-energy ball milling, followed by compaction and sintering. Matrix of Cu-4 wt.% Ni was used, and different weight percentages (0, 2, 4, 6, and 8) of TiC particles were added. The uniform distribution of TiC particles in the matrix alloy was confirmed by characterizing these composite powders by using scanning electron microscope, energy-dispersive spectroscopy, and x-ray diffraction. Both the density and the hardness of the composite containing 4 wt.% TiC were found to be the highest. The density was found to decrease with increasing TiC content beyond 4 wt.%, and it has been attributed to the agglomeration of TiC particles leading to the formation of pores when added in relatively larger amounts. The compressibility behaviors of the milled powders were studied by using Panelli and Ambrosio Filho equation.

  17. On the underlying micromechanisms in time-dependent anelasticity in Al-(1 wt%)Cu thin films

    NARCIS (Netherlands)

    Bergers, L.I.J.C.; Hoefnagels, J.P.M.; Geers, M.G.D.

    2017-01-01

    This paper reveals potential micro mechanisms underlying time-dependent anelasticity observed in Al-(1 wt%)Cu thin films. The analyzed deformation mechanisms involve dislocation motion and interaction with solute diffusion, grain boundaries and precipitates. In order to investigate the role of these

  18. Influence of high-energy ion implantation on the microstructure of Sn - 9,8 wt. % Zn alloy

    International Nuclear Information System (INIS)

    Gusakova, O.V.

    2016-01-01

    The results of investigation of influence of Xe ion implantation on the microstructure of Sn - 9,8 wt. % Zn alloy are represented/ Analysis of the experimental results shows that the high-energy ion implantation of Xe causes a change in the particle size of zinc. (authors)

  19. Correlation study on waist circumference-triglyceride (WT) index and coronary artery scores in patients with coronary heart disease.

    Science.gov (United States)

    Yang, R-F; Liu, X-Y; Lin, Z; Zhang, G

    2015-01-01

    Coronary disease is analyzed through common lipid profiles, but these analyses fail to account for residual risk due to abdominal weight and elevated TG levels. We aimed to investigate the relationship between the waist circumference × triglyceride index (WT index) and the Coronary Artery Score (CAS) in patients with coronary heart disease. 346 patients in our Cardiology Department were recruited from September 2007 to August 2011 and divided into two groups according to whether the patients presented with metabolic syndrome. We performed coronary angiography using the standard Judkins method. The severity of coronary artery stenosis and the CAS were calculated and analyzed with a computerized quantitative analysis system. The signs index, which includes the body mass index (BMI), waist circumference, hip circumference, waist-hip-ratio, and waist-height-ratio, the blood glucose and blood lipid index of all the patients were collected and used to calculate the WT index (waist circumference x triglyceride index. We performed a correlative analysis with age, gender, body mass index, blood glucose and blood lipid, blood pressure and other risk indicators of all patients as the dependent variables and the CAS as the independent variable. We show that the CAS is positively correlated to the WT index. Several lipid profiles and waist circumference were significantly associated with the CAS. The WT index is correlated to the CAS and is a good predictor for the development of coronary artery disease; it can be applied in the clinic for early intervention in populations at risk for coronary heart disease.

  20. THE EFFECT OF RARE EARTH ELEMENTS ON Cr PRECIPITATIONS IN A Cu-0.8WT%Cr ALLOY

    Directory of Open Access Journals (Sweden)

    Gewang Shuai

    2011-05-01

    Full Text Available The microstructural evolution of Cu-based alloys during aging was studied using a quantitative metallographic method. Samples were cut from ingots of Cu-0.8wt%Cr and Cu-0.8wt%Cr-RE alloys. These were solution treated at 1000 ºC for 1.5h and subsequently quenched in water, then separately aged at 480 ºC for different durations. The microstructures were observed by optical microscope, and the characteristic geometric parameters of precipitated Cr phase, including volume fraction VV, face density NA, mean diameter and roundness, were measured. These data provided more details about the process of aging. The results showed that precipitation of Cr phase occurred in the form of particles during aging. Rare earth elements promoted the precipitation of Cr phase and dispersed Cr particles. The phenomenon of overaging came earlier in Cu-Cr-RE than in Cu-Cr. In the present work, the optimal aging time at 480 ºC was 2 hrs for the Cu-0.8wt%Cr-RE alloy and 3 hours for the Cu-0.8wt%Cr alloy.

  1. 20 CFR 645.215 - What must a WtW operating entity that serves noncustodial parent participants do?

    Science.gov (United States)

    2010-04-01

    ... and children who may be at risk of domestic violence, the operating entity must consult with domestic violence prevention and intervention organizations in the development of its WtW project serving... school, (B) Earning a general equivalency degree, or (C) Participating in other education directly...

  2. Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    Noor Kamal Al-Qazzaz

    2017-06-01

    Full Text Available Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD, 15 stroke-related patients with mild cognitive impairment (MCI, and 15 healthy subjects during a working memory (WM task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA and wavelet transform (WT, that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R (ANOVA, p ˂ 0.05. The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05. Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke

  3. Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions.

    Science.gov (United States)

    Uddin, Md Nasir; Figley, Teresa D; Marrie, Ruth Ann; Figley, Chase R

    2018-03-01

    Given the growing popularity of T 1 -weighted/T 2 -weighted (T 1 w/T 2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T 1 w/T 2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T 2 w image acquisition, and to compare the resulting T 1 w/T 2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T 1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T 2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T 1 w/T 2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T 1 w/T 2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r 2 = 0.62 for all ROIs, r 2 = 0.62 for WM structures and r 2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T 1 w/T 2 w ratios and MWFs were extremely low in WM structures (FSE-based, r 2 = 0.000020; GRASE-based, r 2 = 0.0014), low across all ROIs (FSE-based, r 2 = 0.053; GRASE-based, r 2 = 0.029) and moderate in SGM structures (FSE-based, r 2 = 0.20; GRASE-based, r 2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T 1 w/T 2 w ratios, and low correlations between T 1 w/T 2 w ratios and MWFs. This

  4. Influence of Nb content on grain size and mechanical properties of 18 wt% Cr ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Mao, W.M., E-mail: weiminmao@263.net [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen, Y.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jing, J.; Cheng, M. [Taizhou Xinyu Precision Manufacture Company Limited, Jiangyan 225500, Jiangsu (China)

    2016-11-20

    The influence of Nb contents between 0.20 and 1.20 wt% on the grain size and mechanical properties of 18 wt% Cr ferritic stainless steel produced by investment casting was investigated. The average grain sizes of the three steels decreased apparently with increasing Nb content mainly due to the increasing number of pre-existing oxides formed at higher temperature, which were more likely to be the nuclei of heterogeneous nucleation. The thermodynamic analysis of Nb(C,N) formation was in conformity to the experimental result that the Nb(C,N) precipitates became larger with increasing Nb content. The as-cast specimen with the smallest grain size of steel C had the worse tensile strength and elongation in comparison with the as-cast specimens of steels A and B, mostly owing to the catenarian and dendritic Nb(C,N) particles distributed densely at the grain boundaries. The mechanical properties of specimens were not improved remarkably through high temperature solid-solution, whereas the mechanical properties of normalized specimens in the three steels were improved to different degrees. The coalescence and sparse distribution of smaller precipitates at grain boundaries after normalizing effectively weakened the local stress concentration arising from the reticular distribution of particles. The normalized specimen of steel A with 0.24 wt% Nb still showed good mechanical properties. Normalizing at 850 °C for 2 h is the appropriate heat treatment for the 18 wt% Cr ferritic stainless steel. The comparatively rational Nb content of the ferritic stainless steel is between 0.20 and 0.40 wt% for investment casting production.

  5. Influence of Macro-Topography on Damage Tolerance and Fracture Toughness of 0.1 wt % Multi-Layer Graphene/Clay-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-07-01

    Full Text Available Influence of topographical features on mechanical properties of 0.1 wt % Multi-Layer Graphene (MLG/clay-epoxy nanocomposites has been studied. Three different compositions were made: (1 0.1 wt % MLG-EP; (2 0.1 wt % clay-EP and (3 0.05 wt % MLG-0.05 wt % clay-EP. The objective of making hybrid nanocomposites was to determine whether synergistic effects are prominent at low weight fraction of 0.1 wt % causing an improvement in mechanical properties. The topographical features studied include waviness (Wa, roughness average (Ra, root mean square value (Rq and maximum roughness height (Rmax or Rz. The Rz of as-cast 0.1 wt % MLG-EP, clay-EP and 0.05 wt % MLG-0.05 wt % clay-EP nanocomposites were 43.52, 48.43 and 41.8 µm respectively. A decrease in Rz values was observed by treating the samples with velvet cloth and abrasive paper 1200P while increased by treating with abrasive papers 320P and 60P. A weight loss of up to 16% was observed in samples after the treatment with the abrasive papers. It was observed that MLG is more effective in improving the mechanical properties of epoxy than nanoclay. In addition, no significant improvement in mechanical properties was observed in hybrid nanocomposites indicating that 0.1 wt % is not sufficient to generate conspicuous synergistic effects.

  6. The predominant WT1 isoform (+KTS) encodes a DNA-binding protein targeting the planar cell polarity gene Scribble in renal podocytes.

    Science.gov (United States)

    Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A

    2010-07-01

    WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway.

  7. The predominant WT1 isoform (+KTS) encodes a DNA binding protein targeting the planar cell polarity gene Scribble in renal podocytes

    Science.gov (United States)

    Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.

    2010-01-01

    WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064

  8. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.

    2004-01-01

    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  9. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys

    International Nuclear Information System (INIS)

    Öz, Turan; Karaköse, Ercan; Keskin, Mustafa

    2013-01-01

    Highlights: • Thermal and mechanical properties of Al–Mn–Be alloys were investigated. • IQC Al–Mn–Be alloys were synthesized by the CS and MS techniques. • The volume fraction of IQC increases continuously with Be content. • The melting points of the QC i-phase were determined between 652 °C and 675 °C. • The maximum H V and σ values were found to be 124 kg/mm 2 and 458 MPa with the addition of 5% Be. - Abstract: The influence of beryllium (Be) addition on the quasicrystal-forming ability, thermal and mechanical properties of Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys was investigated in this study. Quasicrystalline Al–Mn–Be alloys were synthesized by the conventionally casting and melt spinning techniques. The microstructures of the samples were characterized by scanning electron microscopy (SEM) and the phase composition was identified by X-ray diffractometry (XRD). The phase transition during the solidification process was studied by differential scanning calorimetry (DSC) and differential thermal analysis (DTA) under an Ar atmosphere. The mechanical properties of the conventionally solidified (CS) and melt-spun (MS) samples were measured by a Vickers micro-hardness indenter and tensile-strength tests. The Al–4.5 wt.%Mn alloy has a hexagonal structure and minor dendritic icosahedral quasicrystalline phase (IQC) precipitates surrounded by an α-Al matrix. Addition of Be into the Al–4.5 wt.%Mn alloy generates intermetallic Be 4 AlMn and IQC phases with the extinction of the hexagonal phase, and the fraction of IQC increases continuously with the increase in Be content. A considerable improvement in microhardness and tensile strength values was observed due to the addition of Be in different percentages into the composition

  10. Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5 wt.% NaCl media

    International Nuclear Information System (INIS)

    Bao, Qi; Zhang, Dun; Lv, Dandan; Wang, Peng

    2012-01-01

    Highlights: ► Extracellular polymeric substances have been isolated from a batch culture of sulphate-reducing bacteria successfully. ► Sulphide and extracellular polymeric substances have triggered distinct electrochemical characteristics. ► ATR-IR analysis has confirmed the Fe 2+ -complexing capability of extracellular polymeric substances. ► In situ AFM results show extracellular polymeric substances can form a densely packed film on Q235 steels. ► The adsorbed extracellular polymeric substances film has protected the Q235 steels to a certain degree. - Abstract: The electrochemical corrosion behaviour of Q235 steels in 3.5 wt.% NaCl solutions with sulphide and extracellular polymeric substances (EPS), the two main metabolites of sulphate-reducing bacteria, was separately investigated through potentiodynamic polarisation and electrochemical impedance spectroscopy. Either sulphide or EPS increased the anodic current density by nearly one order of magnitude and negatively shifted the corrosion potential. The effects of EPS at the initial stage of corrosion may be ascribed to the Fe 2+ -complexing capability and the quickly adsorbed film. Moreover, the feeble protective effect of EPS after 16 d of immersion was observed through scanning electron microscopy.

  11. Compositions of isolated forsterites in Ornans (C3O)

    International Nuclear Information System (INIS)

    Steele, I.M.

    1989-01-01

    Luminescing forsterite with FeO between 0.25 and 2.0 wt% occurs as cores of isolated grains and within an Fe-rich porphyritic chondrule in the Ornans (C3O) carbonaceous chondrite. The color variation of the cathodoluminescence depends on the relative intensity of a red emission caused by Cr and a blue emission most intense when transition metal impurities are at the lowest levels. For Ornans forsterite, the blue emission is quenched by Fe t 0.75 wt% and the red at 2.0 wt%. Compositional profiles from core to rim of five isolated forsterites show details of Al, Ca, Sc, Ti, V, Cr, Mn and Fe zoning with respect to position and cathodoluminescence color. FeO shows normal zoning within the core of the five grains, reaching values of 0.75 wt%, at which point rapid enrichment in FeO occurs, reaching FeO values of 20-30 wt% at the grain edge. Titanium and Al are linearly correlated but show erratic changes within each grain; TiO 2 ranges from 500 to 600 ppmw in the core to 100 ppmw in the rim; Al 2 O 3 varies from 0.6 wt% in the core to below 0.1 wt% in the rim; CaO is near constant at 0.70 wt% within the blue luminescing core and below 0.4 wt% in the rim; Sc 2 O 3 is present in two grains up to 130 ppmw; V 2 O 3 shows 500 ppmw at the core and 100 ppmw at the rim. Evidence is presented for growth of euhedral forsterite either from a liquid or gas, subsequent fracturing, precipitation of Fe-metal, and growth of progressively more Fe-rich rims. Diffusion has affected these grains to give halos around metal and diffuse CL boundaries in some crystallographic directions. Some forsterite grains have been incorporated into an Fe-rich assemblage to form chondrules which retain evidence of their origin in the form of these relic grains

  12. Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.; Clark, Trevor; Roosendaal, Timothy J.; Coffey, Gregory; Shield, Jeffrey E.; Mathaudhu, Suveen N.

    2018-02-01

    Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability to manipulate {001} texture development. Electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.

  13. Effects of strontium on microstructure and mechanical properties of as-cast Mg-5 wt.%Sn alloy

    International Nuclear Information System (INIS)

    Liu, Hongmei; Chen, Yungui; Zhao, Haofeng; Wei, Shanghai; Gao, Wei

    2010-01-01

    The strontium (Sr) addition to the Mg-5 wt.%Sn alloy results in grain refinement and the formation of a rod-shaped and a bone-shaped MgSnSr intermetallic phase which are mainly straddle on the grain boundaries. The yield strength is improved, while the tensile strength and elongation first increased, and then decreased with a large addition of Sr. Optimum mechanical properties at ambient temperature are obtained at a content of 2.14 wt.%Sr. Tensile properties of the alloys at elevated temperatures are also improved, and the decrease of strength at elevated temperature slowed down with increasing Sr addition, indicating that Sr can improve the thermal stability of Mg-Sn alloys.

  14. Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite

    Science.gov (United States)

    Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj

    2018-04-01

    The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.

  15. Absorption of dissolved hydrogen from lithiated water during accelerated corrosion of zirconium-2.5 wt% niobium alloy

    International Nuclear Information System (INIS)

    Manolescu, A.V.; Mayer, P.; Rasile, E.M.; Mummenhoff, J.W.

    1982-01-01

    A series of laboratory experiments was carried out to determine the extent of dissolved hydrogen absorption from lithiated water by zirconium-2.5 wt% niobium alloy during corrosion. The material was exposed at 340 0 C to 1 M LiOH aqueous solution containing 0 to approximately 70 cm 3 /L of dissolved hydrogen. Results indicate that dissolved hydrogen has no effect on the corrosion rate or on the amount of hydrogen absorbed by the material

  16. Effect of nano size 3% wt TaC particles dispersion in two different metallic matrix composites

    International Nuclear Information System (INIS)

    Gomes, U.U.; Oliveira, L.A.; Souza, C.P.; Menezes, R.C.; Furukava, M.; Torres, Y.

    2009-01-01

    This work studies the characteristics of two different metallic matrixes composites, ferritic and austenitic steels, reinforced with 3% wt nano size tantalum carbide by powder metallurgy. The starting powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of the nano sized carbide dispersion on the matrix microstructures and its consequences on the mechanical properties were identified. The preliminary results showed that the sintering were influenced by morphology and the distribution of carbide and the alloys. (author)

  17. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  18. Fabrication of Fe-6.5wt%Si Ribbons by Melt Spinning Method on Large Scale

    Directory of Open Access Journals (Sweden)

    Y. F. Liang

    2015-01-01

    Full Text Available Melt spinning method has been widely applied for fabrication of Fe-based amorphous/nanocrystalline ribbons in industry. Compared with Fe-based amorphous/nanocrystalline alloys, Fe-6.5wt%Si high silicon steel is of low cost and has comparable excellent soft magnetic properties. Due to higher melting point and absence of supercooled liquid region, fabrication of Fe-6.5wt%Si ribbons is very hard and is only on lab scale. In this paper, we report that large scale fabrication of Fe-6.5wt%Si ribbons was successful and microstructures, ordered structures, and mechanical and soft magnetic properties of the ribbons were investigated. Due to rapid solidification rate, the ribbons were of ultrafine grains, and low degree of order and exhibited some extent of bending and tensile ductility. After heat treatment, excellent soft magnetic properties were obtained. Due to near-zero magnetostriction, the ribbons are promising to be used in electric devices with high frequencies where low noises are required.

  19. Etching characteristics of Si{110} in 20 wt% KOH with addition of hydroxylamine for the fabrication of bulk micromachined MEMS

    Science.gov (United States)

    Rao, A. V. Narasimha; Swarnalatha, V.; Pal, P.

    2017-12-01

    Anisotropic wet etching is a most widely employed for the fabrication of MEMS/NEMS structures using silicon bulk micromachining. The use of Si{110} in MEMS is inevitable when a microstructure with vertical sidewall is to be fabricated using wet anisotropic etching. In most commonly employed etchants (i.e. TMAH and KOH), potassium hydroxide (KOH) exhibits higher etch rate and provides improved anisotropy between Si{111} and Si{110} planes. In the manufacturing company, high etch rate is demanded to increase the productivity that eventually reduces the cost of end product. In order to modify the etching characteristics of KOH for the micromachining of Si{110}, we have investigated the effect of hydroxylamine (NH2OH) in 20 wt% KOH solution. The concentration of NH2OH is varied from 0 to 20% and the etching is carried out at 75 °C. The etching characteristics which are studied in this work includes the etch rates of Si{110} and silicon dioxide, etched surface morphology, and undercutting at convex corners. The etch rate of Si{110} in 20 wt% KOH + 15% NH2OH solution is measured to be four times more than that of pure 20 wt% KOH. Moreover, the addition of NH2OH increases the undercutting at convex corners and enhances the etch selectivity between Si and SiO2.

  20. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    Science.gov (United States)

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  1. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  2. Morphoproteomic profiling of the mammalian target of rapamycin (mTOR) signaling pathway in desmoplastic small round cell tumor (EWS/WT1), Ewing's sarcoma (EWS/FLI1) and Wilms' tumor(WT1).

    Science.gov (United States)

    Subbiah, Vivek; Brown, Robert E; Jiang, Yunyun; Buryanek, Jamie; Hayes-Jordan, Andrea; Kurzrock, Razelle; Anderson, Pete M

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare sarcoma in adolescents and young adults. The hallmark of this disease is a EWS-WT1 translocation resulting from apposition of the Ewing's sarcoma (EWS) gene with the Wilms' tumor (WT1) gene. We performed morphoproteomic profiling of DSRCT (EWS-WT1), Ewing's sarcoma (EWS-FLI1) and Wilms' tumor (WT1) to better understand the signaling pathways for selecting future targeted therapies. This pilot study assessed patients with DSRCT, Wilms' tumor and Ewing's sarcoma. Morphoproteomics and immunohistochemical probes were applied to detect: p-mTOR (Ser2448); p-Akt (Ser473); p-ERK1/2 (Thr202/Tyr204); p-STAT3 (Tyr 705); and cell cycle-related analytes along with their negative controls. In DSRCT the PI3K/Akt/mTOR pathway is constitutively activated by p-Akt (Ser 473) expression in the nuclear compartment of the tumor cells and p-mTOR phosphorylated on Ser 2448, suggesting mTORC2 (rictor+mTOR) as the dominant form. Ewing's sarcoma had upregulated p-Akt and p-mTOR, predominantly mTORC2. In Wilm's tumor, the mTOR pathway is also activated with most tumor cells moderately expressing p-mTOR (Ser 2448) in plasmalemmal and cytoplasmic compartments. This coincides with the constitutive activation of one of the downstream effectors of the mTORC1 signaling pathway, namely p-p70S6K (Thr 389). There was constitutive activation of the Ras/Raf/ERK pathway p-ERK 1/2 (Thr202/Tyr204) expression in the Wilms tumor and metastatic Ewing's sarcoma, but not in the DSRCT. MORPHOPROTEOMIC TUMOR ANALYSES REVEALED CONSTITUTIVE ACTIVATION OF THE MTOR PATHWAY AS EVIDENCED BY: (a) expression of phosphorylated (p)-mTOR, p-p70S6K; (b) mTORC 2 in EWS and DSRCT; (c) ERK signaling was seen in the advanced setting indicating these as resistance pathways to IGF1R related therapies. This is the first morphoproteomic study of such pathways in these rare malignancies and may have potential therapeutic implications. Further study using morphoproteomic

  3. Microstructure and mechanical properties of in situ TiC and Nd2O3 particles reinforced Ti-4.5 wt.%Si alloy composites

    International Nuclear Information System (INIS)

    Zhang, Xinjiang; Li, Yibin; Song, Guangping; Sun, Yue; Peng, Qingyu; Li, Yuxin; He, Xiaodong

    2011-01-01

    Highlights: → (TiC + Nd 2 O 3 )/Ti-4.5 wt.%Si composites were in situ synthesized. → The phase components and microstructures of the composites were investigated. → In situ reinforcements improve the mechanical properties of the matrix alloy. -- Abstract: (TiC + Nd 2 O 3 )/Ti-4.5 wt.%Si composites were in situ synthesized by a non-consumable arc-melting technology. The phases in the composites were identified by X-ray diffraction. Microstructures of the composites were observed by optical microscope and scanning electron microscope. The composite contains four phases: TiC, Nd 2 O 3 , Ti 5 Si 3 and Ti. The TiC and Nd 2 O 3 particles with dendritic and near-equiaxed shapes are well distributed in Ti-4.5 wt.%Si alloy matrix, and the fine Nd 2 O 3 particles exist in the network Ti + Ti 5 Si 3 eutectic cells and Ti matrix of the composites. The hardness and compressive strength of the composites are markedly higher than that of Ti-4.5 wt.%Si alloy. When the TiC content is fixed as 10 wt.% in the composites, the hardness is enhanced as the Nd 2 O 3 content increases from 8 wt.% to 13 wt.%, but the compressive strength peaks at the Nd 2 O 3 content of 8 wt.%.

  4. 20 CFR 645.125 - What are the roles of the local and State governmental partners in the governance of the WtW...

    Science.gov (United States)

    2010-04-01

    ... inconsistent with the WtW statute or regulations or with State policies. (b) States should establish policies... policies, interpretations, guidelines and definitions are not inconsistent with the WtW statute or regulations. (c) The Secretary, in consultation with other Federal Agencies, as appropriate, may publish...

  5. Investigating the effect of multiple grain-grain interfaces on electric transport behavior of [50 wt% BaFe12O19-50 wt% Na0.5Bi0.5TiO3] magnetoelectric nanocomposite system

    Science.gov (United States)

    Pattanayak, Ranjit; Raut, Subhajit; Dash, Tapan; Mohapatra, Soumyaranjan; Muduli, Rakesh; Panigrahi, Simanchala

    2017-05-01

    Polycrystalline [50 wt% BaFe12O19 (BaM)-50 wt% Na0.5Bi0.5TiO3 (NBT)] particulate novel magnetoelectric nanocomposite system was successfully fabricated by solid state reaction technique. The Rietveld refinement of X-ray diffraction pattern was provided the evidence about the pure phase formation of desired nanocomposite system as well as the presence of both ferrimagnetic (FM) BaM & ferroelectric (FE) NBT phases separately. The Field Scanning Electron Micrograph (FESEM) and Scanning Tunneling Electron Micrograph (STEM) explored the information about grain size and connectivity of the composite system. The XPS study was helped to examine the presence of oxygen vacancy (Ov) as well as multi oxidation states of transition metal ions for nanocomposite system. In this report we have systematically examined the conduction mechanism of different interfaces (BaM-BaM, BaM-NBT and NBT-NBT) by the help of complex impedance spectroscopy technique. From our investigation it was observed that, different interfaces activates at different temperature ranges. Due to absence of OV, BaM-NBT interfaces conduction dominants over BaM-BaM interfaces conduction even at room temperature (RT). The mechanism behind the appeared high dielectric loss (tanδ) at RT which was reduced when NBT-NBT interfaces were activates at higher temperature was explained by Maxwell-Wagner type interfacial polarization concept.

  6. Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt

    International Nuclear Information System (INIS)

    Zhou Yong-Zhi; Li Mei; Geng Hao-Ran; Yang Zhong-Xi; Sun Chun-Jing

    2011-01-01

    Hurst's exponent of radial distribution functions (RDFs) within the short-range scope of In, Sn and In-40 wt % Sn melts are determined by the rescaled range analysis method. Hurst's exponents H are between 0.94 and 0.97, which display long-range dependence. Within short-range scope, the number of particles from a reference particle belongs to fractional Brownian motion. After RDF serials are randomly scrambled, Hurst's exponents all dramatically dropped, which proves long-range dependence. H irregularly varies as the temperature rises, but the change tendency is not consistent with the correlation radius r c . (general)

  7. Effect of Al and AlP on the microstructure of Mn-30 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2008-04-15

    Effect of Al and AlP particles on the microstructure of near eutectic Mn-Si alloy (Mn-30 wt.%Si) was studied by Electron Probe Micro-analyzer (EPMA) and Differential Scanning Calorimeter (DSC). Crystal lattice correspondence analyses show that both Al and AlP have good lattice matching coherence relationships with MnSi phase, and the addition of Al and AlP particles results in an abnormal eutectic structure, i.e. the eutectic constitution MnSi and Mn{sub 5}Si{sub 3} precipitate separately: MnSi precipitates firstly, and then the Mn{sub 5}Si{sub 3} phase.

  8. Critical experiments with 4.31 wt % 235U-enriched UO2 rods in highly borated water lattices

    International Nuclear Information System (INIS)

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.

    1982-08-01

    A series of critical experiments were performed with 4.31 wt % 235 U enriched UO 2 fuel rods immersed in water containing various concentrations of boron ranging up to 2.55 g/l. The boron was added in the form of boric acid (H 3 BO 3 ). Critical experimental data were obtained for two different lattice pitches wherein the water-to-uranium oxide volume ratios were 1.59 and 1.09. The experiments provide benchmarks on heavily borated systems for use in validating calculational techniques employed in analyzing fuel shipping casks and spent fuel storage systems that may utilize boron for criticality control

  9. Effects of laser power during laser assisted cold spraying of Al-12wt%Si on stainless steel

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2012-10-01

    Full Text Available as they help improve the integrity of coatings1. Tissue engineering is one application under which metal coatings can undergo corrosion and wear. The results are not desirable given the amount of toxicity associated with them. In tissue engineering...W. Porosity values are (a) 2.64%, (b) 0.16% and (c) 4.12%. ? We have successfully deposited Al-12wt%Si on stainless steel substrate; ? Laser power has significant impact on the adhesion properties of power particles on metals as well as the coating...

  10. A model for growth of beta-phase particles in zirconium-2.5 wt percent niobium

    International Nuclear Information System (INIS)

    Chow, C.K.; Liner, Y.; Rigby, G.L.

    1984-08-01

    The kinetics of the α → β phase change in Zr-2.5 percent Nb pressure-tube material at constant temperature have been studied. The volume-fraction change of the β phase due to diffusion in an infinite α-phase matrix was considered, and a mathematical model with a numerical solution was developed to predict the transient spherical growth of the β-phase region. This model has been applied to Zr-2.5 wt percent Nb, and the calculated results compared to experiment

  11. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    Science.gov (United States)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  12. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    International Nuclear Information System (INIS)

    Liu, D R; Mangelinck-Noël, N; Thi, H Nguyen; Billia, B; Gandin, Ch-A; Zimmermann, G; Sturz, L

    2016-01-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement. (paper)

  13. Effect of microwave irradiation on hydrogen sorption properties of hand mixed MgH{sub 2} – 10 wt.% carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Awad, A.S. [Université de Bordeaux, ICMCB-CNRS, 87 Avenue du Dr Schweitzer, F-33600 Pessac (France); LCPM/PR2N, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Nakhl, M.; Zakhour, M. [LCPM/PR2N, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Santos, S.F.; Souza, F.L. [Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André – SP (Brazil); Bobet, J.-L., E-mail: jean-louis.bobet@u-bordeaux.fr [Université de Bordeaux, ICMCB-CNRS, 87 Avenue du Dr Schweitzer, F-33600 Pessac (France)

    2016-08-15

    The effect of microwave (MW) irradiation on the hydrogen sorption properties of magnesium powder is explored in the present work. MgH{sub 2} – 10 wt.% CFs (CFs = Carbons Fibers) was prepared by hand mixing, dehydrogenated under microwave irradiation for 20 s and then hydrogenated/dehydrogenated at about 300 °C – 1 MPa and 330 °C–0.03 MPa to investigate the effect of microwave irradiation on the solid/gas sorption properties. It has to be noted that the hydrogen absorption capacity and sorption kinetics of the MgH{sub 2} – 10 wt.% CFs mixture increased after dehydriding under MW irradiation. The MgH{sub 2} – 10 wt.% CFs mixture dehydrogenated by microwave irradiation can absorb about 5.8 wt.% and 5.3 wt.% H at 330 and 300 °C, respectively, within 2 h while the as-prepared MgH{sub 2} – 10 wt.% CFs mixture absorb only 4.6 wt.% H within the same duration. It is also demonstrated that MgH{sub 2} – 10 wt.% CFs mixture dehydrogenated by microwave irradiation exhibited good hydrogen desorption properties and, as an example, a microwave irradiated sample could release 5.8 wt.% H within 1 h at 330 °C in comparison to the as-prepared MgH{sub 2} – 10 wt.% CFs mixture which desorbed 4.4 wt.% H within 3 h. Scanning electron microscopy (SEM) images revealed that the particle sizes of the MW dehydrogenated mixture decreased after several solid/gas sorption cycles. This contribute to the improvement of hydrogen storage properties of the microwaves dehydrogenated MgH{sub 2} – 10 wt.% CFs mixture. In addition, the hydrogenated MgH{sub 2} – 10 wt.% CFs mixture show reproducible and better microwave-assisted dehydriding reaction during second microwaves cycle. - Highlights: • Dehydriding reaction of MgH{sub 2} by microwave method. • Effect of microwaves treatment on the hydrogen sorption properties of Mg. • Effect of discontinuous microwaves irradiation.

  14. Post-irradiation examination of prototype Al-64 wt% U3Si2 fuel rods from NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D.

    1997-01-01

    Three prototype fuel rods containing Al-64 wt% U 3 Si 2 (3.15 gU/cm 3 ) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U 3 Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U 3 Si 2 powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37 degrees C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U 3 Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL's research reactors

  15. Corrosion control of copper in 3.5 wt.% NaCl Solution by Domperidone: Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Wang, Dan; Xiang, Bin; Liang, Yuanpeng; Song, Shan; Liu, Chao

    2014-01-01

    Highlights: • Domperidone has good inhibition effect for copper in 3.5 wt.% NaCl solution. • Domperidone acts as an anodic type inhibitor. • The SEM and AFM analyses support the weight loss, polarization, and EIS data. • Molecular dynamics (MD) method simulates the adsorption model of domperidone on Cu surface. • The adsorption of domperidone on copper surface obeys Langmuir adsorption isotherm. - Abstract: Inhibition of copper corrosion in 3.5 wt.% NaCl solution by domperidone was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results revealed that domperidone was an anodic inhibitor with a maximum achievable inhibition efficiency of 94.2%. The results of SEM and AFM studies further confirmed the inhibition action of domperidone. Quantum chemical calculation and the molecular dynamics (MD) simulation showed that the domperidone molecule could be adsorbed on copper surface through the imidazolidinone ring, benzene ring and N atom of hexaheterocyclic. Adsorption of domperidone was found to follow the Langmuir adsorption isotherm

  16. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  17. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    Science.gov (United States)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  18. Magnetic and mechanical properties of Cu (75 wt%) – 316L grade stainless steels synthesized by ball milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Bholanath, E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chabri, Sumit [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sardar, Gargi [Department of Zoology, Baruipur College, South 24 Parganas, 743610 (India); Bhowmik, Nandagopal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sinha, Arijit, E-mail: arijitsinha2@yahoo.co.in [School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-05-01

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350–750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu. - Highlights: • Nanocrystalline phases with partial amorphorization obtained after 70 h of milling. • Precipitation and grain coarsening of Fe and Cu after annealing as observed by XRD. • Annealing of the ball milled sample upto 550 {sup o}C has evolved ferromagnetic behavior. • Nanoindentation predicts a hardening behavior of annealed ball milled samples.

  19. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  20. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Hong Song; Chen Wen; Luo Hongqun [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Nianbing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer 4-Amino-antipyrine (AAP) has inhibition behaviour for copper corrosion in 3.0 wt.% NaCl. Black-Right-Pointing-Pointer AAP acted as a mixed-type inhibitor with anodic predominance. Black-Right-Pointing-Pointer Adsorption of AAP on the copper surface obeys the Langmuir isotherm. Black-Right-Pointing-Pointer Quantum chemical calculations were applied to explain the experimental results. - Abstract: The effect of 4-amino-antipyrine (AAP) on the corrosion of copper in 3.0 wt.% NaCl was investigated using weight loss, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The results revealed that AAP acts as a mixed-type inhibitor with more pronounced effect on anodic domain and the inhibition efficiency decreases with increasing the temperature. The adsorption of AAP was found to obey the Langmuir isotherm. Surface characterisation was performed using scanning electron microscope and Fourier transform infrared spectrometer. Quantum chemical calculations show that AAP has large negative charge in nitrogen and oxygen atoms, which facilitates the adsorption of AAP on the copper surface.

  1. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  2. Study of scrap recovery for mixed oxide pellet by means of UO2+5wt.%CeO2

    International Nuclear Information System (INIS)

    Joung, Chang Young; Kim, Si Hyung; Kim, Han Soo; Lee, Yong Woo

    2000-01-01

    The recovery method of scrap powder was established using UO 2 -5wt.%CeO 2 powder in the way of of technology development of scrap recovery and recycle in the mixed oxide pellet fabrication process. And pellet density and microstructure, which depend on quantity of scrap, powder treatment method, and sintering condition, was analyzed. As a result of oxidation of sintered pellet in the air the powdering at below 400 degrees C occurred smoothly, and at above 400 degrees C powdering process was not proceeding well as temperature increased and powder particle size grew bigger. M 3 O 8 scrap powder which was powdered through oxidation method was added to UO 2 -5wt.%CeO 2 mixed powder. The results after the powder was treated by means of mixing, crushing, attrition milling, pelletizing, and sintering showed that its density and grain size in the case of reductive sintering decreased as scrap addition increased, but the result in the case of crushing showed increase in grain size. In attrition milling case both density and grain size showed the tendency of increase, particularly grain size grew up to 12 μm. In the oxidative sintering with scrap added mixed powder sintering was accelerated under the oxygen environment and the effect of powder treatment showed the tendency of relatively decreasing. (Hong, J. S.)

  3. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  4. Microstructure evolution in undercooled Al–8 wt%Fe melts: Comparison between terrestrial and parabolic flight conditions

    International Nuclear Information System (INIS)

    Chen, J.; Lengsdorf, R.; Henein, H.; Herlach, D.M.; Dahlborg, U.; Calvo-Dahlborg, M.

    2013-01-01

    Highlights: ► A comparison between the solidification using electromagnetic levitation of Al–8 wt%Fe under terrestrial and reduced gravity conditions is shown. ► The microstructure evolution during solidification of Al–8 wt%Fe is formulated with the aid of a comprehensive set of complementary characterization techniques. ► Identification of Al–Fe intermetallics using TEM and Rietveld analysis. -- Abstract: Al–8 wt%Fe, a hypereutectic alloy, was studied under electromagnetic levitation (EML) solidification conditions in both terrestrial and reduced gravity conditions. The latter was carried out on the A300 aircraft using the TEMPUS facility. The solidified samples were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and neutron diffraction techniques. The results are interpreted in the light of the temperature–time measurements taken in situ during the solidification process in the EML. It is shown that both samples experienced some undercooling for the solidification of the primary Al–Fe intermetallic phase, which is likely Al m Fe. The solidification path continues with the nucleation and growth of Al 13 Fe 4 followed by primary α-Al. These last two phases do not seem to show any measureable undercooling and recalescence events. Finally, the metastable Al x Fe (where x = 5) nucleates starting with the formation of eutectic. This metastable intermetallic continues the eutectic growth as Al 13 Fe 4 . The morphology differences of the intermetallics growing under terrestrial and reduced gravity conditions are clear with acicular morphology for the former and a star like morphology for the latter. The primary α-Al has a clear strong textured structure in the reduced gravity sample, while a weak one is observed in the terrestrially processed sample. The difference in texture is attributed to the weaker fluid flow occurring in the droplet under reduced gravity conditions while the difference in

  5. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt% titanium alloy

    International Nuclear Information System (INIS)

    Roeper, Donald F.; Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.; Derek Demaree, J.

    2006-01-01

    Molybdenum oxide-based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt% titanium alloy using either concentrated nitric acid or fluorides for surface activation prior to coating formation. The acid-activated surface forms a coating that offers corrosion protection after a period of aging, when uranium species have migrated to the surface. X-ray photoelectron spectroscopy (XPS) revealed that the protective coating is primarily a polymolybdate bound to a uranyl ion. Rutherford backscattering spectroscopy (RBS) on the acid-activated coatings also shows uranium dioxide migrating to the surface. The fluoride-activated surface does not form a protective coating and there are no uranium species on the surface as indicated by XPS. The coating on the fluoride-activated samples has been found to contain a mixture of molybdenum oxides of which the main component is molybdenum trioxide and a minor component of an Mo(V) oxide

  6. Effect of annealing treatment on soft magnetic properties of Fe-6.5 wt% Si wide ribbons

    International Nuclear Information System (INIS)

    Roy, R.K.; Panda, A.K.; Ghosh, M.; Mitra, A.; Ghosh, R.N.

    2009-01-01

    The 25 mm wide ribbons of Fe-6.5 wt% Si alloy have been developed by melt spinning technique, showing sufficient ductility and white silver appearance. Two magnetic transitions take place at 676 and 760 deg. C due to the formation of B2 ordered phase and A2 disordered paramagnetic phase, respectively. The saturation magnetization of the ribbon is 17.5 kG under the applied field of 12 kG. The as-cast ribbons consist of disordered A2 structure with a low volume of B2 phases while the annealed microstructure comprises a dispersion of B2 domains in the disordered A2 matrix. The alloy shows the enhancement of the soft magnetic properties with a reduction in coercivity from 150 A/m in the as-cast state to 45 A/m in the annealed condition at 850 deg. C.

  7. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  8. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  9. Effect of Mg contents on the mechanical proprieties and precipitation kinetics in Al–3.3 wt.% Cu alloy

    Directory of Open Access Journals (Sweden)

    Messaoud Fatmi

    2018-01-01

    Full Text Available The effect of additional Mg on the microstructure, mechanical properties, and transformation kinetics during aging in Al–3.3 wt.% Cu alloy was studied. The compositions and microstructure were examined by X-ray diffraction, Differential scanning calorimetry (DSC and scanning electron microscope (SEM with energy dispersive X-ray spectroscopy (EDS. The results show that the Mg in the Al–Cu alloy mainly precipitated to the grain boundaries during the process of transformation and formed a ternary Al2CuMg metallic compound and the rate of discontinuous precipitation reaction decreases with increasing concentration of Mg. The activation energy of crystallization was evaluated by applying the Kissinger equation.

  10. Non-destructive measurement of residual stresses in U-0.8 wt.% Ti by neutron diffraction

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, A.; Root, J.H.; Holden, T.M.; Macewen, S.R.; Ludtka, G.M.

    1990-01-01

    The macroscopic residual stress distribution in γ-quenched and stress levelled U-0.8wt% Ti alloy tubes was studied using neutron diffraction techniques. Residual strains were evaluated from the difference in d-spacings measured in the tubes and in small reference samples machined from each tube. Residual stresses were calculated with the isotropic bulk value of the elastic constraints for polycrystalline α-U. Quenching from the γ field resulted in a nearly equi-biaxial stress state at every point across the wall thickness of the tube. The magnitude of the radial stress was very small compared with that of the axial and hoop stresses which were compressive at the surfaces and tensile in the interior. Stress levelling relieved almost completely the hoop residual stress without affecting the radial stress. The axial residual stress becomes tensile through the wall thickness and remains constant at about 20% of its magnitude in the as-quenched condition

  11. Study on microstructure change of Uranium nitride coated U-7wt%Mo powder by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Hyoung; Park, Jae Soon; Lee, Hae In; Kim, Woo Jeong; Yang, Jae Ho; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium-molybdenum alloy particle dispersion fuel in an aluminum matrix with a high uranium density has been developed for a high performance research reactor in the RERTR program. In order to retard the fuel-matrix interaction in U-Mo/Al dispersion fuel in which the U-Mo fuel particles were dispersed in Al matrix, nitride layer coated U-Mo fuel particle has been designed and techniques to fabricate nitride-layer coated U-7wt%Mo particles have been developed in our lab. In this study, uranium nitride coated U-Mo particle has heat treatment for several times and degree. And we suggested for interaction layer remedy in U-Mo dispersion fuel. We investigate effect of heat treatment interaction layer evolution on uranium nitride coated U-Mo powder. The EDS and XRD analysis to investigate the phase evolution in uranium nitride coated layer is also a part of the present work

  12. Mechanical properties of Al{sub 2}O{sub 3}-doped (2 wt.%) ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kuriki, Shina [Core Technology Development Group, Core Component Business Unit, Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)], E-mail: Shina.Kuriki@jp.sony.com; Kawashima, Toshitaka [Core Technology Development Group, Core Component Business Unit, Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)], E-mail: Toshitaka.Kawashima@jp.sony.com

    2007-10-15

    We report a new method of evaluating the adhesion of Al{sub 2}O{sub 3}-doped (2 wt.%) ZnO (AZO) thin films. The AZO films were deposited by DC reactive magnetron sputtering on plastic film (PET: polyethyleneterephthalate) at various sputtering pressures, power, and reactive gas-flow ratios. The adhesion test of the films was carried out using the nanoindentation system. The fracture point as determined by the load-displacement curve occurred at the time of separation between the thin film and the substrate. The integration value of load and displacement to the fracture point is defined as the degree of adhesion (S{sub W}). The AZO films showed that adhesion increase as sputtering power increases and sputtering pressure decreases.

  13. Microstructural investigation of Sr-modified Al-15 wt%Si alloys in the range from micrometer to atomic scale.

    Science.gov (United States)

    Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J

    2011-05-01

    Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals

    International Nuclear Information System (INIS)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C.

    2005-01-01

    Thermally and stress induced martensitic transformations between β and a mixture of martensitic structures, β' and γ', were studied in Cu-14.1Al-4.2Ni (wt%) single crystals. In this way information on the relative stability between β' and γ' martensites, compared to the β phase, was obtained. The measurement of electrical resistance as a function of temperature was used to follow the evolution of thermally induced transitions. The stress induced transformations were analyzed in the small temperature range at which the pseudoelastic behavior between β and a mixture of both martensites plays the main role. A clear inhibition of the γ' martensite is detected as the number of cycles increases, no matter which thermodynamic coordinate is varied to induce the phase transition, i.e., temperature or stress. An evaluation of the magnitude of the relative stabilization of the β' martensite compared with γ' was obtained by a suitably designed experiment

  15. Aging between 300 and 450 deg C of wrought martensitic 13-17 wt-%Cr stainless steels

    International Nuclear Information System (INIS)

    Yrieix, B.; Guttmann, M.

    1993-06-01

    Martensitic stainless steels containing 13-17 wt-% Cr, some also containing nickel and some having precipitation hardening additions, have been aged between 300 and 450 deg C for times up to 30 000 h. For all the steels examined, the aging response takes the form of an increase of strength and hardness, correlated with embrittlement. The rate and intensity of aging increase with increasing chromium and molybdenum concentrations. In addition, two steels exhibit some temper embrittlement on long term aging at 400 deg C; such embrittlement of these materials is not expected in service at temperatures up to 300 deg C. A general method of prediction of the mechanical properties of these steels as a function of aging conditions is proposed. (authors). 11 refs., 17 figs., 7 tabs

  16. Investigation of coupling of magnetohydrodynamic modes by soft x-ray computer tomography on the WT-3 tokamak

    International Nuclear Information System (INIS)

    Yoshimura, Satoru; Maekawa, Takashi; Terumichi, Yasushi

    2002-01-01

    The internal structure of the stationary m=1 and m=2 modes in an ohmic heating plasma and the double m=1 mode structure in a lower hybrid current drive plasma are investigated on the WT-3 tokamak [Maehara et al., Nucl. Fusion 38, 39 (1998)] using computer tomography after the application of the singular value decomposition to the soft x-ray signals. The results show that, in both cases, two coexisting modes have the same frequency and have a fixed mutual phase relation, indicating that two modes are coupled and rotate as one body in the toroidal direction. It is found that the mutual inductance of two loops of helical current filaments for producing magnetic islands always takes the maximum at the experimentally observed positions of two-mode structures. This result means not only that the electromagnetic coupling of two current loops is at the maximum, but also that the two loops are in the dynamically stable position

  17. L2 droplet interaction with α-Al during solidification of hypermonotectic Al-8 wt.% Bi alloys

    International Nuclear Information System (INIS)

    Schaffer, P.L.; Mathiesen, R.H.; Arnberg, L.

    2009-01-01

    Studies of Al-based hypermonotectics have so far focused mainly on droplet motion and coagulation dynamics, with limited attention given to the interaction between droplets and the advancing solidification front which is decisive for the final distribution of the second phase within the α-Al matrix. The current work presents results from directional solidification experiments with Al-8 wt.% Bi alloys. It was found that droplets with large radii were frequently pushed and small droplets were engulfed. This is contradictory to the many models that have been proposed to explain pushing/engulfment of solid particles and can in part be ascribed to the fact that while solid-particle models only consider single, non-interacting particles that remain unaffected by solutal gradients ahead of the advancing solidification front, droplet-droplet interaction and local solute gradients have been found to be critical for droplet pushing/engulfment behaviour in hypermonotectic alloys.

  18. Axillary Temperature, as Recorded by the iThermonitor WT701, Well Represents Core Temperature in Adults Having Noncardiac Surgery.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Mao, Guangmei; Sessler, Daniel I

    2018-03-01

    Core temperature can be accurately measured from the esophagus or nasopharynx during general anesthesia, but neither site is suitable for neuraxial anesthesia. We therefore determined the precision and accuracy of a novel wireless axillary thermometer, the iThermonitor, to determine its suitability for use during neuraxial anesthesia and in other patients who are not intubated. We enrolled 80 adults having upper abdominal surgery with endotracheal intubation. Intraoperative core temperature was measured in distal esophagus and was estimated at the axilla with a wireless iThermonitor WT701 (Raiing Medical, Boston MA) at 5-minute intervals. Pairs of axillary and reference distal esophageal temperatures were compared and summarized using linear regression and repeated-measured Bland-Altman methods. We a priori determined that the iThermonitor would have clinically acceptable accuracy if most estimates were within ±0.5°C of the esophageal reference, and suitable precision if the limits of agreement were within ±0.5°C. There were 3339 sets of paired temperatures. Axillary and esophageal temperatures were similar, with a mean difference (esophageal minus axillary) of only 0.14°C ± 0.26°C (standard deviation). The Bland-Altman 95% limits of agreement were reasonably narrow, with the estimated upper limit at 0.66°C and the lower limit at -0.38°C, thus ±0.52°C, indicating good agreement across the range of mean temperatures from 34.9°C to 38.1°C. The absolute difference was within 0.5°C in 91% of the measurements (95% confidence interval, 88%-93%). Axillary temperature, as recorded by the iThermonitor WT701, well represents core temperature in adults having noncardiac surgery and thus appears suitable for clinical use.

  19. Development of heat treated Zr-2.5 Wt% Nb pressure tube and its microstructural characterization using electron microscopy techniques

    International Nuclear Information System (INIS)

    Saibaba, N.

    2010-01-01

    Two phase Zr-2.5 wt % Nb alloy is widely used for manufacture of pressure tubes for pressurized heavy water reactors (PHWRs). These tubes are used in cold worked and stress relieved (CWSRs) condition and are manufactured by cold drawing or pilgering routes. The microstructure of the CWSR tube is characterized with presence of discontinuous β phase stringers sandwiched between elongated α-phase. Pressure tube undergoes dimensional changes and micro structural deterioration under the reactor operating conditions of temperature, pressure and neutron flux. This limits the life of the component and the availability of the power reactors. There is renewed interest in increasing the life of the pressure tube by bringing about a change in the microstructure of Zr-2.5 Nb material using various thermo mechanical processes during its manufacturing. Heat treatment of this two-phase alloy has been understood to uniquely stabilize the microstructure, which prevents degradation, under in-reactor service condition. This paper illustrates various heat treatment cycles carried out at intermediate cold working stage. Heat treatment involves solutionization of the Zr-2.5 wt % Nb tube from different temperatures followed by two types of quenching process viz, gas quenching and water quenching. The OIM-TEM studies were carried out for characterization of final tube. The technique confirmed the presence of β-phase relatively enriched in Nb content. The resulting SEM microstructures after ageing treatment at different soaking temperatures and time have been presented. Mechanical properties of heat treated pressure tubes, both at room temperature and elevated temperature have been compared with conventional CWSR pressure tube used in PHWRs. (author)

  20. Pengaruh unsur Tembaga (Cu terhadap fluiditas paduan Al-Si 11.8 wt% (ADC 12 dengan metode Vacuum Suction Test

    Directory of Open Access Journals (Sweden)

    Bambang Suharno

    2012-11-01

    Full Text Available Al-Si 11.8 wt% alloy which classified to eutectic Al-Si composition usually used to produce a flat casting product with high pressure die casting process. Alloying element become an important things to determine behavior and characteristic of aluminum. Copper added into aluminum to improve strength and hardness, but there has no many studies on the effect of copper on fluidity. This fluidity study is using vacuum suction test method and the microstructure is observed with SEM/EDS. Spectrometer test has been used to find out chemical composition of sample. The result of this study shows that with copper addition from 2.25 wt% to 3.11 wt%, the fluidity value has increased 24.11% on 680oC pouring temperature. On 3.11 wt% copper composition, fluidity value has increased 14.38% from 640oC pouring temperature to 700oC pouring temperature.

  1. Effect of {gamma}` and {gamma} (Ag{sub 2}Al) precipitates on the steady state creep of Al-16wt%Ag alloys with and without Zr addition

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Youssef, S.B. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1996-11-16

    The steady state creep behaviour of Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys has been studied at constant load (= 137.2 MPa) and tested at different working temperatures for samples aged at temperatures favouring the formation of {gamma}` and {gamma} precipitates. It was found that addition of Zr to Al-16 wt% Ag alloy accelerates the precipitations {gamma}` and {gamma} due to the formation of the metastable phase Al{sub 3}Zr. For both alloys, two values of activation energy have been obtained as (34 {+-} 0.3) kJ/mol for viscous glide of dislocations due to the existence of {gamma}` precipitates and (68 {+-} 0.3) kJ/mol for grain boundary diffusion due to the existence of {gamma} precipitates. TEM investigations of {gamma}` and {gamma} precipitates confirmed the above-mentioned effect of Zr addition. (orig.)

  2. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-12-17

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  3. The observing campaign on the deep-space debris WT1190F as a test case for short-warning NEO impacts

    Science.gov (United States)

    Micheli, Marco; Buzzoni, Alberto; Koschny, Detlef; Drolshagen, Gerhard; Perozzi, Ettore; Hainaut, Olivier; Lemmens, Stijn; Altavilla, Giuseppe; Foppiani, Italo; Nomen, Jaime; Sánchez-Ortiz, Noelia; Marinello, Wladimiro; Pizzetti, Gianpaolo; Soffiantini, Andrea; Fan, Siwei; Frueh, Carolin

    2018-04-01

    On 2015 November 13, the small artificial object designated WT1190F entered the Earth atmosphere above the Indian Ocean offshore Sri Lanka after being discovered as a possible new asteroid only a few weeks earlier. At ESA's SSA-NEO Coordination Centre we took advantage of this opportunity to organize a ground-based observational campaign, using WT1190F as a test case for a possible similar future event involving a natural asteroidal body.

  4. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  5. Evaluation of Caspofungin Susceptibility Testing by the New Vitek 2 AST-YS06 Yeast Card Using a Unique Collection of FKS Wild-Type and Hot Spot Mutant Isolates, Including the Five Most Common Candida Species

    DEFF Research Database (Denmark)

    Astvad, Karen M; Perlin, David S; Johansen, Helle K

    2013-01-01

    FKS mutant isolates associated with breakthrough or failure cases are emerging in clinical settings. Discrimination of these from wild-type (wt) isolates in a routine laboratory setting is complicated. We evaluated the ability of caspofungin MIC determination using the new Vitek 2 AST-Y06 yeast...... susceptibility card to correctly identify the fks mutants from wt isolates and compared the performance to those of the CLSI and EUCAST reference methods. A collection of 98 Candida isolates, including 31 fks hot spot mutants, were included. Performance was evaluated using the FKS genotype as the "gold standard...

  6. Effects of samarium (Sm) additions on the microstructure and mechanical properties of as-cast and hot-extruded Mg-5 wt%Al-3 wt%Ca-based alloys

    International Nuclear Information System (INIS)

    Son, Hyeon-Taek; Lee, Jae-Seol; Kim, Dae-Guen; Yoshimi, Kyosuke; Maruyama, Kouichi

    2009-01-01

    Samarium (Sm) additions to as-cast Mg-5Al-3Ca-based alloys result in changes, such as equiaxed grains and a refined grain size. The microstructure of as-cast Mg-5Al-3Ca-xSm alloys consists of an α-Mg matrix, a (Mg, Al) 2 Ca eutectic phase, and an Al 2 Sm intermetallic compound. In as-cast alloys, the (Mg, Al) 2 Ca eutectic phase was located at grain boundaries with a chain structure, and the Al 2 Sm intermetallic compounds were homogeneously distributed at the α-Mg matrix and grain boundaries. The eutectic phase of the extruded alloys was elongated in the extrusion direction and crushed into fine particles because of severe deformation during hot extrusion, and the grain size was refined with an increased amount of Sm addition. The maximum values of the yield strength and tensile strength were 313 MPa and 330 MPa at 2 wt%Sm alloy content, respectively

  7. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  8. Optimum Shock Isolation

    National Research Council Canada - National Science Library

    Bolotnik, Nikolai

    2001-01-01

    .... Several types of performance criteria for isolation are considered, the most important of which are the peak force transmitted to the body to be isolated and the maximum displacement of the body relative to the base...

  9. Isolated patellofemoral osteoarthritis.

    NARCIS (Netherlands)

    Jonbergen, J.P.W. van; Poolman, R.W.; Kampen, A. van

    2010-01-01

    BACKGROUND AND PURPOSE: The optimal treatment for isolated patellofemoral osteoarthritis is unclear at present. We systematically reviewed the highest level of available evidence on the nonoperative and operative treatment of isolated patellofemoral osteoarthritis to develop an evidenced-based

  10. Spray forming of Cu–11.85Al–3.2Ni–3Mn (wt%) shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cava, Régis D., E-mail: regis_cava@hotmail.com [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil); Bolfarini, Claudemiro; Kiminami, Cláudio S. [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil); Mazzer, Eric M. [Postgraduate Program in Materials Science and Engineering, Federal University of São Carlos (Brazil); Botta Filho, Walter J. [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil); Gargarella, Piter; Eckert, Jürger [IFW Dresden, Institute for Complex Materials, Dresden (Germany)

    2014-12-05

    Highlights: • We characterized a Cu-based shape memory alloy produced by spray forming. • The deposit presented equiaxial grains and monoclinic martensite β′ microstructure. • The deposit’s shape memory properties varied as a function of the cooling rates. • The results opened a new window in the manufacture of Cu shape memory materials. - Abstract: Cu-based shape memory alloys (SMA) in the range of Cu–(11.8–13.5)Al–(3.2–4)Ni–(2–3)Mn (wt%) exhibit high thermal and electrical conductivity, combine good mechanical properties with a pronounced shape memory effect, and are low cost (Dutkiewicz et al., 1999). Their processing requires high cooling rates to reduce grain size, prevent decomposition of the ß phase into equilibrium phases, and induce martensite transformation. In this investigation, Cu–11.85Al–3.2Ni–3Mn (wt%) shape memory alloy was processed by spray forming, a rapid solidification technique that involves cooling rates of 10{sup 1} to 10{sup 4} K/s, to determine the potential of producing deposits with adequate microstructure, homogeneity and porosity for the manufacture of SMA near net shape parts. To this end, 5.2 kg of alloy with nominal composition was atomized with nitrogen gas under a pressure of 0.5 MPa and a gas–metal ratio (GMR) of 1.93. The atomized material was deposited at 60 rpm on a rotating steel substrate positioned 350 mm below the gas nozzle. The microstructure of the deposit was characterized by optical and scanning electron microscopy, X-ray diffraction and differential scanning calorimetry. The deposit with an effective diameter of 240 mm and 75 mm height presented equiaxial grains with a martensite microstructure. Grain sizes varied from 25 μm in the lower region (contact with the steel substrate) to 160 μm in the upper region of the deposit. Measurements of the reverse martensite transformation temperature of the deposit in different regions revealed its strong influence on the grain size.

  11. Denys-Drash syndrome associated WT1 glutamine 369 mutants have altered sequence-preferences and altered responses to epigenetic modifications

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideharu; Zhang, Xing; Zheng, Yu; Wilson, Geoffrey G.; Cheng, Xiaodong

    2016-09-04

    Mutations in human zinc-finger transcription factor WT1 result in abnormal development of the kidneys and genitalia and an array of pediatric problems including nephropathy, blastoma, gonadal dysgenesis and genital discordance. Several overlapping phenotypes are associated with WT1 mutations, including Wilms tumors, Denys-Drash syndrome (DDS), Frasier syndrome (FS) and WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations, and mental retardation). These conditions vary in severity from individual to individual; they can be fatal in early childhood, or relatively benign into adulthood. DDS mutations cluster predominantly in zinc fingers (ZF) 2 and 3 at the C-terminus of WT1, which together with ZF4 determine the sequence-specificity of DNA binding. We examined three DDS associated mutations in ZF2 of human WT1 where the normal glutamine at position 369 is replaced by arginine (Q369R), lysine (Q369K) or histidine (Q369H). These mutations alter the sequence-specificity of ZF2, we find, changing its affinity for certain bases and certain epigenetic forms of cytosine. X-ray crystallography of the DNA binding domains of normal WT1, Q369R and Q369H in complex with preferred sequences revealed the molecular interactions responsible for these affinity changes. DDS is inherited in an autosomal dominant fashion, implying a gain of function by mutant WT1 proteins. This gain, we speculate, might derive from the ability of the mutant proteins to sequester WT1 into unproductive oligomers, or to erroneously bind to variant target sequences.

  12. Simultaneous analysis of the expression of 14 genes with individual prognostic value in myelodysplastic syndrome patients at diagnosis: WT1 detection in peripheral blood adversely affects survival.

    Science.gov (United States)

    Santamaría, Carlos; Ramos, Fernando; Puig, Noemi; Barragán, Eva; de Paz, Raquel; Pedro, Carme; Insunza, Andrés; Tormo, Mar; Del Cañizo, Consuelo; Diez-Campelo, María; Xicoy, Blanca; Salido, Eduardo; Sánchez del Real, Javier; Hernández, Montserrat; Chillón, Carmen; Sanz, Guillermo F; García-Sanz, Ramón; San Miguel, Jesús F; González, Marcos

    2012-12-01

    Several studies have evaluated the prognostic value of the individual expression of certain genes in patients with myelodysplastic syndromes (MDS). However, none of them includes their simultaneous analysis by quantitative polymerase chain reaction (PCR). We evaluated relative expression levels of 14 molecular markers in 193 peripheral blood samples from untreated MDS patients using real-time PCR. Detectable WT1 expression levels, low TET2, and low IER3 gene expression were the only markers showing in univariate analysis a poor prognostic value for all treatment-free (TFS), progression-free (PFS), and overall survival (OS). In multivariate analysis, molecular parameters associated with a shorter TFS were: WT1 detection (p = 0.014), low TET2 (p = 0.002), and low IER3 expression (p = 0.025). WT1 detection (p = 0.006) and low TET2 (p = 0.006) expression were associated with a shorter PFS when multivariate analysis was carried out by including only molecular markers. Molecular values with an independent value in OS were: WT1 detection (p = 0.003), high EVI1 expression (p = 0.001), and undetectatable p15-CDKN2B (p = 0.037). WT1 expressers were associated with adverse clinical-biological features, high IPSS and WPSS scoring, and unfavorable molecular expression profile. In summary, detectable WT1 expression levels, and low TET2 and low IER3 expression in peripheral blood showed a strong association with adverse prognosis in MDS patients at diagnosis. However, WT1 was the only molecular marker displaying an independent prognostic value in both OS and TFS.

  13. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  14. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Energy Technology Data Exchange (ETDEWEB)

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  15. Post-irradiation examination of Al-61 wt% U3Si fuel rods from the NRU reactor

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    1997-01-01

    This paper describes the post-irradiation examination of 4 intact low enrichment uranium (LEU) fuel rods from the national research universal (NRU) reactor at the Chalk River Laboratories of AECL. The rods were irradiated during the period 1993 through 1995, under typical driver fuel operating conditions in NRU, i.e., nominal D 2 O coolant inlet temperature 37E C, inlet pressure 654 kPa and mass flow 12.4 L/s. Irradiation exposures ranged from 147 to 251 full-power days, corresponding to 40 to 84 atom % 235 U burnup. The maximum rod power was ∼2 MW, with element linear power ratings up to 68 kW/m. Post-irradiation examinations, conducted in 1997, focused on optical metallography to measure cladding oxide thickness and fuel core and cladding microstructural examinations. The cladding oxide was approximately 24 : m thick at the mid-plane of fuel rods irradiated to 251 full-power days, with small areas up to 34 : m thick on the fins. The cladding retained significant ductility after irradiation, and its microstructure appeared unchanged. Fuel core diametral increases were small (up to 4%) and within the range previously observed on Al-61 wt% U 3 Si fuel irradiated in the NRU reactor. (author)

  16. Post-irradiation examination of A1-61 wt % U3Si fuel rods from the NRU reactor

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    1997-09-01

    This paper describes the post-irradiation examination of 4 intact low-enrichment uranium (LEU) fuel rods from the national research universal (NRU) reactor at the Chalk River Laboratories of AECL. The rods were irradiated during the period 1993 through 1995, under typical driver fuel operating conditions in NRU, i.e., nominal D 2 0 coolant inlet temperature 37 degrees C, inlet pressure 654 kPa and mass flow 12.4 L/s. Irradiation exposures ranged from 147 to 251 full-power days, corresponding to 40 to 84 atom % 235 U burnup. The maximum rod power was ∼2 MW, with element linear power ratings up to 68 kW/m. Post-irradiation examinations, conducted in 1997, focused on optical metallography to measure cladding oxide thickness and fuel core and cladding microstructural examinations. The cladding oxide was approximately 24 μm thick at the mid-plane of fuel rods irradiated to 251 full-power days, with small areas up to 34 μm thick on the fins. The cladding retained significant ductility after irradiation, and its microstructure appeared unchanged. Fuel core diametral increases were small (up to 4%) and within the range previously observed on A1-61 wt % U 3 Si fuel irradiated in the NRU reactor. (author)

  17. Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme

    International Nuclear Information System (INIS)

    Shayeghi, H.; Ghasemi, A.

    2013-01-01

    Highlights: • Presenting a hybrid CGSA-LSSVM scheme for price forecasting. • Considering uncertainties for filtering in input data and feature selection to improve efficiency. • Using DWT input featured LSSVM approach to classify next-week prices. • Used three real markets to illustrate performance of the proposed price forecasting model. - Abstract: At the present time, day-ahead electricity market is closely associated with other commodity markets such as fuel market and emission market. Under such an environment, day-ahead electricity price forecasting has become necessary for power producers and consumers in the current deregulated electricity markets. Seeking for more accurate price forecasting techniques, this paper proposes a new combination of a Feature Selection (FS) technique based mutual information (MI) technique and Wavelet Transform (WT) in this study. Moreover, in this paper a new modified version of Gravitational Search Algorithm (GSA) optimization based chaos theory, namely Chaotic Gravitational Search Algorithm (CGSA) is developed to find the optimal parameters of Least Square Support Vector Machine (LSSVM) to predict electricity prices. The performance and price forecast accuracy of the proposed technique is assessed by means of real data from Iran’s, Ontario’s and Spain’s price markets. The simulation results from numerical tables and figures in different cases show that the proposed technique increases electricity price market forecasting accuracy than the other classical and heretical methods in the scientific researches

  18. An examination of the interparticle contact area during sintering of W-0.3 wt pct Co

    International Nuclear Information System (INIS)

    Mitlin, D.; German, R.M.

    1998-01-01

    As a powder compact sinters, its microstructure evolves. One way to quantify the scale of the microstructure is to consider the interparticle contact area. This study examines two known models for calculating the interparticle contact area: the classic two-sphere model and the Voronoi cell model. Both models have particular assumptions about the microstructure that make them not applicable for treating densification to near full density with concurrent grain growth. The classic two-sphere model assumes a regular packing of particles and a perfectly spherical particle geometry and neglects an increasing particle coordination number with sintering. The Voronoi cell model assumes that the scale of the microstructure remains constant; i.e., as long as the compact is densifying, grain growth does not occur. The authors propose a modified Voronoi cell that accounts for an increasing grain size, making it applicable to a general case where grain growth occurs during sintering. The three models are compared to the interparticle contact area data, obtained by stereology techniques, for W-0.3 wt pct Co sintered from green state to near full density. The original Voronoi cell model fits the data only at low temperatures, before the onset of grain growth. Below approximately 90 pct relative density, the two-sphere model with an assumed coordination number of six (coordination number in a green compact) and the modified Voronoi cell model provide a good fit to the data. At higher densities, both models overestimate the interparticle contact area

  19. The Effect of Heat Treatments on Alloying of Pre-mixed Al + 4.5 wt. % Cu Powders

    Directory of Open Access Journals (Sweden)

    Kübra KÖPRÜLÜ

    2018-06-01

    Full Text Available In this study, 4.5 wt. % Cu powder was added to Al powder and mixed for 45 minutes to produce premixed metal powders. Premixed powders were compacted by cold pressing at 20 MPa. After that these samples were pressed at 500℃ under 200 MPa for 30 minutes by hot pressed method. Hot pressed block samples were subjected to diffusion annealing at 540 ℃ for 2, 4, 8, 16, 32 hours. These samples, produced by powder metallurgy, are used at metallographic and microscopic researches to investigate the diffusion process. During the diffusion annealing, it was determined that significant amount of copper powder particles was dissolved in the Al matrix by diffusion. Diffusion annealing was followed by aging heat treatment, characterized by metallographic and mechanical tests. According to the increasing the annealing time, the homogeneity of the chemical composition is not provided, however the increasing of the heat treatment (T6 capability of the produced parts, and partial porosity which is believed to be due to atomic diffusion, have been observed. Moreover, in the XRD analyses, it was determined that the phases of -Al,  and  were formed in the microstructure.

  20. Microindentation Hardness-Secondary Dendritic Spacings Correlation with Casting Thermal Parameters in an Al-9wt.%Si Alloy

    Directory of Open Access Journals (Sweden)

    Diego CARVALHO

    2018-02-01

    Full Text Available Experiments were carried out to analyze the effect of growth rates (VL and cooling rates (TR on both secondary dendritic arm spacings (λ2 and Vickers microhardness (HV of an Al-9wt.%Si alloy during the horizontal directional solidification under transient heat flow conditions. A water-cooled solidification experimental apparatus was developed allowing a wide range of TR (from 0.2 to 3.5 ºC/s to be experienced. Five computer guided thermocouples were connected with the metal, and the time-temperature data were recorded automatically. The solidification path was also calculated by Scheil model in Thermo-Calc software. Casting samples were characterized by the combined analyses of optical microscopy (OM and scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS revealing a complex arrangement of phases including binary (α-Al + Si and ternary (α-Al + Si + β-AlFeSi mixtures within interdendritic regions. It was observed that power law functions characterize the variation of λ2 as a function of VL and TR with exponents of -2/3 and -1/3, respectively. Finally, experimental laws of power and Hall-Petch types are proposed relating the resulting HV to the λ2. According to these results, it was found that, for increasing values of λ2, the results of HV decrease.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17319

  1. Phase evolution and mechanical behavior of 0.36 wt% C high strength TRIP-assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swarup Kumar; Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2012-12-15

    Phase evolution in a 0.36 wt% C steel has been studied by thermodynamic calculation and dilatometric analysis with an aim to achieve high strength TRIP-assisted steel with bainitic microstructure. The equilibrium phase fraction calculated as the function of temperature indicated the formation of {delta}-ferrite ({approx}98%) at 1417 C. In contrast, similar calculation under para-equilibrium condition exhibited transformation of {delta}-ferrite to austenite at the temperature below 1300 C. During further cooling two-phase ({alpha}+{gamma}) microstructure has been found to be stable at the intercritical temperature range. The experimentally determined CCT diagram has revealed that adequate hardenability is achievable in the steel under continuous cooling condition at cooling rate >5 C s{sup -1}. In view of the aforesaid results, the steel has been hot rolled and subjected to different process schedule conducive to the evolution of bainitic microstructure. The hot rolled steel has exhibited reasonably good tensile properties. However, cold deformation of the hot rolled sample followed by intercritical annealing and subsequent isothermal bainitic transformation has resulted in high strength (>1000 MPa) with attractive elongation due to the favorable work hardening condition during plastic deformation offered by the multiphase microstructure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thermomechanical process optimization of U-10 wt% Mo – Part 1: high-temperature compressive properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V., E-mail: vineet.joshi@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garmestani, Hamid [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Burkes, Douglas E. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-10-15

    Nuclear power research facilities require alternatives to existing highly enriched uranium alloy fuel. One option for a high density metal fuel is uranium alloyed with 10 wt% molybdenum (U–10Mo). Fuel fabrication process development requires specific mechanical property data that, to date has been unavailable. In this work, as-cast samples were compression tested at three strain rates over a temperature range of 400–800 °C to provide data for hot rolling and extrusion modeling. The results indicate that with increasing test temperature the U–10Mo flow stress decreases and becomes more sensitive to strain rate. In addition, above the eutectoid transformation temperature, the drop in material flow stress is prominent and shows a strain-softening behavior, especially at lower strain rates. Room temperature X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy analysis of the as-cast and compression tested samples were conducted. The analysis revealed that the as-cast samples and the samples tested below the eutectoid transformation temperature were predominantly γ phase with varying concentration of molybdenum, whereas the ones tested above the eutectoid transformation temperature underwent significant homogenization.

  3. Effect of Cooling Rate and Chemical Modification on the Tensile Properties of Mg-5wt% Si Alloy

    Science.gov (United States)

    Mirshahi, Farshid; Meratian, Mahmood; Zahrani, Mohsen Mohammadi; Zahrani, Ehsan Mohammadi

    Hypereutectic Mg-Si alloys are a new class of light materials usable for aerospace and other advanced engineering applications. In this study, the effects of both cooling rate and bismuth modification on the micro structure and tensile properties of hypereutectic Mg-5wt% Si alloy were investigated. It was found that the addition of 0.5% Bi, altered the morphology of primary Mg2Si particles from bulky to polygonal shape and reduced their mean size from more than 70 μm to about 30 (am. Also, the tensile strength and elongation of the modified alloy increased about 10% and 20%, respectively, which should be ascribed to the modification of Mg2Si morphology and more uniform distribution of the primary particles. Moreover, an increase in tensile strength value with increase in cooling rate were observed which is attributed to finer micro structure of alloy in higher cooling rates. It was observed that Bi addition is significantly more effective in refining the morphology of primary Mg2Si particles than applying faster cooling rates.

  4. Fabrication of Al-20 wt%Si powder using scrap Si by ultra high-energy milling process

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won-Kyung [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of); Y Latin-Small-Letter-Dotless-I lmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tasliciftlik Campus, 60240 Tokat (Turkey); Kim, Hyo-Seob; Koo, Jar-Myung [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer High energy ball milling process has been successfully employed to produce Al-20Si alloy using scrap Si powders. Black-Right-Pointing-Pointer Fully finer and homogenous structure could be achieved after 60 min of milling time. Black-Right-Pointing-Pointer Si particles were not dissolved but uniformly dispersed in the Al matrix in a milled state. Black-Right-Pointing-Pointer The hardness of as-milled Al-20Si powder increased steadily with the increase of milling time. Black-Right-Pointing-Pointer Grain size and dispersion strengthening are two mechanisms being responsible for hardness increment. - Abstract: In this study, microstructural evolution and mechanical properties of Al-20 wt%Si and pure Al powders fabricated by ultra high-energy ball milling technique were investigated as a function of milling time. The microstructure and mechanical properties of the as-milled powders were examined by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), X-ray diffractometer (XRD) and Vickers hardness tester. SEM observation showed that the particle size increased at an early stage of milling, and then decreased drastically with further milling. XRD and cross-sectional EDS-mapping analyses revealed that Si particles were not dissolved but uniformly dispersed in the Al matrix in a milled state. Vickers hardness of both pure Al and Al-Si powder increases with milling time, which attributes to the grain size strengthening and dispersion strengthening.

  5. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  6. A Hybrid Fault-Tolerant Strategy for Severe Sensor Failure Scenarios in Late-Stage Offshore DFIG-WT

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-12-01

    Full Text Available As the phase current sensors and rotor speed/position sensor are prone to fail in the late stage of an offshore doubly-fed induction generator based wind turbine (DFIG-WT, this paper investigates a hybrid fault-tolerant strategy for a severe sensor failure scenario. The phase current sensors in the back-to-back (BTB converter and the speed/position sensor are in the faulty states simultaneously. Based on the 7th-order doubly-fed induction generator (DFIG dynamic state space model, the extended Kalman filter (EKF algorithm is applied for rotor speed and position estimation. In addition, good robustness of this sensorless control algorithm to system uncertainties and measurement disturbances is presented. Besides, a single DC-link current sensor based phase current reconstruction scheme is utilized for deriving the phase current information according to the switching states. A duty ratio adjustment strategy is proposed to avoid missing the sampling points in a switching period, which is simple to implement. Furthermore, the additional active time of the targeted nonzero switching states is complemented so that the reference voltage vector remains in the same position as that before duty ratio adjustment. The validity of the proposed hybrid fault-tolerant sensorless control strategy is demonstrated by simulation results in Matlab/Simulink2017a by considering harsh operating environments.

  7. Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution

    International Nuclear Information System (INIS)

    Khireche, S.; Boughrara, D.; Kadri, A.; Hamadou, L.; Benbrahim, N.

    2014-01-01

    Highlights: • We elaborate Al–5Zn–xSn sacrificial anodes (x = 0.1%, 0.2% and 0.4%). • Increasing Sn amount does activate Al alloys. • The anode dissolution in NaCl initiates at precipitations where Sn is enriched. • Sn enhances uniform attack on the surface of the Al alloy. • Al–Zn–Sn anodes perform better than the Al–Zn anode. - Abstract: The effect of zinc and tin addition to pure aluminum was investigated in 3 wt.% NaCl solution. The corrosion behavior of the elaborated samples (Al, Al–Zn and Al–Zn–Sn) was studied by open circuit potential, Tafel plot and electrochemical impedance spectroscopy. For the microstructure characterization, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy were used. The aluminum activation increases in the following order: Al < Al–5Zn < Al–5Zn–0.1Sn < Al–5Zn–0.2Sn < Al–5Zn–0.4Sn. The impedance measurements and the microscopic observations confirmed the great activity of Al–Zn and Al–Zn–Sn compared to pure Al. The segregation at the grain boundaries leads to intergranular corrosion

  8. Influence of temperature, strain rate and thermal aging on the structure/property behavior of uranium 6 wt% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Cady, C.M.; Gray, G.T.; Chen, S.R.; Lopez, M.F. [Los Alamos National Lab., MST-8, MS G-755, NM (United States); Field, R.D.; Korzekwa, D.R. [Los Alamos National Lab., MST-6, MS G-770, NM (United States); Hixson, R.S. [Los Alamos National Lab, DX-9, MS P-952, NM (United States)

    2006-08-15

    A rigorous experimentation and validation program is being undertaken to create constitutive models that elucidate the fundamental mechanisms controlling plasticity in uranium-6 wt% niobium alloys (U-6Nb). These models should accurately predict high-strain-rate large-strain plasticity, damage evolution and failure. The goal is a physically-based constitutive model that captures 1) an understanding of how strain rate, temperature, and aging affects the mechanical response of a material, and 2) an understanding of the operative deformation mechanisms. The stress-strain response of U-6Nb has been studied as a function of temperature, strain-rate, and thermal aging. U-6Nb specimens in a solution-treated and quenched condition and after subsequent aging at 473 K for 2 hours were studied. The constitutive behavior was evaluated over the range of strain rates from quasi-static (0.001 s{sup -1}) to dynamic ({approx} 2000 s{sup -1}) and temperatures ranging from 77 to 773 K. The yield stress of U-6Nb was exhibited pronounced temperature sensitivity. The strain hardening rate is seen to be less sensitive to strain rate and temperature beyond plastic strains of 0.10. The yield strength of the aged material is less significantly affected by temperature and the work hardening rate shows adiabatic heating at lower strains rates (1/s). (authors)

  9. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  10. Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2013-01-01

    Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy

  11. Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik Univ., Sejong (Korea, Republic of)

    2013-06-15

    Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.

  12. Crystallography of surface precipitates associated with shape change in a Ti–5.26 wt.% Cr alloy

    International Nuclear Information System (INIS)

    Qiu, Dong; Zhang, Ming-Xing; Kelly, Patrick M.; Furuhara, Tadashi

    2013-01-01

    The crystallographic features of surface α precipitates accompanied by surface tilt(s) in a Ti–5.26 wt.% Cr alloy have been comprehensively studied by transmission electron microscopy of samples prepared using a focused ion beam. For comparison, the bulk precipitates formed far below the free surface in the same alloy have also been examined. It is found that both the surface and the bulk α precipitates exhibit a lath-shaped morphology and their habit plane always contains a single set of misfit dislocations with the Burgers vector [11 ¯ 1] β /2|[21 ¯ 1 ¯ 3] α /6. However, the surface precipitates differ from the bulk ones in terms of their orientation relationship with the matrix, the habit plane and the long axis direction. As a result, the interphase interface between the surface precipitates and matrix contains glissile dislocations and the interface of bulk precipitates is associated with sessile dislocations. Such a glissile interface is one of the major common features of displacive-diffusional and martensitic transformations and can be used to further understand the mechanism of bainitic transformation in steels and other alloy systems

  13. Corrosion Behaviour of Heat - Treated Al-6063/ SiCp Composites Immersed in 5 wt% NaCl Solution

    Directory of Open Access Journals (Sweden)

    Kenneth ALANEME

    2011-06-01

    Full Text Available The influence of SiC volume percent and temper conditions (namely, as-cast, solutionized, and artificial age hardening at 180°C and 195°C on the corrosion behaviour of Al (6063 composites and its monolithic alloy immersed in 5wt% NaCl solution has been investigated. Al (6063 - SiC particulate composites containing 6, 12 and 15 volume percent SiC were produced by premixing the SiC particles with borax additive and then adopting two step stir casting. Mass loss and corrosion rate measurements were utilized as criteria for evaluating the corrosion behaviour of the composites. The results show that the corrosion susceptibility of the Al (6063 - SiCp composites was higher than that of the monolithic alloy, and for most cases the corrosion rate of the composites increased with increase in volume percent of SiC. However, it was discovered that the nature of the passive films formed on the composites was sufficiently stable to reduce significantly the corrosion rate of the composites after 13days of immersion. This trend was observed to be consistent for all heat-treatment conditions utilized.

  14. Study on characterization of interaction layer between U-10wt%Mo alloy and LT24Al

    International Nuclear Information System (INIS)

    Chen Jiangang; Yin Changgeng; Sun Changlong; Pang Xiaoxuan; Liu Yunming

    2009-01-01

    The characterization of interaction layer(IL) between U-10wt%Mo alloy and LT24 Al was studied in detail in this paper. Sandwich structured U-Mo/LT24 Al diffusion couples were hot pressed at different temperature and pressure for different time. Then they were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM) to observe the width of the IL. The distribution of the diffusion elements and the phases in the IL were determined by Energy Dispersive Spectroscopy (EDS) and X Ray Diffraction (XRD). Analysis results are as follows: the diffusion manner was reaction diffusion, and diffusion direction mainly was that Al atoms diffused to U-Mo alloy; diffusion mechanism was vacancy diffusion and growth kinetics showed reaction was controlled by the diffusion speed; the IL containing single phase was constituted mainly by (U, Mo) Al 3 ; the IL containing two phases or more was constituted mainly by (U, Mo) Al 3 and (U, Mo) Al 4 and Al 20 Mo 2 U; and Si impurity in the LT24 Al was easy to enrich in the IL which showed Si added to Al could play positive role on improve compatibility between U-Mo and Al. (authors)

  15. Effect of additives in sintering UO2-7wt%Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Santos, L.R.; Riella, H.G.

    2009-01-01

    Gadolinium has been used as burnable poison for reactivity control in modern PWRs. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder enables longer fuel cycles and optimized fuel utilization. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The process for manufacturing UO 2 - Gd 2 O 3 generates scraps that should be reused. The main scraps are green and sintered pellets, which must be calcined to U 3 O 8 to return to the fabrication process. Also, the incorporation of Gd 2 O 3 in UO 2 requires the use of an additive to improve the sintering process, in order to achieve the physical properties specified for the mixed fuel, mainly density and microstructure. This paper describes the effect of the addition of fabrication scraps on the properties of the UO 2 -Gd 2 O 3 fuel. Aluminum hydroxide Al(OH) 3 was also incorporated to the fuel as a sintering aid. The results shown that the use of 2000 ppm of Al(OH) 3 as additive allow to fabricate good pellets with up to 10 wt% of recycled scraps. (author)

  16. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0.2 wt%TiC addition

    Energy Technology Data Exchange (ETDEWEB)

    Kitsunai, Y. [Tohoku University (Japan); Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: kurishi@imr.tohoku.ac.jp; Kuwabara, T. [Tohoku University (Japan); Narui, M. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hasegawa, M. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takida, T. [A.L.M.T. TECH Inc., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan); Takebe, K. [A.L.M.T. TECH Inc., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan)

    2005-11-15

    In order to elucidate the effects of pre-irradiation microstructures and irradiation conditions on radiation embrittlement and radiation-induced ductilization (RIDU), fine-grained Mo-0.2 wt%TiC specimens with high and low reduction rates in plastic working, which are designated as MTC-02H and MTC-02L, respectively, were prepared by powder metallurgical methods. The specimens were neutron irradiated to 0.1-0.15 dpa with controlled 1-cycle and 4-cycle heating between 573 and 773 K, and 473 and 673 K, respectively, in JMTR. Vickers microhardness and three-point bending impact tests and TEM microstructural examinations were made. The degree of radiation embrittlement, assessed by DBTT shift due to irradiation, was strongly dependent on the reduction rate and cycle number. The 4-cycle irradiation suppressed the radiation embrittlement compared with the 1-cycle irradiation, and the suppression was much more significant in MTC-02L than in MTC-02H. The observed behavior is discussed in connection with RIDU and microstructural evolution caused by the 4-cycle irradiation.

  17. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  18. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    International Nuclear Information System (INIS)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 0 C and 600 0 C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 mpa, an ultimate tensile strength of 1050 mpa, a compressive yield strength of at least 2% offset of at least 675 mpa, and an elongation of at lea 25% over 25.4 mm/sec. To provide this article with the improv thermal expansion, the uranium alloy billet is heated to 630 0 C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article

  19. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  20. Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5 wt.% Si high silicon steel

    Science.gov (United States)

    Ouyang, Gaoyuan; Jensen, Brandt; Tang, Wei; Dennis, Kevin; Macziewski, Chad; Thimmaiah, Srinivasa; Liang, Yongfeng; Cui, Jun

    2018-05-01

    Fe-Si electric steel is the most widely used soft magnetic material in electric machines and transformers. Increasing the silicon content from 3.2 wt.% to 6.5 wt.% brings about large improvement in the magnetic and electrical properties. However, 6.5 wt.% silicon steel is inherited with brittleness owing to the formation of B2 and D03 ordered phase. To obtain ductility in Fe-6.5wt.% silicon steel, the ordered phase has to be bypassed with methods like rapid cooling. In present paper, the effect of cooling rate on magnetic and mechanical properties of Fe-6.5wt.% silicon steel is studied by tuning the wheel speed during melt spinning process. The cooling rate significantly alters the ordering and microstructure, and thus the mechanical and magnetic properties. X-ray diffraction data shows that D03 ordering was fully suppressed at high wheel speeds but starts to nucleate at 10m/s and below, which correlates with the increase of Young's modulus towards low wheel speeds as tested by nanoindentation. The grain sizes of the ribbons on the wheel side decrease with increasing wheel speeds, ranging from ˜100 μm at 1m/s to ˜8 μm at 30m/s, which lead to changes in coercivity.

  1. Mechanism of nanostructure formation in ball-milled Cu and Cu–3wt%Zn studied by X-ray diffraction line profile analysis

    International Nuclear Information System (INIS)

    Khoshkhoo, M. Samadi; Scudino, S.; Bednarcik, J.; Kauffmann, A.; Bahmanpour, H.; Freudenberger, J.; Scattergood, R.; Zehetbauer, M.J.; Koch, C.C.; Eckert, J.

    2014-01-01

    Highlights: • Nanostructured powders of Cu and Cu–3wt%Zn were produced using ball milling. • During cryomilling, nanostructure was formed by structural decomposition. • Dynamic recrystallization happened in room–temperature milling of Cu–3wt%Zn. • Structural decomposition took place during room–temperature milling of Cu. -- Abstract: The mechanism of nanostructure formation during cryogenic and room-temperature milling of Cu and Cu–3wt%Zn was investigated using X-ray diffraction line profile analysis. For that, the whole powder pattern modeling approach (WPPM) was used to analyze the evolution of microstructural features including coherently scattering domain size, dislocation density, and density of planar faults. It was found that for all sets of experiments, structural decomposition is the dominant mechanism of nanostructure formation during cryomilling. During subsequent RT-milling, grain refinement still occurs by structural decomposition for pure copper. On the other hand, discontinuous dynamic recrystallization is responsible for nanostructure formation during RT-milling of Cu–3wt%Zn. This is attributed to lower stacking-fault energy of Cu–3wt%Zn compared to pure copper. Finally, room temperature milling reveals the occurrence of a detwinning phenomenon

  2. Stabilization effect of Zr and Ti additions on the ageing characteristics of Al-1 wt% Si alloy through a creep study

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Beshai, M.H.N.; Abd El Khalek, A.M.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1997-12-31

    Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys were used to trace the effect of Zr and Ti additions on the behaviour of the steady state creep. After solid solution treatment specimens of both alloys were aged at 623, 673, 723 and 773 K and creep tests were performed at room temperature by applying stresses of 60.0, 62.4, 64.7 and 67.1 MPa. The results showed a sound stabilization effect of Zr and Ti on the ageing characteristics of binary Al-1 wt% Si alloy. Values of the applied stress sensitivity parameter, m, obtained were in the range of (20-34) for Al-Si alloy and (14-19) for Al-Si-Zr-Ti alloy. Time to rupture was found to be strongly increased by Zr and Ti additions. The activation energies of the precipitation process involved were found to be 81.9 kJ/mole and 33.7 kJ/mole of the Al-Si and Al-Si-Zr-Ti alloys respectively. (orig.) 17 refs.

  3. Study of UO2-10WT%Gd2O3 fuel pellets obtained by seeding method using AUC co-precipitation and mechanical mixing processes

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Ferraz, W.B.A.; Santos, M.M. dos; Pinto, L.C.M.; Santos, A.

    2008-01-01

    The use of gadolinium and uranium mixed oxide as a nuclear fuel aims to obtain a fuel with a performance better than that of UO 2 fuel. In this work, seeding method was used to improve ionic diffusivity during sintering to produce high density pellets containing coarse grains by co-precipitation and mechanical mixing processes. Sintered UO 2 -10 wt% Gd 2 O 3 pellets were obtained using the reference processes with 2 wt% and 5 wt% UO 2 seeds with two granulometries, less than 20 μm and between 20 and 38 μm. Characterisation was carried out by chemical analysis, surface area, X-ray diffraction, SEM, WDS, image analysis, and densitometry. The seeding method using mechanical mixing process was more effective than the co-precipitation method. Furthermore, mechanical mixing process resulted in an increase in density of UO 2 -10wt% Gd 2 O 3 with seeds in relation to that of UO 2 -10wt% Gd 2 O 3 without seeds. (author)

  4. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  5. The effect of Bi2 O3 on the electrical properties of Zr O2: 3 wt% Mg O ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Cosentino, I.C.

    1991-01-01

    Zr O 2 : 3 wt% Mg O ceramic solid electrolytes have been prepared to study the effect of Bi 2 O 3 addition on densification and electrical conductivity. Microstructural characterization have been done by X-ray diffractometry, scanning electron microscopy and electron microprobe analyses. Electrical conductivity measurements have been done by two probe dc technique in the 400 0 C - 700 0 C temperature range. The results show that 5 wt% Bi 2 O 3 addition improves densification: 93% TD and 98% TD specimens are obtained from zirconia stabilized by powder mixture and by coprecipitation of oxides, respectively. Moreover, electrical conductivity values are found to be two orders of magnitude higher for Zr O 2 : 3 wt% Mg O with 5% Bi 2 O 3 . (author)

  6. Influence of severe plastic deformation on intermetallic particles in Mg-12 wt.%Zn alloy investigated using transmission electron microscopy

    International Nuclear Information System (INIS)

    Němec, M.; Gärtnerová, V.; Jäger, A.

    2016-01-01

    The in-depth microstructural characterization of intermetallic particles in an Mg-12 wt.%Zn binary alloy subjected to a severe plastic deformation is presented. The alloy was processed by four passes via equal channel angular pressing with an applied back pressure at a gradually decreasing temperature and analyzed using transmission electron microscopy techniques to observe the influence of processing on intermetallic particles. The results are compared with the initial state of the material prior to severe plastic deformation. The microstructural evolution of the α-Mg matrix and the Mg 21 Zn 25 , Mg 51 Zn 20 and MgZn 2 was analyzed using bright field imaging, selected area electron diffraction, high-resolution transmission electron microscopy and high-angle annular dark field imaging in scanning mode. The plastic deformation process influenced the α-Mg matrix and each type of intermetallic particle. The α-Mg matrix consisted of two types of areas. The first type of area had a highly deformed structure, and the second type of area had a partially recrystallized structure with an average grain size of approximately 250 nm. The Mg 21 Zn 25 microparticles exhibited distinct forms in the α-Mg matrix that were characterized as a single-crystalline form, a nano-crystalline form and a broken up form. No evidence of Mg 51 Zn 20 nanoparticles within the α-Mg matrix was found in the microstructure, which indicates their dissolution or phase transformation during the deformation process. MgZn 2 nanoparticles exhibited different behavior in both types of α-Mg matrix. Two orientation relationships toward the highly deformed α-Mg matrix were observed; however, there was no relationship toward the partially recrystallized α-Mg matrix. Additionally, the growth of the MgZn 2 nanoparticles was different in the two types of α-Mg matrix. The Mg 51 Zn 20 nanoparticles inside Mg 21 Zn 25 microparticles exhibited a distinct behavior within the single-crystalline or nano

  7. Quantitative texture determination in pressure tube (Zr-2.5 Wt% Nb alloy) material as a function of cold work

    International Nuclear Information System (INIS)

    Dey, G.K.; Tewari, R.; Srivastava, D.; De, P.K.; Banerjee, S.; Kiran Kumar, M.; Samajdar, I.

    2003-06-01

    The texture studies on the pressure tube Zr-2.5 Nb alloy have mainly been confined to the determination of the basal pole distribution along certain direction or the inverse pole presentation in the material. This information though useful does not provide an insight into micro-textural development upon cold working. In the present study, complete bulk as well as micro texture development as a function of cold work has been obtained by determining orientation distribution function. In this work, two distinct starting microstructures of Zr-2.5 wt% Nb have been used -(a) single-phase α(hcp) martensitic structure and (b) two-phase, β(bcc) + α, Widmanstaetten structure. In the second case, the α phase was present in lamellar morphology and β stringers were sandwiched between these a lamella. In some instances single-phase α were present. However, both microstructures had similar starting crystallographic texture. Samples were deformed by unidirectional and cross rolling at room temperature. In the two-phase structure the changes in the bulk texture on cold rolling was found to be insignificant, while in the single-phase material noticeable textural changes were observed. Taylor type deformation texture models predicted textural changes in single-phase structure but failed to predict the observed lack of textural development in the two-phase material. Microtexture observations showed that a plates remained approximately single crystalline after cold rolling, while the β matrix underwent significant orientational changes. Based on microstructural and microtextural observations, a simple model is proposed in which the plastic flow is mainly confined to the β matrix within which the α plates are subjected to in-plane rigid body rotation. The model explains the observed lack of textural developments in the two-phase structure. (author)

  8. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  9. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    Science.gov (United States)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  10. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Uncertainties of wind speed, solar radiation and electricity market price are considered. • Profit maximization, emission and AENS minimization are considered as objective functions. • Modified firefly algorithm is employed to solve the problem. - Abstract: Nowadays the operation of renewable energy sources and combined heat and power (CHP) units is increased in micro grids; therefore, to reach optimal performance, optimal scheduling of these units is required. In this regard, in this paper a micro grid consisting of proton exchange membrane fuel cell-combined heat and power (PEMFC-CHP), wind turbines (WT) and photovoltaic (PV) units, is modeled to determine the optimal scheduling state of these units by considering uncertain behavior of renewable energy resources. For this purpose, a scenario-based method is used for modeling the uncertainties of electrical market price, the wind speed, and solar irradiance. It should be noted that the hydrogen storage strategy is also applied in this study for PEMFC-CHP units. Market profit, total emission production, and average energy not supplied (AENS) are the objective functions considered in this paper simultaneously. Consideration of the above-mentioned objective functions converts the proposed problem to a mixed integer nonlinear programming. To solve this problem, a multi-objective firefly algorithm is used. The uncertainties of parameters convert the mixed integer nonlinear programming problem to a stochastic mixed integer nonlinear programming problem. Moreover, optimal coordinated scheduling of renewable energy resources and thermal units in micro-grids improve the value of the objective functions. Simulation results obtained from a modified 33-bus distributed network as a micro grid illustrates the effectiveness of the proposed method.

  11. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-03-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} f ), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}} 1}-{10{\\bar{1}} 2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} f value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} f values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  12. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-06-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} _{ {f}}), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}}1}-{10{\\bar{1}}2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} _{ {f}} value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} _{ {f}} values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  13. Identification of Intermetallic Compounds and Its Formation Mechanism in Boron Steel Hot-Dipped in Al-7 wt.% Mn Alloy

    Directory of Open Access Journals (Sweden)

    Sung-Yun Kwak

    2017-12-01

    Full Text Available In laser welding and hot stamping Al-Si-coated boron steel, there is a problem that the strength of the joint is lowered due to ferrite formation in the fusion zone. The purpose of this study is to develop an Al-7 wt.% Mn hot-dip coating in which Mn, an austenite stabilizing element, replaces the ferrite stabilizing element Si. The nucleation and formation mechanism of the reaction layer was studied in detail by varying the dipping time between 0 and 120 s at 773 °C. The microstructure and phase constitution of the reaction layer were investigated by various observational methods. Phase formation is discussed using a phase diagram calculated by Thermo-CalcTM. Under a 30 s hot-dipping process, no reaction occurred due to the formation of a Fe3O4 layer on the steel surface. The Fe3O4 layer decomposed by a reduction reaction with Al-Mn molten alloy, constituent elements of steel dissolved into a liquid, and the reaction-layer nucleus was formed toward the liquid phase. A coated layer consists of a solidified layer of Al and Al6Mn and a reactive layer formed beneath it. The reaction layer is formed mainly by inter-diffusion of Al and Fe in the solid state, which is arranged on the steel in the order of Al11Mn4 → FeAl3 (θ → Fe2Al5 (η phases, and the Fe3AlC (κ in several nm bands formed at the interface between the η-phase and steel.

  14. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    Science.gov (United States)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  15. Electrochemical studies and analysis of 1–10 wt% UCl3 concentrations in molten LiCl–KCl eutectic

    International Nuclear Information System (INIS)

    Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn

    2014-01-01

    Three electrochemical methods – cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) – were applied to solutions of up to 10 wt% UCl 3 in the molten LiCl–KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl 4 and UCl 3 were calculated to be (6.72 ± 0.360) × 10 −6 cm 2 /s and (1.04 ± 0.17) × 10 −5 cm 2 /s, respectively. Apparent standard reduction potentials were determined to be (−0.381 ± 0.013) V and (−1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (−1.448 ± 0.013) V and (−2.568 ± 0.076) V vs. Cl 2 /Cl − for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10 −3 to 1.08 × 10 −2 for UCl 4 and 4.94 × 10 −5 to 4.50 × 10 −4 for UCl 3 . Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl 3 concentration in the molten salt

  16. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    Science.gov (United States)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  17. Rare earth concentration in the primary Si crystal in rare earth added Al-21 wt. % Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.Y.; Kim, G.H. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); Moon, I.G.; Choi, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Metallurgical Engineering

    1998-07-03

    Al-Si alloys containing more than about 12 wt. % Si exhibit a hypereutectic microstructure, normally consisting of a primary silicon phase in an eutectic matrix. The primary silicon in normal hypereutectic alloys is usually very coarse and thus leads to poor properties to these alloys. Therefore, alloys with a predominantly coarse primary silicon crystal must be modified to ensure adequate mechanical strength and ductility. Further improvement of mechanical properties of these alloys can be achieved by the modification of eutectic microstructure. Therefore, development of a modifier or refiner that can produce both fine primary and eutectic Si is a major factor which can lead to significant enhancement of mechanical properties in hypereutectic Al-Si alloys. Refinement of primary silicon is usually achieved by the addition of phosphor to the melt. On the other hand, it is reported that the rare earth (RE) elements are capable of modifying the eutectic structure of cast Al-Si alloys. According to the literature, Phosphor acts as a heterogeneous nucleation site of Si crystal by forming AlP intermetallic particles at high temperature, i.e., above liquidus temperature of Al-Si alloy. Unlike phosphor, RE was not known to form a stable compound with Al that can act as a nucleation site at high temperature. Therefore, the role of RE as a refiner should be considered by examining the behavior of RE as a solute in the melt. The distribution of RE within the primary Si and in the matrix of the alloy will provide a clue to the role of RE on the modification of primary Si during solidification.

  18. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    Science.gov (United States)

    Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

    2017-08-01

    During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

  19. The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Liubomirski, Yulia; Meshel, Tsipi; Abashidze, Anastasia; Brisker, Daphna; Solomon, Hilla; Rotter, Varda; Weil, Miguel; Ben-Baruch, Adit

    2014-01-01

    In the present study we determined the relative contribution of two processes to breast cancer progression: (1) Intrinsic events, such as activation of the Ras pathway and down-regulation of p53; (2) The inflammatory cytokines TNFα and IL-1β, shown in our published studies to be highly expressed in tumors of >80% of breast cancer patients with recurrent disease. Using MCF-7 human breast tumor cells originally expressing WT-Ras and WT-p53, we determined the impact of the above-mentioned elements and cooperativity between them on the expression of CXCL8 (ELISA, qRT-PCR), a member of a “cancer-related chemokine cluster” that we have previously identified. Then, we determined the mechanisms involved (Ras-binding-domain assays, Western blot, luciferase), and tested the impact of Ras + TNFα on angiogenicity (chorioallantoic membrane assays) and on tumor growth at the mammary fat pad of mice and on metastasis, in vivo. Using Ras G12V that recapitulates multiple stimulations induced by receptor tyrosine kinases, we found that Ras G12V alone induced CXCL8 expression at the mRNA and protein levels, whereas down-regulation of p53 did not. TNFα and IL-1β potently induced CXCL8 expression and synergized with Ras G12V , together leading to amplified CXCL8 expression. Testing the impact of WT-Ras, which is the common form in breast cancer patients, we found that WT-Ras was not active in promoting CXCL8; however, TNFα has induced the activation of WT-Ras: joining these two elements has led to cooperative induction of CXCL8 expression, via the activation of MEK, NF-κB and AP-1. Importantly, TNFα has led to increased expression of WT-Ras in an active GTP-bound form, with properties similar to those of Ras G12V . Jointly, TNFα + Ras activities have given rise to increased angiogenesis and to elevated tumor cell dissemination to lymph nodes. TNFα cooperates with Ras in promoting the metastatic phenotype of MCF-7 breast tumor cells, and turns WT-Ras into a tumor

  20. Mutation and premating isolation

    Science.gov (United States)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  1. Physics in isolation

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In late May, about 330 physicists made their way up to isolated and beautiful Lake Louise high in the Canadian Rockies about 100 miles west of Calgary in a second effort to increase interactions between particle and nuclear physicists. The conference series aims to foster exciting and diverse physics by bringing the different physicists together somewhere which is so isolated that they must interact with each other. The formula worked very well and isolated Lake Louise was a huge success

  2. Physics in isolation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    In late May, about 330 physicists made their way up to isolated and beautiful Lake Louise high in the Canadian Rockies about 100 miles west of Calgary in a second effort to increase interactions between particle and nuclear physicists. The conference series aims to foster exciting and diverse physics by bringing the different physicists together somewhere which is so isolated that they must interact with each other. The formula worked very well and isolated Lake Louise was a huge success.

  3. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Tsai Hanchung [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4803 (United States)

    2012-08-15

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 Degree-Sign C, cooling to 522 Degree-Sign C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at {approx}0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher {Delta}T between fuel center and cladding than at core center, together providing more rare earths at the cladding and

  4. Effect of helium plasma gas flow rate on the properties of WC-12 wt.%Co coatings sprayed by atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-06-01

    Full Text Available The cermet coatings of WC-12wt.%Co are extensively used to improve the wear resistance of a wide range of technical components. This paper analyses the influence of the plasma gas flow of helium on the microstructure and mechanical properties of WC-12wt.%Co coatings deposited by plasma spraying at atmospheric pressure (APS. In order to obtain homogeneous and denser coatings, three different flows of He ( 8 l/min., 16 l/min. and 32 l/min were used in the research. With the application of He, coatings achieved higher values of hardness due to less degradation of the primary WC carbides. The main goal was to deposit dense and homogeneous layers of WC-12wt.%Co coatings with improved wear resistance for different applications. The test results of the microstructure of the layers were evaluated under a light microscope. The analysis of the microstructure and the mechanical properties of the deposited layers was made in accordance with the standard of Pratt-Whitney. The morphology of the powder particles and the microstructure of the best coating was examined on the SEM (scanning electron microscope. The evaluation of the mechanical properties of the layers was done by applying the HV0.3 method for microhardness testing and by applying tensile testing to test the bond strength. The research has shown that the flow of He plasma gas significantly affects the microstructure, the mechanical properties and the structure of WC-12 wt.%Co coatings.

  5. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  6. Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARα and Flt3-ITD mutation: a rare case report

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    Full Text Available ABSTRACT CONTEXT: Acute promyelocytic leukemia (APL accounts for 8% to 10% of cases of acute myeloid leukemia (AML. Remission in cases of high-risk APL is still difficult to achieve, and relapses occur readily. CASE REPORT: Here, we describe a case of APL with high white blood cell counts in blood tests and hypogranular variant morphology in bone marrow, together with fms-like tyrosine kinase-3 with internal tandem duplication mutations (FLT3-ITD, and bcr-3 isoform of PML-RARα. Most importantly, we detected high level of Wilms’ tumor gene (WT1 in marrow blasts, through the reverse transcription polymerase chain reaction (RT-PCR. To date, no clear conclusions about an association between WT1 expression levels and APL have been reached. This patient successively received a combined treatment regimen consisting of hydroxycarbamide, arsenic trioxide and idarubicin plus cytarabine, which ultimately enabled complete remission. Unfortunately, he subsequently died of sudden massive hemoptysis because of pulmonary infection. CONCLUSION: Based on our findings and a review of the literature, abnormal functioning of WT1 may be a high-risk factor in cases of APL. Further studies aimed towards evaluating the impact of WT1 expression on the prognosis for APL patients are of interest.

  7. Slit-burst testing of cold-worked Zr-2.5 wt.% Nb pressure tubing for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Barrie, J.N.; Zink, R.J.

    1978-12-01

    This report documents the available data on critical crack length of cold-worked Zr-2.5 wt.% Nb pressure tubing in CANDU reactors. In particular, it includes data for tubing removed from the Pickering 3 and 4 reactors. (author)

  8. Deposition mechanism and microstructure of laser-assisted cold-sprayed (LACS) Al-12 wt.%Si coatings: effects of laser power

    CSIR Research Space (South Africa)

    Olakanmi, EO

    2013-06-01

    Full Text Available at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS...

  9. Modeling of dynamic conditions of operation of wind turbines (WT and choice of environmentally efficient and energy economic technology of wind power energy transformation

    Directory of Open Access Journals (Sweden)

    Bespalov Vadim

    2017-01-01

    Full Text Available Wind energy usage is one of the promising areas among renewable energy sources. The article considers a methodical approach to the modeling and selection of environmentally efficient and energy-efficient wind turbines at the design stage, taking into account the characteristics of the natural-territorial complex and the specific anthropogenic load on the territory of the WT location.

  10. Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex.

    Science.gov (United States)

    Ritchie, Jacob; Pantazatos, Spiro P; French, Leon

    2018-07-01

    Magnetic resonance (MR) images of the brain are of immense clinical and research utility. At the atomic and subatomic levels, the sources of MR signals are well understood. However, we lack a comprehensive understanding of the macromolecular correlates of MR signal contrast. To address this gap, we used genome-wide measurements to correlate gene expression with MR signal intensity across the cerebral cortex in the Allen Human Brain Atlas (AHBA). We focused on the ratio of T1-weighted and T2-weighted intensities (T1-w/T2-w ratio image), which is considered to be a useful proxy for myelin content. As expected, we found enrichment of positive correlations between myelin-associated genes and the ratio image, supporting its use as a myelin marker. Genome-wide, there was an association with protein mass, with genes coding for heavier proteins expressed in regions with high T1-w/T2-w values. Oligodendrocyte gene markers were strongly correlated with the T1-w/T2-w ratio, but this was not driven by myelin-associated genes. Mitochondrial genes exhibit the strongest relationship, showing higher expression in regions with low T1-w/T2-w ratio. This may be due to the pH gradient in mitochondria as genes up-regulated by pH in the brain were also highly correlated with the ratio. While we corroborate associations with myelin and synaptic plasticity, differences in the T1-w/T2-w ratio across the cortex are more strongly linked to molecule size, oligodendrocyte markers, mitochondria, and pH. We evaluate correlations between AHBA transcriptomic measurements and a group averaged T1-w/T2-w ratio image, showing agreement with in-sample results. Expanding our analysis to the whole brain results in strong positive T1-w/T2-w correlations for immune system, inflammatory disease, and microglia marker genes. Genes with negative correlations were enriched for neuron markers and synaptic plasticity genes. Lastly, our findings are similar when performed on T1-w or inverted T2-w intensities alone

  11. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  12. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5 wt.% NaCl solution

    International Nuclear Information System (INIS)

    Wang, Jingfeng; Li, Yang; Huang, Song; Zhou, Xiaoen

    2014-01-01

    Highlights: • Corrosion of four cast Mg–xSn alloys in 3.5 wt.% NaCl solution was investigated. • Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn. • Compact Mg(OH) 2 /MgSnO 3 film suppressed the cathodic effect of the impurity inclusions. • Mg–xSn (x = 0.5, 1.0, 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film. - Abstract: The corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn (x = 0.5, 1.0, 1.5, and 2.0 wt.%) alloys in 3.5 wt.% NaCl solution were investigated by immersion tests, electrochemical measurements, corrosion morphology observations, and X-ray diffraction analysis. Immersion tests and electrochemical measurements illustrated that the best corrosion resistance was reported for the Mg–1.5Sn alloy. Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn alloy surface. Mg(OH) 2 /MgSnO 3 clusters were compact and suppressed the cathodic effect of the impurity inclusions greatly. The Mg–xSn (x = 0.5, 1.0, and 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film during the corrosion process

  13. Indolyl aryl sulfones (IASs): development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants.

    Science.gov (United States)

    Silvestri, Romano; Artico, Marino

    2005-01-01

    Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.

  14. Isolated optic nerve pseudotumour

    International Nuclear Information System (INIS)

    Patankar, T.; Prasad, S.; Krishnan, A.; Laxminarayan, R.

    2000-01-01

    Isolated optic nerve involvement by the idiopathic inflammatory process is a rare finding and very few reports are available. Here a case of an isolated optic nerve inflammatory pseudotumour presenting with gradually progressive unilateral loss of vision is described. It showed dramatic response to a trial of steroids and its differential diagnoses are discussed. Copyright (1999) Blackwell Science Pty Ltd

  15. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice.

    Science.gov (United States)

    Monteiro, Gaby E R; Jansen van Vuren, Petrus; Wichgers Schreur, Paul J; Odendaal, Lieza; Clift, Sarah J; Kortekaas, Jeroen; Paweska, Janusz T

    2018-04-02

    The NSs protein encoded by the S segment of Rift Valley fever virus (RVFV) is the major virulence factor, counteracting the host innate antiviral defence. It contains five highly conserved cysteine residues at positions 39, 40, 149, 178 and 194, which are thought to stabilize the tertiary and quaternary structure of the protein. Here, we report significant differences between clinical, virological, histopathological and host gene responses in BALB/c mice infected with wild-type RVFV (wtRVFV) or a genetic mutant having a double cysteine-to-serine substitution at residues 39 and 40 of the NSs protein (RVFV-C39S/C40S). Mice infected with the wtRVFV developed a fatal acute disease; characterized by high levels of viral replication, severe hepatocellular necrosis, and massive up-regulation of transcription of genes encoding type I and -II interferons (IFN) as well as pro-apoptotic and pro-inflammatory cytokines. The RVFV-C39S/C40S mutant did not cause clinical disease and its attenuated virulence was consistent with virological, histopathological and host gene expression findings in BALB/c mice. Clinical signs in mice infected with viruses containing cysteine-to-serine substitutions at positions 178 or 194 were similar to those occurring in mice infected with the wtRVFV, while a mutant containing a substitution at position 149 caused mild, non-fatal disease in mice. As mutant RVFV-C39S/C40S showed an attenuated phenotype in mice, the molecular mechanisms behind this attenuation were further investigated. The results show that two mechanisms are responsible for the attenuation; (1) loss of the IFN antagonistic propriety characteristic of the wtRVFV NSs and (2) the inability of the attenuated mutant to degrade Proteine Kinase R (PKR). Copyright © 2018. Published by Elsevier B.V.

  16. Interactions between whey protein isolate and gum Arabic.

    Science.gov (United States)

    Klein, Miri; Aserin, Abraham; Ben Ishai, Paul; Garti, Nissim

    2010-09-01

    In this study we have attempted to understand the nature of "charge interactions" between two negatively charged biopolymers (whey protein isolate, WPI and gum Arabic, GA) and, consequently, why their mixture exhibits better interfacial activity. Surface tension (gamma(0)) measurements indicated that at ca. 1 wt.% of the biopolymer mixture (3:1 wt. ratio) the air/water surface is saturated. At 5 wt.% the gamma(0) of the mixture is lower than the calculated co-operative value. The zeta-potential measurements revealed that the isoelectric point of the WPI:GA 3:1 wt. ratio mixture is 3.8. The zeta-potential values up to pH 6 are below those calculated. Similarly, the electrical conductivities of the mixture are lower than those calculated. All these measurements indicate: (1) partial charge neutralization in spite of the fact that both biopolymers are negative or (2) partial charge-charge interactions between the two biopolymers. The thermal heating behavior of the frozen water in the aqueous mixture studied by DSC (heating cycle of the frozen sample) clearly indicates that the two biopolymers are interacting. We calculated the enthalpy, the free energy and the chemical potential of the interactions. We found that the interactions of the biopolymers are rather weak. They are likely derived from some local positively charged domains (pH 7) on the protein that neutralize some of the negatively charged GA. These interactions form weak charge adducts. These charge adducts are sufficient to improve its adsorption into the oil-water interface and enhance the emulsion stability. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Pathologically decreased expression of miR-193a contributes to metastasis by targeting WT1-E-cadherin axis in non-small cell lung cancers

    Directory of Open Access Journals (Sweden)

    Junjie Chen

    2016-11-01

    Full Text Available Abstract Background The metastatic cascade is a complex and multistep process with many potential barriers. Recently, miR-193a has been reported to be a suppressive miRNA in multiple types of cancers, but its underlying anti-oncogenic activity in non-small cell lung cancers (NSCLC is not fully elucidated. Methods The expressions of miR-193a (miR-193a-5p in human lung cancer tissues and cell lines were detected by real-time PCR. Dual-luciferase reporter assay was used to identify the direct target of miR-193a. Cell proliferation, apoptosis, and metastasis were assessed by CCK-8, flow cytometry, and Transwell assay, respectively. Results The expression of miR-193a in lung cancer tissues was decreased comparing to adjacent non-tumor tissues due to DNA hypermethylation in lung cancer tissues. Ectopic expression of miR-193a inhibited cell proliferation, colony formation, migration, and invasion in A549 and H1299 cells. Moreover, overexpression of miR-193a partially reversed tumor growth factor-β1 (TGF-β1-induced epithelial-to-mesenchymal transition (EMT in NSCLC cells. Mechanistically, miR-193a reduced the expression of WT1, which negatively regulated the protein level of E-cadherin, suggesting that miR-193a might prevent EMT via modulating WT1-E-cadherin axis. Importantly, knockdown of WT1 resembled the anti-cancer activity by miR-193a and overexpression of WT1 partially reversed miR-193a-induced anti-cancer activity, indicating that WT1 plays an important role in miR-193a-induced anti-cancer activity. Finally, overexpression of miR-193a decreased the growth of tumor xenografts in mice. Conclusion Collectively, our results have revealed an important role of miR-193a-WT1-E-cadherin axis in metastasis, demonstrated an important molecular cue for EMT, and suggested a therapeutic strategy of restoring miR-193a expression in NSCLC.

  18. Methylation in the promoter regions of WT1, NKX6-1 and DBC1 genes in cervical cancer tissues of Uygur women in Xinjiang

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Abstract This study aimed to explore: 1 DNA methylation in the promoter regions of Wilms tumor gene 1 (WT1, NK6 transcription factor related locus 1 gene (NKX6-1 and Deleted in bladder cancer 1 (DBC1 gene in cervical cancer tissues of Uygur women in Xinjiang, and 2 the correlation of gene methylation with the infection of HPV16/18 viruses. We detected HPV16/18 infection in 43 normal cervical tissues, 30 cervical intraepithelial neoplasia lesions (CIN and 48 cervical cancer tissues with polymerase chain reaction (PCR method. Methylation in the promoter regions of the WT1, NKX6-1 and DBC1 genes in the above-mentioned tissues was measured by methylation-specific PCR (MSP and cloning sequencing. The expression level of these three genes was measured by real-time PCR (qPCR in 10 methylation-positive cervical cancer tissues and 10 methylation-negative normal cervical tissues. We found that the infection of HPV16 in normal cervical tissues, CIN and cervical cancer tissues was 14.0, 36.7 and 66.7%, respectively. The infection of HPV18 was 0, 6.7 and 10.4%, respectively. The methylation rates of WT1, NKX6-1 and DBC1 genes were 7.0, 11.6 and 23.3% in normal cervical tissues, 36.7, 46.7 and 30.0% in CIN tissues, and 89.6, 77.1 and 85.4% in cervical cancer tissues. Furthermore, WT1, NKX6-1 and DBC1 genes were hypermethylated in the high-grade squamous intraepithelial lesion (CIN2, CIN3 and in the cervical cancer tissues with infection of HPV16/18 (both P< 0.05. The expression of WT1, NKX6-1 and DBC1 was significantly lower in the methylation-positive cervical cancer tissues than in methylation-negative normal cervical tissues. Our findings indicated that methylation in the promoter regions of WT1, NKX6-1 and DBC1 is correlated with cervical cancer tumorigenesis in Uygur women. The infection of HPV16/18 might be correlated with methylation in these genes. Gene inactivation caused by methylation might be related to the incidence and development of cervical

  19. MOX Fabrication Isolation Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Eric L. Shaber; Bradley J Schrader

    2005-08-01

    This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

  20. Isolation and characterization of chicken and turkey beta 2-microglobulin

    DEFF Research Database (Denmark)

    Skjødt, K; Welinder, K G; Crone, M

    1986-01-01

    Chicken and turkey beta 2-m were isolated from citrated plasma in sequential use of three chromatographic steps: affinity chromatography, gel filtration chromatography and anion-exchange chromatography. The purified protein was identified as beta 2-m by reaction with a beta 2-m specific monoclonal...... (turkey migrates in the alpha and chicken migrates in the beta region). The mol. wt of both chicken and turkey beta 2-m was 14,500 estimated by SDS-PAGE whereas calculations based on the amino acid compositions gave mol. wts of 11,000. EM280 was 15.9 for chicken beta 2-m and 16.4 for turkey beta 2-m......, and is incompatible with a previously published sequence also thought to be from turkey beta 2-m. Reasons for our opinion that the molecules isolated and sequenced in this paper are the correct ones are given. Udgivelsesdato: 1986-Dec...

  1. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  2. Mechanical Properties and Biodegradability of the Kenaf/Soy Protein Isolate-PVA Biocomposites

    OpenAIRE

    Won, Jong Sung; Lee, Ji Eun; Jin, Da Young; Lee, Seung Goo

    2015-01-01

    The effective utilization of original natural fibers as indispensable components in natural resins for developing novel, low-cost, eco-friendly biocomposites is one of the most rapidly emerging fields of research in fiber-reinforced composite. The objective of this study is to investigate the interfacial adhesion properties, water absorption, biodegradation properties, and mechanical properties of the kenaf/soy protein isolate- (SPI-) PVA composite. Experimental results showed that 20 wt% pol...

  3. Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B(T).

    Science.gov (United States)

    Maeda, Hiroaki; Zhu, Xia; Suzuki, Shiho; Suzuki, Kiyoshi; Kitamura, Shinichi

    2004-08-25

    Lactobacillus kefiranofaciens, isolated from kefir grains, produces an extracellular polysaccharide when cultured, not only in PYG10 medium but also in a liquid medium containing a rice hydrolysate that had been previously degraded by treatment with a glucoamylase. The maximum yield of the polysaccharide, using the rice hydrolysate as the medium, was 2.5 g/L after a 7-day culture period at pH 5.0 and 33 degrees C. Compositional analysis, methylation analysis, specific rotation, and (1)H and (13)C NMR spectroscopy revealed that the structures of polysaccharides obtained from these two different culture media are essentially identical. The polysaccharide is composed of a hexasaccharide repeating unit and, thus, is known as kefiran. The weight-average molecular weight and the z-average radius of gyration of a sample, purified from the rice hydrolysate medium, were determined to be 7.6 x 10(5) g/mol and 39.9 nm, respectively, by gel permeation chromatography equipped with a multiangle laser-light-scattering photometer. Changes in blood pressure and serum components were examined in SHRSP/Hos rats, using doses of 100 and 300 mg of kefiran/kg of rat. A suppression in the increase in blood pressure was observed in these rats after 30 days. This activity is discussed in terms of the concentration of serum components of the rat, with emphasis on lipid components such as cholesterols, triglycerides, and free fatty acids.

  4. isolated from Trichoderma harzianum

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... Chitinase gene from Trichoderma harzianum was cloned and hetrologously over expressed in ... used by Trichoderma to inhibit the growth of other fungi. ..... actinomycete isolates from niche habitats in Manipur for antibiotic.

  5. Synthesis by mechanical alloying and characterization of 95.5Sn/4.0Ag/0.5Cu, (wt%) nanopowder

    International Nuclear Information System (INIS)

    Barreto, Karen Lyn Lima; Manzato, Lizandro; Rivera, Jose Anglada; Oliveira, Marceli Falcao de

    2010-01-01

    This work aims at sintering and characterizing the 95.5Sn/4.0Ag/0.5Cu (wt%) nanopowder, produced by high energy milling. The nano-sized particles reduce the melting point of this solder, which is usually higher for such alloys, for example, when compared with the usual 63Sn/37Pb (wt%) solder. The alloy was processed in a Spex mill with the following parameters: (I) different times of milling, 12, 24 and 48 hours. (II) the ratio of ball/mass powder of 40:1 and (II) hydrogen milling atmosphere. The microstructural evolution during milling was studied by X-ray diffraction and differential calorimetry. Combining these three variables, after grinding, a reduction of the particle size and the melting point of the solder were observed. This material is promising for applications in microelectronics packaging as a lead free solder. (author)

  6. Early Death in Two Patients with Acute Promyelocytic Leukemia Presenting the bcr3 Isoform, FLT3-ITD Mutation, and Elevated WT1 Level

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Despite major advances in the treatment of acute promyelocytic leukemia (APL, the problem of early death (ED remains unsolved. Alongside the currently known clinical and hematological risk factors, prognostic significance has been attributed to internal tandem duplication mutations of the fms-like tyrosine kinase-3 (FLT3-ITD, hypogranular variant morphology, and the bcr-3 isoform of PML-RARα. We describe premature death of two patients with the hypogranular variant of APL who presented remarkably high expression levels of Wilms' tumor gene (WT1. Our results point to WT1 as an important prognostic factor of ED that needs to be promptly evaluated in all newly diagnosed cases of APL.

  7. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  8. Microstructures and Surface Stabilities of {Ni-0.4C-6Ta- xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

    Science.gov (United States)

    Berthod, Patrice

    2018-06-01

    Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

  9. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    Science.gov (United States)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  10. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  11. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Perez, E.; Yao, B. [Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Keiser, D.D. [Nuclear Fuels and Materials Division, Idaho National Laboratory, Scoville, ID 83415 (United States); Sohn, Y.H., E-mail: ysohn@mail.ucf.ed [Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr{sub 2}, {gamma}-UZr, Zr solid-solution and Mo{sub 2}Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si){sub 2}Zr, (Al, Si)Zr{sub 3} (Al, Si){sub 3}Zr, and AlSi{sub 4}Zr{sub 5}. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  12. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    Science.gov (United States)

    Perez, E.; Yao, B.; Keiser, D. D., Jr.; Sohn, Y. H.

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr 2, γ-UZr, Zr solid-solution and Mo 2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si) 2Zr, (Al, Si)Zr 3 (Al, Si) 3Zr, and AlSi 4Zr 5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  13. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R., E-mail: raularrabal@quim.ucm.es [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Paucar, K. [Gabinete de Corrosion, Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Cod. Postal 25, Lima (Peru); Garces, G. [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Nd addition modified the microstructure of AM50 and AZ91D magnesium alloys. Black-Right-Pointing-Pointer Volume of {beta}-Mg{sub 17}Al{sub 12} phase was reduced and Al{sub 2}Nd/Al-Mn-Nd particles were formed. Black-Right-Pointing-Pointer Nd-containing intermetallics revealed lower potential than Al-Mn inclusions. Black-Right-Pointing-Pointer 0.7-0.8 wt.% Nd reduced the corrosion rate of AM50 and AZ91D alloys by 90%. - Abstract: The corrosion performance of AM50 and AZ91D alloys containing up to 1.5 wt.% Nd was investigated by electrochemical and gravimetric measurements in 3.5 wt.% NaCl at 22 Degree-Sign C. The alloys were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and surface potential maps. In Nd-containing alloys, formation of Al{sub 2}Nd and Al-Mn-Nd intermetallic compounds reduced the volume fraction and modified the morphology of the {beta}-Mg{sub 17}Al{sub 12} phase. The addition of Nd improved the corrosion resistance of the alloys due to increased passivity of the surface film and suppression of micro-galvanic couples.

  14. Effects of torsional oscillation on tensile behavior of Sn–3.5 wt% Ag alloy with and without adding ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sobhy, M., E-mail: miladsobhym@yahoo.com

    2014-07-29

    Stress–strain characteristics of both Sn–3.5 wt% Ag and Sn–3.5 wt% Ag–0.3 wt% ZnO alloys were investigated using tensile testing machine. Different superimposed torsional oscillation frequencies ranging from 0 to 1.3 Hz at different deformation temperatures ranging from 303 to 363 K were performed. X-ray diffraction (XRD), transition electron microscopy (TEM) and optical microscopy were used to investigate the microstructures of both alloys. The mechanical parameters such as Young's modulus Y, yield stress σ{sub y}, fracture stress σ{sub f}, work hardening coefficient χ{sub p} and fracture strain ε{sub f} were calculated. The fracture stress of both alloys decreases with increasing the superimposed frequency of torsional oscillations as well as deformation temperatures. The fracture strain behaves in a different manner i.e. it increases with increasing the deformation temperature in the alloy containing ZnO nanoparticles while decreases in the alloy free from ZnO nanoparticles. With respect to the effect of the frequency of the superimposed torsional deformation, the fracture strain increases in both alloys.

  15. Dispersed hydroxyapatite and modified bioglass 45S5 composites: sintering behavior of glass matrix ranging from 20 to 30 wt% in calcium oxide investigation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.; Parra-Silva, J.; Santos, S.C.; Mello-Castanho, S.R.H, E-mail: dasilva.ac@uol.com.br [Instituto de Pesquisas Enegeticas e Nucleares (IPEN/CNEN-SP), DP (Brazil); Braga, F.J.C. [Consulmat Materiais de Referencia, Solucoes e Servicos, Sao Carlos, SP (Brazil); Setz, L.F.G. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2014-07-01

    Biomaterial technology plays an important role in cell-based tissue proliferation environment creation. The hydroxyapatite (HA) bioceramics are reference materials to employment as a bone substitute, however, their slow rate of degradation and its low rate of bioactivity (Ib) are presented as limiting factors for application as bone graft. In contrast, the bioglass (BG) is a resorbable and osteoinductive material and can act as fluxing in HA/BG composites. The present work objective the development of HA/BG (40/70wt%) composites, Three compositions of the 45S5 bioglass derived ranging from 20-30wt% in CaO were used in order to study the sintering behavior of these materials with hydroxyapatite 30wt% dispersed. The composites were uniaxially pressed in the form of cylinders and sinterized at (1100°C/1h). The characterization was made employing scanning electron microscopy, Infra-Red Spectrometry, X-ray diffraction and hydrolytic resistance test. The results indicate the potential use of the materials developed for applications like bone graft.(author)

  16. Aluminium-12wt% silicon coating prepared by thermal spraying technique: Part 1 optimization of spray condition based on a design of experiment

    Directory of Open Access Journals (Sweden)

    Jiansirisomboon, S.

    2006-03-01

    Full Text Available At present, thermal spray technology is used for maintenance parts of various machines in many industries. This technology can be used to improve the surface wear resistance. Therefore, this technology can significantly reduce cost of manufacturing. Al-12wt%Si alloy is an interesting and popular material used in the automotive industry. This research studies the suitable condition for spraying of Al-12wt%Si powder. This powder was sprayed by a flame spray technique onto low carbon steel substrates. The suitable conditions for spraying can be achieved by a design of experiment (DOE principle, which provided statistical data defined at 90% confidence. This research used control factors, which were oxygen flow rate, acetylene flow rate and spray distance. The satisfaction levels of these factors were set at 3 levels, i.e. low, medium and high, in order to determine suitable responses, which were hardness, thickness, wear rate and percentage volume fraction of porosity. It was found that the optimized condition for spraying Al-12wt%Si powder consisted of 38 ft3/hr (1.026 m3/hr of oxygen flow rate, 27 ft3/hr (0.729 m3/hr of acetylene flow rate and 58 mm of spray distance.

  17. Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N. [Westinghouse Electric Co. LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existing facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)

  18. TEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment

    Directory of Open Access Journals (Sweden)

    M. Sobhani

    2012-12-01

    Full Text Available Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to the formation of secondary TiB2 particles via spinodal decomposition of titanium-rich zone inside the grains. Mechanical properties (after 50% reduction in area as well as electrical conductivity of composite were evaluated after heat treatment and were compared with those of pure copper. The results indicated that, due to the formation of secondary TiB2 particles in the matrix, electrical conductivity increased along with hardness up to 10 hrs of heat treatment and reached 65% IACS and 155 HV, respectively. Moreover, the maximum ultimate (i.e. 580 MPa and yield (i.e. 555 MPa strengths of composite were achieved at this time.

  19. Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt % Mg₂Si-4.5Cu Alloys.

    Science.gov (United States)

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-03-04

    This research was carried out to investigate the influence of Sr-Sb on the microstructures and mechanical properties of Al-18 wt % Mg₂Si-4.5Cu alloys. After the addition of 0.2 wt % Sr-Sb, the morphologies of primary Mg₂Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg₂Si decreased from ~50 to ~20 μm. The shape of eutectic Mg₂Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr-Sb.

  20. Effects of Complex Modification by Sr–Sb on the Microstructures and Mechanical Properties of Al–18 wt % Mg2Si–4.5Cu Alloys

    Science.gov (United States)

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-01-01

    This research was carried out to investigate the influence of Sr–Sb on the microstructures and mechanical properties of Al–18 wt % Mg2Si–4.5Cu alloys. After the addition of 0.2 wt % Sr–Sb, the morphologies of primary Mg2Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg2Si decreased from ~50 to ~20 μm. The shape of eutectic Mg2Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr–Sb. PMID:28773282

  1. Dispersed hydroxyapatite and modified bioglass 45S5 composites: sintering behavior of glass matrix ranging from 20 to 30 wt% in calcium oxide investigation

    International Nuclear Information System (INIS)

    Silva, A.C.; Parra-Silva, J.; Santos, S.C.; Mello-Castanho, S.R.H; Braga, F.J.C.; Setz, L.F.G.

    2014-01-01

    Biomaterial technology plays an important role in cell-based tissue proliferation environment creation. The hydroxyapatite (HA) bioceramics are reference materials to employment as a bone substitute, however, their slow rate of degradation and its low rate of bioactivity (Ib) are presented as limiting factors for application as bone graft. In contrast, the bioglass (BG) is a resorbable and osteoinductive material and can act as fluxing in HA/BG composites. The present work objective the development of HA/BG (40/70wt%) composites, Three compositions of the 45S5 bioglass derived ranging from 20-30wt% in CaO were used in order to study the sintering behavior of these materials with hydroxyapatite 30wt% dispersed. The composites were uniaxially pressed in the form of cylinders and sinterized at (1100°C/1h). The characterization was made employing scanning electron microscopy, Infra-Red Spectrometry, X-ray diffraction and hydrolytic resistance test. The results indicate the potential use of the materials developed for applications like bone graft.(author)

  2. Isolation and properties of viruses from poultry in Hong Kong which represent a new (sixth) distinct group of avian paramyxoviruses.

    Science.gov (United States)

    Shortridge, K F; Alexander, D J; Collins, M S

    1980-08-01

    Eight viruses isolated in Hong Kong were shown to be serologically related. One was obtained from the tracheal swab of a chicken and four were from cloacal swabs of ducks sampled at a poultry dressing plant. Three isolations were made from samples taken at a duck farm: two from pond water and one from faeces. Representatives of these isolates were shown to be paramyxoviruses but were serologically distinct from other avian and mammalian paramyxoviruses by haemagglutination inhibition and neuraminidase inhibition tests. Slight variations were seen in the properties of three isolates examined in detail. All three were apathogenic for chickens. The structural polypeptides of one isolate, PMV-6/duck/Hong Kong/199/77, were examined by SDS-polyacrylamide gel electrophoresis. Seven polypeptides were detected, with mol. wt. 180000, 76000, 60000, 55000, 51000, 48000 and 40000. The isolates represent a sixth serologically distinct avian paramyxovirus group.

  3. Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC + 8 wt% nano-Ni composite ceramic cutting tool material

    International Nuclear Information System (INIS)

    Zou Bin; Huang Chuanzhen; Song Jinpeng; Liu Ziye; Liu Lin; Zhao Yan

    2012-01-01

    Highlights: ► TiB 2 –TiC + 8 wt% nano-Ni ceramic tool material was sintered by six processes. ► The properties of material depended mainly on the holding stages and duration. ► SP1 process was involved with the multiple holding stages and longer duration. ► SP1 process led to many pores, and coarsening and brittle rupture of grains. ► Tool material sintered by SP6 process exhibited the optimum mechanical properties. - Abstract: TiB 2 –TiC composite powder was prepared by ball-milled with ethanol and vacuum dry, and TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material was sintered using vacuum hot-pressed sintering technique by six processes which included the different holding stages and times. The effects of sintering processes on the mechanical properties and microstructure were investigated. The polished surface and fracture surface of TiB 2 –TiC + 8 wt% nano-Ni ceramics sintered by the different sintering processes were observed by scanning electron microscope (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS), and the relationships between mechanical properties and microstructure were discussed. The mechanical properties and microstructure depended mainly on the total holding time and the different holding stages. The longer holding time and multiple holding stages led to coarsening of TiB 2 and TiC grains, formation of pores and the brittle rupture of grains, which deteriorated the mechanical properties of TiB 2 –TiC + 8 wt% nano-Ni ceramic. TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material sintered by SP6 process exhibited the optimum resultant mechanical properties because of its finer microstructure and higher relative density, and its flexural strength, fracture toughness and hardness were 916.8 MPa, 7.80 MPa m 1/2 and 22.54 GPa, respectively.

  4. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis – a single-centre experience

    Directory of Open Access Journals (Sweden)

    Agnieszka Bińczak-Kuleta

    2015-05-01

    Full Text Available The aim of our study was to examine NPHS1, NPHS2, WT1 and LAMB2 mutations, previously reported in two thirds of patients with nephrotic syndrome with onset before the age of one year old. Genomic DNA samples from Polish children (n=33 with Steroid-ResistantNephrotic Syndrome (SRNS due to focal segmental glomerulosclerosis (FSGS, manifesting before the age of 13 years old, underwent retrospective analysis of NPHS1, NPHS2, WT1 (exons 8, 9 and adjacent exon/intron boundaries and LAMB2. No pathogenic NPHS1 or LAMB2 mutations were found in our FSGS cohort. SRNS-causing mutations of NPHS2 and WT1 were detected in 7 of 33 patients (21%, including those with nephrotic syndrome manifesting before one year old: five of seven patients. Four patients had homozygous c.413G>A (p.Arg138Gln NPHS2 mutations; one subject was homozygous for c.868G>A (p.Val290Met NPHS2. A phenotypic female had C>T transition at position +4 of the WT1 intron 9 (c.1432+4C>T splice-donor site, and another phenotypic female was heterozygous for G>A transition at position +5 (c.1432+5G>A. Genotyping revealed a female genotypic gender (46, XX for the first subject and male (46, XY for the latter. In addition, one patient was heterozygous for c.104dup (p.Arg36Profs*34 NPHS2; two patients carried a c.686G>A (p.Arg229Gln NPHS2 non-neutral variant. Results indicate possible clustering of causative NPHS2 mutations in FSGS-proven SRNS with onset before age one year old, and provide additional evidence that patients with childhood steroid-resistant nephrotic syndrome due to focal segmentalglomerulosclerosis should first undergo analysis of NPHS2 coding sequence and WT1 exons 8 and 9 and surrounding exon/intron boundary sequences, followed by gender genotyping.

  5. Seismic isolation structure for pool-type LMFBR - isolation building with vertically isolated floor for NSSS

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiojiri, H.; Aoyagi, S.; Matsuda, T.; Fujimoto, S.; Sasaki, Y.; Hirayama, H.

    1987-01-01

    The NSSS isolation floor vibration characteristics were made clear. Especially, the side support bearing (rubber bearing) is effective for horizontal floor motion restraint and rocking motion control. Seismic isolation effects for responses of the reactor components can be sufficiently expected, using the vertical seismic isolation floor. From the analytical and experimental studies, the following has been concluded: (1) Seismic isolation structure, which is suitable for large pool-type LMFBR, were proposed. (2) Seismic response characteristics of the seismic isolation structure were investigated. It was made clear that the proposed seismic isolation (Combination of the isolated building and the isolated NSSS floor) was effective. (orig./HP)

  6. Isolated Optic Disc Tuberculosis

    Science.gov (United States)

    Mansour, Ahmad M.; Tabbara, Khalid F.; Tabbarah, Zuhair

    2015-01-01

    We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation. PMID:26483675

  7. Isolated Optic Disc Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2015-09-01

    Full Text Available We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation.

  8. Primary isolated hepatic tuberculosis

    International Nuclear Information System (INIS)

    Sheikh, A.S.F.; Qureshi, I.H.; Saba, K.; Bukhari, M.H.

    2013-01-01

    Isolated hepatic tuberculosis without pulmonary or bowel involvement is a diagnostic challenge and can cause considerable morbidity. A young lady from Lahore presented with fever, pain in right hypochondria, nausea and weight loss. CT scan of abdomen showed multiple small hypodense non-enhancing lesions and a heterogeneous texture of liver. Biopsy confirmed the diagnosis of hepatic tuberculosis. It was concluded a case of isolated hepatic tuberculosis without evidence of other primary sites involvement. It is important to consider tuberculosis in the differential diagnosis when suspecting lymphoproliferative or metastatic diseases in a patient with vague symptoms and abnormal hepatic texture on CT. (author)

  9. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    Science.gov (United States)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  10. A note on isolate domination

    Directory of Open Access Journals (Sweden)

    Ismail Sahul Hamid

    2016-04-01

    Full Text Available A set $S$ of vertices of a graph $G$ such that $\\left\\langle S\\right\\rangle$ has an isolated vertex is called an \\emph{isolate set} of $G$. The minimum and maximum cardinality of a maximal isolate set are called the \\emph{isolate number} $i_0(G$ and the \\emph{upper isolate number} $I_0(G$ respectively. An isolate set that is also a dominating set (an irredundant set is an $\\emph{isolate dominating set} \\ (\\emph{an isolate irredundant set}$. The \\emph{isolate domination number} $\\gamma_0(G$ and the \\emph{upper isolate domination number} $\\Gamma_0(G$ are respectively the minimum and maximum cardinality of a minimal isolate dominating set while the \\emph{isolate irredundance number} $ir_0(G$ and the \\emph{upper isolate irredundance number} $IR_0(G$ are the minimum and maximum cardinality of a maximal isolate irredundant set of $G$. The notion of isolate domination was introduced in \\cite{sb} and the remaining were introduced in \\cite{isrn}. This paper further extends a study of these parameters.   

  11. Deinococcus antarcticus sp. nov., isolated from soil.

    Science.gov (United States)

    Dong, Ning; Li, Hui-Rong; Yuan, Meng; Zhang, Xiao-Hua; Yu, Yong

    2015-02-01

    A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20(T), was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m(-2)) and slightly more sensitive to desiccation as compared with Deinococcus radiodurans. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. Highest sequence similarities were with Deinococcus ficus CC-FR2-10(T) (93.5 %), Deinococcus xinjiangensis X-82(T) (92.8 %), Deinococcus indicus Wt/1a(T) (92.5 %), Deinococcus daejeonensis MJ27(T) (92.3 %), Deinococcus wulumuqiensis R-12(T) (92.3 %), Deinococcus aquaticus PB314(T) (92.2 %) and Deinococcus radiodurans DSM 20539(T) (92.2 %). Major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20(T) was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus antarcticus sp. nov. is proposed. The type strain is G3-6-20(T) ( = DSM 27864(T) = CCTCC AB 2013263(T)). © 2015 IUMS.

  12. Emotion regulation during isolation

    Czech Academy of Sciences Publication Activity Database

    Poláčková Šolcová, Iva; Šolcová, Iva

    2012-01-01

    Roč. 47, Suppl. 1 (2012) ISSN 0020-7594. [International Congress of Psychology /30./. 22.07.2012-27.07.2012, Cape Town] R&D Projects: GA ČR(CZ) GAP407/11/2226 Institutional support: RVO:68081740 Keywords : emotion regulation * isolation * Mars500 Subject RIV: AN - Psychology

  13. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence-Based...

  14. Fault isolation techniques

    Science.gov (United States)

    Dumas, A.

    1981-01-01

    Three major areas that are considered in the development of an overall maintenance scheme of computer equipment are described. The areas of concern related to fault isolation techniques are: the programmer (or user), company and its policies, and the manufacturer of the equipment.

  15. Proteoglycan isolation and analysis

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Proteoglycans can be difficult molecules to isolate and analyze due to large mass, charge, and tendency to aggregate or form macromolecular complexes. This unit describes detailed methods for purification of matrix, cell surface, and cytoskeleton-linked proteoglycans. Methods for analysis...

  16. Isolated limb perfusion.

    Science.gov (United States)

    Gillespie, Rosalyn; Chantier, Nariane

    1994-12-08

    Growing concern over the rising incidence of malignant melanoma has brought about a need for information on this disorder and the treatment available. Isolated limb perfusion is a relatively new technique used in only a few hospitals. An increased knowledge base will lead to a better understanding of the nursing care required and to a more in-depth care plan.

  17. Broadband Faraday isolator.

    Science.gov (United States)

    Berent, Michał; Rangelov, Andon A; Vitanov, Nikolay V

    2013-01-01

    Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

  18. Effects of Ion Bombardment and Heat Treatment on Surface Topography and Hardeniability of The Cu-1.5 wt.% Sb Alloy

    International Nuclear Information System (INIS)

    Habib, S.K.; Rizk, A.; Saad, J.; Soliman, H.N.; Fayek, S.A.

    2010-01-01

    Specimens of the Cu-1.5 wt.% Sb alloy were prepared and subjected to different heat treatments to obtain specimens with different grain diameters. These were sputtered separately in argon glow discharge using a de magnetron sputtering system. Scanning electron microscopy was used for examining surface topography while EDS for determination of the elemental composition. The hardness of the specimens under investigation was measured under different conditions of testing. The results showed that both hardness and surface topography of the given alloy are greatly affected by grain diameter and sputtering time.

  19. Nucleation and growth characteristics of cavities during the early stages of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.; Nutt, S.R.

    1997-01-01

    Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions

  20. Hydrogen storage properties of Mg-23.3wt.%Ni eutectic alloy prepared via hydriding combustion synthesis followed by mechanical milling

    International Nuclear Information System (INIS)

    Liquan Li; Yunfeng Zhu; Xiaofeng Liu

    2006-01-01

    A Mg-23.3wt.%Ni eutectic alloy was prepared by the process of hydriding combustion synthesis followed by mechanical milling (HCS+MM). The product showed a high hydriding rate at 373 K and the dehydrogenation started at temperature as low as 423 K. Several reasons contributing to the improvement in hydrogen storage properties were presented. The result of this study will provide attractive information for mobile applications of magnesium hydrogen storage materials, and the process of HCS+MM developed in this study showed its potential for synthesizing magnesium based hydrogen storage materials with novel hydriding/de-hydriding properties. (authors)

  1. Study of effect of dynamic mill treatment on the compaction and sintering of UO2-5wt%CeO2

    International Nuclear Information System (INIS)

    Na, S. H.; Kim, S. H.; Kim, Y. K.; Lee, Y. W.; Yoo, M. J.

    2002-01-01

    Some properties (apparent density, green density, sintered density and grain size) of the simulated mixed oxide(UO 2 -5wt%CeO 2 ) prepared by using the dynamic mill newly developed were investigated. As the dynamic milling time increases, these properties increase. However, the increases of sintered density and grain size were saturated above 2 hrs and 4 hrs of dynamic milling treatment, respectively. It appeared that the dynamic mill has a similar capability to that of other milling methods, and hence can manufacture the pellets having desired properties by controlling milling time

  2. Auto and hetero-diffusion along grain and interphase boundaries in α-Zr and Zr-2.5wt%Nb

    International Nuclear Information System (INIS)

    Dyment, F.; Iribarren, M.J.; Vieregge, K.; Herzig, C.

    1993-01-01

    Grain-boundary diffusion measurements made in α-Zr and interphase-boundary diffusion measurements made in the (α+β) region of Zr-2.5wt%Nb were considered together with the aim of gaining a better understanding of the behaviour of these boundaries in Zr-based materials which are relevant for the nuclear industry. When comparing the total set of data it turns out that, from the diffusion point of view, both types of boundaries provide similar short-circuit diffusion paths. (orig.)

  3. Influence of grain size and additions of Al and Mn on the magnetic properties of non-oriented electrical steels with 3 wt. (% Si

    Directory of Open Access Journals (Sweden)

    Rodrigo Felix de Araujo Cardoso

    2008-03-01

    Full Text Available The influence of hot-band grain size and additions of aluminum and manganese on the magnetic properties of non-oriented grain (NOG low-carbon electrical steel with about 3 wt. (% Si were investigated using optical microscopy and X ray diffraction. The addition of manganese resulted in larger grains after final annealing. Coarse grains in the hot-band and addition of Mn led to a Goss orientation component after final annealing, which resulted in an increase in the magnetic permeability.

  4. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    Science.gov (United States)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  5. Effect of thermo mechanical treatments and aging parameters on mechanical properties of Al–Mg–Si alloy containing 3 wt.% Li

    International Nuclear Information System (INIS)

    Shamas, Ud Din; Kamran, Javed; Hasan, B.A.; Tariq, N.H.; Mehmood, M.; Shamas uz Zuha, M.

    2014-01-01

    Highlights: • TMT studies of 3 wt.% Li on Al–0.5Mg–0.2Si in W, T6 and T8 conditions. • Artificial aging at 175 °C for 2–12 h with prior cold reductions of 10–60%. • Hardness surveys, YS and UTS, microscopy, fractography and DSC studies. • Mechanical properties significantly enhanced in T8 condition. • Property enhancement attributed to a possible refinement of δ′ (Al 3 Li) precipitates. - Abstract: In the present work, microstructure and mechanical properties of 3 wt.% Li addition in a Al–Mg–Si alloy of target composition 0.5 wt.% Mg and 0.2 wt.% Si in W (solution heat treated), T6 (solution heat treated and artificially aged) and T8 (solution heat treated, cold worked and artificially aged) conditions was studied. The age-hardening response of the alloy was determined after systematic cold reductions from 10%, 20%, 30%, 40%, 50% and 60% in quenched condition followed by aging at 175 °C (448 K) for 2, 4, 6, 8, 10 and 12 h (T8 condition). The results were compared with samples aged in the same conditions with 0% cold reduction (T6 condition). The alloy displayed a strong artificial aging response and maximum hardness value achieved was after 60% cold work and 10 h of aging time. Furthermore, the yield strength and the ultimate tensile strength were increased from 123 MPa to 224 MPa and 356 MPa to 540 MPa respectively with a slight decrease in ductility. Scanning electron microscopy (SEM) based fractography showed a uniform network of bigger and deeper dimples with round morphology in T6 condition while a ductile tearing with few discernable cleavage planes was observed in T8 condition. The interplay of various precipitation hardening mechanisms and relevant phases was established by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was concluded that the enhancement in mechanical properties, with the degree of cold work, was attributed due to a possible refinement of δ′ (Al 3 Li) precipitates resulted after aging

  6. Hsf-1 affects podocyte markers NPHS1, NPHS2 and WT1 in a transgenic mouse model of TTRVal30Met-related amyloidosis.

    Science.gov (United States)

    Petrakis, Ioannis; Mavroeidi, Vasiliki; Stylianou, Kostas; Andronikidi, Eva; Lioudaki, Eirini; Perakis, Kostas; Stratigis, Spyridon; Vardaki, Eleftheria; Zafeiri, Maria; Giannakakis, Kostantinos; Plaitakis, Andreas; Amoiridis, George; Saraiva, Maria Joao; Daphnis, Eugene

    2013-09-01

    Familial amyloid polyneuropathy is characterized by transthyretin (TTR) deposition in various tissues, including the kidneys. While deposition induces organ dysfunction, renal involvement in TTR-related amyloidosis could manifest from proteinuria to end-stage kidney failure. As proteinuria is considered result of glomerular filtration barrier injury we investigated whether TTR deposition affects either glomerular basement membrane (GBM) or podocytes. Immunohistochemistry, immunoblot and gene expression studies for nephrin, podocin and WT1 were run on renal tissue from human-TTRV30M transgenic mice hemizygous or homozygous for heat shock factor one (Hsf-1). Transmission electron microscopy was used for evaluation of podocyte foot process width (PFW) and GBM thickness in Hsf-1 hemizygous mice with or without TTRV30M or amyloid deposition. Glomeruli of hsf-1 hemizygous transgenic mice showed lower nephrin and podocin protein levels but an increased podocyte number when compared to Hsf-1 homozygous transgenic mice. Nephrin, podocin and WT1 gene expression levels were unaffected by the Hsf-1 carrier status. TTRV30M deposition was associated with increased PFW and GBM thickness. Under the effect of Hsf-1 hemizygosity, TTRV30M deposition has deleterious effects on GBM thickness, PFW and slit diaphragm composition, without affecting nephrin and podocin gene expression.

  7. Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.

  8. An investigation on the role of texture evolution and ordered phase transition in soft magnetic properties of Fe–6.5 wt%Si electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Guojun; Li, Changsheng, E-mail: lics@ral.neu.edu.cn; Cai, Ban; Wang, Qiwen

    2017-05-15

    Fe–6.5 wt%Si electrical steel characterized with excellent soft magnetic properties such as almost zero magnetostriction, low eddy current and hysteresis losses characteristics has been widely applied in high frequency fields. In this work, the role of texture evolution and ordered phase transition in soft magnetic properties of annealed sheets was explored using EBSD, XRD and TEM. The results demonstrate that accompanied with the increase of annealing temperatures, an increase on the B8 is attributable to a contribution combining the sizes of recrystallization grains with APBs of ordered phases as pinning the migration of magnetic domain wall. Whereas B50 declines to a minimum value (1.479 T) and then increases to a certain value (1.695 T) due to different types and intensities of textures affecting on the magnetocrystalline anisotropy energy. Meanwhile, the dislocation density gradually decreases and corresponding to a gradual decline in the internal stress, which makes the coercive force (H{sub c}) decrease monotonically. - Highlights: • Role of texture and ordered phase in Fe–6.5 wt%Si were studied. • With increasing annealing temperatures, H{sub c} decreases monotonically. • Combining grain sizes with APBs in B8 measurements. • Increasing annealing temperatures, B50 declines and then increases due to texture.

  9. Sensorless Control of Late-Stage Offshore DFIG-WT with FSTP Converters by Using EKF to Ride through Hybrid Faults

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-11-01

    Full Text Available A hybrid fault scenario in a late-stage offshore doubly-fed induction generator (DFIG-based wind turbine (DFIG-WT with converter open-circuit fault and position sensor failure is investigated in this paper. An extended Kalman filter (EKF-based sensorless control strategy is utilized to eliminate the encoder. Based on the detailed analysis of the seventh-order dynamic state space model of DFIG, along with the input voltage signals and measured current signals, the EKF algorithm for DFIG is designed to estimate the rotor speed and position. In addition, the bridge arm open circuit in the back-to-back (BTB power converter of DFIG is taken as a commonly-encountered fault due to the fragility of semiconductor switches. Four-switch three-phase (FSTP topology-based fault-tolerant converters are employed for post-fault operation by considering the minimization of switching losses and reducing the circuit complexity. Moreover, a simplified space vector pulse width modulation (SVPWM technique is proposed to reduce the computational burden, and a voltage balancing scheme is put forward to increase the DC-bus voltage utilization rate. Simulation studies are carried out in MATLAB/Simulink2017a (MathWorks, Natick, MA, USA to demonstrate the validity of the proposed hybrid fault-tolerant strategy for DFIG-WT, with the wind speed fluctuation, measurement noises and grid voltage sag taken into consideration.

  10. Corrosion and hydriding behaviour of some Zr 2.5 wt% Nb alloys in water, steam and various gases at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, S. B.

    1962-05-15

    Fuel sheaths and pressure tubes in Canadian power reactors are at present made from Zircaloy-2. Mechanical properties of a suitably heat treated Zr 2.5 wt% Nb alloy are superior to those of Zircaloy-2, but any new alloy must have resistance to corrosion and hydriding by the coolant and by the gas that insulates the pressure tube from the cold moderator. Exposed to water at temperatures up to 325{sup o}C, the Zr 2.5 wt% Nb alloy has corrosion resistance acceptable for power reactors. Resistance to air and carbon dioxide is less favourable. Addition of tin, or iron and chromium, to the base alloy have little effect on the corrosion resistance, but the addition of copper reduces corrosion in water and steam to some extent and in air and carbon dioxide to a greater extent. Studies of the effect of heat treatment suggest that the amount of niobium in a solid-solution controls the rate of oxidation and hydriding and that concentration, size and distribution of second phase is of little importance. Initial results obtained in NRX indicate that a thermal flux of 3-7 x 10{sup 13} n/cm{sup 2}/sec has little or no effect on oxidation and hydriding in high temperature water. (author)

  11. Characterisations Of Al2O3-13% Wt TiO2 Deposition On Mild Steel Via Plasma Spray Method

    International Nuclear Information System (INIS)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.; Muchtar, A.; Forghani, S.; Daud, A. R.

    2011-01-01

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4% by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only ∼5 x 10 -4 cm 3 /Nm with 4% of porosity.

  12. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Sabbar, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Zouihri, H.; Dakhsi, K. [UATRS, CNRST, Angle Allal Fassi, FAR, BP 8027, Hay Riad, Rabat (Morocco); Guedira, F. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Serghini-Idrissi, M. [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); El Hajjaji, S., E-mail: selhajjaji@hotmail.com [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco)

    2011-08-15

    Highlights: > Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. > Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. > Bi and Ag lead to the increase of corrosion rate. > EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential E{sub corr} is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn{sub 5}(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  13. Phase state of a Bi-43 wt % Sn superplastic alloy and its changes under the effect of external mechanical stresses and aging

    Science.gov (United States)

    Korshak, V. F.; Chushkina, R. A.; Shapovalov, Yu. A.; Mateichenko, P. V.

    2011-07-01

    Samples of a Bi-43 wt % Sn superplastic alloy have been studied by X-ray diffraction in the ascast state, after compression of as-cast samples to ˜70% on a hydraulic press, after aging in the as-cast and preliminarily compressed state, and using samples deformed under superplastic conditions. The X-ray diffraction studies have been carried out using a DRON-2.0 diffractometer in Cu Kα radiation. The samples aged and deformed under superplasticity conditions have been studied using electron-microprobe analysis in a JSM-820 scanning electron microscope equipped with a LINK AN/85S EDX system. It has been found that the initial structural-phase state of the alloy was amorphous-crystalline. Causes that lead to a change in this state upon deformation and aging are discussed. A conclusion is made that the superplasticity effect manifests itself against the background of processes that are stipulated by the tendency of the initially metastable alloy to phase equilibrium similarly to what is observed in the Sn-38 wt % Pb eutectic alloy studied earlier.

  14. Thermal shock behavior of W-0.5 wt% Y{sub 2}O{sub 3} alloy prepared via a novel chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei-Ling [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China); Lin, Jing-Shan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zan, Xiang; Zhu, Xiao-Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 (China)

    2016-10-15

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y{sub 2}O{sub 3} alloy. The W-0.5 wt% Y{sub 2}O{sub 3} precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y{sub 2}O{sub 3}-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  15. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  16. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  17. Thermal shock behavior of W-0.5 wt% Y_2O_3 alloy prepared via a novel chemical method

    International Nuclear Information System (INIS)

    Zhao, Mei-Ling; Luo, Lai-Ma; Lin, Jing-Shan; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng

    2016-01-01

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y_2O_3 alloy. The W-0.5 wt% Y_2O_3 precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y_2O_3-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  18. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    Science.gov (United States)

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effect of poling process on piezoelectric properties of BCZT - 0.08 wt.% CeO{sub 2} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chandrakala, E.; Praveen, J. Paul; Das, Dibakar, E-mail: ddse@uohyd.ernet.in [School of Engineering Sciences & Technology, University of Hyderabad, Hyderabad 500046 (India)

    2016-05-06

    The properties of lead free piezoelectric materials can be tuned by suitable doping in the A and B sites of the perovskite structure. In the present study, cerium has been identified as a dopant to investigate the piezoelectric properties of lead-free BCZT system. BCZT – 0.08 wt.%CeO{sub 2} lead-free ceramics have been synthesized using sol-gel technique and the effects of CeO{sub 2} dopant on their phase structure and piezoelectric properties were investigated systematically. Poling conditions, such as temperature, electric field, and poling time have been optimized to get enhanced piezoelectric response. The optimized poling conditions (50°C, 3Ec and 30min) resulted in high piezoelectric charge coefficient d{sub 33} ~ 670pC/N, high electromechanical coupling coefficient k{sub p} ~ 60% and piezoelectric voltage coefficient g{sub 33} ~ 14 mV.m/N for BCZT – 0.08wt.% CeO{sub 2} ceramics.

  20. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  1. High voltage isolation transformer

    Science.gov (United States)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  2. Psychopathology of social isolation

    OpenAIRE

    Baek, Sang-Bin

    2014-01-01

    The most important defining factor of being human is the use of symbolic language. Language or communication problem occurs during the growth, the child will have a higher risk of social isolation and then the survival will be threatened constantly. Today, adolescents and youths are familiar with computer and smart-phone devices, and communication with others by these devices is easy than face-to-face communication. As adolescents and youths live in the comfortable and familiar cyber-world ra...

  3. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  4. Neglected isolated scaphoid dislocation

    Directory of Open Access Journals (Sweden)

    Jong-Ryoon Baek

    2016-01-01

    Full Text Available The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN of the scaphoid.

  5. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease.

    Science.gov (United States)

    Hamilton, James; Pellman, Jessica J; Brustovetsky, Tatiana; Harris, Robert A; Brustovetsky, Nickolay

    2016-07-01

    Alterations in oxidative metabolism and defects in mitochondrial Ca 2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca 2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca 2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca 2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca 2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca 2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca 2+ Overall, our data argue against respiratory deficiency and impaired Ca 2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Miniature Optical Isolator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for compact optical isolators, Physical Optics Corporation (POC) proposes to continue the development of a new Miniature Optical Isolator...

  7. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...

  8. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei [Fermilab; Ye, L. [North Carolina State U.; Jiang. J., Jiang. J. [Natl. High Mag. Field Lab.; Shen, T. [Fermilab

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  9. Isolation and characterization of dental epithelial cells derived from amelogenesis imperfecta rat.

    Science.gov (United States)

    Adiningrat, A; Tanimura, A; Miyoshi, K; Hagita, H; Yanuaryska, R D; Arinawati, D Y; Horiguchi, T; Noma, T

    2016-03-01

    Disruption of the third zinc finger domain of specificity protein 6 (SP6) presents an enamel-specific defect in a rat model of amelogenesis imperfecta (AMI rats). To understand the molecular basis of amelogenesis imperfecta caused by the Sp6 mutation, we established and characterized AMI-derived rat dental epithelial (ARE) cells. ARE cell clones were isolated from the mandibular incisors of AMI rats, and amelogenesis-related gene expression was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Localization of wild-type SP6 (SP6WT) and mutant-type SP6 (SP6AMI) was analyzed by immunocytochemistry. SP6 transcriptional activity was monitored by rho-associated protein kinase 1 (Rock1) promoter activity with its specific binding to the promoter region in dental (G5 and ARE) and non-dental (COS-7) epithelial cells. Isolated ARE cells were varied in morphology and gene expression. Both SP6WT and SP6AMI were mainly detected in nuclei. The promoter analysis revealed that SP6WT and SP6AMI enhanced Rock1 promoter activity in G5 cells but that enhancement by SP6AMI was weaker, whereas no enhancement was observed in the ARE and COS-7 cells, even though SP6WT and SP6AMI bound to the promoter in all instances. ARE cell clones can provide a useful in vitro model to study the mechanism of SP6-mediated amelogenesis imperfecta. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target

    International Nuclear Information System (INIS)

    Kim, Sang Hyeob; Park, Nae-Man; Kim, TaeYoub; Sung, GunYong

    2005-01-01

    We have investigated the effect of the oxygen pressure and the deposition temperature on the electrical and optical properties of the Sn-doped indium oxide (ITO) films on quartz glass substrate by pulsed laser deposition (PLD) using a 10 wt.% SnO 2 -doped In 2 O 3 target. The resistivity and the carrier concentration of the films were decreased due to the decrease of the oxygen vacancy while increasing the oxygen pressure. With increasing deposition temperature, the resistivity of the films was decreased and the carrier concentration was increased due to the grain growth and the enhancement of the Sn diffusion. We have optimized the PLD process to deposit a highly conductive and transparent ITO film, which shows the optical transmittance of 88% and the resistivity of 2.49x10 -4 Ω cm for the film thickness of 180 nm

  11. Qualitative study the effect of conditions milling of 95.5Sn/4.0Ag/0.5Cu, (wt%) nanopowder

    International Nuclear Information System (INIS)

    Manzato, L.; Anglada-Rivera, J.; Oliveira, M.F. de

    2010-01-01

    The SAC-405, Sn-4.0Ag-0.5Cu (wt%) nanopowders, which has potential applications in microelectronics, such as lead-free solder, were obtained by high energy milling. The purpose of this study was to investigate the structural changes of the SAC-405 produced by high energy milling with times of 12, 24 and 48, under an atmosphere of hydrogen and power grinding 40:1. The crystallite size and micro-deformations of the nanopowders was measured by X-ray diffraction (XRD) using Rietveld method. Preliminary results show that it is possible to obtain nanopowders by mechanical alloying for the SAC-405 alloy with average particle size of 10 ∼ 18 nm. There are also strong indications of a reduction of ∼ 7 deg C melting temperature of the dust that is characteristic of nano-sized particles. (author)

  12. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  13. Reconstucted topographs of polycrystalline (110) Fe-3 wt% Si samples and the observation of their magnetic domain images using synchrotron radiation

    International Nuclear Information System (INIS)

    Stephenson, J.D.; Kelhae, V.; Tilli, M.; Tuomi, T.

    1978-01-01

    'White' synchrotron radiation topography has been employed to reconstruct almost complete, though slightly shape distorted topographs of polycrystalline samples. Those used in the experiments were commercial (110) Fe-3wt%Si crystals containing several misorientated subgrains and were of thickness between 0.15 and 0.20 mm. The topographs were reassembled 'jig-saw puzzle' fashion from photographically enlarged subgrain mini-topographs located near the centres of each film. Magnetic domains were observed in several subgrain topographs recorded in the Laue-reflection and Laue-transmission modes. The technique emphasizes one of the advantages in using 'white' synchrotron radiation to produce rapid high resolution topographs of polycrystalline samples in relatively hazard free radiation conditions. (Auth.)

  14. Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1975-09-01

    This report contains experimentally determined data on the dynamic elastic moduli of zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium and Marz grade crystal bar zirconium. Data on both the dynamic Young's moduli and shear moduli of the alloys have been measured at room temperature and Young's modulus as a function of temperature has been determined over the temperature range 300 K to 1000 K. In every case, Young's modulus decreases linearly with increasing temperature and is expressed by an empirical equation fitted to the data. Differences in Young's modulus values determined from specimens with longitudinal axes parallel and perpendicular to the rolling direction are small, as are the differences between Young's moduli determined from strip, bar stock and fuel sheathing. (author)

  15. Microstructures, Mechanical Properties and Thermal Conductivities of W-0.5 wt.%TiC Alloys Prepared via Ball Milling and Wet Chemical Method

    Science.gov (United States)

    Lang, Shaoting; Yan, Qingzhi; Sun, Ningbo; Zhang, Xiaoxin; Ge, Changchun

    2017-10-01

    Two kinds of W-0.5 wt.%TiC alloys were prepared, one by ball milling and the other by the wet chemical method. For comparison, pure tungsten powders were chemically prepared and sintered by the same process. The microstructures, mechanical properties and thermal conductivities of the prepared samples were characterized. It has been found that the wet chemical method resulted in finer sizes and more uniform distribution of TiC particles in the sintered tungsten matrix than the ball milling method. The W-TiC alloy prepared by the wet chemical method achieved the highest bending strength (1065.72 MPa) among the samples. Further, it also exhibited obviously higher thermal conductivities in the temperature range of room temperature to 600°C than did the W-TiC alloy prepared by ball milling, but the differences in their thermal conductivities could be ignored in the range of 600-800°C.

  16. Wt-channel cross section measurement in single top quark production with the ATLAS detector at √(s) = 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui; Moles Valls, Regina; Brock, Ian C. [Physikalisches Institut, Universitaet Bonn (Germany)

    2016-07-01

    The inclusive production cross-section for the associated production of a W boson and a top quark is measured using data from proton-proton collision at a centre of mass energy 13 TeV collected in 2015 by the ATLAS detector at the Large Hadron Collider at CERN. Events are separated into signal and control regions based on the number of jets and the number of jets which are identified as containing b-hadrons. The Wt signal is separated from the t anti t background using a boosted decision tree discriminant. The cross-section is extracted by fitting Monte Carlo templates to the data distributions. A measurement of the fiducial cross-section is also performed.

  17. Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

    Science.gov (United States)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.

    2010-01-01

    Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

  18. Viscous behavior of (Sn61.9Pb38.1)100-xREx (x=0, 0.1, 0.3, 1 wt%) solder alloys

    International Nuclear Information System (INIS)

    Wu Yuqin; Bian Xiufang; Zhao Yan; Li Xuelian; Zhang Yanning; Tian Yongsheng; Lv Xiaoqian

    2008-01-01

    The viscous behavior of (Sn 61.9 Pb 38.1 ) 100-x RE x (x=0, 0.1, 0.3, 1 wt%) solder alloys has been investigated by a torsional oscillation viscometer. The structural transition temperature T ' increases with increasing addition of RE elements. Above T ' , the viscosities of melts increase with increasing addition of RE, and are fitted well with the Arrhenius equation. The time dependence of viscosity at the measured temperature below T ' follows the exponential relaxation function and reflects the process of the structural transition in the melt, which can be considered as the thermodynamic equilibrium process. The thermodynamic equilibrium relaxation time τ eq increases with both the equilibrium viscosity η eq and the discrepancy in viscosity (Δη), between the initial state and the equilibrium state. However, it decreases with the measured temperature T. The size of clusters in the melts increases with increasing of viscosity and is restricted by the thermodynamic equilibrium conditions

  19. Project W-314 acceptance test report HNF-4647 for HNF-4646 241-B pit leak detection ANB-WT-LDSTA-231 for project W-314

    International Nuclear Information System (INIS)

    HAMMERS, J.S.

    1999-01-01

    The purpose of the test was to verify that the AN Tank Farm B Pit Leak Detector components are functionally integrated and operate in accordance with engineering design specifications. The Acceptance Test Procedure HNF-4646,241-AN-B-Pit Leak Detection ANB-WT-LDSTA-231 was conducted between 26 June and 02 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure were found to be labeled and identified as written in the procedure

  20. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; Lavender, Curt; Joshi, Vineet V.

    2017-12-01

    The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.

  1. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  2. Femtosecond laser induced crystallization and permanent relief grating structures in amorphous inorganic (In2O3+1 wt % TiO2) films

    International Nuclear Information System (INIS)

    Katayama, Shigeru; Tsutsumi, Naoto; Nakamura, Toshitaka; Horiike, Mika; Hirao, Kazuyuki

    2002-01-01

    This letter presents an investigation of crystalline relief grating structures induced by irradiation of near-infrared femtosecond laser pulses on an amorphous inorganic (In 2 O 3 +1 wt % TiO 2 ) film. The shapes of crystallized relief structures were sensitive to the scanning rate and the focused point height of irradiation, and the optimized irradiation condition gave cone-shaped cross section structures. Selective wet etching on unirradiated amorphous regions using a 3% hydrochloric acid solution could make sharper relief grating structures of crystalline regions. Diffraction efficiency of the relief grating structures with Au coating was measured, and it was confirmed that first-order diffraction, efficiencies were approximately 40% and 20% for etched and nonetched samples, respectively

  3. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys

    International Nuclear Information System (INIS)

    Braszczyńska-Malik, K.N.; Grzybowska, A.

    2016-01-01

    The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al_1_1RE_3 and Al_1_0RE_2Mn_7 intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al_2RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensile and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al_1_1RE_3 phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.

  4. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  5. Effect of milling parameters on sinterability, mechanical and electrical properties of Cu-4 wt.% ZrO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohammed A., E-mail: mtahanrc@gmail.com [Solid-State Physics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt); Nassar, Amira H. [Solid-State Physics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt); Zawrah, M.F. [Ceramics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt)

    2016-09-15

    Mechanical alloying was used to produce Cu matrix nanocomposite reinforced by 4 wt.% ZrO{sub 2} nanoparticles with different milling time up to 16 h and ball-to-powder ratios (BPRs) up to 40:1. The milled nanocomposite powders were investigated by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). To study the sinterability, the milled powders were cold pressed and sintered at 800 °C for 1 h in argon atmosphere. In order to investigate the relative density and microstructures of the sintered nanocomposites, scanning electron microscopy (SEM) as well as energy dispersive spectrometer (EDS) were employed. The electrical and mechanical properties of the sintered nanocomposites were also examined. The results revealed that a uniform distribution of ZrO{sub 2} reinforcement in Cu matrix was successfully obtained and the agglomeration, crystal and particle sizes were decreased after either milling times and/or BPRs. The results also pointed out that the relative density, microhardness, compressive strength and electrical conductivity of the sintered nanocomposite samples were increased with the increasing of milling time and/or BPRs while apparent porosity was decreased. The maximum values of microhardness, compressive strength and electrical conductivity were 872 MPa, 304 MPa and 45.9% IACS, respectively for the milled sample for 16 h and BRP 40:1. - Highlights: • Cu-4 wt.% ZrO{sub 2} nanoparticles with different parameter by mechanical alloying. • The increased milling times and/or BPRs led to a decrease in the particle size. • Microhardness is increased with increasing ball-to-powder weight ratios. • Compressive strength is increased with increasing milling time. • Electrical conductivity of the samples was increasing with increase milling time.

  6. Diabetes in population isolates

    DEFF Research Database (Denmark)

    Grarup, Niels; Moltke, Ida; Albrechtsen, Anders

    2015-01-01

    Type 2 diabetes (T2D) is an increasing health problem worldwide with particularly high occurrence in specific subpopulations and ancestry groups. The high prevalence of T2D is caused both by changes in lifestyle and genetic predisposition. A large number of studies have sought to identify...... on glucose-stimulated plasma glucose, serum insulin levels, and T2D. The variant defines a specific subtype of non-autoimmune diabetes characterized by decreased post-prandial glucose uptake and muscular insulin resistance. These and other recent findings in population isolates illustrate the value...

  7. Journey from isolation

    Directory of Open Access Journals (Sweden)

    Wim A. Dreyer

    2011-04-01

    Full Text Available Since the Ottawa Consultation in 1982, the relationship between the Nederduitsch Hervormde Kerk van Afrika (NHKA and the World Alliance of Reformed Churches (WARC was nonexistent. In the NHKA it became progressively clear that it would be impossible to travel the road of faith alone. This article examined the factors which contributed to the growing isolation of the NHKA, especially nationalism, a particularistic ecclesiology and the rejection of Apartheid by international ecumenical bodies. It also reflected on efforts of the NHKA to return to the international ecumenical movement.

  8. Waste isolation: a bibliography

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-12-01

    This bibliography contains information on waste isolation included in the Department of Energy's Energy Data Base from Janurary 1981 through November 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Radioactive Waste Disposal/Salt Deposits. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  9. Yeast Isolation for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    EKA RURIANI

    2012-09-01

    Full Text Available We have isolated 12 yeast isolates from five different rotten fruits by using a yeast glucose chloramphenicol agar (YGCA medium supplemented with tetracycline. From pre-screening assay, four isolates exhibited higher substrate (glucose-xylose consumption efficiency in the reaction tube fermentation compared to Saccharomyces cerevisiae dan Saccharomyces ellipsoids as the reference strains. Based on the fermentation process in gooseneck flasks, we observed that two isolates (K and SB showed high fermentation efficiency both in sole glucose and mixed glucose-xylose substrate. Moreover, isolates K and SB produced relatively identical level of ethanol concentration compared to the reference strains. Isolates H and MP could only produce high levels of ethanol in glucose fermentation, while only half of that amount of ethanol was detected in glucose-xylose fermentation. Isolate K and SB were identified as Pichia kudriavzeevii (100% based on large sub unit (LSU ribosomal DNA D1/D2 region.

  10. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  11. Schizosaccharomyces isolation method

    Directory of Open Access Journals (Sweden)

    Benito Santiago

    2014-01-01

    Full Text Available This study discusses the optimization of a selective and differential medium which would facilitate the isolation of Schizosaccharomyces (a genus with a low incidence compared to other microorganisms to select individuals from this genus for industrial purposes, especially in light of the recent recommendation of the use of yeasts from this genus in the wine industry by the International Organisation of Vine and Wine, or to detect the presence of such yeasts, for those many authors who consider them food spoilers. To this end, we studied various selective differential agents based on the main physiological characteristics of these species, such as their high resistances to high concentrations of sugar, sulfur dioxide, sorbic acid, benzoic acid, acetic acid or malo ethanolic fermentation. This selective medium is based on the genus resistance to the antibiotic actidione and its high resistance to inhibitory agents such as benzoic acid. Malic acid was used as a differential factor due to the ability of this genus to metabolise it to ethanol, which allows detecting of the degradation of this compound. Lastly, the medium was successfully used to isolate strains of Schizosaccharomyces pombe from honey and honeycombs.

  12. The molecular structure of the insoluble organic matter isolated from Murchison carbonaceous chondrite.

    Science.gov (United States)

    Robert, F.; Derenne, S.

    2009-04-01

    During these last 10 years, our group has characterized the various molecular moieties of the insoluble organic matter (IOM) isolated from carbonaceous meteorites with the aim of reconstructing its overall molecular structure. Indeed, a precise knowledge of the structure of an organic macromolecule contains irreplaceable information that traces its mechanisms of synthesis and its conditions of formation. Such a modelled structure will be presented. Carbonaceous chondrites contain up to 3 wt % of carbon that is under the form of soluble and insoluble fractions. The IOM, which constitutes more than 75 wt% of the bulk organic matter, was isolated from the bulk rock through successive acid dissolutions. The chemical structure of the isolated IOM has been studied by both (1) destructive and (2) non destructive methods. Methods include thermal and chemical degradations followed by GC/MS, spectroscopic techniques (nuclear magnetic resonance, Fourier transform infra red spectroscopy; X-ray absorption near-edge spectroscopy, electron paramagnetic resonance) along with high resolution transmission electron microscopy. Although each technique alone cannot provide definite information on the chemical structure of such a complex material, the combination of the results can be used to reconstruct the molecular structure of the IOM. The proposed structure accounts for all these measured parameters. The details of this structure reveal information of the conditions of its formation in space and allow to discuss the mechanisms of organo-synthesis in the cosmochemical context of the formation of the solar system.

  13. Isolated Cardiac Hydatid Cyst

    International Nuclear Information System (INIS)

    Shakil, U.; Rehman, A. U.; Shahid, R.

    2015-01-01

    Hydatid cyst disease is common in our part of the world. Cardiac hydatid cyst is its rare manifestation. We report this case of 48-year male having isolated cardiac hydatid cyst, incidentally found on computed tomography. This patient presented in medical OPD of Combined Military Hospital, Lahore with one month history of mild retrosternal discomfort. His general physical and systemic examinations as well as ECG were unremarkable. Chest X-ray showed an enlarged cardiac shadow with mildly irregular left heart border. Contrast enhanced CT scan of the chest showed a large well defined multiloculated non-enhancing cystic lesion with multiple daughter cysts involving wall of left ventricle and overlying pericardium. Serology for echinococcus confirmed the diagnosis of hydatid cyst. Patient was offered the surgical treatment but he opted for medical treatment only. Albendezol was prescribed. His follow-up echocardiography after one month showed no significant decrease in size of the cyst. (author)

  14. The Neuroendocrinology of Social Isolation

    Science.gov (United States)

    Cacioppo, John T.; Cacioppo, Stephanie; Capitanio, John P.; Cole, Steven W.

    2016-01-01

    Social isolation has been recognized as a major risk factor for morbidity and mortality in humans for more than a quarter of a century. Although the focus of research has been on objective social roles and health behavior, the brain is the key organ for forming, monitoring, maintaining, repairing, and replacing salutary connections with others. Accordingly, population-based longitudinal research indicates that perceived social isolation (loneliness) is a risk factor for morbidity and mortality independent of objective social isolation and health behavior. Human and animal investigations of neuroendocrine stress mechanisms that may be involved suggest that (a) chronic social isolation increases the activation of the hypothalamic pituitary adrenocortical axis, and (b) these effects are more dependent on the disruption of a social bond between a significant pair than objective isolation per se. The relational factors and neuroendocrine, neurobiological, and genetic mechanisms that may contribute to the association between perceived isolation and mortality are reviewed. PMID:25148851

  15. The neuroendocrinology of social isolation.

    Science.gov (United States)

    Cacioppo, John T; Cacioppo, Stephanie; Capitanio, John P; Cole, Steven W

    2015-01-03

    Social isolation has been recognized as a major risk factor for morbidity and mortality in humans for more than a quarter of a century. Although the focus of research has been on objective social roles and health behavior, the brain is the key organ for forming, monitoring, maintaining, repairing, and replacing salutary connections with others. Accordingly, population-based longitudinal research indicates that perceived social isolation (loneliness) is a risk factor for morbidity and mortality independent of objective social isolation and health behavior. Human and animal investigations of neuroendocrine stress mechanisms that may be involved suggest that (a) chronic social isolation increases the activation of the hypothalamic pituitary adrenocortical axis, and (b) these effects are more dependent on the disruption of a social bond between a significant pair than objective isolation per se. The relational factors and neuroendocrine, neurobiological, and genetic mechanisms that may contribute to the association between perceived isolation and mortality are reviewed.

  16. Precipitation behaviors, texture and tensile properties of an extruded Mg-7Y-1Nd-0.5Zr (wt%) alloy bar with large cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Guoliang, E-mail: shigl@grinm.com; Zhang, Kui; Li, Xinggang; Li, Yongjun; Ma, Minglong; Yuan, Jiawei

    2017-02-08

    Precipitation behaviors, texture and tensile properties of an extruded Mg-7Y-1Nd-0.5Zr (wt%) (WE71) alloy bar with large cross-section of 230 mm×140 mm were investigated by hardness test, tensile test, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) macro-texture measurement. The bar was manufactured industrially through a procedure of “multi-direction forging (MDF)+extrusion+on-line quenching+T5 aging”. Totally different age-hardening behaviors are shown during T5 aging at 200 and 235 °C. In the first 100 h, T5 aging at 235 °C brings about 13% increases in hardness, while T5 aging at 200 °C results in 47% increase. During T5 aging at 200 °C, β′ precipitates homogeneously nucleate within the matrix with high number density; however, during T5 aging at 235 °C, β′ precipitates heterogeneously nucleate on discrete and sparse dislocations, resulting in chain-like arrangement of β′ precipitates with broad precipitate free zones in matrix. XRD macro-texture measurement illustrates that basal texture intensity of WE71 bar is much weaker than Mg-8Al-0.5Zn-0.15Mn (wt%) (AZ80) bar; the maximum basal texture intensities in the outer (O) and center (C) of WE71 bar are all about 3, while those of AZ80 bar are 17 and 14, respectively. EBSD micro-texture measurement demonstrates that the maximum texture intensities of C and O are 5.3 and 3.5, respectively. O has higher tensile properties than C because there are more un-dynamic-recrystallization (un-DRX) grains and thus larger average grain size in C. While stretching at room temperature (RT), extrusion direction (ED) in O has the best tensile properties, i.e. ultimate tensile strength (R{sub m})=368 MPa, elongation (A)=5%, and normal direction (ND) in C has the lowest tensile properties, i.e. R{sub m}=255 MPa, A=2%. While stretching at 200 °C, strength does not degrade much; ED in O still has

  17. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Li, Hao-Ze; Li, Hua-Long; Gao, Fei; Liu, Guo-Huai; Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin; Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong

    2015-01-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B 8 and B 50 ) and iron loss (P 15/50 and P 10/400 ) decreased with raising rolling temperature. - Highlights: • Fe−6.5 wt% Si sheet was

  18. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Mostaed, A., E-mail: alimostaed@yahoo.com [Advanced Materials and Nanotechnology Research Center, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 16765-3381 Pardis Street, Tehran (Iran, Islamic Republic of); Saghafian, H.; Mostaed, E. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Narmak, Tehran (Iran, Islamic Republic of); Shokuhfar, A. [Advanced Materials and Nanotechnology Research Center, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 16765-3381 Pardis Street, Tehran (Iran, Islamic Republic of); Rezaie, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Narmak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.

  19. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    International Nuclear Information System (INIS)

    Mostaed, A.; Saghafian, H.; Mostaed, E.; Shokuhfar, A.; Rezaie, H.R.

    2013-01-01

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM

  20. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Li, Hao-Ze [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Gao, Fei; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin [National Engineering Research Center for Silicon Steel, Wuhan Iron & Steel (Group) Corp, Wuhan 430083 (China); Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-10-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B{sub 8} and B{sub 50}) and iron loss (P{sub 15/50} and P{sub 10/400}) decreased with raising rolling temperature. - Highlights: • Fe−6

  1. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  2. Miniature Optical Isolator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for miniature optical isolators in atom interferometry applications, Physical Optics Corporation (POC) proposes to develop a miniature optical...

  3. Characterization of a new dog isolate of canine distemper virus from China.

    Science.gov (United States)

    Qiao, J; Meng, Q; Chen, C; Xia, X; Cai, X; Ren, Y; Zhang, H

    2011-01-01

    Canine distemper virus (CDV) is a highly contagious pathogen of dogs. Vaccination is an effective way to protect dogs from CDV infection, but occasionally fails. In the present study, a wild type (wt) CDV, named XJ2, was isolated from a dead vaccinated dog. The hemagglutinin (H) gene of the XJ2 was amplified and analyzed for the molecular characteristics including N-glycosylation sites, phylogenesis, hydrophobicity and epitopes. The data indicated that XJ2 was a genetic variant strain of CDV. CDV-sero-negative dogs were inoculated intranasally with XJ2, developed severe clinical symptoms and died, suggesting high virulence.

  4. A Novel and Validated Protocol for Performing MIC Tests to Determine the Susceptibility of Piscirickettsia salmonis Isolates to Florfenicol and Oxytetracycline

    Directory of Open Access Journals (Sweden)

    Sergio Contreras-Lynch

    2017-07-01

    Full Text Available This paper presents a validated protocol, using a novel, specifically formulated medium, to perform broth microdilution antimicrobial susceptibility assays of the salmonid bacterial pathogen Piscirickettsia salmonis. The minimum inhibitory concentrations (MIC for florfenicol and oxytetracycline against 58 P. salmonis isolates recovered from various outbreaks occurred in Chilean salmonid farms were determined using this protocol. Normalized resistance interpretation (NRI analysis was applied to these data to calculate appropriate protocol-specific epidemiological cut-off values. These cut-off values allow the isolates to be categorized as either fully susceptible wild type (WT members of this species, or as manifesting reduced susceptibility non-wild type (NWT. The distribution of MIC values of florfenicol was bimodal and the distribution of the normalized values for the putative WT observation had a standard deviation of 0.896 log2 μg mL-1. This analysis calculated a cut-off value of ≤0.25 μg mL-1 and categorized 33 (56% of the isolates as manifesting reduced susceptibility to florfenicol. For the oxytetracycline MIC data the NRI analysis also treated the distribution as bimodal. The distribution of the normalized values for the putative WT observation had a standard deviation of 0.951 log2 μg mL-1. This analysis gave a cut-off value of ≤0.5 μg mL-1 and categorized five isolates (9% as manifesting reduced susceptibility to oxytetracycline. The susceptibility testing protocol developed in this study was capable of generating MIC data from all the isolates tested. On the basis of the precision of the data it generated, and the degree of separation of values for WT and NWT it achieved, it is argued that this protocol has the performance characteristics necessary for it to be considered as a standard protocol.

  5. Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel

    Energy Technology Data Exchange (ETDEWEB)

    HajyAkbary, Farideh, E-mail: f.hajyakbary@tudelft.nl [Materials innovation institute (M2i), Delft (Netherlands); MSE Department of Materials Science and Engineering, TU Delft, Delft (Netherlands); Sietsma, Jilt, E-mail: j.sietsma@tudelft.nl [MSE Department of Materials Science and Engineering, TU Delft, Delft (Netherlands); Miyamoto, Goro, E-mail: mmiyamoto@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Kamikawa, Naoya, E-mail: kamikawa@hirosaki-u.ac.jp [Intelligent Machines and System Engineering, Hirosaki University, Hirosaki (Japan); Petrov, Roumen H., E-mail: roumen.petrov@ugent.be [Department of Materials Science and Engineering, Ghent University, Ghent (Belgium); Furuhara, Tadashi, E-mail: furuhara@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Santofimia, Maria J., E-mail: m.j.santofimianavarro@tudelft.nl [MSE Department of Materials Science and Engineering, TU Delft, Delft (Netherlands)

    2016-11-20

    A 0.3C-1.6Si-3.5Mn (wt%) steel was subjected to different Q&P treatments, leading to different combinations of initial martensite, bainite, secondary martensite, and retained austenite. In this study, initial martensite refers to the martensite formed during the initial quenching step and then subjected to an isothermal treatment at 400 °C; secondary martensite refers to martensite formed during quenching from 400 °C to room temperature. The yield strength of each constituent phase was determined by applying physical models to the data obtained from detailed microstructural characterization. The yield strength (uncertainty of 5%) of the Q&P microstructures was calculated by using a composite law to account for the contribution of each constituent phase. The dependence of the yield strength on the microstructural features of the Q&P microstructures was revealed by using the approach developed in this work. For example, initial martensite (which has a high yield strength and is the dominant phase in the microstructures) had the greatest effect on the yield strength of the Q&P microstructures. Furthermore, the phase fraction and dislocation density of this phase increased with decreasing quenching temperature, leading to an increase in the yield strength of the material.

  6. Fabrication and post-irradiation examination of a zircaloy-2 clad UO2-1.5 wt% PuO2 fuel pin irradiated in PWL, CIRUS

    International Nuclear Information System (INIS)

    Sah, D.N.; Sahoo, K.C.; Chatterjee, S.; Majumdar, S.; Kamath, H.S.; Ramachandran, R.; Bahl, J.K.; Purushottam, D.S.C.; Ramakumar, M.S.; Sivaramakrishnan, K.S.; Roy, P.R.

    1977-01-01

    A zircaloy-2 clad UO 2 -1.5 wt% PuO 2 fuel pin was fabricated at the Radiometallurgy Section of the Bhabha Atomic Research Centre, Bombay, for irradiation in the pressurised water loop in CIRUS. Requisite development work related to powder conditioning, blending, pressing and sintering parameters was carried out to meet the exacting fuel pellet specifications of CANDU fuel. The fuel pin ruptured while being irradiated in the pressurised water loop in CIRUS, after experiencing a low burn-up of 507 MWD/MTM and was subsequently examined at the Radiometallurgy Hot Cells Facility. The results showed that internal clad hydriding led to primary failure of the fuel pin. Subsequent ingress of the coolant water caused excessive swelling of the thermal insulating magnesia pellets located at the ends of the fuel column. The swelling of magnesia pellets caused severe rupturing of the fuel pin at the two ends. The delayed rupturing of the fuel pin at the upper end, caused the fuel column to be displaced downwards by 5.85mm. (author)

  7. Heterogeneous coarsening of Pb phase and the effect of Cu addition on it in a nanophase composite of Al-10 wt%Pb alloy prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Zhu, M.; Liu, X.; Wu, Z.F.; Ouyang, L.Z.; Zeng, M.Q.

    2009-01-01

    A nanophase composite of Al-10 wt%Pb alloy was prepared by mechanical alloying. The coarsening behavior of Pb phase in the composite during heating process was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nanoindentation test. The present work shows that the Pb phase grew substantially and had two different size distributions when the heating temperature was above 823 K. The different size distributions of Pb phase were owing to different grain size ranges of Al matrix in different regions, which led to the different growth rates of the Pb phase in those regions. It has been proposed that the different size ranges of Al grain appeared upon heating were originated from a statistical size distribution of Al grains in the as-milled powder. With the addition of a small amount of Cu, the heterogeneous growth of Pb phase can be suppressed, and the coarsening of Pb phase shows two distinct rates. This indicates that the coarsening is mainly governed by grain boundary diffusion and lattice diffusion of Al matrix in the initial stage and the later one, respectively

  8. Hydrogen storage performances of LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) alloys prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Wang, Haitao [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Zhai, Tingting; Yang, Tai; Yuan, Zeming; Zhao, Dongliang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-10-05

    Highlights: • Amorphous and nanostructured alloys were prepared by mechanical milling. • The maximum discharge capacity of ball milled alloys reaches to 1053.5 mA h/g. • The addition of Ni significantly increases the discharge capacity. • Increasing milling time reduces the kinetic performances of ball milled alloys. - Abstract: In order to improve the hydrogen storage performances of Mg-based materials, LaMg{sub 11}Ni alloy was prepared by vacuum induction melting. Then the nanocrystalline/amorphous LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) hydrogen storage alloys were synthesized by ball milling technology. The structure characterizations of the alloys were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage characteristics were tested by using programmed control battery testing system. The electrochemical impedance spectra (EIS), potentiodynamic polarization curves and potential-step curves were also plotted by an electrochemical workstation (PARSTAT 2273). The results indicate that the as-milled alloys exhibit a nanocrystalline and amorphous structure, and the amorphization degree of the alloys visibly increases with extending milling time. Prolonging the milling duration markedly enhances the electrochemical discharge capacity and cyclic stability of the alloys. The electrochemical kinetics, including high rate discharge ability (HRD), charge transfer rate, limiting current density (I{sub L}), hydrogen diffusion coefficient (D), monotonously decrease with milling time prolonging.

  9. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  10. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    Science.gov (United States)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  11. A Study on Microstructural Change and Properties of Mg-1.4 wt%Ca-xwt%Zn Alloys by Two-Step Solid Solution and Aging Treatment

    International Nuclear Information System (INIS)

    Koo, Seong Mo; Kim, Hye Sung; Jeong, Ha-Guk; Kim, Teak-Soo

    2015-01-01

    Optimum heat treatment conditions to improve the hardness and corrosion resistance of ternary Mg-Ca-Zn alloys have been studied, based on the theoretical models and DSC (Differential scanning calorimetry) experimental data. Two-step heating process at 420 ℃ and 480 ℃ has been applied and we have found that the low melting point phase, Ca_2Mg_6Zn_3 can effectively be dissolved into α-Mg matrix without premature melting. Due to preceding treatment at lower temperature followed by the second stage solid solution heat treatment at 480 ℃, Mg-1.4 wt%Ca-xwt%Zn alloys (x=0, 1.5 and 4.0) exhibit improved corrosion resistance than that from the single step solid solution treated alloy at 480 ℃. However, aging treatment of the alloy at 200 ℃ has led to the homogeneous precipitation of Ca_2Mg_6Zn_3 and Mg_2Ca phases in the matrix as well as at the grain boundary. This microstructural change results in the deterioration of corrosion resistance mainly originated from galvanic corrosion between the matrix and the precipitates. The hardness of Mg-1.4%Cax%Zn alloy, on the other hand, significantly increases with Zn addition by applying two-step solid solution and aging heat treatment.

  12. Density of Fe-3.5 wt% C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron

    Science.gov (United States)

    Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori

    2013-11-01

    Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.

  13. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  14. 11p Microdeletion including WT1 but not PAX6, presenting with cataract, mental retardation, genital abnormalities and seizures: a case report

    Directory of Open Access Journals (Sweden)

    Baekgaard Peter

    2009-02-01

    Full Text Available Abstract WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities and mental retardation and Potocki-Shaffer syndrome are rare contiguous gene deletion syndromes caused by deletions of the 11p14-p12 chromosome region. We present a patient with mental retardation, unilateral cataract, bilateral ptosis, genital abnormalities, seizures and a dysmorphic face. Cytogenetic analysis showed a deletion on 11p that was further characterized using FISH and MLPA analyses. The deletion (11p13-p12 located in the area between the deletions associated with the WAGR and Potocki-Shaffer syndromes had a maximum size of 8.5 Mb and encompasses 44 genes. Deletion of WT1 explains the genital abnormalities observed. As PAX6 was intact the cataract observed cannot be explained by a deletion of this gene. Seizures have been described in Potocki-Shaffer syndrome while mental retardation has been described in both WAGR and Potocki-Shaffer syndrome. Characterization of this patient contributes further to elucidate the function of the genes in the 11p14-p12 chromosome region.

  15. Anti-corrosion film formed on HAl77-2 copper alloy surface by aliphatic polyamine in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yinzhe; Yang, Dong; Zhang, Daquan, E-mail: zhdq@sh163.net; Wang, Yizhen; Gao, Lixin

    2017-01-15

    Highlights: • Properties of ADDD meet environment-friendly requirements. • ADDD’s inhibition efficiency is better than BTA at the low concentration. • ADDD adsorbs on the copper alloy surface by via the N atom in its amino group using flat mode. - Abstract: The corrosion inhibition of a polyamine compound, N-(4-amino-2, 3-dimethylbutyl)-2, 3-dimethylbutane-1, 4-diamine (ADDD), was investigated for HAl77-2 copper alloy in 3 wt.% NaCl solution. Electrochemical measurements, scanning electron microscopy (SEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR) techniques were employed for this research. The results show that ADDD strongly suppresses the corrosion of HAl77-2 alloy. The inhibition efficiency of ADDD is 98.6% at 0.5 mM, which is better than benzotriazole (BTAH) at the same concentration. Polarization curves indicate that ADDD is an anodic type inhibitor. Surface analysis suggests that a protective film is formed via the interaction of ADDD and copper. FT-IR reveals that the inhibition mechanism of ADDD is dominated by chemisorption onto the copper alloy surface to form an inhibition film. Furthermore, quantum chemical calculation and molecular dynamics (MD) simulations methods show that ADDD adsorbs on HAl77-2 surface via amino group in its molecule.

  16. Damage morphology study of high cycle fatigued as-cast Mg–3.0Nd–0.2Zn–Zr (wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haiyan; Fu, Penghuai, E-mail: fph112sjtu@sjtu.edu.cn; Peng, Liming; Li, Zhenming; Pan, Jipeng; Ding, Wenjiang

    2016-01-15

    Laser scanning confocal microscopy (LSCM) and Electron back-scattered diffraction (EBSD) were applied to the study of surface morphology variation of as-cast Mg–3.0Nd–0.2Zn–Zr (NZ30K) (wt.%) alloy under tension-compression fatigue test at room temperature. Two kinds of typical damage morphologies were observed in fatigued NZ30K alloy: One was parallel lines on basal planes led by the cumulation of basal slips, called persistent slip markings (PSMs), and the other was lens shaped, thicker and in less density, led by the formation of twinning. The surface fatigue damage morphology evolution was analyzed in a statistical way. The influences of stress amplitude and grain orientation on fatigue deformation mechanisms were discussed and the non-uniform deformation among grains and the PSMs, within twinning were described quantitatively. - Highlights: • Fatigue morphology evolution was studied by Laser Scanning Confocal Microscopy. • 3D morphology of persistent slip markings and twins was characterized. • Non-uniform deformation among grains, the PSMs and twins were quantified. • Initiations of fatigue crack were clearly investigated.

  17. Hydrogen storage thermodynamics and kinetics of LaMg11Ni + x wt.% Ni (x = 100, 200) alloys synthesized by mechanical milling

    International Nuclear Information System (INIS)

    Zhang, Yanghuan; Jia, Zhichao; Central Iron and Steel Research Institute, Beijing; Yuan, Zeming; Qi, Yan; Zhao, Dongliang; Hou, Zhonghui

    2016-01-01

    LaMg 11 Ni + x wt.% Ni (x = 100, 200) composite hydrogen storage alloys with a nanocrystalline/amorphous structure were synthesized using ball milling technology. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were investigated systematically. The hydrogen desorption properties were assessed using a Sieverts apparatus and differential scanning calorimetry. The thermodynamic parameters for the hydrogen absorption and desorption were calculated using the Van't Hoff equation. The hydrogen desorption activation energies of the hydrogenated alloys were also estimated by Arrhenius and Kissinger methods. Results indicate that the amount of Ni added has no effect on the thermodynamics of the alloys, but it significantly improves their absorption and desorption kinetics. Furthermore, the milling time has a great influence on the hydrogen storage properties. To be specific, the hydrogen absorption capacities reach the maximum values with the variation of milling time, and the hydrogen desorption activation energy obviously decreases with increasing milling time.

  18. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  19. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    Science.gov (United States)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  20. In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8 wt.% Cu alloy

    International Nuclear Information System (INIS)

    Limodin, Nathalie; Salvo, Luc; Suery, Michel; DiMichiel, Marco

    2007-01-01

    The paper is concerned with the study of the microstructural changes occurring during holding of an Al-15.8 wt.% Cu alloy in the semi-solid state. These changes are investigated in 3D by in situ X-ray tomography carried out at the temperature of the treatment. The studies are classified in two categories: overall changes by measuring average values of characteristic parameters, and local changes by considering the evolution of individual necks between particles. It is shown in particular that the size of the solid particles or the surface area of the solid-liquid interfaces do not follow the classical power laws but rather evolve in a slower manner. Local observations confirm that these results are due to the competition of two coarsening mechanisms of the solid particles that occur simultaneously: dissolution of a small particle to the benefit of one or several bigger ones by an Ostwald-type mechanism and the growth of necks between solid particles due to their coalescence. Complex variations of neck size result from these mechanisms which can be explained only by considering the neighbourhood of the particles under investigation. These observations confirm that in situ X-ray tomography is a very powerful tool to provide data that are representative of the semi-solid state and to observe in real time the mechanisms that act on the microstructure

  1. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  2. Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Anaturk, Bilal

    2013-01-01

    Highlights: ► Corrosion behaviors in a 3.5% NaCl solution of boronized Dual-Phase (DP) steels were examined. ► The martensite ratio increased with an increase in the intercritical annealing temperature. ► The corrosion resistance decreased with increase of the martensite ratio. ► The boride layer increased the corrosion resistance of DP steel 2–3-fold. ► The superior properties of DP steel as well as poor corrosion properties were improved by the boriding process. - Abstract: In this study, corrosion behaviors of boronized and non-boronized dual-phase steel were investigated with Tafel extrapolation and linear polarization methods in a 3.5 wt.% NaCl solution. Microstructure analyses show that the boride layer on the dual-phase steel surface had a flat and saw smooth morphology. It was detected by X-ray diffraction (XRD) analysis that the boride layer contained FeB and Fe 2 B phases. The amount of martensite increases with an increase in the intercritical annealing temperature. Both the amount of martensite and the morphology of the phase constituents have an influence on the corrosion behavior of dual-phase steel. A higher corrosion tendency was observed with an increased amount of martensite. The corrosion resistance of boronized dual-phase steel is higher compared with that of dual-phase steel

  3. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  4. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  5. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Wang, Dapeng; Gao, Lixin; Zhang, Daquan, E-mail: zhdq@sh163.net

    2016-12-15

    Highlights: • Effectively prevent corrosion of AA5052 alloy by using the mixture of cerium nitrate and sodium dodecylbenzenesulfonate. • Synergistic mechanism of the combination of cerium nitrate and sodium dodecylbenzenesulfonate. • Structure of the complex formed between cerium ions and dodecylbenzenesulfonate. • The optimal adsorption model of dodecylbenzenesulfonate on the Al{sub 2}O{sub 3} and CeO{sub 2} surface. - Abstract: The synergistic inhibition effect of rare earth cerium nitrate and sodium dodecylbenzenesulfonate (DBS) on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that the single cerium nitrate or DBS has a limited inhibition effect against corrosion of AA5052 alloy. The combination cerium ions with DBS produced strong synergistic effect on corrosion inhibition for AA5052 alloy and rendered a negaitve shift of the corrosion potential. The formation of the complex of Al(DBS){sub 3} and Ce(DBS){sub 3} stabilized the passive film of Al{sub 2}O{sub 3} and CeO{sub 2}, retarding both the cathodic and anodic processes of AA5052 alloy corrosion reaction significantly.

  6. Effect of deformation route and intermediate annealing on magnetic anisotropy and magnetic properties of a 1 wt% Si non-oriented electrical steel

    International Nuclear Information System (INIS)

    Sonboli, Ali; Toroghinejad, Mohammad Reza; Edris, Hossein; Szpunar, Jerzy A.

    2015-01-01

    In the present work the influence of intermediate annealing and the strain path during a two-stage cold rolling on the microstructure and texture of a 1 wt% Si non-oriented electrical steel was investigated. Different processing conditions were tasted to develop favorable texture and better understand the relation between texture and important magnetic properties. The texture parameter (TP) was defined as “theta fiber/gamma fiber” ratio. The results showed that the samples with the highest TP have the lowest magnetic anisotropy. Also average magnetocrystalline energy was calculated and it was demonstrated that the lowest energy can be correlated with the highest “theta fiber/gamma fiber” ratio. Regardless of the condition of intermediate annealing process, the uni-directional rolling produced very similar texture parameter (~2). However, the cross rolled samples have very different texture parameters upon intermediate annealing. The cross rolled samples after intermediate annealing at 650 °C have the highest texture parameter (~3). The proposed thermo-mechanical processing allow diminishing gamma fiber which is deleterious for magnetic properties of non-oriented electrical steels. - Highlights: • Texture parameter (TP) is defined as “theta fiber/gamma fiber” ratio. • Magnetic anisotropy is improved by increasing the texture parameter. • A novel process for produce non-oriented electrical steels with high TP is proposed. • This process is cross rolling accompanied by an intermediate annealing. • Cross roll stimulates theta fiber and intermediate annealing diminishes gamma fiber

  7. Conduction mechanism and the dielectric relaxation process of a-Se75Te25-xGax (x=0, 5, 10 and 15 at wt%) chalcogenide glasses

    International Nuclear Information System (INIS)

    Yahia, I.S.; Hegab, N.A.; Shakra, A.M.; Al-Ribaty, A.M.

    2012-01-01

    Se 75 Te 25-x Ga x (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185-630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (10 2 -10 5 Hz) and in the temperature range (293-333 K). The ac conductivity was found to obey the power low ω s where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε 1 and dielectric loss ε 2 are frequency and temperature dependent. The maximum barrier height W m calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.

  8. Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions

    Science.gov (United States)

    Qi, Yaping; Ni, Hao; Zheng, Ming; Zeng, Jiali; Jiang, Yucheng; Gao, Ju

    2018-05-01

    Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K). These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to "light OFF" and "light ON" states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons) could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.

  9. Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions

    Directory of Open Access Journals (Sweden)

    Yaping Qi

    2018-05-01

    Full Text Available Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K. These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to “light OFF” and “light ON” states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.

  10. WtF‐Nano: One‐Pot Dewatering and Water‐Free Topochemical Modification of Nanocellulose in Ionic Liquids or γ‐Valerolactone

    Science.gov (United States)

    Laaksonen, Tiina; Helminen, Jussi K. J.; Lemetti, Laura; Långbacka, Jesper; Rico del Cerro, Daniel; Hummel, Michael; Rantamäki, Antti H.; Kakko, Tia; Kemell, Marianna L.; Wiedmer, Susanne K.; Heikkinen, Sami; Kilpeläinen, Ilkka

    2017-01-01

    Abstract Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water‐free topochemical modification of the nanocellulose (a process denoted as “WtF‐Nano”). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co‐solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non‐dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide‐angle X‐ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1 D and 2 D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters. PMID:29112334

  11. Measurement of high temperature elastic moduli of an 18Cr-9Ni-2.95 Cu-0.58 Nb-0.1C (Wt %) austenitic stainless steel

    Science.gov (United States)

    Tripathy, Haraprasanna; Hajra, Raj Narayan; Sudha, C.; Raju, S.; Saibaba, Saroja

    2018-04-01

    The Young's modulus (E) and Shear modulus (G) of an indigenously developed 18Cr-9Ni-0.1C-2.95 Cu-0.58Nb (wt %) austenitic stainless steel has been evaluated in the temperature range 298 K to 1273 K (25 °C to 1000 °C), using Impulse excitation technique (IET). The Bulk modulus (K) and the poison's ratio have been estimated from the measured values of E and G. It is observed that the elastic constants (E, G and K) are found to decrease in a nonlinear fashion with increase in temperature. The Cu precipitation is found to influence the elastic moduli of the steel in the cooling cycle. The observed elastic moduli are fitted to 3rd order polynomial equations in order to describe the temperature dependence of E, G, K moduli in the temperature range 298-1273 K (25 °C to 1000 °C). The room temperature values of E,G and K moduli is found to be 207, 82 and 145 GPa respectively for the present steel.

  12. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  13. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  14. Preferred crystallite orientations depth profile in the two phase alloy Zn-22% wt Al, determined by X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Palacios G, J.; Casas E, J.L.; Ita, A. de

    1998-01-01

    In order to observe the texture inhomogeneity of the Zn-22% wt Al alloy, polar figures for the α -phase (111) and β -phase (002) reflections were measured by X-ray diffraction at four different depths in a hot rolled sheet sample. Also a sample in the form of a cube was assembled with several pieces of the sheet, with the same degree of deformation, to make it suitable for the measurement of its polar figures by means of neutron diffraction. In both phases, the corresponding typical rolling texture was observed. Therefore, it does not seem to exist any strong correlation between preferred orientations in both phases, as it might be expected. β -phase polar figures show a homogeneous texture, with a very small increasing orientation dispersion related to depth. The α -phase polar figures are very weak and they vary statistically but retaining the main characteristics of hot rolling polar figures. Neutron diffraction polar figures were also obtained and the results are in good agreement with the X-ray polar figures. Probably, easy grain boundary sliding, which is one of the main mechanisms of superplasticity in this alloy, is also responsible for a homogeneous distribution of strain and stress in the bulk of the sample. (Author)

  15. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W-(0-1.5)wt% TiC

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)], E-mail: kurishi@imr.tohoku.ac.jp; Matsuo, S.; Arakawa, H.; Narui, M.; Yamazaki, M. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Sakamoto, T.; Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Takida, T.; Takebe, K. [A.L.M.T. Corp., 2 Iwase-koshi-machi, Toyama, Toyama 931-8543 (Japan); Kawai, M. [Institute of Material Structure Science, KEK, Tsukuba, Ibaraki 305-0801 (Japan); Yoshida, N. [Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2009-04-30

    Ultra-fine grained (UFG) W-TiC consolidates are very promising for use as divertors in fusion reactors, however, the assurance of room-temperature ductility of UFG W-TiC remains unsettled. The assurance requires a sufficient degree of plastic working for the consolidates and thus overcoming of poor plastic workability in UFG W-TiC by applying superplasticity. Therefore, the magnitudes of elongation to fracture and flow stress which are important measures for plastic working were examined for UFG W-(0-1.5)%TiC (in wt%) at 1673-1973 K where superplasticity occurs without appreciable grain growth. It is shown that the elongation and flow stress are strongly dependent on TiC addition and atmosphere (Ar, H{sub 2}) during mechanical alloying (MA). As the TiC addition increases, the elongation significantly increases without appreciable increase in the flow stress level. W-TiC fabricated with MA in H{sub 2} exhibits larger elongation and larger strain rate sensitivity of flow stress than W-TiC with MA in Ar. These results were applied to perform plastic working and the room-temperature bend test results for plastic worked W-1.0%TiC are shown.

  16. Co-introduced functional CCR2 potentiates in vivo anti-lung cancer functionality mediated by T cells double gene-modified to express WT1-specific T-cell receptor.

    Directory of Open Access Journals (Sweden)

    Hiroaki Asai

    Full Text Available BACKGROUND AND PURPOSE: Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR or chimeric antigen receptor (CAR has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. METHODOLOGY/PRINCIPAL FINDINGS: Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1, and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402(+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8(+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1(235-243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3(+ T cells both in vitro and in vivo. Double gene-modified CD3(+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modified CD3(+ T cells. CONCLUSION/SIGNIFICANCE: Introduction of the CCL2/CCR2 axis successfully potentiated in

  17. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    Science.gov (United States)

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  18. Investigating the effect of multiple grain–grain interfaces on electric and magnetic properties of [50 wt% BaFe{sub 12}O{sub 19}–50 wt% Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}] composite system

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayak, Ranjit, E-mail: ranjit.p20@gmail.com [Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 (India); Muduli, Rakesh; Panda, Ranjit Kumar [Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 (India); Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha (India); Sahu, Priyanka; Raut, Subhajit; Panigrahi, Simanchala [Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 (India)

    2016-03-15

    This report presents the fabrication, electrical properties along with the magnetic parameters of a composite system considering a strong ferrimagnetic (BaFe{sub 12}O{sub 19}) and a ferroelectric (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}) material. Polycrystalline 50 wt% BaFe{sub 12}O{sub 19} (BaM)–50 wt% Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} (NBT) composite system was prepared by the solid state reaction method. Rietveld refinement of XRD pattern confirms the presence of BaM and NBT phases without any impurity phase. From scanning electron micrograph both the phases are also clearly identified. In this report, the electric relaxation and conductivity properties were systematically investigated and analyzed in the frequency range of 100 Hz to 1 MHz and temperature range of 30–200 °C. The presence of different type of grains and significant reduction in the resistance of the composite system were found to be responsible for the nature of electric relaxation behavior. A peculiar and interesting evolution of grain boundary conduction was detected which was argued due to the existence of three possible grain boundaries such as: (i) BaM–BaM interface, (ii) NBT–NBT interface and (iii) BaM–NBT interface. The magnetization study (M–H loop) paves that, the saturation magnetization and coercive field reduces for composite system.

  19. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  20. Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata.

    Science.gov (United States)

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Li, Yingying; Li, Yaqian; Chen, Jie

    2015-05-01

    Mutant T66 was isolated from 450 mutants (constructed with Agrobacterium tumefaciens-mediated transformation method) of Trichoderma harzianum. Maize seeds coated with T66 were more susceptible to Curvularia lunata when compared with those coated with wild-type (WT) strain. The disease index of maize treated with T66 and WT were 62.5 and 42.1%, respectively. Further research showed T-DNA has inserted into the ORF of one gene, which resulted in the functional difference between WT and T66. The gene was cloned and named Thc6, which encodes a novel 327 amino acid protein. To investigate its function, we obtained knockout, complementation, and overexpression mutants of Thc6. Challenge inoculation studies suggested that the Thc6 overexpression mutant can reduce the disease index of maize inbred line Huangzao 4 against the leaf spot pathogen (C. lunata). Meanwhile, The Thc6 mutants were found to affect the resistance of maize inbred line Huangzao 4 against C. lunata by enhancing the activation of jasmonate-responsive genes expression. Liquid chromatography-mass spectrometry (LC-MS) data further confirmed that the concentration of jasmonate in the induced maize exhibits a parallel change tendency with the expression level of defense-related genes. Hence, the Thc6 gene could be participated in the induced resistance of maize inbred line Huangzao 4 against C. lunata infection through a jasmonic acid-dependent pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.