WorldWideScience

Sample records for wrapped pressure vessels

  1. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    Science.gov (United States)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  2. Fabrication of toroidal composite pressure vessels. Final report

    International Nuclear Information System (INIS)

    Dodge, W.G.; Escalona, A.

    1996-01-01

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication

  3. Investigation of the design of a metal-lined fully wrapped composite vessel under high internal pressure

    Science.gov (United States)

    Kalaycıoğlu, Barış; Husnu Dirikolu, M.

    2010-09-01

    In this study, a Type III composite pressure vessel (ISO 11439:2000) loaded with high internal pressure is investigated in terms of the effect of the orientation of the element coordinate system while simulating the continuous variation of the fibre angle, the effect of symmetric and non-symmetric composite wall stacking sequences, and lastly, a stacking sequence evaluation for reducing the cylindrical section-end cap transition region stress concentration. The research was performed using an Ansys® model with 2.9 l volume, 6061 T6 aluminium liner/Kevlar® 49-Epoxy vessel material, and a service internal pressure loading of 22 MPa. The results show that symmetric stacking sequences give higher burst pressures by up to 15%. Stacking sequence evaluations provided a further 7% pressure-carrying capacity as well as reduced stress concentration in the transition region. Finally, the Type III vessel under consideration provides a 45% lighter construction as compared with an all metal (Type I) vessel.

  4. BBRV post-tensioning systems as applied to reactor containments and prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Thorpe, W.; Speck, F.E.

    1976-01-01

    Nuclear containments and pressure vessels can be post-tensioned by using two basically different methods: tendons and winding. The fundamental differences between the two concepts are shown by introductory examples. A discussion of tendon units, usually lying in the range 4000 to 10,000 kN, is followed by a detailed presentation of the BBRV winding system. After giving a short comment to factors influencing the choice of a post-tensioning system the authors discuss specific aspects of some application groups: cable layout with containments and pressure vessels, conditions for a wrapped design, corrosion protection. (author)

  5. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  6. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  7. Mass optimization of a small pressure vessel using metal/FRP (fiber reinforced polymers) hybrid structures

    International Nuclear Information System (INIS)

    Nisar, J.A.; Abdullah, A.N.; Iqbal, N.

    2004-01-01

    In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)

  8. Develoment of pressure drop calculation modules for a wire-wrapped LMR subassembly

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Lim, Hyun Jin; Kim, Won Seok; Kim, Young Il

    2000-06-01

    Pressure drop calculation modules for a wire-wrapped LMR subassembly was been developed. This report summarizes present information on pressure drop calculation modules for inlet hole, lower part and upper part of a wire-wrapped LMR subassembly which was developed using simple formulas of sudden expansion and sudden contraction. A case calculation study was done using design data of a KALIMER driver fuel subassembly. And the total pressure drop in the driver fuel subassembly, except for the bundle part, was calculated as 0.13 MPa, which is in the reasonable pressure drop range. The developed modules will be integrated in the total subassembly pressure drop calculation code with further improvements

  9. Pressure vessel for nuclear reactor plant consisting of several pre-stressed cast pressure vessels

    International Nuclear Information System (INIS)

    Bodmann, E.

    1984-01-01

    Several cylindrical pressure vessel components made of pressure castings are arranged on a sector of a circle around the cylindrical cast pressure vessel for accommodating the helium cooled HTR. Each component pressure vessel is connected to the reactor vessel by a horizontal gas duct. The contact surfaces between reactor and component pressure vessel are in one plane. In the spaces between the individual component pressure vessels, there are supporting blocks made of cast iron, which are hollow and also have flat surfaces. With the reactor vessel and the component pressure vessels they form a disc-shaped connecting part below and above the gas ducts. (orig./PW)

  10. Special enclosure for a pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.; Wedellsborg, U.W.

    1993-01-01

    A pressure vessel enclosure is described comprising a primary pressure vessel, a first pressure vessel containment assembly adapted to enclose said primary pressure vessel and be spaced apart therefrom, a first upper pressure vessel jacket adapted to enclose the upper half of said first pressure vessel containment assembly and be spaced apart therefrom, said upper pressure vessel jacket having an upper rim and a lower rim, each of said rims connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, mean for connecting in a sealable relationship said upper rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, means for connecting in a sealable relationship said lower rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a first lower pressure vessel jacket adapted to enclose the lower half of said first pressure vessel containment assembly and be spaced apart therefrom, said lower pressure vessel jacket having an upper rim connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, and means for connecting in a sealable relationship said upper rim of said first lower pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a second upper pressure vessel jacket adapted to enclose said first upper pressure vessel jacket and be spaced apart therefrom, said second upper pressure vessel jacket having an upper rim and a lower rim, each of said rims adapted to slidably engage the outer surface of said first upper pressure vessel jacket, means for sealing said rims, a second lower pressure vessel jacket adapted to enclose said first lower pressure vessel jacket and be spaced apart therefrom

  11. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  12. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The invention applies to a pressure vessel for nuclear reactors whose shell, made of cast metal segments, has a steel liner. This liner must be constructed to withstand all operational stresses and to be easily repairable. The invention solves this problem by installing the liner at a certain distance from the inner wall of the pressure vessel shell and by filling this clearance with supporting concrete. Both the concrete and the steel liner must have a lower prestress than the pressure vessel shell. In order to avoid damage to the liner when prestressing the pressure vessel shell, special connecting elements are provided which consist of welded-on fastening elements projecting into recesses in the cast metal segments of the pressure vessel. Their design is described in detail. (TK) [de

  13. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  14. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  15. AWWA C303-17 concrete pressure pipe, bar-wrapped, steel-cylinder type

    CERN Document Server

    2017-01-01

    This standard describes the manufacture of concrete pressure pipe, reinforced with a steel cylinder that is helically wrapped with mild steel bar reinforcement, in sizes ranging from 10 in. through 72 in. (250 mm through 1,830 mm), inclusive, and for working pressures up to 400 psi (2,760 kPa).

  16. Measurements of peripherical static pressure and pressure drop in a rod bundle with helical wire wrap spacers

    International Nuclear Information System (INIS)

    Ballve, H.; Graca, M.C.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-07-01

    The fuel element of a LMFBR nuclear reactor consists of a wire wrapped rod bundle with triangular array with the coolant flowing parallel to the rods. Using this type of element with seven rods conected to an air open loop. The hydrodinamics behavior of the flow for p/d = 1.20 and l/d = 15.0, was simulated. Several measurements were performed in order to obtain the static pressure distribution at the walls of the hexagonal duct, for Reynolds number from 4.4x10 3 to 48.49x10 3 and for different axial and transverse positions, in a wire wrap lead. The axial pressure drop was obtained and determined the friction factor dependence with the Reynolds number. From the obtained results, it was observed the non-dependency of the non-dimensionalized axial and transverse local static pressure distribution at the wall of the hexagonal duct, with the Reynolds number. The obtained friction factor is compared to the results of previous works. (Author) [pt

  17. Using the adaptive SMA composite cylinder concept to reduce radial dilation in composite pressure vessels

    Science.gov (United States)

    Paine, Jeffrey S.; Rogers, Craig A.

    1995-05-01

    Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.

  18. Pressure vessels and methods of sealing leaky tubes disposed in pressure vessels

    International Nuclear Information System (INIS)

    Larson, G.C.

    1980-01-01

    This invention relates to pressure vessels and to methods of sealing leaky tubes in them and is especially applicable to pressure vessels in the form of sheet-and-tube type heat exchangers constructed with a large number of relatively small diameter tubes grouped in a bundle. To seal off a leaky tube in such a heat exchanger an explosive activated plug in the form of a hollow metal body is used, inserted at each end of the tube to be sealed. Using the arrangement of pressure vessel and associated tube sheets and the explosive activated plug method of sealing a leaky tube as described in this invention it is claimed that distortion of the adjacent tubes and the tube sheets is reduced when the explosive activated plugs are detonated. (U.K.)

  19. Pressure vessel integrity 1991

    International Nuclear Information System (INIS)

    Bhandari, S.; Doney, R.O.; McDonald, M.S.; Jones, D.P.; Wilson, W.K.; Pennell, W.E.

    1991-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on nuclear industry applications. The papers were prepared for technical sessions developed under the sponsorship of the ASME Pressure Vessels and Piping Division Committees for Codes and Standards, Computer Technology, Design and Analysis, and Materials Fabrication. They were presented at the 1991 Pressure Vessels and Piping Division Conference in San Diego, California, June 23-27. The primary objective of the sponsoring organization is to provide a forum for the dissemination and discussion of information on development and application of technology for the structural integrity assessment of pressure vessels and piping. This publication includes contributions from authors from Australia, France, Japan, Sweden, Switzerland, the United Kingdom, and the United States. The papers here are organized in six sections, each with a particular emphasis as indicated in the following section titles: Fracture Technology Status and Application Experience; Crack Initiation, Propagation and Arrest; Ductile Tearing; Constraint, Stress State, and Local-Brittle-Zones Effects; Computational Techniques for Fracture and Corrosion Fatigue; and Codes and Standards for Fatigue, Fracture and Erosion/Corrosion

  20. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  1. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  2. Pressure drop measurements in LMFBR wire wrapped blanket assemblies

    International Nuclear Information System (INIS)

    Chiu, C.; Hawley, J.; Rohsenow, W.M.; Todreas, N.E.

    1977-07-01

    In this experiment, measurements of subchannel static pressure for an interior and edge subchannel were taken at two elevations in two wire-wrapped 61-pin bundles. One of the bundles has geometric characteristics of P/D = 1.067 and H/D = 8.0 (4 inch lead length and 0.501 inch rod diameter) and the other bundle has geometric characteristics of P/D = 1.067 and H/D = 4.0 (2 inch lead length and 0.501 inch rod diameter). The bundle average friction factors as well as the local subchannel friction factors for both interior and edge subchannels were determined from the experimental static pressure data. The average subchannel flow rates for both edge and interior subchannels were determined in a separate experiment. Results show that two correlations suggested by Rehme and Novendstern for the bundle average friction factor cannot predict the data within the range of experimental error. The bundle average friction factors for both bundles under test were underestimated by Rehme's correlation and overestimated by Novendstern's correlation. The results of the local subchannel friction factors indicate the effect of the wire lead length is more pronounced in the interior subchannel friction factor than in the edge subchannel friction factor. As the wire wrap lead length decreases, both interior and edge subchannel friction factors increase

  3. Pressure drop measurements in LMFBR wire wrapped blanket assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C.; Hawley, J.; Rohsenow, W.M.; Todreas, N.E.

    1977-07-01

    In this experiment, measurements of subchannel static pressure for an interior and edge subchannel were taken at two elevations in two wire-wrapped 61-pin bundles. One of the bundles has geometric characteristics of P/D = 1.067 and H/D = 8.0 (4 inch lead length and 0.501 inch rod diameter) and the other bundle has geometric characteristics of P/D = 1.067 and H/D = 4.0 (2 inch lead length and 0.501 inch rod diameter). The bundle average friction factors as well as the local subchannel friction factors for both interior and edge subchannels were determined from the experimental static pressure data. The average subchannel flow rates for both edge and interior subchannels were determined in a separate experiment. Results show that two correlations suggested by Rehme and Novendstern for the bundle average friction factor cannot predict the data within the range of experimental error. The bundle average friction factors for both bundles under test were underestimated by Rehme's correlation and overestimated by Novendstern's correlation. The results of the local subchannel friction factors indicate the effect of the wire lead length is more pronounced in the interior subchannel friction factor than in the edge subchannel friction factor. As the wire wrap lead length decreases, both interior and edge subchannel friction factors increase.

  4. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  5. Nuclear power plant pressure vessels. Control of piping

    International Nuclear Information System (INIS)

    2000-01-01

    The guide presents requirements for the pipework of nuclear facilities in Finland. According to the section 117 of the Finnish Nuclear Energy Degree (161/88), the Radiation and Nuclear Safety Authority of Finland (STUK) controls the pressure vessels of nuclear facilities in accordance with the Nuclear Energy Act (990/87) and, to the extent applicable in accordance with the Act of Pressure Vessels (98/73) and the rules and regulations issued by the virtue of these. In addition STUK is an inspecting authority of pressure vessels of nuclear facilities in accordance with the Pressure Vessel Degree (549/1973). According to the section of the Pressure Vessel Degree, a pressure vessel is a steam boiler, pressure container, pipework of other such appliance in which the pressure is above or may come to exceed the atmospheric pressure. Guide YVL 3.0 describes in general terms how STUK controls pressure vessels. STUK controls Safety Class 1, 2 and 3 piping as well as Class EYT (non-nuclear) and their support structures in accordance with this guide and applies the provisions of the Decision of the Ministry of Trade and Industry on piping (71/1975) issued by virtue of the Pressure Vessel Decree

  6. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    Froehling, W.; Boettcher, A.; Bounin, D.; Steinwarz, W.; Geiss, M.; Trauth, M.

    2000-01-01

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.) [de

  7. Experimental measurements of static pressure and pressure drop in a duct enclosing a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Graca, M.C.; Ballve, H.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-01-01

    The friction factor and the static pressure distributions, in the axial and transversal directions, in the wall of the hexagonal duct, enclosing a seven wire-wrapped rod bundle, were experimentally measured, using an air opened loop. The Reynolds numbers are the range 10 3 - 5x10 4 . The friction factors are compared to existing correlations. The static pressure distributions show that the static pressure is not hydrostatic in the cross section of the flow. (Author) [pt

  8. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  9. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  10. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes

  11. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  12. Metallurgy of steels for PWR pressure vessels

    International Nuclear Information System (INIS)

    Kepka, M.; Mocek, J.; Barackova, L.

    1980-01-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure. (B.S.)

  13. Metallurgy of steels for PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kepka, M; Mocek, J; Barackova, L [Skoda, Plzen (Czechoslovakia)

    1980-09-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure.

  14. Some aspects of reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic, G.J.

    1996-01-01

    Reactor pressure vessel of the pressurized water reactor nuclear power plant is the subject of extreme interest due to the fact that presents the pressure boundary of the reactor coolant system, which is under extreme thermal, mechanical and irradiation effects. Reactor pressure vessel by itself prevents the release of fission products to the environment. Design, construction and in-service inspection of such component is governed by strict ASME rules and other forms of administrative control. The reactor pressure vessel in nuclear power plant Kriko is designed and constructed in accordance with related ASME rules. The in-service inspection program includes all requests presented in ASME Code section XI. In the present article all major requests for the periodic inspections of reactor pressure vessel and fracture mechanics analysis are discussed. Detailed and strict fulfillment of all prescribed provisions guarantee the appropriate level of nuclear safety. (author)

  15. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  16. Foundamental characteristics of layered pressure vessel

    International Nuclear Information System (INIS)

    Moriwaki, Yoshikazu; Fugino, Masayuki; Shimizu, Yasuhiro; Nakamura, Takeshi

    1978-01-01

    Pressure vessels become larger and the working pressure become higher with the remarkable development of petroleum, chemical, thermal power generation and atomic energy industries. Multi-layered pressure vessels can be manufactured cheaply without large installations, and large wall thickness can be made, therefore they are suitable for large pressure vessels. The stress and deformation behaviors of such vessels are very complex because of the effect of frictional force working between layers. In this study, the phenomena arising in multiple layers and the difference as compared with single wall were studied fundamentally as one step for analyzing multi-layered pressure vessels as a whole. Finite element technique was employed as the analyzing method, and the behavior of multiple layers was analyzed, regarding it as multiple contact problem. The behavior of multiple layers seems to appear conspicuously in case of bending load, therefore the basic characteristics regarding bending were examined. The evaluation of interfacial stiffness was carried out by experiment. The computer program for analyzing multiple contact problem was developed. In order to examine the validity of the program, comparison with the analytical solution heretofore and the result of calculation by finite element technique was carried out. Moreover, the experimental proof with multi-layered models was made. The frictional force between layers hardly contributes to the stiffness. (Kako, I.)

  17. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  18. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  19. Reactor vessel pressure transient protection for pressurized water reactors

    International Nuclear Information System (INIS)

    Zech, G.

    1978-09-01

    During the past few years the NRC has been studying the issue of protection of the reactor pressure vessels at Pressurized Water Reactors (PWRs) from transients when the vessels are at a relatively low temperature. This effort was prompted by concerns related to the safety margins available to vessel damage as a result of such events. Nuclear Reactor Regulation Category A Technical Activity No. A-26 was established to set forth the NRC plan for resolution of the generic aspects of this safety issue. The purpose of the report is to document the completion of this generic technical activity

  20. Guidelines for pressure vessel safety assessment

    Science.gov (United States)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  1. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  2. The pressure vessel for the NSF tandem

    International Nuclear Information System (INIS)

    Jones, C.W.

    1979-04-01

    The pressure vessel is a major component of the 30 MV tandem Van de Graaff electrostatic accelerator to be used in nuclear structure research at Daresbury Laboratory. The accelerator will be capable of accelerating the full range of ions in the form of a beam. Acceleration takes place in a vertical evacuated tube (beam tube) by means of a high potential on a terminal at the central position, the terminal and beam tube assembly being supported by an insulated stack structure within the pressure vessel. Under operating conditions the vessel is filled with sulphur hexafluoride gas (SF 6 ) at high pressure which acts as an insulating medium between the centre terminal and the vessel wall. The vessel is situated inside a concrete tower which besides supporting the injector room above the vessel also acts as radiation shielding around the accelerator. The report covers: functional requirements; fundamental considerations with regard to the design and procurement; detail design; materials; manufacture; acceptance test; surface treatment; final leak test. (U.K.)

  3. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  4. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  5. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  6. Results of reactor pressure vessels ISI

    International Nuclear Information System (INIS)

    Cepcek, S.

    1994-01-01

    To find out the possible influence of the annealing process to reactor pressure vessel integrity, a large in-service inspection programme has been implemented as an associated activity to reactor pressure vessel annealing. In this paper the approach to the RPV in-service inspection is shown. Also, the main results and conclusions following in-service inspection are presented. (author). 3 refs, 1 fig

  7. Leak detection device for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Ikeda, Jun.

    1988-01-01

    Purpose: To test the leakage of a nuclear reactor pressure vessel during stopping for a short period of time with no change to the pressure vessel itself. Constitution: The device of the present invention comprises two O-rings disposed on the flange surface that connects a pressure vessel main body and an upper cover, a leak-off pipeway derived from the gap of the O-rings at the flange surface to the outside of the pressure vessel, a pressure detection means connected to the end of the pipeway, a humidity detection means disposed to the lead-off pipeway, a humidity detection means disposed to the lead-off pipeway, and gas supply means and gas suction means disposed each by way of a check valve to a side pipe branched from the pipeway. After stopping the operation of the nuclear reactor and pressurizing the pressure vessel by filling water, gases supplied to the gap between the O-rings at the flange surface by opening the check valve. In a case where water in the pressure vessel should leak to the flange surface, when gas suction is applied by properly opening the check valve, increase in the humidity due to the steams of leaked water diffused into the gas is detected to recognize the occurrence of leakage. (Kamimura, M.)

  8. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  9. Reactor pressure vessel status report

    International Nuclear Information System (INIS)

    Strosnider, J.; Wichman, K.; Elliot, B.

    1994-12-01

    This report gives a brief description of the reactor pressure vessel (RPV), followed by a discussion of the radiation embrittlement of RPV beltline materials and the two indicators for measuring embrittlement, the end-of-license (EOL) reference temperature and the EOL upper-shelf energy. It also summarizes the GL 92-01 effort and presents, for all 37 boiling water reactor plants and 74 pressurized water reactor plants in the United States, the current status of compliance with regulatory requirements related to ensuring RPV integrity. The staff has evaluated the material data needed to predict neutron embrittlement of the reactor vessel beltline materials. These data will be stored in a computer database entitled the reactor vessel integrity database (RVID). This database will be updated annually to reflect the changes made by the licensees in future submittals and will be used by the NRC staff to assess the issues related to vessel structural integrity

  10. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    Strosnider, J.; Monserrate, C.; Kenworthy, L.D.; Tether, C.D.

    1980-10-01

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  11. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  12. Dismantling id the reactor pressure vessel insulation and dissecting of the MZFR reactor pressure vessel

    International Nuclear Information System (INIS)

    Loeb, Andreas; Stanke, Dieter; Thoma, Markus; Eisenmann, Beata; Prechtl, Erwin; Dehnke, Burckhard

    2008-01-01

    The MZFR reactor was decommissioned in 1984. The authors describe the dismantling of the reactor pressure vessel insulation that consists of asbestos containing mineral fiber wool. The appropriate remote handling and cutting tools had to be adapted with respect to the restrained space in the containment. The dismantling of the reactor pressure vessel has been completed, the dissected parts have been packaged into 200 containers for the final repository Konrad. During the total project time no reportable events and no damage to persons occurred.

  13. Heat treatment device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    Krauss, P.; Mueller, E.; Poerner, H.; Weber, R.

    1979-01-01

    A support body in the form of an insulating cylinder is tightly sealed by connected surfaces at its outer circumference to the inner wall of the pressure vessel. It forms an annular heating space. The heat treatment or tempering of the pressure vessel takes place with the reactor space empty and screened from the outside by ceiling bolts. Heating gas or an induction winding can be used as the means of heating. (DG) [de

  14. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Science.gov (United States)

    2010-10-01

    ... that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure piping... tests conducted in accordance with this section shall be either hydrostatic tests or pneumatic tests. (1... times the maximum allowable working pressure. (2) When a pneumatic test is conducted on a pressure...

  15. Pressure vessel integrity and weld inspection procedure

    International Nuclear Information System (INIS)

    Solomon, K.A.; Okrent, D.; Kastenberg, W.E.

    1975-01-01

    The primary objective of this paper is to develop a simple methodology which, when coupled with existing observations on pressure vessel behavior, provides an inter-relation between pressure vessel integrity, and the parameters of the in-service inspection program, including inspection sample size, frequency and efficiency. A modified Markov process is employed and a computer code was written to obtain numerical results. The Markov process mathematically describes the following physical events. In a nuclear reactor pressure vessel weld, some defects may exist prior to the zeroth inspection (i.e., prior to vessel operation). During the zeroth inspection and repair processes, some of these defects are removed. During the first cycle of vessel operation, the existing defects may grow and some new defects may be generated. Those defects that are found at the first (and succeeding) inspection interval and warrant repair, are repaired. The above process continues through several operating cycles to the end of vessel life. During any inspection, only a portion of the welds may be inspected, and with less than perfect efficiency

  16. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1977-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction. (Auth.)

  17. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  18. Randomised controlled trial evaluating the efficacy of wrap therapy for wound healing acceleration in patients with NPUAP stage II and III pressure ulcer

    Science.gov (United States)

    Mizuhara, Akihiro; Oonishi, Sandai; Takeuchi, Kensuke; Suzuki, Masatsune; Akiyama, Kazuhiro; Kobayashi, Kazuyo; Matsunaga, Kayoko

    2012-01-01

    Objectives To evaluate if ‘wrap therapy’ using food wraps, which is widely used in Japanese clinical sites, is not inferior when compared to guideline adhesion treatments. Design Multicentre, prospective, randomised, open, blinded endpoint clinical trial. Setting 15 hospitals in Japan. Patients 66 older patients with new National Pressure Ulcer Advisory Panel stage II or III pressure ulcers. Interventions Of these 66 patients, 31 were divided into the conventional treatment guidelines group and 35 into the wrap therapy group. Main outcome measures The primary end point was the period until the pressure ulcers were cured. The secondary end point was a comparison of the speed of change in the Pressure Ulcer Scale for Healing score. Results 64 of the 66 patients were analysed. The estimated mean period until healing was 57.5 days (95% CI 45.2 to 69.8) in the control group as opposed to 59.8 days (95% CI 49.7 to 69.9) in the wrap therapy group. By the extent of pressure ulcer infiltration, the mean period until healing was 16.0 days (95% CI 8.1 to 23.9) in the control group as opposed to 18.8 days (95% CI 10.3 to 27.2) in the wrap therapy group with National Pressure Ulcer Advisory Panel stage II ulcers, and 71.8 days (95% CI 61.4 to 82.3) as opposed to 63.2 days (95% CI 53.0 to 73.4), respectively, with stage III ulcers. There is no statistical significance in difference in Pressure Ulcer Scale for Healing scores. Conclusions It might be possible to consider wrap therapy as an alternative choice in primary care settings as a simple and inexpensive dressing care. Clinical Trial registration UMIN Clinical Trials Registry UMIN000002658. Summary protocol is available on https://upload.umin.ac.jp/cgi-bin/ctr/ctr.cgi?function=brows&action=brows&type=detail&recptno=R000003235&admin=0&language=J PMID:22223842

  19. Nickel hydrogen common pressure vessel battery development

    Science.gov (United States)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  20. Pressurized wet digestion in open vessels (T11)

    International Nuclear Information System (INIS)

    Kettisch, P.; Maichin, P.; Zischka, M.; Knapp, G.

    2002-01-01

    Full text: Pressurized wet digestion in closed vessels, microwave assisted or with conventional conductive heating, is the most important sample preparation technique for digestion or leaching procedures in element analysis. In comparison to open vessel digestion closed vessel digestion methods have many advantages, but there is one disadvantage - complex and expensive vessel designs. A new technique - pressurized wet digestion in open vessels - combine the advantages of closed vessel sample digestion with the application of simple and cheap open vessels made of quartz or PFA. The vessels are placed in a high pressure Asher HPA, which is adapted with a Teflon liner and filled partly with water. The analytical results with 30 ml quartz vessels, 22 ml PFA vessels and 1.5 ml PIA auto sampler cups will be shown. In principle every dimensions of vessels can be used. The vessels are loaded with sample material (max. 1.5 g with quartz vessels, max. 0.5 g with PFA vessels and 50 mg with auto sampler cups) and digestion reagent. Afterwards the vessels are simply covered with PTFE stoppers and not sealed. The vessels are transferred into a special adapted HPA and digested at temperatures up to 270 o C. The digestion time is 90 min. and cooling down to room temperature 30 min. The analytical results of CRM's are within the certified values and no cross contamination and losses of volatile elements could be observed. (author)

  1. Light-water reactor pressure vessel surveillance standards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel steels throughout a pressure vessel's service life. Some of these are existing American Society for Testing and Materials (ASTM) standards, some are ASTM standards that have been modified, and some are newly proposed ASTM standards. The current (1) scope, (2) areas of application, (3) interrelationships, and (4) status and time table of development, improvement, validation, and calibration for a series of 16 ASTM standards are defined. The standard also includes a discussion of LWR pressure vessel surveillance - justification, requirements, and status of work

  2. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  3. Procurement of replacement pressure vessels for MURR

    International Nuclear Information System (INIS)

    Meyer, W.A. Jr.; Edwards, C.B. Jr.; McKibben, J.C.; Schoone, A.R.

    1989-01-01

    The University of Missouri Research Reactor Facility (MURR) located in Columbia, Missouri, is the highest powered, highest steady-state flux university research reactor in the United States. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-reflected, flux trap reactor. MURR has a compact core (0.033 m 3 ) composed of eight fuel elements of the materials test reactor type arranged as an annular right circular cylinder between the inner and outer aluminum pressure vessels. Conservative engineering judgment resulted in the decision in 1988 to purchase new inner and outer pressure vessels. This paper details the difficulties encountered in procuring replacements for aluminum pressure vessels built to standards that are no longer applicable in attempting to meet nuclear standards that are not applicable to nonferrous material

  4. Nuclear reactor pressure vessel flaw distribution development

    International Nuclear Information System (INIS)

    Kennedy, E.L.; Foulds, J.R.; Basin, S.L.

    1991-12-01

    Previous attempts to develop flaw distributions for probabilistic fracture mechanics analyses of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all PWR vessels. In contrast, this report describes (1) a new flaw distribution development analytic methodology that can be applied to the analysis of vessel-specific inservice inspection (ISI) data, and (2) results of the application of the methodology to the analysis of flaw data for each vessel case (ISI data on three PWR vessels and laboratory inspection data on sections of the Midland reactor vessel). Results of this study show significant variation among the flaw distributions derived from the various data sets analyzed, strongly suggesting than a vessel-specific flaw distribution (for vessel integrity prediction under pressurized thermal shock) is preferred over a ''generic'' distribution. In addition, quantitative inspection system flaw sizing accuracy requirements have been identified for developing a flaw distribution from vessel ISI data. The new flaw data analysis methodology also permits quantifying the reliability of the flaw distribution estimate. Included in the report are identified needs for further development of several aspects of ISI data acquisition and vessel integrity prediction practice

  5. Expanded Fermilab pressure vessel directory program

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect.

  6. Expanded Fermilab pressure vessel directory program

    International Nuclear Information System (INIS)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect

  7. Ultrasound periodic inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Haniger, L.

    1980-01-01

    Two versions are described of ultrasonic equipment for periodic inspections of reactor pressure vessels. One uses the principle of exchangeable programmators with solid-state logic while the other uses programmable logic with semiconductor memories. The equipment is to be used for inspections of welded joints on the upper part of the V-1 reactor pressure vessel. (L.O.)

  8. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  9. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  10. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  11. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  12. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  13. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  14. Burst pressure investigation of filament wound type IV composite pressure vessel

    Science.gov (United States)

    Farhood, Naseer H.; Karuppanan, Saravanan; Ya, H. H.; Baharom, Mohamad Ariff

    2017-12-01

    Currently, composite pressure vessels (PVs) are employed in many industries such as aerospace, transportations, medical etc. Basically, the use of PVs in automotive application as a compressed natural gas (CNG) storage cylinder has been growing rapidly. Burst failure due to the laminate failure is the most critical failure mechanism for composite pressure vessels. It is predominantly caused by excessive internal pressure due to an overfilling or an overheating. In order to reduce fabrication difficulties and increase the structural efficiency, researches and studies are conducted continuously towards the proper selection of vessel design parameters. Hence, this paper is focused on the prediction of first ply failure pressure for such vessels utilizing finite element simulation based on Tsai-Wu and maximum stress failure criterions. The effects of laminate stacking sequence and orientation angle on the burst pressure were investigated in this work for a constant layered thickness PV. Two types of winding design, A [90°2/∓θ16/90°2] and B [90°2/∓θ]ns with different orientations of helical winding reinforcement were analyzed for carbon/epoxy composite material. It was found that laminate A sustained a maximum burst pressure of 55 MPa for a sequence of [90°2/∓15°16/90°2] while the laminate B returned a maximum burst pressure of 45 MPa corresponding to a stacking sequence of [90°2/±15°/90°2/±15°/90°2/±15° ....] up to 20 layers for a constant vessel thickness. For verification, a comparison was done with the literature under similar conditions of analysis and good agreement was achieved with a maximum difference of 4% and 10% for symmetrical and unsymmetrical layout, respectively.

  15. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  16. Firefighter's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  17. Test of 6-in.-thick pressure vessels. Series 3: intermediate test vessel V-7

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.; Bryan, R.H.

    1976-08-01

    The test of intermediate test vessel V-7 was a crack-initiation fracture test of a 152-mm-thick (6-in.), 990-mm-OD (39-in.) vessel of ASTM A533, grade B, class 1 steel plate with a sharp outside surface flaw 457 mm (18 in.) long and about 135 mm (5.3 in.) deep. The vessel was heated to 91 0 C (196 0 F) and pressurized hydraulically until leakage through the flaw terminated the test at a peak pressure of 147 MPa (21,350 psi). Fracture toughness data obtained by testing precracked Charpy-V and compact-tension specimens machined from a prolongation of the cylindrical test shell were used in pretest analyses of the flawed vessel. The vessel, as expected, did not burst. Upon depressurization, the ruptured ligament closed so as to maintain static pressure without leakage at about 129 MPa

  18. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P H; Ahlstroem, P E; Pershagen, B

    1961-04-15

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D{sub 2}O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D{sub 2}O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960.

  19. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    International Nuclear Information System (INIS)

    Margen, P.H.; Ahlstroem, P.E.; Pershagen, B.

    1961-04-01

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D 2 O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D 2 O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960

  20. Stress analysis of pressure vessels

    International Nuclear Information System (INIS)

    Kim, B.K.; Song, D.H.; Son, K.H.; Kim, K.S.; Park, K.B.; Song, H.K.; So, J.Y.

    1979-01-01

    This interim report contains the results of the effort to establish the stress report preparation capability under the research project ''Stress analysis of pressure vessels.'' 1978 was the first year in this effort to lay the foundation through the acquisition of SAP V structural analysis code and a graphic terminal system for improved efficiency of using such code. Software programming work was developed in pre- and post processing, such as graphic presentation of input FEM mesh geometry and output deformation or mode shope patterns, which was proven to be useful when using the FEM computer code. Also, a scheme to apply fracture mechanics concept was developed in fatigue analysis of pressure vessels. (author)

  1. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Greenhalgh, F.G.

    1975-01-01

    An apparatus is described for moving an ultrasonic scanning mechanism over the interior surface of a pressure vessel and comprising a mast for supporting the scanning mechanism inside the vessel and a carriage for traversing the mast within the vessel, the mast being pivotably secured to the carriage so that when the ultrasonic scanning mechanism contacts the interior surface of the pressure vessel the mast is caused to pivot. (auth)

  2. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  3. Tribology aspects of a pressure vessel closure subjected to pressure cycling

    International Nuclear Information System (INIS)

    George, A.F.; Williams, M.E.

    1988-04-01

    A repair method being considered for a steel pressure vessel is to cut away the faulty part leaving an unreinforced circular hole in the curved wall and cover it with a sealed plate placed inside. In order to investigate the structural properties of such a repair a large model vessel (6m by 2m) was tested under pressure (about 2.5 MPa) and pressure cycling. This cycling caused relative movements at the loaded interface between the lid and the vessel. A tribological examination of the rubbing surfaces was carried out. The tribological examination is described and a small supporting programme of laboratory scaling tests. It gives the results and attempts to interpret them with particular attention given to wear, fretting fatigue and scaling to plant conditions. (author)

  4. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  5. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  6. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief Engineer...

  7. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  8. Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions

    Science.gov (United States)

    Miller, Thomas B.; Lewis, Harlan L.

    2004-01-01

    LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.

  9. Analysis code for pressure in reactor containment vessel of ATR. CONPOL

    International Nuclear Information System (INIS)

    1997-08-01

    For the evaluation of the pressure and temperature in containment vessels in the events which are classified in the abnormal change of pressure, atmosphere and others in reactor containment vessels in accident among the safety evaluation events of the ATR, the analysis code for the pressure in reactor containment vessels CONPOL is used. In this report, the functions of the analysis code and the analysis model are shown. By using this analysis code, the rise of the pressure and temperature in a containment vessel is evaluated when loss of coolant accident occurs, and high temperature, high pressure coolant flows into it. This code possesses the functions of computing blow-down quantity and heat dissipation from reactor cooling facility, steam condensing heat transfer to containment vessel walls, and the cooling effect by containment vessel spray system. As for the analysis techniques, the models of reactor cooling system, containment vessel and steam discharge pool, and the computation models for the pressure and temperature in containment vessels, wall surface temperature, condensing heat transfer, spray condensation and blow-down are explained. The experimental analysis of the evaluation of the pressure and temperature in containment vessels at the time of loss of coolant accident is reported. (K.I.)

  10. Economic analysis of grid and wire wrap supported hydride and oxide fueled pressurized water reactors

    International Nuclear Information System (INIS)

    Shuffler, C.; Diller, P.; Malen, J.; Todreas, N.; Greenspan, E.; Petrovic, B.

    2009-01-01

    An economic analysis is performed to calculate the levelized unit cost of electricity (COE) for a pressurized water reactor (PWR) retrofitted with a range of potential U (45 wt.%)-ZrH 1.6 hydride and UO 2 oxide fueled geometries (i.e., combinations of rod diameter and pitch) supported by traditional grid spacers (square array) and wire wrap spacers (hexagonal array). The time frame considered in computing the COE is the remaining plant life, beginning at the time of retrofit. The goals of the analysis are twofold: (1) comparing the economic performance of UO 2 and U-ZrH 1.6 fuels for a range of retrofitted geometries supported by grid and wire wrap spacers; and (2) investigating the potential economic benefits for nuclear utilities considering retrofitting new fuels and/or geometries into existing PWR pressure vessels. Fuel cycle, operations and maintenance (O and M), and capital costs are considered. The economic performance of U-ZrH 1.6 and UO 2 fuels is found to be similar, with UO 2 fueled designs providing a slight advantage when supported by grid spacers, and U-ZrH 1.6 providing a slight advantage when supported by wire wrap spacers. These small differences in cost, however, are within the bounds of uncertainty of this study and are not believed to provide a strong economic argument for the use of one fuel type over the other. To demonstrate the potential economic benefits of retrofitted designs to nuclear utilities, two different comparisons are made. The first compares the COE for retrofitted designs with the COE for a reference PWR, assumed to have operated long enough to recuperate its initial capital investment. The costs for this reference PWR reflect the 'do-nothing' case for current plant owners whose primary expenditures are fuel cycle and O and M costs. The second comparison introduces a different reference PWR that includes the costs to operate an existing unit and the cost to purchase power from a newly constructed PWR, for comparison with

  11. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  12. Prestressed concrete pressure vessels for nuclear reactors - 1973

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This standard deals with the design, construction, inspection and testing of prestressed concrete pressure vessels for nuclear reactors. Such pressure vessels serve the dual purpose of shielding and containing gas cooled nuclear reactors and are a form of civil engineering structure requiring particularly high integrity, and ensured leak tightness. (Metric)

  13. In-service ultrasonic inspection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Prepechal, J.; Sulc, J.

    1982-01-01

    Ultrasonic tests of pressure vessels for WWER 440 reactors, type 213 V, are carried out partly manually and partly by test equipment. The inner surface of the pressure vessel is tested using device REACTORTEST TRC which is fully mobile. The outer surface of the cylindrical parts and bottoms of the body is tested using handling equipment permanently in-built under the pressure vessel and dismountable testing heads. A set of these heads may be used for two reactor units. The testing equipment REACTORTEST TRC is equipped with a TRC 800 ultrasound device. The equipment for testing the outer surface of the vessel operates with the UDAR 16 ultrasound apparatus to which may be simultaneously connected 10 ultrasound probes and six probes for acoustic feedback. The whole system of ultrasonic tests makes possible a first-rate and reliable volume control of the whole pressure vessel and all points where cracks may originate and grow. (Z.M.)

  14. Experimental study of static pressure distribution and axial pressure drop in a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1980-11-01

    The fuel element of a LMFBR type reactor consists of a rod bundle in a triangular array with helicoidal spacers among which the coolant flows. By utilizing a seven wire-wrapped rod bundle, coupled to an air loop, the hydrodynamic behaviour of the flow was simulated. A series of measurements was performed in order to obtain static pressure distributions in the surface of the rods and in the walls of the hexagonal duct, for different Reynolds numbers, the axial and the angular position being varied. The axial pressure drop was also measured and the friction coefficient for different Reynolds numbers was calculated. From the results obtained, the existence of zones of low pressure on the surface of the rods was observed, as well as the non-dependence of the nondimensional static pressure on the Reynolds number. Sudden variations in the distribution of the static pressure distribution were observed and they must be taken in to account in the thermal-hydraulic design, due to the possibility of occurence of cavitation bubbles in the coolant. (I.C.R.) [pt

  15. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  16. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  17. Nuclear reactor pressure vessel-specific flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.

    1992-01-01

    Vessel integrity predictions performed through fracture mechanics analysis of a pressurized thermal shock event have been shown to be significantly sensitive to the overall flaw distribution input. It has also been shown that modem vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. Throughout the program, new insight was obtained into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. For example, the potential application of a vessel-specific flaw distribution now provides at least one method by which a vessel-specific reference flaw size applicable to pressure-temperature limit curves determination can be estimated. This paper will discuss the development and application of the methodology and the impact to future vessel integrity analyses

  18. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1981-01-01

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  19. Seals for sealing a pressure vessel such as a nuclear reactor vessel or the like

    International Nuclear Information System (INIS)

    Bruns, H.J.; Huelsermann, K.H.

    1975-01-01

    A description is given of seals for sealing a pressure vessel such as a nuclear reactor vessel, steam boiler vessel, or any other vessel which is desirably sealed against pressure of the type including a housing and a housing closure that present opposed vertical sealing surfaces which define the sides of a channel. The seals of the present invention comprise at least one sealing member disposed in the channel, having at least one stop face, a base portion and two shank portions extending from the base portion to form a groove-like recess. The shank portions are provided with sealing surfaces arranged to mate with the opposed vertical pressure vessel sealing surfaces. A shank-spreading wedge element also disposed in the channel has at least one stop face and is engaged in the groove-like recess with the sealing member and wedge element stop face adjacent to each other

  20. Design optimization of a thin walled pressure vessel

    International Nuclear Information System (INIS)

    Sadiq, S.

    2001-01-01

    Design evaluation of a pressure vessel is not only to build confidence on its integrity but also to reduce structural weight and enhance the performance of the structure. Pressure vessel, e.g., a rocket motor not only has to withstand the high operating temperatures but it must also be able to survive the internal pressures and external aerodynamic forces and bending stresses during its operation in flight. A research program was devised to study the stresses, which are generated in a thin walled pressure vessel during actual operation and its simulation with cold testing technique, i.e., by means of hydrostatic testing employing electrical resistance strain gauges on the external surface of the cylinder. The objective of the research was to uphold the performance of the vessel by reducing its thickness from 6.09 to 5.5 mm (which of course reduces the safety factor margin from 1.8 to 1.5); thereby curtailing the overall structural weight and maintaining the efficiency of the vessel itself during its live operation. The techniques employed were hydrostatic testing, data acquisition system for obtaining data on strains from the electrical resistance strain gauges and later employing V on Mises yield criterion empirical relation to computer the stresses in hoop and longitudinal directions. (author)

  1. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1) Marine...

  2. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  3. Examination of VVER-1000 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Markulin, K.

    2008-01-01

    The increasing demand of a higher level of safety in the operation of the nuclear power plants requires the utilisation of more precise automated equipment to perform in-service inspections. That has been achieved by technological advances in computer technology, in robotics, in examination probe technology with the development of the advanced inspection technique and has also been due to the considerable and varied experience gained in the performance of such inspections. In-service inspection of reactor pressure vessel, especially Russian-designed WWER-1000 presents one of the most important and extensive examination of nuclear power plants primary circuit components. Such examination demand high standards of inspection technology, quality and continual innovation in the field of non-destructive testing advanced technology. A remote underwater contact ultrasonic technique is employed for the examination of the base metal of vessel and reactor welds, whence eddy current method is applied for clad surface examinations. Visual testing is used for examination of the vessel interior. The movement of inspection probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with inspection systems. The successful performance of reactor pressure vessel is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen non-destructive techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state-of-the-art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. This paper presents advanced approach in the reactor pressure vessel in-service inspections and it is especially developed for WWER-1000 nuclear power plants.(author)

  4. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  5. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  6. Prestressed concrete pressure vessels for boiling water reactors

    International Nuclear Information System (INIS)

    Menon, S.

    1979-12-01

    Following a general description of the Scandinavian cooperative project on prestressed concrete pressure vessels for boiling water reactors, detailed discussion is given in four appendices of the following aspects: the verification programme of tests and studies, the development and testing of a liner venting system, a preliminary safety philosophy and comparative assessment of cold and hot liners. Vessel failure probability is briefly discussed and some figures presented. The pressure gradients in the vessel wall resulting from various stipulated linear cracks, with a liner venting system are presented graphically. (JIW)

  7. Eddy current testing of composite pressure vessels

    Science.gov (United States)

    Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.

    2018-04-01

    The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.

  8. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1985-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (orig./PW)

  9. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1980-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (DG) [de

  10. Fourier series analysis of a cylindrical pressure vessel subjected to axial end load and external pressure

    International Nuclear Information System (INIS)

    Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.

    2013-01-01

    This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and

  11. Stress analysis and evaluation of a rectangular pressure vessel

    International Nuclear Information System (INIS)

    Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.

    1992-10-01

    This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel

  12. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  13. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall...

  14. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  15. USER SPECIFICATIONS FOR PRESSURE VESSELS AND TECHNICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    K.S. Johnston

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Specifications translated from user requirements are prescribed in an attempt to capture and incorporate best practices with regards to the design, fabrication, testing, and operation of pressure vessels. The question as to whether these requirements affect the technical integrity of pressure vessels is often a subjective matter. This paper examines typical user requirement specifications against technical integrity of pressure vessels.
    The paper draws on a survey of a convenience sample of practising engineers in a diversified petrochemical company. When compared with failures on selected pressure vessels recorded by Phillips and Warwick, the respondent feedback confirms the user specifications that have the highest impact on technical integrity.

    AFRIKAANSE OPSOMMING: Gebruikersbehoeftes word saamgevat in spesifikasies wat lei tot goeie praktyk vir ontwerp, vervaarding, toetsing en bedryf van drukvate. Subjektiwiteit van die gebruikersbehoeftes mag soms die tegniese integriteit van ‘n drukvat beinvloed.
    Die navorsing maak by wyse van monsterneming gebruik van die kennis van ingenieurs wat werk in ‘n gediversifiseerde petrochemiese bedryf. Die terugvoering bevestig dat bogenoemde spesifikasies inderdaad die grootste invloed het op tegniese integriteit.

  16. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  17. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  18. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  19. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  20. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  1. The need to pressure test prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Forgie, J.H.; Holland, J.A.

    1983-01-01

    In the period when PCRV were relatively unproven, proof pressure testing provided a useful demonstration of vessel integritiy and a confirmation of model testing and of analysis. No failures have occurred during concrete vessel tests in the UK or in the subsequent operational life of the vessels and much has been learned of their behaviour in service. The paper examines the advantages and disadvantages of proof testing PCRV in the light of the above increased knowledge of vessel performance. The paper draws attention to certain hypothetical loading cases that could be more onerous than the proof test and suggests that pressure testing could itself cause unnecessarily high loading to parts of the vessel. Always recognising the safety considerations and demonstrations of such are of prime importance, the authors suggest that a lower pressure level could be adopted without loss of original intent. In addition some ground rules are suggested as to cases where proof testing could be omitted. (orig./HP)

  2. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels in...

  3. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  4. Integrity of Magnox reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Flewitt, P.E.J.; Williams, G.H.; Wright, M.B.

    1992-01-01

    The background to the safety assessment of the steel reactor pressure vessels for Magnox power stations is reviewed. The evolved philosophy adopted for the 1991 safety cases prepared for the continued operation of four Magnox power stations operated by Nuclear Electric plc is described, together with different aspects of the multi-legged integrity argument. The main revisions to the materials mechanical property data are addressed together with the assessment methodology adopted and their implications for the overall integrity argument formulated for the continued safe operation of these reactor pressure vessels. (author)

  5. Analysis of aging mechanism and management for HTR-PM reactor pressure vessel

    International Nuclear Information System (INIS)

    Sun Yunxue; Shao Jin

    2015-01-01

    Reactor pressure vessel is an important part of the reactor pressure boundary, its important degree ranks high in ageing management and life assessment of nuclear power plant. Carrying out systematic aging management to ensure reactor pressure vessel keeping enough safety margins and executing design functions is one of the key factors to guarantee security and stability operation for nuclear power plant during the whole lifetime and prolong life. This paper briefly introduces the structure and aging mechanism of reactor pressure vessel in pressurized water reactor nuclear power plant, and introduces the design principle and structure characteristics of HTR-PM. At the same time, this paper carries out preliminary analysis and exploration. and discusses aging management of HTR-PM reactor pressure vessel. Finally, the advice of carring out aging management for HTR-PM reactor pressure vessel is proposed. (authors)

  6. Factors affecting the integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1983-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, if certain postulated accidents, referred to as overcooling accidents, were to occur, the pressure vessel could be subjected to severe thermal shock while the pressure is substantial. As a result, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner-surface flaws prior to the vessel's normal end of life. A fracture-mechanics analysis for a typical postulated accident and also related thermal-shock experiments indicate that very shallow surface flaws that extend through the cladding into the base material could propagate. This is of particular concern because shallow flaws appear to be the most probable and presumably are the most difficult to detect

  7. Leak detector for reactor pressure vessel

    International Nuclear Information System (INIS)

    Morimoto, Mikio.

    1991-01-01

    A branched pipe is disposed to a leak off pipeline led from a flange surface which connects the main body and the upper lid of a reactor pressure vessel. An exhaust pump is disposed to the branched pipe and a moisture gage is disposed on the side of the exhaustion and a dry air supplier is connected to the branched pipe. Upon conducting a pressure-proof leak test for the reactor pressure vessel, the exhaust pump is operated and an electromagnet valve disposed at the upstream of the dry air supplier is opened and closed repeatedly. The humidity of air sucked by the exhaust pump is detected by the moisture gage. If leaks should be caused in the joining surface of the flange, leaked water is diffused as steams. Accordingly, occurrence of leak can be detected instantly based on the comparison with the moisture level of the dry air as a standard. In this way, a leak test can be conducted reliably in a short period of time with no change of for the reactor pressure container itself. (I.N.)

  8. Code boiler and pressure vessel life assessment

    International Nuclear Information System (INIS)

    Farr, J.R.

    1992-01-01

    In the United States of America and in Canada, laws and controls for determining life assessment for continued operation of equipment exist only for those pressure vessels built to Section III and evaluated according to Section XI. In this presentation, some of those considerations which are made in the USA and Canada for deciding on life or condition assessment of boilers and pressure vessels designed and constructed to other sections of the ASME Boiler and Pressure Vessel Code are reviewed. Life assessment or condition assesssment is essential in determining what is necessary for continued operation. With no ASME rules being adopted by laws or regulations, other than OSHA in the USA and similar environmental controls in Canada, to control life assessment for continued operation, the equipment owner must decide if assessment is to be done and how much to do. Some of those considerations are reviewed along with methods and procedures to make an assessment along with a discussion of where the ASME B and PV Code currently stands regarding continued operation. (orig.)

  9. Increase of cyclic durability of pressure vessels

    International Nuclear Information System (INIS)

    Vorona, V.A.; Zvezdin, Yu.I.

    1980-01-01

    The durability of multilayer pressure vessels under cyclic loading is compared with single-layer vessels. The relative conditional durability is calculated taking into account the assumption on the consequent destruction of layers and viewing a vessel wall as an indefinite plate. It is established that the durability is mainly determined by the number of layers and to a lesser degree depends on the relative size of the defect for the given layer thickness. The advantage of the multilayer vessels is the possibility of selecting layer materials so that to exclude the effect of agressive corrosion media on the strength [ru

  10. Pressure vessel and method therefor

    Science.gov (United States)

    Saunders, Timothy

    2017-09-05

    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  11. Thermal hydraulic evaluation of advanced wire-wrapped assemblies

    International Nuclear Information System (INIS)

    Wei, J.P.

    1975-01-01

    The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs

  12. Heavy-Section Steel Technology Program intermediate-scale pressure vessel tests

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Smith, G.C.; Whitman, G.D.

    1977-01-01

    The tests of intermediate-size vessels with sharp flaws permitted the comparison of experimentally observed behavior with analytical predictions of the behavior of flawed pressure vessels. Fracture strains estimated by linear elastic fracture mechanics (LEFM) were accurate in the cases in which the flaws resided in regions of high transverse restraint and the fracture toughness was sufficiently low for unstable fracture to occur prior to yielding through the vessel wall. When both of these conditions were not present, unstable fracture did occur, always preceded by stable crack growth; and the cylinders with flaws initially less than halfway through the wall attained gross yield prior to burst. Predictions of failure pressure of the vessels with flawed nozzles, based upon LEFM estimates of failure strain, were very conservative. LEFM calculations of critical load were based upon small-specimen fracture toughness test data. Whenever gross yielding preceded failure, the actual strains achieved were considerably greater than the estimated strains at failure based on LEFM. In such cases the strength of the vessel may be no longer dependent upon plane-strain fracture toughness but upon the capacity of the cracked section to carry the imposed load stably in the plastic range. Stable crack growth, which has not been predictable quantitatively, is an important factor in elastic-plastic analysis of strength. The ability of the flawed vessels to attain gross yield in unflawed sections has important qualitative implications on pressure vessel safety margins. The gross yield condition occurs in light-water-reactor pressure vessels at about 2 x design pressure. The intermediate vessel tests that demonstrated a capacity for exceeding this load confirm that the presumed margin of safety is not diminished by the presence of flaws of substantial size, provided that material properties are adequate

  13. Rapid construction of concrete pressure vessels

    International Nuclear Information System (INIS)

    Limbert, D.; Weatherseed, D.C.

    1989-01-01

    This paper opens with a general description of the concrete pressure vessel followed by a more detailed examination of the critical elements of the construction, including choice of methods and plant which were selected to ensure its rapid construction. The pressure vessel construction cannot be treated in isolation, because it is very closely linked with its surrounding structures - namely the reactor hall which surrounds it and the charge hall which tops it, as will be seen in the context of this paper. Rate of progress of construction is not entirely in the civil contractor's hands because so many of the operations affecting the civil works are of a mechanical nature, hence a very close liaison and understanding amongst all contractors concerned was of the utmost importance. (author)

  14. Light Water Reactor-Pressure Vessel Surveillance project computer system

    International Nuclear Information System (INIS)

    Merriman, S.H.

    1980-10-01

    A dedicated process control computer has been implemented for regulating the metallurgical Pressure Vessel Wall Benchmark Facility (PSF) at the Oak Ridge Research Reactor. The purpose of the PSF is to provide reliable standards and methods by which to judge the radiation damage to reactor pressure vessel specimens. Benchmark data gathered from the PSF will be used to improve and standardize procedures for assessing the remaining safe operating lifetime of aging reactors. The computer system controls the pressure vessel specimen environment in the presence of gamma heating so that in-vessel conditions are simulated. Instrumented irradiation capsules, in which the specimens are housed, contain temperature sensors and electrical heaters. The computer system regulates the amount of power delivered to the electrical heaters based on the temperature distribution within the capsules. Time-temperature profiles are recorded along with reactor conditions for later correlation with specimen metallurgical changes

  15. WRAP: a water reactor analysis package

    International Nuclear Information System (INIS)

    Anderson, M.M.

    1977-06-01

    The modular computational system known as the Water Reactor Analysis Package (WRAP) has been developed at the Savannah River Laboratory. WRAP is essentially a reprogrammed version of the RELAP4 computer code with an extensively restructured input format, a dynamic dimensioning capability and additional computational capabilities such as an automatic steady-state option for pressurized water reactors and an automatic restart capability with provision for renodalization. The report describes the capabilities of WRAP at its current stage of development. The addition of new capabilities (e.g., a BWR steady-state capability), the inclusion of improved models (e.g., models in RELAP4/M0D8) and the development of improved numerical techniques to reduce execution time are being planned at this time

  16. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the marine...

  17. Multiple cell common pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    A multiple cell common pressure vessel (CPV) nickel hydrogen battery was developed that offers significant weight, volume, cost, and interfacing advantages over the conventional individual pressure vessel (IPV) nickel hydrogen configuration that is currently used for aerospace applications. The baseline CPV design was successfully demonstrated though the testing of a 26 cell prototype, which completed over 7,000 44 percent depth of discharge LEO cycles. Two-cell boilerplate batteries have now exceeded 12,500 LEO cycles in ongoing laboratory tests. CPV batteries using both nominal 5 and 10 inch diameter vessels are currently available. The flexibility of the design allows these diameters to provide a broad capability for a variety of space applications.

  18. Pressure vessel lid

    International Nuclear Information System (INIS)

    Schoening, J.; Elter, C.; Becker, G.; Pertiller, S.

    1986-01-01

    The invention concerns a lid for closing openings in reactor pressure vessels containing helium, which is made as a circular casting with hollow spaces and a flat floor and is set on the opening and kept down. It consists of helium-tight metal cast material with sufficient temperature resistance. There are at least two concentric heat resistant seals let into the bottom of the lid. The bottom is in immediate contact with the container atmosphere and has hollow spaces in its inside in the area opposite to the opening. (orig./HP) [de

  19. Manipulator for testing a top-opened reactor pressure vessel

    International Nuclear Information System (INIS)

    Bauer, R.; Kastl, H.

    1991-01-01

    The design is described of a manipulator to be inserted into the inside of reactor pressure vessels opened at the top. The main components of the manipulator include a fixed column protruding into the pressure vessel and a support which is slidable on the column and carries the bearing component for the measuring, testing, inspection and repair instruments. The device includes a driving equipment for the support as well as the power supply for the sets accommodated on the support, with the aim to reduce the failure rate of the manipulator as a whole, shorten the time necessary for its assembling and thus the time of staying in the reactor pressure vessel and, at the same time, make its maintenance and operation easier. (Z.S.). 13 figs

  20. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  1. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  2. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  3. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the...

  4. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  5. Safety of steel vessel Magnox pressure circuits

    International Nuclear Information System (INIS)

    Stokoe, T.Y.; Bolton, C.J.; Heffer, P.J.H.

    1991-01-01

    The maintenance of pressure circuit integrity is fundamental to nuclear safety at the steel vessel Magnox stations. To confirm continued pressure circuit integrity the CEGB, as part of the Long Term Safety Review, has carried out extensive assessment and inspection in recent years. The assessment methods and inspection techniques employed are based on the most modern available. Reactor pressure vessel integrity is confirmed by a combination of arguments including safety factors inferred from the successful pre-service overpressure test, leak-before-break analysis and probabilistic assessment. In the case of other parts of the pressure circuits that are more accessible, comprising the boiler shells and interconnecting gas duct work, in-service inspection is a major element of the safety substantiation. The assessment and inspection techniques and the materials property data have been underpinned for many years by extensive research and development programmes and in-reactor monitoring of representative samples has also been undertaken. The paper summarises the work carried out to demonstrate the long term integrity of the Magnox pressure circuits and provides examples of the results obtained. (author)

  6. The Assembly and Test of Pressure Vessel for Irradiation

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Youn, Young Jung; June, Hyung Kil; Ahn, Sung Ho; Lee, Kee Hong; Kim, Young Ki; Kennedy, Timothy C.

    2009-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts: the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature

  7. The Assembly and Test of Pressure Vessel for Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kook Nam; Lee, Jong Min; Youn, Young Jung; June, Hyung Kil; Ahn, Sung Ho; Lee, Kee Hong; Kim, Young Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kennedy, Timothy C. [Oregon State University, Corvallis (United States)

    2009-02-15

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts: the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.

  8. Test of 6-in.-thick pressure vessels. Series 3: intermediate test vessel V-7A under sustained loading

    International Nuclear Information System (INIS)

    Bryan, R.H.; Cate, T.M.; Holz, P.P.; King, T.A.; Merkle, J.G.; Robinson, G.C.; Smith, G.C.; Smith, J.E.; Whitman, G.D.

    1978-01-01

    HSST intermediate test vessel V-7 was repaired after being tested hydrostatically to leakage and was retested pneumatically as vessel V-7A. Except for the method of applying the load, the conditions in both tests were nearly identical. In each case, a sharp outside surface flaw 547 mm long (18 in.) by about 135 mm deep (5.3 in.) was prepared in the 152-mm-thick (6-in.) test cylinder of A533, grade B, class 1 steel. The inside surface of vessel V-7A was sealed in the region of the flaw by a thin metal patch so that pressure could be sustained after rupture. Vessel V-7A failed by rupture of the flaw ligament without burst, as expected. Rupture occurred at 144.3 MPa (20.92 ksi), after which pressure was sustained for 30 min without any indication of instability. The rupture pressure of vessel V-7A was about 2 percent less than that of vessel V-7

  9. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  10. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel and outer shell around the primary pressure vessel and acting as a protection for it against outside projectiles. A floor is provided internally dividing the outside shell into two upper and lower sections and an inside wall dividing the lower section into one part containing the primary pressure vessel and a second part, both made pressure tight with respect to each other and with the outside shell and forming with the latter a secondary means of containment [fr

  11. Problems in manufacturing and transport of pressure vessels of integral reactors

    International Nuclear Information System (INIS)

    Kralovec, J.

    1997-01-01

    Integral water-cooled reactors are typical with eliminating large-diameter primary pipes and placing primary components, i.e. steam generators and pressurizers in reactor vessels. This arrangement leads to reactor pressure vessels of large dimensions: diameters, heights and thick walls and subsequently to great weights. Thus, even medium power units have pressure vessels which are on the very limit of present manufacturing capabilities. Principal manufacturing and inspection operations as well as pertinent equipment are concerned: welding, cladding, heat treatment, machining, shop-handling, non-destructive testing, hydraulic pressure tests etc. Tile transport of such a large and heavy component makes a problem which effects its design as well as the selection of the plant site. Railway, road and ship are possible ways of transport each of them having its advantages and limitations. Specific features and limits of the manufacture and transport of large pressure vessels are discussed in the paper. (author)

  12. Weld evaluation on spherical pressure vessels using holographic interferometry

    International Nuclear Information System (INIS)

    Boyd, D.M.; Wilcox, W.W.

    1980-01-01

    Waist welds on spherical experimental pressure vessels have been evaluated under pressure using holographic interferometry. A coincident viewing and illumination optical configuration coupled with a parabolic mirror was used so that the entire weld region could be examined with a single hologram. Positioning the pressure vessel at the focal point of the parabolic mirror provides a relatively undistorted 360 degree view of the waist weld. Double exposure and real time holography were used to obtain displacement information on the weld region. Results are compared with radiographic and ultrasonic inspections

  13. The relevance of crack arrest phenomena for pressure vessel structural integrity assessment

    International Nuclear Information System (INIS)

    Connors, D.C.; Dowling, A.R.; Flewitt, P.E.J.

    1996-01-01

    The potential role of a crack arrest argument for the structural integrity assessments of steel pressure vessels and the relationship between crack initiation and crack arrest philosophies are described. A typical structural integrity assessment using crack initiation fracture mechanics is illustrated by means of a case study based on assessment of the steel pressure vessels for Magnox power stations. Evidence of the occurrence of crack arrest in structures is presented and reviewed, and the applications to pressure vessels which are subjected to similar conditions are considered. An outline is given of the material characterisation that would be required to undertake a crack arrest integrity assessment. It is concluded that crack arrest arguments could be significant in the structural integrity assessment of PWR reactor pressure vessels under thermal shock conditions, whereas for Magnox steel pressure vessels it would be limited in its potential to supporting existing arguments. (author)

  14. Design study on steam generator integration into the VVER reactor pressure vessel

    International Nuclear Information System (INIS)

    Hort, J.; Matal, O.

    2004-01-01

    The primary circuit of VVER (PWR) units is arranged into loops where the heat generated by the reactor is removed by means of main circulating pumps, loop pipelines and steam generators, all located outside the reactor pressure vessel. If the primary circuit and reactor core were integrated into one pressure vessel, as proposed, e.g., within the IRIS project (WEC), a LOCA situation would be limited by the reactor pressure vessel integrity only. The aim of this design study regarding the integration of the steam generator into the reactor pressure vessel was to identify the feasibility limits and some issues. Fuel elements and the reactor pressure vessel as used in the Temelin NPP were considered for the analysis. From among the variants analyzed, the variant with steam generators located above the core and vertically oriented circulating pumps at the RPV lower bottom seems to be very promising for future applications

  15. Light-water-reactor pressure-vessel surveillance dosimetry using solid-state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1983-07-01

    The accumulation of neutron dose by the pressure vessel of an operating nuclear power plant results in damage in the form of steel embrittlement. In order to ascertain the safe operating lifetime of the reactor pressure vessel, dosimetric measurements must be made to evaluate the neutron dose to the pressure vessel and relate this dose to the cumulative radiation damage. Advanced dosimetry techniques are being evaluated for surveillance of operating reactors. Solid-state track recorder (SSTR) techniques are included among these advanced dosimetry techniques. Described herein are low neutron fluence calibration and standardization measurements that are being carried out in pressure vessel mockup benchmark neutron fields in the USA, Belgium, and England. In addition, high fluence SSTR dosimetry capsules have been irradiated with metallurgical specimens in a pressure vessel mockup facility. The design and deployment of advances SSTR dosimetry capsules in operating power reactors are also described

  16. Analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Augusto, O.B.

    1985-01-01

    This work proposes a methodology for the structural analysis of high diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem, and the results are compared with results obtained by the finite element method. (Author) [pt

  17. Design, fabrication and quality assurance of pressure vessels

    International Nuclear Information System (INIS)

    Kimura, Ichiro; Miki, Masao; Yamazaki, Tsuneji; Tanaka, Yoshikazu; Sato, Misao

    1978-01-01

    The production facilities, design and manufacturing technologies, and quality assurance in the Toyo Works, Ehime Manufactory, Sumitomo Heavy Industries, Ltd., which manufactures pressure vessels, are described, and especially the actual example of non-destructive tests is shown. The Toyo Works was completed in April, 1973, to manufacture large structures such as pressure vessels, offshore structures and bridges. The total area of the site is 535,000 m 2 , that of factory buildings is 33,600 m 2 , and the outdoor assembling yard is 114,800 m 2 . The large dry dock and main installations such as 12,000 tf hydraulic press, an annealing furnace, a heat treating furnace, a quenching tank, a horizontal boring machine, 6 m vertical lathe, various welding machines, 8 MeV X-ray apparatus, sand blasting and pickling facilities, and two 160 t cranes for shipment are arranged so as to enable smooth flow of production. The standards for chemical pressure vessels in various countries are compared, and considerably high allowable stress is adopted in Europe. The design and stress analysis of pressure vessels are carried out in accordance with ASME Section 8, Div. 1 or Div. 2. As for the materials, attention must be paid to the change of properties due to heat and strain, temper brittleness, low temperature toughness and so on. The quality assurance system must be established to observe the requirements of standards. (Kako, I.)

  18. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and appurtenances... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of boilers, pressure vessels, piping and...

  19. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  20. H.B. Robinson-2 pressure vessel benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I.; Kam, F.B.K.

    1998-02-01

    The H. B. Robinson Unit 2 Pressure Vessel Benchmark (HBR-2 benchmark) is described and analyzed in this report. Analysis of the HBR-2 benchmark can be used as partial fulfillment of the requirements for the qualification of the methodology for calculating neutron fluence in pressure vessels, as required by the U.S. Nuclear Regulatory Commission Regulatory Guide DG-1053, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence. Section 1 of this report describes the HBR-2 benchmark and provides all the dimensions, material compositions, and neutron source data necessary for the analysis. The measured quantities, to be compared with the calculated values, are the specific activities at the end of fuel cycle 9. The characteristic feature of the HBR-2 benchmark is that it provides measurements on both sides of the pressure vessel: in the surveillance capsule attached to the thermal shield and in the reactor cavity. In section 2, the analysis of the HBR-2 benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed with three multigroup libraries based on ENDF/B-VI: BUGLE-93, SAILOR-95 and BUGLE-96. The average ratio of the calculated-to-measured specific activities (C/M) for the six dosimeters in the surveillance capsule was 0.90 {+-} 0.04 for all three libraries. The average C/Ms for the cavity dosimeters (without neptunium dosimeter) were 0.89 {+-} 0.10, 0.91 {+-} 0.10, and 0.90 {+-} 0.09 for the BUGLE-93, SAILOR-95 and BUGLE-96 libraries, respectively. It is expected that the agreement of the calculations with the measurements, similar to the agreement obtained in this research, should typically be observed when the discrete-ordinates method and ENDF/B-VI libraries are used for the HBR-2 benchmark analysis.

  1. Welding in repair of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pilous, V.; Kovarik, R.

    1987-01-01

    Specific welding conditions are described in repair of the pressure vessels of nuclear reactors in operation and the effect is pointed out to of neutrons on changes in steel properties. Some of the special regulations are discussed to be observed in welding jobs. The welding methods are briefly described; the half-bead method is most frequently used. It is stressed that the defect must first be identified using a nondestructive method and the stages must be defined of the welding repair of the pressure vessel. (J.B.). 4 figs., 1 tab., 16 refs

  2. Stress categorization in nozzle to pressure vessel connections finite elements models

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos de

    1999-01-01

    The ASME Boiler and Pressure Vessel Code, Section III , is the most important code for nuclear pressure vessels design. Its design criteria were developed to preclude the various pressure vessel failure modes throughout the so-called 'Design by Analysis', some of them by imposing stress limits. Thus, failure modes such as plastic collapse, excessive plastic deformation and incremental plastic deformation under cyclic loading (ratchetting) may be avoided by limiting the so-called primary and secondary stresses. At the time 'Design by Analysis' was developed (early 60's) the main tool for pressure vessel design was the shell discontinuity analysis, in which the results were given in membrane and bending stress distributions along shell sections. From that time, the Finite Element Method (FEM) has had a growing use in pressure vessels design. In this case, the stress results are neither normally separated in membrane and bending stress nor classified in primary and secondary stresses. This process of stress separation and classification in Finite Element (FE) results is what is called stress categorization. In order to perform the stress categorization to check results from FE models against the ASME Code stress limits, mainly from 3D solid FE models, several research works have been conducted. This work is included in this effort. First, a description of the ASME Code design criteria is presented. After that, a brief description of how the FEM can be used in pressure vessel design is showed. Several studies found in the literature on stress categorization for pressure vessel FE models are reviewed and commented. Then, the analyses done in this work are presented in which some typical nozzle to pressure vessel connections subjected to internal pressure and concentrated loads were modeled with solid finite elements. The results from linear elastic and limit load analyses are compared to each other and also with the results obtained by formulae for simple shell

  3. Problems in Pressure Vessel Design and Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, O [Uddeholms AB, Degerfors (Sweden); Nilson, Ragnar [AB Atomenergi, Nykoeping (Sweden)

    1963-05-15

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels.

  4. Problems in Pressure Vessel Design and Manufacture

    International Nuclear Information System (INIS)

    Hellstroem, O.; Nilson, Ragnar

    1963-05-01

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels

  5. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  6. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  7. Interpretation of strain measurements on nuclear pressure vessels

    International Nuclear Information System (INIS)

    Andersen, S.I.; Engbaek, P.

    1979-11-01

    Selected results from strain measurements on 4 nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzels, internal vessel structure and flange bolts. The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as detailed knowledge of the behaviour of the signal from the individual gauges during the test is necessary. If this is omitted, it can be extremely difficult to distinguish between the real structural behaviour and a malfunctioning of a specific gauge installation. In general, most of the measuring results exhibit a very linear behaviour with a negligible zeroshift. However, deviations from linear behaviour are observed in several cases. This nonlinearity can be explained by friction (flange connections) or by gaps (concentrical nozzles) in certain regions, whereas local plastic deformations during the first pressure loadings of the vessel seem to be the reason in other regions. (author)

  8. Renovation of the sealing planes of WWER-400 reactors pressure vessel

    International Nuclear Information System (INIS)

    Jablonicky, P.; Pilat, P.

    2007-01-01

    An article describes technical solution for renovation of the sealing planes of WWER-440 reactor's pressure vessel. Four nickel sealing rings placed in four concentric grooves are providing hermetic sealing between the vessel and the lid of this type of the reactor. Impeccable seal of the reactor's pressure vessel, where the fission reaction takes place, represents a basic security factor for safe electric energy production. Principle of renovation of the reactor's pressure vessel and lid sealing planes is based on mechanical enlargement of defective grooves and following cladding of the new material by TIG welding. Final step for renovation includes machining of new grooves according to geometrical and surface quality requirements (Authors)

  9. Structural analysis and evaluation for the design of pressure vessel

    International Nuclear Information System (INIS)

    Arai, K.; Uragami, K.; Funada, T.; Baba, K.; Kira, T.

    1977-01-01

    For the design of pressure vessel, the detailed structural analysis such as the fatigue analysis under operating conditions is required by ASME Code or Japanese regulation. Accordingly, it should be verified by the analysis that the design of the pressure vessel is in compliance with the stress limitation defined in the Code or the regulation. However, it was apparent that the analysis is very complicated and takes a lot of time to evaluate in accordance with the Code requirements. Thereupon we developed the computer program by which we can perform the stress analysis with correctness and comparatively in a short period of design work reflecting the calculation results on detailed drawings to be used for fabrication. The computer program is controlled in combination with the system of the design work and out put list of the program can be directly used for the stress analysis report which is issued to customers. In addition to the above computer program, we developed the specific three dimensional finite element computer program to make sure of the structural integrity of the vessel head and flanges which are most complex for the analysis compared with the stress distribution measured by strain gauges on the vessel head and flange. Besides the structural analysis, the fracture mechanics analysis for the purpose of preventing the pressure vessel from the brittle fracture during heat-up and cool-down operation is also important and thereby we showed herein that the pressure vessel is in safety against the brittle fracture for the specified operating conditions. As a result of the above-mentioned analysis, the pressure vessel is designed with safety from the stand-points of the structural intensity and the fracture mechanics. (auth.)

  10. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Mayer, N.; Amberg, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel and a comparison of the distribution of temperature, strain and stress within the concrete member to the optimized statical predictions and the criterions of layout yield to an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed on the prototype vessel at Seibersdorf Research Center during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C/50 bar). (Author)

  11. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Weissbacher, L.; Mayer, N.; Amberge, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel, and comparison with the design predictions of the distribution of temperature, strain and stress within the concrete member and the criteria of layout, provide an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed with reference to the prototype vessel at Seibersdorf Research Centre during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C, 50 bar). (author)

  12. Bounding the conservatism in flaw-related variables for pressure vessel integrity analyses

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.

    1993-01-01

    The fracture mechanics-based integrity analysis of a pressure vessel, whether performed deterministically or probabilistically, requires use of one or more flaw-related input variables, such as flaw size, number of flaws, flaw location, and flaw type. The specific values of these variables are generally selected with the intent to ensure conservative predictions of vessel integrity. These selected values, however, are largely independent of vessel-specific inspection results, or are, at best, deduced by ''conservative'' interpretation of vessel-specific inspection results without adequate consideration of the pertinent inspection system performance (reliability). In either case, the conservatism associated with the flaw-related variables chosen for analysis remains examination (NDE) technology and the recently formulated ASME Code procedures for qualifying NDE system capability and performance (as applied to selected nuclear power plant components) now provides a systematic means of bounding the conservatism in flaw-related input variables for pressure vessel integrity analyses. This is essentially achieved by establishing probabilistic (risk)-based limits on the assigned variable values, dependent upon the vessel inspection results and on the inspection system unreliability. Described herein is this probabilistic method and its potential application to: (i) defining a vessel-specific ''reference'' flaw for calculating pressure-temperature limit curves in the deterministic evaluation of pressurized water reactor (PWR) reactor vessels, and (ii) limiting the flaw distribution input to a PWR reactor vessel-specific, probabilistic integrity analysis for pressurized thermal shock loads

  13. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  14. Method of detecting construction faults in concrete pressure vessels

    International Nuclear Information System (INIS)

    Robertson, S.A.; Duhoux, M.; Dawance, G.; Carrie, C.; Morel, D.

    1976-01-01

    A major problem in the design and construction of concrete pressure vessels for nuclear power stations is the risk of excessive air leaks through the concrete itself, due to faulty construction. The 'sonic coring' method of non-destructive concrete testing has been used successfully in pile and diaphragm wall construction control for several years, and the potential use of this method to control the presence of faults in concrete pressure vessels is here described. (author)

  15. Towards a new pressure vessel standard in the European Union

    International Nuclear Information System (INIS)

    Osweiller, F.

    1995-01-01

    Since 1990 the European Commission has been preparing a new Directive which will regulate the Pressure Equipment sector in the countries of the European Union. CEN Standards devoted to pressure vessels, piping, boilers, are currently being drawn up to complete and implement this Directive. This paper focuses on the European Unfired Pressure Vessel Standard (EPVS) which is in course of development under the responsibility of CEN/TC54. The main aspects of the Standard are outlined: general structure, materials, design, fabrication, inspection and testing. The link with the European Directive is explained in connection with regulatory aspects: conformity assessment, essential safety requirements, classes of vessels, notified bodies, EC mark, status of the standard

  16. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  17. Cylindrical reinforced-concrete pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    Vaessen, F.

    1975-01-01

    The cylindrical pressure vessel has got a wall and an isolating layer composed of blocks of heat-resistant concrete or of ceramic material. The side of the isolating layer facing the interior of the presssure vessel is coated by a liner made of metallic material. In cold state and without internal pressure, the radius of this liner is smaller by a differential amount than that of the isolating layer. By means of radially displaceable fixing elements consisting of an anchoring tube and a holding tube inserted in it, the liner can be made to rest against the isolating layer. This occurs if the pressure vessel is brought to operational temperature. The anchoring tube is attached to the isolating layer whereas the displaceable holding tube is connected with the liner. The possible relative travelling distance of these two elements is equal to the difference of length of the two radii. In addition, the liner may consist of single parts connected with each other through compensating flanges. There may also be additional springs arranged between the isolating layer and the liner. (DG/PB) [de

  18. Structural features and in-service inspection of the LTHR-200 pressure vessel

    International Nuclear Information System (INIS)

    Xiong Dunshi; He Shuyan; Liu Junjie; Yu Suyuan

    1993-01-01

    LTHR-200 is a low temperature district-heating reactor. It adopts double-shell design pressure vessel and metal containment. Because of the safety and structural features of the reactor, the in-service inspection of the pressure vessel can be simplified greatly. LTHR-200 is an integrated arrangement. Both its core components and the main heat exchangers are contained in the reactor pressure vessel. The coolant of the main loop is run by a full-power natural circulation and there need no main pumps and pipes. Thus, the reactor pressure vessel constitutes the pressure boundary of the reactor's main loop coolant. In regard to these features, a small-sized containment is designed for the reactor. The metal safety container with a small volume is placed closely around the reactor pressure vessel. Outside the metal containment, there is a large reinforced concrete construction for the reactor. Their main operation and design parameters are as follows: The pressure vessel: operation pressure = 2.4 MPa; design pressure = 3.0 MPa; design temperature = 250 deg C; 40 year fast neutron (E>1MeV) fluence in the belt-line region = < 10E16n/cm; internal diameter = 5000 mm; material SA516-70; shell thickness 65 mm; The metal containment: maximum operation pressure = 1.8 MPa; design pressure = 1.8 MPa; design temperature = 250 deg. C; upper internal diameter 7000 mm; lower internal diameter = 5600 mm; material = SA516-70; shell thickness, upper part = 80 mm; lower part = 50 mm. All penetrating pipes through the pressure vessel are located at the top penetration section of the shell. All the internal diameters of penetrating pipes are less than 50 mm. Inside and outside the metal containment wall respectively, isolating valves are connected to the reactor coolant pipe which passes through the containment. These two isolating valves use different driving methods. Every penetrating part of the reactor construction uses a proper form of structure according to safety requirements

  19. Design of pressure vessels. Part 1

    International Nuclear Information System (INIS)

    Grandemange, J.M.

    2008-01-01

    The equipments and loops of PWR reactors are basically pressure vessels. Their specificities concern the integrity warranties that must be implemented considering their importance for the reactors safety. Thus, stress is put on the exhaustiveness of the prevention of in-service degradation and on the safety scenarios considered. The second specificity concerns the possibility of activation of wear and corrosion products during their flow inside the reactor core. This second aspect leads to some constraints on the choice of the materials used and on the surface coating of the inside wall of big components of the primary circuit. The aim of this document is to develop the general approach adopted for the design of the pressure vessels of PWR fluid loops, and to stress more particularly on the nuclear particularities of these equipments. Some extensions of these rules to high temperature resistant materials (FBR-type reactors) are also evoked. Content: General considerations: design basis of pressure vessels, risk analysis and design conditions, ruining paths and safety coefficients; 2 - damage prevention for excessive deformation: definitions, criteria; 3 - prevention of the plastic instability damage: definition, criteria; 4 - buckling prevention: definition and mechanisms, rules and criteria; 5 - prevention of progressive deformation damage: definitions, plastic adaptation, plastic accommodation, progressive deformation; 6 - prevention of fatigue damage: definitions, general prevention approach, design fatigue curves, analytic approach, particular aspects, analysis of zones with geometrical singularity; 7 - prevention of sudden rupture damage: fragile rupture and ductile tear, general approach, analytic criteria, irradiation and aging effects; 8 - other potential damages; 9 - conclusion. (J.S.)

  20. Probabilistic assessment of pressure vessel and piping reliability

    International Nuclear Information System (INIS)

    Sundararajan, C.

    1986-01-01

    The paper presents a critical review of the state-of-the-art in probabilistic assessment of pressure vessel and piping reliability. First the differences in assessing the reliability directly from historical failure data and indirectly by a probabilistic analysis of the failure phenomenon are discussed and the advantages and disadvantages are pointed out. The rest of the paper deals with the latter approach of reliability assessment. Methods of probabilistic reliability assessment are described and major projects where these methods are applied for pressure vessel and piping problems are discussed. An extensive list of references is provided at the end of the paper

  1. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  2. Advanced Approach of Reactor Pressure Vessel In-service Inspection

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Pajnic, M.

    2006-01-01

    The most important task of every utility operating a nuclear power plant is the continuously keeping of the desired safety and reliability level. This is achieved by the performance of numerous inspections of the components, equipment and system of the nuclear power plant in operation and in particular during the scheduled maintenance periods at re-fueling time. Periodic non-destructive in-service inspections provide most relevant criteria of the integrity of primary circuit pressure components. The task is to reliably detect defects and realistically size and characterize them. One of most important and the most extensive examination is a reactor pressure vessel in-service inspection. That inspection demand high standards of technology and quality and continual innovation in the field of non-destructive testing (NDT) advanced technology as well as regarding reactor pressure vessel tool and control systems. A remote underwater contact ultrasonic technique is employed for the examination of the defined sections (reactor welds), whence eddy current method is applied for clad surface examinations. Visual inspection is used for examination of the vessel inner surface. The movement of probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with NDT systems. The successful performance is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen NDT techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state of the art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. The advanced approach as presented in this paper offer more flexibility of application (non-destructive tests, local grinding action as well as taking of boat samples

  3. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  4. Investigation of the failure of a reactor pressure vessel by plastic instability

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1994-01-01

    A possible consequence of a core meltdown accident in a pressurized water reactor is the failure of the reactor pressure vessel under high internal pressure. With the aid of the finite element program ABAQUS and using a material model of the thermo-plasticity for large deformation, the failure of the reactor pressure vessel due to plastic instability was examined. It was apparent from the finite element calculations that solely due to reduction in strength of the material, even for internal wall temperatures clearly below the core melt; of about 2000 C, the critical internal pressure can fall to values which are lower than the working pressure. With the aid of simplified geometry, a lower limit for the pressure at failure of the reactor pressure vessel can be calculated. (orig./HP) [de

  5. Ultrasonic stress evaluation through thickness of a stainless steel pressure vessel

    International Nuclear Information System (INIS)

    Javadi, Yashar; Pirzaman, Hamed Salimi; Raeisi, Mohammadreza Hadizadeh; Najafabadi, Mehdi Ahmadi

    2014-01-01

    This paper investigates ultrasonic method in stress measurement through thickness of a pressure vessel. Longitudinal critically refracted (L CR ) waves are employed to measure the welding residual stresses in a vessel constructed from austenitic stainless steel 304L. The acoustoelastic constant is measured through a hydro test to keep the pressure vessel intact. Hoop and axial residual stresses are evaluated by using different frequency range of ultrasonic transducers. The welding processes of vessel shell and caps are simulated by a 3D finite element (FE) model which is validated by hole-drilling method. The residual stresses calculated by FE simulation are then compared with those obtained from the ultrasonic measurement while a good agreement is observed. It is demonstrated that the residual stresses through thickness of the stainless steel pressure vessel can be evaluated by combining FE and L CR method (known as FEL CR method). - Highlights: • The main goal is ultrasonic evaluation of through thickness stresses. • Welding processes of a stainless steel pressure vessel are modelled by FE. • The hole-drilling method is used to validate the FE results. • Residual stresses are measured by four different series of ultrasonic transducers. • The comparison between ultrasonic and FE results show an acceptable agreement

  6. A prestressed concrete pressure vessel for helium high temperature reactor system

    International Nuclear Information System (INIS)

    Horner, R.M.W.; Hodzic, A.

    1976-01-01

    A novel prestressed concrete pressure vessel has been developed to provide the primary containment for a fully integrated system comprising a high temperature nuclear reactor, three horizontally mounted helium turbines, associated heat exchangers and inter-connecting ducts. The design and analysis of the pressure vessel is described. Factors affecting the final choice of layout are discussed, and earlier development work seeking to resolve the conflicting requirements of the structural, mechanical, and system engineers outlined. Proposals to increase the present output of about 1000 MW of electrical power to over 3000 MW, by incorporating four turbines in a single pressure vessel are presented. (author)

  7. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  8. Reliability analysis of pipelines and pressure vessels at nuclear power plants

    International Nuclear Information System (INIS)

    Klemin, A.I.; Shiverskij, E.A.

    1979-01-01

    Reliability analysis of pipelines and pressure vessels at NPP is given. The main causes and failure mechanisms of these elements, the ways of reliability improvement and preventing of great damages are considered. The reliability estimation methods both according to the statistical operation data and under the conditions of absence of failure statistics are given. The main characteristics and actual reliability factors of pipelines and pressure vessels of three home NPP: the first in the world NPP, VK-50 and Beloyarsk NPP, are presented. From the start-up there were practically no failures of the pipelines and pressure vessels at the VK-50 pilot installation. The analysis of the operation experience of the first and second blocks of the Beloyarsk NPP, as well as the first in the world NPP, shows that the most part of failures of the pipelines and pressure vessels of these energy blocks with the channel reactors is connected with the coolant leakage at minority pipelines of a small diameter. The most part of failures at individual pipelines of the first and second blocks of the Beloyarsk NPP are connected with the leakages of stuffing boxes of switching off devices. It is noted that serious failures of large pipelines and pressure vessels at all home NPP under operation have not been observed

  9. Heritability of retinal vessel diameters and blood pressure

    DEFF Research Database (Denmark)

    Taarnhøj, Nina C B B; Larsen, Michael; Sander, Birgit

    2006-01-01

    PURPOSE: To assess the relative influence of genetic and environmental effects on retinal vessel diameters and blood pressure in healthy adults, as well as the possible genetic connection between these two characteristics. METHODS: In 55 monozygotic and 50 dizygotic same-sex healthy twin pairs......%-80%) for CRAE, 83% (95% CI: 73%-89%) for CRVE, and 61% (95% CI: 44%-73%) for mean arterial blood pressure (MABP). Retinal artery diameter decreased with increasing age and increasing arterial blood pressure. Mean vessel diameters in the population were 165.8 +/- 14.9 microm for CRAE, 246.2 +/- 17.7 microm...... for CRVE, and 0.67 +/- 0.05 microm for AVR. No significant influence on artery or vein diameters was found for gender, smoking, body mass index (BMI), total cholesterol, fasting blood glucose, or 2-hour oral glucose tolerance test values. CONCLUSIONS: In healthy young adults with normal blood pressure...

  10. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  11. Proposal of Ex-Vessel dosimetry for pressure vessel Atucha II

    International Nuclear Information System (INIS)

    Chiaraviglio, N.; Bazzana, S.

    2013-01-01

    Nuclear reactor dosimetry has the purpose of guarantee that changes in material mechanical properties of critical materials do not compromise the reactor safety. In PWR in which the top of the reactor vessel is open once a year, is possible to use Charpy specimens to measure the change in mechanical properties. Atucha II nuclear power plant is a reactor with on-line refueling so there is no access to the inside of the pressure vessel. Because of this, ex-vessel dosimetry must be performed and mechanical properties changes must be inferred from radiation damage estimations. This damage can be calculated using displacement per atom cross sections and a transport code such as MCNP. To increase results reliability it is proposed to make a neutron spectrum unfolding using activation dosimeters irradiated during one operation cycle of the power plant. In this work we present a dosimetry proposal for such end, made in base of unfolding procedures and experimental background. (author) [es

  12. Probabilistic approach to the analysis of reactor pressure vessel integrity during a pressurized thermal shock

    International Nuclear Information System (INIS)

    Adamec, P.

    2000-12-01

    Following a general summary of the issue, an overview of international experience (USA; Belgium, France, Germany, Russia, Spain, Sweden, The Netherlands, and the UK; and probabilistic PTS assessment for the reactor pressure vessel at Loviisa-1, Finland) is presented, and the applicable computer codes (VISA-II, OCA-P, FAVOR, ZERBERUS) are highlighted and their applicability to VVER type reactor pressure vessels is outlined. (P.A.)

  13. Recent experiences and problems in conducting pressure vessel surveillance examinations

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1979-01-01

    Each of the commercial power reactors in the U.S.A. has a pressure vessel surveillance program. The purpose of the programs is to monitor the effects of radiation on the mechanical properties on the steel pressure vessels. A program for a given reactor includes a series of irradiation capsules containing neutron dosimeters and mechanical property specimens. The capsules are periodically removed during the life of the reactor and evaluated. The surveillance capsule examinations conducted to date have been valuable in assessing the effects of radiation on pressure vessels. However, a number of problems have been observed in the course of capsule examinations which potentially could reduce the maximum value of the data obtained. These problems are related to specimen design and preparation, capsule design and preparation, capsule installation and removal, capsule disassembly, specimen testing and evaluation, program documentation, and quality assurance. Examples of problems encountered in the preceding areas are presented in the present paper, and recommendations are made for minimization or prevention of these problems in future programs. Included in the recommendations is that appropriate ASTM standards, ASME Boiler and Pressure Vessel Code sections, and NRC regulations provide the appropriate framework for prevention of problems

  14. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  15. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  16. East/west steels for reactor pressure vessels

    International Nuclear Information System (INIS)

    Davies, M.; Kryukov, A.; Nikolaev, Y.; English, C.

    1997-01-01

    The report consist of three parts dealing with comparison of the irradiation behaviour of 'Eastern' and 'Western' steels, mechanisms of irradiation embrittlement and the role of compositional variations on the irradiation sensitivity of pressure vessels. Nickel, copper and phosphorus are the elements rendering the most essential influence on behaviour of pressure vessel steels under irradiation and subsequent thermal annealing. For WWER-440 reactor pressure vessel (RPV) steels in which nickel content does nor exceed 0.3% the main affecting factors are phosphorous and copper. For WWER-1000 RPV welds in which nickel content generally exceed 1.5% the role of nickel in radiation embrittlement is decisive. In 'Western' type steels main influencing elements are nickel and copper. The secondary role of phosphorus in radiation embrittlement of 'Western' steels is caused by lower relative content compared to 'Eastern' steels. The process of how copper, phosphorus and nickel contents affect the irradiation sensitivity of both types of steel seem to be similar. Some distinctions between the observed radiation effects is apparently caused by differences in the irradiation conditions and ratios of the contents of above mentioned elements in both types of steel. For 'Eastern' RPV steels the dependence of the recovery degree of irradiated steels due to postirradiation thermal annealing id obviously dependent on phosphorus contents and the influence of nickel contents on this process is detectable

  17. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  18. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  19. Pressure vessel inspection criteria based on fitness-for-purpose assessment

    International Nuclear Information System (INIS)

    Grover, J.L.; Cipolla, R.C.

    1985-01-01

    The paper on pressure vessel inspection investigates the methodology required to establish an inspection strategy consistent with fracture mechanics analysis, i.e. to define allowable flaw sizes based on location within the vessel. The methodology is demonstrated using a sample problem for a typical pressurised water reactor pressure vessel, and shows the impact of certain assumptions on the inspection strategy. The results indicate that the flaw size varies with the shape of the assumed residual stress field and the through-thickness location. Also in general, the fracture mechanics evaluation allows flaws much larger than are allowed by the inspection acceptance criteria. (UK)

  20. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  1. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  2. Rupture tests with reactor pressure vessel head models

    International Nuclear Information System (INIS)

    Talja, H.; Keinaenen, H.; Hosio, E.; Pankakoski, P.H.; Rahka, K.

    2003-01-01

    In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear Fission and Safety Programme within the 5th Framework programme, an extensive experimental and computational research programme is conducted to study the stress state and size dependence of ultimate failure strains. The results are aimed especially to make the assessment of severe accident cases more realistic. For the experiments in the LISSAC project a block of material of the German Biblis C reactor pressure vessel was available. As part of the project, eight reactor pressure vessel head models from this material (22 NiMoCr 3 7) were tested up to rupture at VTT. The specimens were provided by Forschungszentrum Karlsruhe (FzK). These tests were performed under quasistatic pressure load at room temperature. Two specimens sizes were tested and in half of the tests the specimens contain holes describing the control rod penetrations of an actual reactor pressure vessel head. These specimens were equipped with an aluminium liner. All six tests with the smaller specimen size were conducted successfully. In the test with the large specimen with holes, the behaviour of the aluminium liner material proved to differ from those of the smaller ones. As a consequence the experiment ended at the failure of the liner. The specimen without holes yielded results that were in very good agreement with those from the small specimens. (author)

  3. Completely integrated prestressed-concrete reactor pressure vessel, type 'Star'

    International Nuclear Information System (INIS)

    Neunert, B.; Jueptner, G.; Kumpf, H.

    1975-01-01

    The star support vessel is suitable for the connection to all primary circuit systems consisting of a main vessel and a number of satellite vessels around and connected to it, i.e. for LWR, HTR and process reactor. It must be made clear, however, that the PWR in particular with its components does not appear to be suited for the optimum incorporation in a prestressed-concrete pressure vessel system, no matter what kind. There are clear concepts about modifications which, however, require considerable development expenditure. (orig./LH) [de

  4. In-service inspection program for the NCS-80 reactor pressure vessel

    International Nuclear Information System (INIS)

    Scharge, J.; Wehowsky, P.; Zeibig, H.

    1978-01-01

    The in-service inspection program of reactor pressure vessels is mainly based on the ultra-sonic method, visual checking of inner and outer surfaces as well as pressure and leak tests. The test procedure require a design of the pressure vessel suitable for the test methods and the possibility to remove the pressure vessel internals. For the outside inspection a gap of sufficient width is mandatory. The present status of the ultra-sonic method and of the inner and outer manipulators affords to conduct the in-service inspection program in form of automatic checkings. The in-service inspection program for NCS-80, the Nuclear Container-Ship design of 80,000 shp, is integrated in the refueling periods due to the request for a high availability of the ship and reactor plant

  5. Design Improvement of Double Pressure Vessel in the In-pile Test Section

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Heo, Sung-Ho; Joung, Chang-Young; Kim, Ka-Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To carry out an irradiation test of nuclear fuels, a nuclear fuel test rig should be fabricated and installed in the in-pile test section (IPS), which is installed in the reactor hall. While carrying out an irradiation test, sealing out coolant which passes through the test rig is one of the most important issues. In particular, although the double pressure vessel is assembled with the IPS head by two o-rings and six bolts, 15.5 MPa of highly pressurized coolant leaks through the gap between the vessel and IPS head. Because the temperature of the coolant in the test loop is 300 .deg. C , and the pool of HANARO is 40 .deg. C, the double pressure vessel is necessary to insulate them. Therefore, a new design to prevent the leakage of coolant needs to be developed. In this study, EB welding technique is considered to assemble the double pressure vessel and the IPS head, and their mechanical design is modified to enable the welding process. In this study, an improved design for sealing out the coolant at the pressure boundary between the double pressure vessel and the IPS head has been developed. An EB weld is applied to seal out the pressure boundary, and its sealing performance is verified by NDE, a cross section test, and a hydraulic pressure test. From the verification test results, the improved design can be used in fabricating the IPS for a nuclear fuel irradiation test.

  6. Initiation and arrest - two approaches to pressure vessel safety

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Stepanek, S.

    1976-01-01

    The safety analysis is described of the reactor pressure vessel related to brittle fracture based on the fracture mechanics theory using two different approximations, i.e., the Crack Arrest Temperature (CAT) or Nil Ductility Temperature (NDT), and fracture toughness. The variation of CAT with stress was determined for different steel specimens of 120 to 200 mm in thickness. A diagram is shown of CAT variation with stress allowing the determination of crack arrest temperature for all types of commonly used steels independently of the NDT initial value. The diagram also shows that the difference between fracture transition elastic (FTE) and NDT depends on the type of material and determines the value of the ΔTsub(sigma) factor typical of the safety coefficient. The so-called fracture toughness reference value Ksub(IR) is recommended for the computation of pressure vessel criticality. Also shown is a defect analysis diagram which may be used for the calculation of pressure vessel safety prior to and during operation and which may also be used in making the decision on what crack sizes are critical, what cracks may be arrested and what cracks are likely to expand. The diagram is also important for the fact that it is material-independent and may be employed for the estimates of pre-operational and operational inspections and for pressure vessel life prediction. It is generally applicable to materials of greater thickness in the region where the validity of linear elastic fracture mechanics is guaranteed. (J.P.)

  7. An introduction to the analysis of multi-cavity prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Silva, M.C.A.T. da.

    1986-01-01

    The present work is a study of multi-cavity prestressed concrete pressure vessels (PCRV) for nuclear reactors. A review is made of the designs, analises and models of multi-cavity concrete pressure vessels. A preliminary evaluation of the NONSAP program for applications in complex three-dimensional structures such as a multi-cavity pressure vessel is also made. A model of a PCRV of a 1000 MW(e) high-temperature gas cooled reactor was selected for a three-dimensional analysis with the NONSAP program. The results obtained are compared with experimental data. (Author) [pt

  8. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    In order to assess the safety of pressure vessel nozzles, the analysis should take into account cracks. The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3 D cracks under arbitary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to only FEM program able to deal with the data handling problems of the substructuring technique. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. (Auth.)

  9. Helium leak testing of large pressure vessels or subassemblies

    International Nuclear Information System (INIS)

    Hopkins, J.S.; Valania, J.J.

    1977-01-01

    Specifications for pressure-vessel components [such as the intermediate heat exchangers (IHX)] for service in the liquid metal fast breeder reactor facilities require helium leak testing of pressure boundaries to very exacting standards. The experience of Foster Wheeler Energy Corporation (FWEC) in successfully leak-testing the IHX shells and bundle assemblies now installed in the Fast Flux Test Facility at Richland, WA is described. Vessels of a somewhat smaller size for the closed loop heat exchanger system in the Fast Flux Test Facility have also been fabricated and helium leak tested for integrity of the pressure boundary by FWEC. Specifications on future components call for helium leak testing of the tube to tubesheet welds of the intermediate heat exchangers

  10. A mathematical model for pressure-based organs behaving as biological pressure vessels.

    Science.gov (United States)

    Casha, Aaron R; Camilleri, Liberato; Gauci, Marilyn; Gatt, Ruben; Sladden, David; Chetcuti, Stanley; Grima, Joseph N

    2018-04-26

    We introduce a mathematical model that describes the allometry of physical characteristics of hollow organs behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and external dimensions, pressurization energy and organ energy output measurements of pressure-based organs in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative efficiency in pressurization energy across species and direct size matching between organ mass and mass of contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar relative efficiency across various mammalian and avian species; an exception is cardiac output in mammals with a mass exceeding 10kg. This may limit massive body size in mammals, breaking Cope's rule that populations evolve to increase in body size over time. Such a limit was not found in large flightless birds exceeding 100kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like cardiac characteristics. Copyright © 2018. Published by Elsevier Ltd.

  11. Assessment of the integrity of WWER type reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1995-01-01

    Procedures are given for the assessment of the residual lifetime of reactor pressure vessels with respect to a sudden failure, the lifetime of vessels with defects disclosed during in-service inspections, and the fatigue or corrosion-mechanical lifetime. Also outlined are the ways of assessing the effects of major degradation mechanisms, i.e. radiation embrittlement, thermal aging, and fatigue damage, including the use of calculated values and experimental examination, by means of surveillance specimens in particular. All results of assessment performed so far indicate that the life of reactor pressure vessels at the Dukovany, Jaslovske Bohunice, and Temelin nuclear power plants is well secured. 7 figs., 3 refs

  12. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  13. Fabrication techniques of metal liner used for pressure vessels made by composite material

    International Nuclear Information System (INIS)

    Takahashi, W.K.; Al-Qureshi, H.A.

    1982-01-01

    Different viable techniques for the manufacturing of metal liner used for pressure vessels are presented. The aim of these metal liner is to avoid the fluid leakage from the pressurized vessel and to serve as a mandreal to be wound by composite material. The studied techniques are described and the practical results are illustrated. Finally a comparative study of the manufacturing techniques is made in order to define the process that furnishes the metal liner with the best characteristics. The advantages offered by these type of pressure vessels when compared with the conventional metallic vessels, are also presented. (Author) [pt

  14. Test of 6-inch-thick pressure vessels. Series 2. Intermediate test vessels V-3, V-4, and V-6

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Raftenberg, M.N.; Robinson, G.C.; Smith, J.E.

    1975-11-01

    The second series of intermediate vessel tests were crack initiation fracture tests of 6-in.-thick 39-in.-OD steel vessels with sharp surface flaws approximately 2 1 / 2 in. deep by 8 in. long in the longitudinal weld seams of the test cylinders. Fracture was initiated by means of hydraulic pressurization. One vessel was tested at each of three temperatures: 75, 130, and 190 0 F. Pretest analyses were made to predict the failure pressures and strains. Fracture toughness data obtained by equivalent-energy analysis of precracked Charpy-V tests and compact-tension specimen tests were used in the fracture analyses. The vessels behaved generally as had been expected. Posttest fracture analyses were also performed for each vessel. Detailed discussions of the fracture analysis methods developed in support of the vessel tests described are included. 34 references

  15. Milestones in pressure vessel technology

    International Nuclear Information System (INIS)

    Spence, J.; Nash, D.H.

    2004-01-01

    The progress of pressure vessel technology over the years has been influenced by many important events. This paper identifies a number of 'milestones' which have provided a stimulus to analysis methods, manufacturing, operational processes and new pressure equipment. The formation of a milestone itself along with its subsequent development is often critically dependent on the work of many individuals. It is postulated that such developments takes place in cycles, namely, an initial idea, followed sometimes by unexpected failures, which in turn stimulate analysis or investigation, and when confidence is established, followed finally by the emergence of codes ad standards. Starting from the industrial revolution, key milestones are traced through to the present day and beyond

  16. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  17. Pressurized water reactor with a reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1979-01-01

    The core barrel is suspended from a flange by means of a grid. The coolant enters the barrel from below through the grid. In order to get a uniform flow over the reactor core there is provided for a guiding device below the grid. It consists of a cylindrical shell with borings uniformly distributed around the shell as well as fins on the inner surface of the shell and slots at the bottom facing the pressure vessel. (GL) [de

  18. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  19. Adjustable guide for a testing system for reactor pressure vessels

    International Nuclear Information System (INIS)

    Seifert, W.

    1980-01-01

    The device consisting of a guide rail and a manipulator is introduced into the gap between pressure vessel wall and biological shield by means of suspending wire drums and manipulator drums. For adjustment of the device an elbow telescope is used. The guide rail is fixed to the pressure vessel wall by means of electromagnets. The movements of the manipulator with respect to the guide rail are performed with the aid of a motor. (DG) [de

  20. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  1. Reliability aspects of radiation damage in reactor pressure vessel mterials

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1985-01-01

    The service life estimate is a major factor in the evaluation of the operating reliability and safety of a nuclear reactor pressure vessel. The evaluation of the service life of the pressure vessel is based on a comparison of fracture toughness values with stress intensity factors. Notch toughness curves are used for the indirect determination of fracture toughness. The dominant degradation effect is radiation embrittlement. Factors having the greatest effect on the result are the properties of the starting material of the vessel and the impurity content, mainly the Cu and P content. The design life is affected by the evaluation of residual lifetime which is made by periodical nondestructive inspections and using surveillance samples. (M.D.)

  2. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD`s language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  3. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  4. A prototype knowledge based system for pressure vessel design

    International Nuclear Information System (INIS)

    Gunnarsson, L.

    1991-01-01

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au)

  5. Microstructural evolution in neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    English, C.A.; Phythian, W.J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The microstructural evolution in neutron irradiated reactor pressure vessel steels is described. The damage mechanisms are elaborated and techniques for examining the microstructure are suggested. The importance of the initial damage event is analysed, and the microstructural evolution in RPV steels is examined

  6. The influence of chemistry concentration on the fracture risk of a reactor pressure vessel subjected to pressurized thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pin-Chiun [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China); Chou, Hsoung-Wei, E-mail: hwchou@iner.gov.tw [Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, ROC (China); Ferng, Yuh-Ming [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2016-02-15

    Highlights: • Probabilistic fracture mechanics method was used to analyze a reactor pressure vessel. • Effects of copper and nickel contents on RPV fracture probability under PTS were investigated and discussed. • Representative PTS transients of Beaver Valley nuclear power plant were utilized. • The range of copper and nickel contents of the RPV materials were suggested. • With different embrittlement levels the dominated PTS category is different. - Abstract: The radiation embrittlement behavior of reactor pressure vessel shell is influenced by the chemistry concentration of metal materials. This paper aims to study the effects of copper and nickel content variations on the fracture risk of pressurized water reactor (PWR) pressure vessel subjected to pressurized thermal shock (PTS) transients. The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. A Taiwan domestic PWR pressure vessel assumed with varied copper and nickel contents of beltline region welds and plates is investigated in the study. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the U.S. NRC's new PTS rule are applied as the loading condition. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.

  7. Final report for the 2nd Ex-Vessel Neutron Dosimetry Installations and Evaluations for Yonggwang Unit 2 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 2 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. During Cycle 16 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 2 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  8. Final report for the 1st ex-vessel neutron dosimetry installations and evaluations for Kori unit 2 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 2 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 20 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 20.

  9. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Li, Nam Jin; Hong, Joon Wha

    2007-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 1 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 16 of reactor operation, 2nd Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 1 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  10. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Kori Unit 2 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 21 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 21.

  11. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  12. U.S. and French approaches to reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Griesbach, T.J.; Buchalet, C.; Server, W.L.

    1990-01-01

    The effects of radiation embrittlement on the reactor pressure vessel must be considered for continued safe operation of nuclear power plants. The consequences of radiation embrittlement require detailed assessments of the margins of safety against brittle fracture of the vessel. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and U.S. Regulations often use conservative approaches for these assessments which can eventually lead to severe operational hardships for some plants. Taking a look at alternative integrity approaches, such as those demonstrated in France, could ultimately result in improved ASME Code and Regulatory limits. The French studies have shown the significance of performing proper in- service inspections to reliably show that no defects larger than a predetermined size (or class) exist in the inspected region of a vessel. The predetermined size is based upon previous studies on the types of manufacturing defects which can potentially exist in French vessels. Enhanced linear elastic and elastic-plastic fracture mechanics methodologies can be applied to evaluate such defects to assure that brittle fracture will not occur

  13. Cylindrical prestressed concrete pressure vessel for a nuclear power plant

    International Nuclear Information System (INIS)

    Horner, M.; Hodzic, A.; Haferkamp, D.

    1976-01-01

    A prestressed concrete pressure vessel for a HTGR is proposed which encloses, in addition to the reactor core, not only the heat-exchanging facilities but also the turbine unit. The reinforcement of the cylindrical concrete body is to be carried out with special care, it is provided for horizontal tendons, the prestressed concrete pressure vessel has a wire-winding device, while the longitudinal reinforcement is achieved by tendous guided in parallel to the vesses axes through the interspaces between the pods. (UWI) [de

  14. Safety of light-water reactor pressure vessels against brittle fracture

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    The results are surveyed of research by SKODA Trust into brittle failure resistance of materials for WWER type reactor pressure vessels and into pressure vessel operating safety. Conditions are discussed in detail decisive for initiation, propagation and arrest of brittle fracture. The tests on the Cr-Mo-V type steel showed high resistance of the steel to the formation and the propagation of brittle fracture. They also confirmed the high operating reliability and the required service life of the steel. (B.S.)

  15. Strain measurement in and analysis for hydraulic test of CPR1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Zhou Dan; Zhuang Dongzhen

    2013-01-01

    The strain measurement in hydraulic test of CPR1000 reactor pressure vessel performed in Dongfang Heavy Machinery Co., Ltd. is introduced. The detail test scheme and method was introduced and the measurement results of strain and stress was given. Meanwhile the finite element analysis was performed for the pressure vessel, which was generally matched with the measurement results. The reliability of strain measurement was verified and the high strength margin of vessel was shown, which would give a good reference value for the follow-up hydraulic tests and strength analysis of reactor pressure vessel. (authors)

  16. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  17. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    Science.gov (United States)

    Faddoul, J. R.

    1973-01-01

    The design concepts used for metal-lined glass-fiber composite pressure vessels are described, comparing the structural characteristics of the composite designs with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. The discussion centers around two distinctly different design concepts, which provide the basis for defining metal lined composite vessels as either (1) thin-metal lined, or (2) glass fiber reinforced (GFR). Both concepts are described and associated development problems are identified and discussed. Relevant fabrication and testing experience from a series of NASA-Lewis Research Center development efforts is presented.

  18. Preliminary study of an expert system for mechanical design of a pressure vessel

    International Nuclear Information System (INIS)

    Kasmuri, N.H.; Md Som, A.

    2006-01-01

    This paper describes a preliminary study of an expert system for mechanical design of a pressure vessel. The system supports the framework for the conceptual mechanical design from the initial stages within the design procedures. ASME Boiler and Pressure Vessel Code Section VIII Division 1 were applied as a design rule. The proposed methodology facilitates the development of knowledge base acquisition, knowledge base construction and the prototype implementation. This study characterizes a knowledge base (procedure) of mechanical design of a pressure vessel subjected to internal pressure including all design parameters; i.e. temperature, shell thickness, selection of materials of constructions, stress analysis procedure, support and ancillary items. The rationalization of the mechanical design is shown in the form of a schematic flow diagram. A Kappa PC expert system shell is used as a tool to develop the prototype software. It provides graphical representation for creating objects, hierarchies and rules for knowledge base used in pressure vessel design. (Author)

  19. Pressure vessel design

    International Nuclear Information System (INIS)

    Annaratone, D.

    2007-01-01

    This book guides through general and fundamental problems of pressure vessel design. It moreover considers problems which seem to be of lower importance but which turn out to be crucial in the design phase. The basic approach is rigorously scientific with a complete theoretical development of the topics treated, but the analysis is always pushed so far as to offer concrete and precise calculation criteria that can be immediately applied to actual designs. This is accomplished through appropriate algorithms that lead to final equations or to characteristic parameters defined through mathematical equations. The first chapter describes how to achieve verification criteria, the second analyzes a few general problems, such as stresses of the membrane in revolution solids and edge effects. The third chapter deals with cylinders under pressure from the inside, while the fourth focuses on cylinders under pressure from the outside. The fifth chapter covers spheres, and the sixth is about all types of heads. Chapter seven discusses different components of particular shape as well as pipes, with special attention to flanges. The eighth chapter discusses the influence of holes, while the ninth is devoted to the influence of supports. Finally, chapter ten illustrates the fundamental criteria regarding fatigue analysis. Besides the unique approach to the entire work, original contributions can be found in most chapters, thanks to the author's numerous publications on the topic and to studies performed ad hoc for this book. (orig.)

  20. Development of a Numerical Model of Hypervelocity Impact into a Pressurized Composite Overwrapped Pressure Vessel

    Science.gov (United States)

    Garcia, M. A.; Davis, B. A.; Miller, J. E.

    2017-01-01

    As the outlook for space exploration becomes more ambitious and spacecraft travel deeper into space than ever before, it is increasingly important that propulsion systems perform reliably within the space environment. The increased reliability compels designers to increase design margin at the expense of system mass, which contrasts with the need to limit vehicle mass to maximize payload. Such are the factors that motivate the integration of high specific strength composite materials in the construction of pressure vessels commonly referred to as composite overwrapped pressure vessels (COPV). The COPV consists of a metallic liner for the inner shell of the COPV that is stiff, negates fluid permeation and serves as the anchor for composite laminates or filaments, but the liner itself cannot contain the stresses from the pressurant it contains. The compo-site-fiber reinforced polymer (CFRP) is wound around the liner using a combination of hoop (circumferential) and helical orientations. Careful consideration of wrap orientation allows the composite to evenly bear structural loading and creates the COPV's characteristic high strength to weight ratio. As the CFRP overwrap carries most of the stresses induced by pressurization, damage to the overwrap can affect mission duration, mission success and potentially cause loss-of-vehicle/loss-of-crew. For this reason, it is critical to establish a fundamental understanding of the mechanisms involved in the failure of a stressed composite such as that of the COPV. One of the greatest external threats to the integrity of a spacecraft's COPV is an impact from the meteoroid and orbital debris environments (MMOD). These impacts, even from submillimeter particles, generate extremely high stress states in the CFRP that can damage numerous fibers. As a result of this possibility, initial assumptions in survivability analysis for some human-rated NASA space-craft have assumed that any alteration of the vessel due to impact is

  1. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  2. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    1998-10-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  3. Energy and impacts of pressure vessel explosions

    International Nuclear Information System (INIS)

    Kurttila, H.

    1999-01-01

    In this paper the explosion energy is considered to be same as the energy of pressure vessel discharge. This is the maximum energy which can be obtained from the process. The energy can be used or it can cause the violence of an explosion accident. (orig.)

  4. Application of fracture mechanics to fatigue in pressure vessels

    International Nuclear Information System (INIS)

    Ghavami, K.

    1982-01-01

    The methods of application of fracture mechanics to predict fatigue crack propagation in welded structures and pressure vessels are described with the following objectives: i) To identify the effect of different variables such as crack tip plasticity, free surface, finite plate thickness, stress concentration and type of the structure, on the magnitude of stress intensity factor K in Welded joint. ii) To demonstrate the use of fracture mechanics for analysing fatigue crack propagation data. iii) To show how a law of fatigue crack propagation based on fracure mechanics, may be used to predict fatigue behavior of welded structures such as pressure vessel. (Author) [pt

  5. Review of in-service thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1984-01-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper-shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. A test reactor pressure vessel has been wet annealed at less than 343 0 C (650 0 F), and annealing of the Belgian BR-3 reactor vessel has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place is feasible, but solvable engineering problems do exist. The materials with highest radiation sensitivity in the older reactor vessels are submerged-arc weld metals with high copper and nickel concentrations. The limited Charpy V-notch and fracture toughness data available for five such welds were reviewed. The review suggested that significant recovery results from annealing at 454 0 C (850 0 F) for one week. Two of the main concerns with a localized heat treatment at 454 0 C (850 0 F) are the degree of distortion that may occur after the annealing cycle and the extent of residual stresses. A thermal and structural analysis of a reactor vessel for distortions and residual stresses found no problems with the reactor vessel itself but did indicate a rotation at the nozzle region of the vessel that would plastically deform the attached primary piping. Further analytical studies are needed. An American Society for Testing and Materials (ASTM) task group is upgrading and revising the ASTM Recommended Guide for In-Service Annealing of WaterCooled Nuclear Reactor Vessels (E 509-74) with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (for example, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  6. A framework expert system for pressure vessels

    International Nuclear Information System (INIS)

    Wang, Y.C.; Qin, S.J.

    1989-01-01

    Expert systems, known as a powerful tool to those numerical problems accompanied with logical argumentation, are facing the era of extended application into the engineering fields beyond the classical scopes of diagnosis and consultation. With regard to pressure vessels design it seems that the most important task is to establish a general purpose frame based on a microcomputer skeleton system to meet the various requirements of different vessels. The authors have made an attempt to perform such a skeleton designated file, ESTOOL, in order to achieve the objectives of executing numerical calculation combined with logical reasoning, and attaining higher efficiency of rules searching process. It has been successfully patched to the design software package for jacketed vessel with stirring shaft. This paper presents the guiding concepts and basic structure of ESTOOL via knowledge acquisition subsystem and inference engine

  7. AE/flaw characterization for nuclear pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1984-01-01

    This chapter discusses the use of acoustic emission (AE) detected during continuous monitoring to identify and evaluate growing flaws in pressure vessels. Off-reactor testing and on-reactor testing are considered. Relationships for identifying acoustic emission (AE) from crack growth and using the AE data to estimate flaw severity have been developed experimentally by laboratory testing. The purpose of the off-reactor vessel test is to evaluate AE monitoring/interpretation methodology on a heavy section steel vessel under simulated reactor operating conditions. The purpose of on-reactor testing is to evaluate the capability of a monitor system to function in the reactor environment, calibrate the ability to detect AE signals, and to demonstrate that a meaningful criteria can be established to prevent false alarms. An expanded data base is needed from application testing and methodology standardization

  8. Single pressure vessel (SPV) nickel-hydrogen battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.; Grindstaff, B.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1995-07-01

    Single pressure vessel (SPV) technology combines an entire multi-cell nickel-hydrogen (NiH{sub 2}) space battery within a single pressure vessel. SPV technology has been developed to improve the performance (volume/mass) of the NiH{sub 2} system at the battery level and ultimately to reduce overall battery cost and increase system reliability. Three distinct SPV technologies are currently under development and in production. Eagle-Picher has license to the COMSAT Laboratories technology, as well as internally developed independent SPV technology. A third technology resulted from the acquisition of Johnson Controls NiH{sub 2} battery assets in June, 1994. SPV batteries are currently being produced in 25 ampere-hour (Ah), 35 Ah and 50 Ah configurations. The battery designs have an overall outside diameter of 10 inches (25.4 centimeters).

  9. Technical Assessment: WRAP 1 HVAC Passive Shutdown

    International Nuclear Information System (INIS)

    Ball, D.E.; Nash, C.R.; Stroup, J.L.

    1993-01-01

    As the result of careful interpretation of DOE Order 6430.lA and other DOE Orders, the HVAC system for WRAP 1 has been greatly simplified. The HVAC system is now designed to safely shut down to Passive State if power fails for any reason. The fans cease functioning, allowing the Zone 1 and Zone 2 HVAC Confinement Systems to breathe with respect to atmospheric pressure changes. Simplifying the HVAC system avoided overdesign. Construction costs were reduced by eliminating unnecessary equipment. This report summarizes work that was done to define the criteria, physical concepts, and operational experiences that lead to the passive shutdown design for WRAP 1 confinement HVAC systems

  10. New paradigm for prediction of radiation life-time of reactor pressure vessel

    International Nuclear Information System (INIS)

    Kotrechko, S.A.; Meshkov, Yu.Ya.; Neklyudov, I.M.; Revka, V.N.

    2011-01-01

    New paradigm for prediction of radiation life-time of reactor pressure vessel is presented. Equation for limiting state of reactor pressure vessel wall with crack-like defect is obtained. It is exhibited that the value of critical fluence Φ c may be determined not by shift of critical temperature of fracture of surveillance specimen, which is indirect characteristic, but by direct method, namely, by the condition of initiation of brittle fracture of irradiated metal ahead of a crack in RPV wall. Within the framework of engineering version of LA to fracture the technique for Φ c ascertainment is developed. Prediction of Φ c for WWER pressure vessels demonstrates potentialities of this technique.

  11. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    The TEMP-STRESS FEM represents an axisymmetric simulation of the reinforced concrete vessel to internal pressurization. The information shows the global deformation, the state of strain/stress within the containment vessel with respect to the imposed pressures. Thus, the location and progress of concrete cracking, the stretching of the liner and the reinforcing bars and final failure are indicated through the entire loading range. Equilibrium of the entire system is assured at definite loading increments. With the progress of concrete cracking, the resisting load is continuously transferred to the reinforcing bars and the liner. Thus, after the tensile strength is exceeded and the concrete stress is set to zero, the internal pressures are entirely resisted by the liner and the reserve strength of the reinforcing bars. The reinforcing bars are mechanically connected to each other by splices, the ultimate strength of which is less than that of the rebars themselves. The corresponding strain at this limiting stress is lower than the ultimate strain of the liner. Therefore, the specified ultimate strength of the splices limits the pressurization of the vessel. Furthermore, once any of the splices fail, then load is transferred to the adjacent members, causing their failure and general failure of the vessel. (orig./HP)

  12. A determination of the benefits of annealing irradiated pressure vessel weldments

    International Nuclear Information System (INIS)

    Lott, R.G.; Mager, T.R.

    1988-01-01

    The long-term benefit of annealing an irradiated reactor pressure vessel steel may be described in terms of a benefit factor, B. The benefit factor compares the mechanical properties of an annealed and reirradiated specimen with an equivalent specimen having no intermediate anneal. The benefit factor was determined using a series of microhardness specimens prepared from nuclear pressure vessel surveillance program materials. These specimens were annealed and then reirradiated in a test reactor. There was an obvious long-term benefit in the specimens annealed at 450 0 C. The long-term benefit was less obvious at 400 0 C and no significant benefit was noted at 350 0 C. The benefit factor may also be used as the basis of a surveillance program for an annealed pressure vessel. A strategy for such a surveillance program is described. (author)

  13. A model for structural analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A. de.

    1987-01-01

    Due to the recent Brazilian advances in the nuclear technology area, it has been necessary the development of design and analysis methods for pressurized water reactor components, also as other components of a nuclear plant. This work proposes a methodology for the structural analysis of large diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem. A computer program is shown, and the given results (displacements and stresses) are compared with results obtained by the finite element method. Although developed for nuclear reactor pressure vessel calculations, the program is more general, being possible its use for the analysis of any structure composed by shells of revolution. (author)

  14. Nickel hydrogen multicell common pressure vessel battery development update

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1992-01-01

    The technology background and design qualification of the multicell common pressure vessel nickel hydrogen battery are described. The results of full flight qualification, including random vibration at 19.5 g for two minutes in each axis, electrical characterization in a thermal vacuum chamber, and mass spectroscopy vessel leak detection are reviewed and 12.7 cm qualification and 25.4 cm design adaptation are discussed.

  15. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  16. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

    Science.gov (United States)

    Tsaplin, A. I.; Bochkarev, S. V.

    2016-01-01

    Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.

  17. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  18. Stress analysis of R2 pressure vessel. Structural reliability benchmark exercise

    International Nuclear Information System (INIS)

    Vestergaard, N.

    1987-05-01

    The Structural Reliability Benchmark Exercise (SRBE) is sponsored by the EEC as part of the Reactor Safety Programme. The objectives of the SRBE are to evaluate and improve 1) inspection procedures, which use non-destructive methods to locate defects in pressure (reactor) vessels, as well as 2) analytical damage accumulation models, which predict the time to failure of vessels containing defects. In order to focus attention, an experimental presure vessel has been inspected, subjected fatigue loadings and subsequently analysed by several teams using methods of their choice. The present report contains the first part of the analytical damage accumulation analysis. The stress distributions in the welds of the experimental pressure vessel were determined. These stress distributions will be used to determine the driving forces of the damage accumulation models, which will be addressed in a future report. (author)

  19. Method for the construction of a nuclear reactor with a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1981-01-01

    Method for the construction of nuclear reactors with prestressed concrete pressure vessel, providing during the initial stage of construction of the prestressed concrete pressure vessel a support structure around the liner. This enables an early mounting of core components in clean conditions as well as load reductions for final concreting in layers of the prestressed concrete pressure vessel. By applying the support structure, the overall assembly time of these nuclear power plant is considerably reduced without extra cost. (orig.) [de

  20. The Influence Of Temperature And Pressure On AP600 Pressure Vessel Analysis By Two Dimensional Finite Element Method

    International Nuclear Information System (INIS)

    Utaya

    1996-01-01

    Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )

  1. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  2. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    Apparatus is described for use in carrying out ultrasonic inspection of coolant nozzles of nuclear reactor pressure vessels. It comprises a manipulator for supporting an ultrasonic scanning transducer within the coolant nozzle. The manipulator is carried by a support located within the pressure vessel and comprises a pair of legs pivotable in caliper manner to span the base of the nozzle. Means are provided for pivoting the legs together to enable free entry of the manipulator and scanning transducer into the nozzle, and for pivoting the legs apart to bring the transducer into an operating position adjacent to the wall of the nozzle. The manipulator is rotatable within the nozzle to enable scanning of its interior surface. (U.K.)

  3. Assessment of integrity for the pressure vessel internals of PWRs under blowdown loadings

    International Nuclear Information System (INIS)

    Geiss, M.; Benner, J.; Ludwig, A.

    1984-01-01

    In safety analysis of pressurized water reactors the loss-of-coolant accident plays a central role. Thereby a sudden break of a cold primary coolant pipe close to the reactor pressure vessel is postulated. The sudden pressure release of the primary system (blowdown) causes high dynamic loading on the pressure vessel internals. The resulting deformations must not impair shut down of the reactor and decay heat removal in an inadmissible way. For this assessment a blowdown analysis for a 1300 MW pressurized water reactor is carried out. These investigations are completed with a detailed stress analysis for the highly loaded core barrel clamping. The results show that the reactor pressure vessel internals are able to withstand blowdown loading. Even in case of a sudden and complete break of the primary coolant pipe the loading has to be twice as high to endanger the structural integrity. (orig.) [de

  4. UK regulatory aspects of prestressed concrete pressure vessels for gas-cooled reactor nuclear power stations

    International Nuclear Information System (INIS)

    Watson, P.S.

    1990-01-01

    Safety assessment principles for nuclear power plants and for nuclear chemical plants demand application of best proven techniques, recognised standards, adequacy margins, inspection and maintenance of all the components including prestressed concrete pressure vessels. In service inspection of prestressed concrete pressure vessels includes: concrete surface examination; anchorage inspection; tendon load check; tendon material examination; foundation settlement and tilt; log-term deformation; vessel temperature excursions; coolant loss; top cap deflection. Hartlepool and Heysham 1 power plants prestress shortfall problem is discussed. Main recommendations can be summarised as follows: at all pressure vessel stations prestress systems should be calibrated in a manner which results in all load bearing components being loaded in a representative manner; at all pressure vessel stations load measurements during calibration should be verified by a redundant and diverse system

  5. Innovations in prestressed concrete pressure vessel design

    International Nuclear Information System (INIS)

    Chow, P.Y.; Ngo, D.; Lin, T.Y.

    1979-01-01

    The study explored a new approach to the design of a high-pressure PCPV that accepts tension and tension cracks in the outer region of the PCPV. It examined the possibility of incorporating artificially-introduced preformed separations that pre-determined crack locations in the design as a method of controlling high tensile stresses generated by internal temperature and pressure. The results showed that the PCPV so designed was, in the extreme case of the DSV, approximately 70% cheaper than the 18 steel vessels of equivalent capacity it replaces. (orig.)

  6. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  7. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  8. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  9. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  10. Dual shell pressure balanced reactor vessel. Final project report

    International Nuclear Information System (INIS)

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy's Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R ampersand D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993)

  11. Elimination of the risk of brittle fracture in thick welded pressure vessels

    International Nuclear Information System (INIS)

    Leymonie, C.; Genevray, R.

    1975-01-01

    The builder of welded pressure vessels faces the risk of brittle fracture throughout fabrication. He is forced to observe many precautions, in selecting the following: materials possessing good impact strength in the service conditions of the vessels; filler materials preventing transverse cracking of the welds: welding parameters preventing cold cracking. Fracture mechanics establish the relationships between material characteristics and critical defect size for a given set of service conditions. These principles must be expanded to increase the safety of thick pressure vessels. However, in order to derive maximum benefit, a major effort must be applied to increasing the effectiveness of nondestructive testing [fr

  12. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  13. Surveillance of irradiation embrittlement of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Najzer, M.

    1982-01-01

    Surveillance of irradiation embrittlement of nuclear reactor pressure vessels is briefly discussed. The experimental techniques and computer programs available for this work at the J. Stefan Institute are described. (author)

  14. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR [pressurized-water-reactor] plants

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1988-01-01

    Recent pressure-vessel surveillance data from the High Flux Isotope Reactor (HFIR) indicate an embrittlement fluence-rate effect that is applicable to the evaluation of the integrity of light-water reactor (LWR) pressure vessel supports. A preliminary evaluation using the HFIR data indicated increases in the nil ductility transition temperature at 32 effective full-power years (EFPY) of 100 to 130/degree/C for pressurized-water-reactor (PWR) vessel supports located in the cavity at midheight of the core. This result indicated a potential problem with regard to life expectancy. However, an accurate assessment required a detailed, specific-plant, fracture-mechanics analysis. After a survey and cursory evaluation of all LWR plants, two PWR plants that appeared to have a potential problem were selected. Results of the analyses indicate minimum critical flaw sizes small enough to be of concern before 32 EFPY. 24 refs., 16 figs., 7 tabs

  15. Thermal-hydraulic analyses of pressurized-thermal-shock-induced vessel ruptures

    International Nuclear Information System (INIS)

    Dobranich, D.

    1982-05-01

    A severe overcooling transient was postulated to produce vessel wall temperatures below the nil-ductility transition temperature which in conjunction with system repressurization, led to vessel rupture at the core midplane. Such transients are referred to as pressurized-thermal-shock transients. A wide range of vessel rupture sizes were investigated to assess the emergency system's ability to cool the fuel rods. Ruptures greater than approximately 0.015 m 2 produced flows greater than those of the emergency system and resulted in core uncovery and subsequent core damage

  16. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  17. State-of-the-art and prospets for designing and constraction of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Short review of reports submitted to the symposium on pressure vessels, which was conducted in Calgary (Canada), has been presented. New tendencies of designing of prestressed concrete pressure vessels (PCPV) for nuclear for nuclear reactors are noted. Construction of hot vessel liner is studied. A conclusion is drawn on prospects of PCPV creation

  18. Brachial artery protected by wrapped latissimus dorsi muscle flap in high voltage electrical injury

    Science.gov (United States)

    Gencel, E.; Eser, C.; Kokacya, O.; Kesiktas, E.; Yavuz, M.

    2016-01-01

    Summary High voltage electrical injury can disrupt the vascular system and lead to extremity amputations. It is important to protect main vessels from progressive burn necrosis in order to salvage a limb. The brachial artery should be totally isolated from the burned area by a muscle flap to prevent vessel disruption. In this study, we report the use of a wrap-around latissimus dorsi muscle flap to protect a skeletonized brachial artery in a high voltage electrical injury in order to salvage the upper extremity and restore function. The flap wrapped around the exposed brachial artery segment and luminal status of the artery was assessed using magnetic resonance angiography. No vascular intervention was required. The flap survived completely with good elbow function. Extremity amputation was not encountered. This method using a latissimus dorsi flap allows the surgeon to protect the main upper extremity artery and reconstruct arm defects, which contributes to restoring arm function in high voltage electrical injury. PMID:28149236

  19. Thermal stress state of cryogenic HP vessels under freezing and pressurization

    International Nuclear Information System (INIS)

    Tsybenko, A.S.; Kuranov, B.A.; Chepurnoj, A.D.; Shaposhnikov, V.A.; Krishchuk, N.G.

    1986-01-01

    A mathematical model is developed for thermomechanical processes in cryogenic HP vessels under freezing either by liquid and (or) gaseous cryogen and under pressurization. Equations of nonlinear nonstationary thermal conductivity and nonisothermal thermoelastoplasticity are used for the case of the theory off low with isotropic hardening. Semiempiricaldependences of nonstationary heat exchange for gaseous medium, experimental curves of cryogenic liquid boiling, mass exchange relationships are allowed for when formulating boundary conditions. The mathematical modelis realized on the basi of the finite element method in the form of highly automated program complex TERSOD (heat resistanceof vessels), oriented for computer of the Unified System. Heat and stress-strained states for three constructions of vessels are thoroughly studied under different conditions of gaseous, liquid and combined freezing with subsequent pressurization

  20. Probabilistic study of PWR reactor pressure vessel fracture

    International Nuclear Information System (INIS)

    Dufresne, J.; Lucia, A.C.; Grandemange, J.; Pellissier-Tanon, A.

    1983-01-01

    Different methods are used to evaluate the rupture probability of a nuclear pressure vessel. On of them extrapolates to nuclear pressure vessels, data of failure found in conventional pressure vessels. The disadvantage of such an approach is that the effects of systematic changes in key parameters cannot be taken into account. For example, the influence of irradiation and the use of quality assurance programs encompassing design, fabrication and materials cannot be considered. But the most important disadvantage of this method is the limited size of the representative population and consequently the high value of the upper bound failure rate corresponding to a requested confidence level. The method used in the present work involves the development of physical models based on an understanding of the failure modes and expressing the conventional concepts of fracture mechanics in a probabilistic form; the fatigue crack growth rate, calculated for conditions of cyclic loading, the initiation of unstable crack propagation, and the possibility of crack arrest. The analysis therefore requires the statistical expression of the factors and parameters which appear in the expressions of the law of crack growth and of toughness, and also those which are used in the calculation of the stress intensity factor K 1 . All input data are entered in COVASTOL code in histogram form. This code takes into account the degree of correlation between the flaw size and the Paris' law coefficients. It computes the propagation of a given defect in a given position, and the corresponding failure probability during accidental loading

  1. Bursting tests on pressure vessels with cracks differing in configuration and location

    International Nuclear Information System (INIS)

    Stahlberg, R.

    1978-01-01

    For assessing the safety of nuclear pressure vessels exhibiting cracks, bursting test were carried out on a series of medium-size pressure vessels with and without welded nozzles and exhibiting cracks differing in configuration and location. The linear-elastic approach proved to be sufficiently accurate for straight strain conditions up to the onset of general yielding. Other analytical methods were successfully used to cover the plastic region. (orig.) [de

  2. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  3. Assessment of the effects of neutron fluence on Swedish nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rao, S.

    1980-11-01

    Nuclear pressure vessels are subject to neutron irradiation during service causing embrittlement. This is one important factor in the overall problem of reactor vessel integrity. At present the irradiation effects are mainly assessed by the Charpy V-notch test. Two measures of embrittlement are defined: the increase of the ductile/brittle transition temperature and the decrease in the upper-shelf energy. The object of the present work is to assess these changes for the Swedish nuclear pressure vessels. On the basis of data from irradiations carried out in other countries and Swedish surveillance programmes, the expected end of life embrittlement is estimated for Swedish vessels. The results show that the embrittlement of most reactor vessels is expected to be quite small. Oskarshamn 1 and PWR-vessels, however, will probably show moderate changes, the former due to the higher copper content, and the latter due to the high end of life fluences. Some of the vessel materials which exhibit marginal properties in the upper-shelf energy, as measured by the Charpy V-notch impact test, are identified. It is recommended that fracture mechanics analyses be applied in these cases. (author)

  4. Interpretation of Strain Measurements on Nuclear Pressure Vessels

    DEFF Research Database (Denmark)

    Andersen, Svend Ib Smidt; Engbæk, Preben

    1980-01-01

    with a negligible zeroshift. However, deviations from linear behaviour are observed in several cases. This nonlinearity can be explained by friction (flange connections) or by gaps (concentrical nozzles) in certain regions, whereas local plastic deformations during the first pressure loadings of the vessel seem...

  5. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  6. Coupled thermo-mechanical analysis of corium-loaded lower head of pressure vessel

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.

    2016-01-01

    A severe accident in the pressurised water reactor may lead to the relocation of core materials to the lower head of Reactor Pressure Vessel (RPV). The core debris at the bottom of RPV forms a melt pool of corium due to decay heat. The understanding of behaviour of pressure vessel, characterised by failure mode and time to failure, in this scenario is one of the important steps in predicting the accident progression. The most predominant failure mode is multi-axial creep deformation of the vessel with a non-uniform temperature field. Towards this, a numerical analysis methodology is developed for the prediction of pressure vessel deformation during the severe accidents. The methodology involves 2-D finite element modelling under multi-physics environment, which account the creep phenomena using Norton-Bailey creep law with a typical damage model of RPV material. The validation of the methodology is carried out using the results from OLHF experiment carried out in Sandia National Laboratory (SNL), USA, within the framework of an OECD. (author)

  7. Additional Stress And Fracture Mechanics Analyses Of Pressurized Water Reactor Pressure Vessel Nozzles

    International Nuclear Information System (INIS)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  8. Guiding device for a manipulator mast for internal inspection of a reactor pressure vessel

    International Nuclear Information System (INIS)

    Seifert, W.; Schlueter, H.

    1977-01-01

    A remote-controlled supporting device centering a manipulator mast is described which is mounted and operated above a reactor pressure vessel under water in such a way that rotations and vertical movements necessary for the internal inspection of the pressure vessel remain possible. (RW) [de

  9. Programmable - logic equipment for ultrasound periodic inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Haniger, L.

    1980-01-01

    Two alternatives are presented of programmable logic corresponding to the 2nd generation of the apparatus for performing periodic ultrasonic inspections of power reactor pressure vessels and a solution is outlined of inspecting the circumferential weld on the pressure vessel head. The apparatus will allow using any measuring head taken into consideration for operational inspection. Command words are taken from a punched type reader. Czechoslovak made RAM memories are used. The algorithm of instrument function is supposed to be controlled by a microprocessor as soon as necessary preconditions for this technology are created in Czechoslovakia

  10. On the Adequacy of API 521 Relief-Valve Sizing Method for Gas-Filled Pressure Vessels Exposed to Fire

    Directory of Open Access Journals (Sweden)

    Anders Andreasen

    2018-03-01

    Full Text Available In this paper, the adequacy of the legacy API 521 guidance on pressure relief valve (PRV sizing for gas-filled vessels subjected to external fire is investigated. Multiple studies show that in many cases, the installation of a PRV offers little or no protection—therefore provides an unfounded sense of security. Often the vessel wall will be weakened by high temperatures, before the PRV relieving pressure is reached. In this article, a multiparameter study has been performed taking into consideration various vessel sizes, design pressures (implicitly vessel wall thickness, vessel operating pressure, fire type (pool fire or jet fire by applying the methodology presented in the Scandpower guideline. A transient thermomechanical response analysis has been carried out to accurately determine vessel rupture times. It is demonstrated that only vessels with relatively thick walls, as a result of high design pressures, benefit from the presence of a PRV, while for most cases no appreciable increase in the vessel survival time beyond the onset of relief is observed. For most of the cases studied, vessel rupture will occur before the relieving pressure of the PRV is reached.

  11. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  12. Repairing method for shroud in reactor pressure vessel

    International Nuclear Information System (INIS)

    Watanabe, Yusuke.

    1996-01-01

    The present invention provides a method of repairing a shroud disposed in a pressure vessel of a BWR type reactor. Namely, a baffle plate is disposed on the outer surface of the lower portion of the shroud supported by a shroud support of the pressure vessel. The baffle plate is connected with a lug for securing a shroud head bolt disposed on the outer surface of an upper portion of the shroud by reinforcing members. With such a constitution, when crackings are caused in the shroud, the development of the crackings can be prevented without losing the function of securing the shroud head bolt. Further, if a material having thermal expansion coefficient lower than that of austenite stainless steel is used for the material of the reinforcing member, clamping load to be applied upon attaching the auxiliary member can be reduced. As a result, operation for the attachment is facilitated. (I.S.)

  13. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and... METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels...

  14. Possible research program on a large scale nuclear pressure vessel

    International Nuclear Information System (INIS)

    1983-01-01

    The nuclear pressure vessel structural integrity is actually one of the main items in the nuclear plants safety field. An international study group aimed at investigating the feasibility of a ''possible research program'' on a scale 1:1 LWR pressure vessel. This report presents the study group's work. The different research programs carried out or being carried out in various countries of the European Community are presented (phase I of the study). The main characteristics of the vessel considered for the program and an evaluation of activities required for making them available are listed. Research topic priorities from the different interested countries are summarized in tables (phase 2); a critical review by the study group of the topic is presented. Then, proposals for possible experimental programs and combination of these programs are presented, only as examples of possible useful research activities. The documents pertaining to the results of phase I inquiry performed by the study group are reported in the appendix

  15. Computing the partial volume of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wiencke, Bent [Nestle USA, Corporate Engineering, 800 N. Brand Blvd, Glendale, CA 91203 (United States)

    2010-06-15

    The computation of the partial and total volume of pressure vessels with various type of head profiles requires detailed knowledge of the head profile geometry. Depending on the type of head profile the derivation of the equations can become very complex and the calculation process cumbersome. Certain head profiles require numerical methods to obtain the partial volume, which for most application is beyond the scope of practicability. This paper suggests a unique method that simplifies the calculation procedure for the various types of head profiles by using one common set of equations without the need for numerical or complex computation methods. For ease of use, all equations presented in this paper are summarized in a single table format for horizontal and vertical vessels. (author)

  16. Reactor pressure vessel structural integrity research

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  17. Flaw density examinations of a clad boiling water reactor pressure vessel segment

    International Nuclear Information System (INIS)

    Cook, K.V.; McClung, R.W.

    1986-01-01

    Flaw density is the greatest uncertainty involved in probabilistic analyses of reactor pressure vessel failure. As part of the Heavy-Section Steel Technology (HSST) Program, studies have been conducted to determine flaw density in a section of reactor pressure vessel cut from the Hope Creek Unit 2 vessel [nominally 0.7 by 3 m (2 by 10 ft)]. This section (removed from the scrapped vessel that was never in service) was evaluated nondestructively to determine the as-fabricated status. We had four primary objectives: (1) evaluate longitudinal and girth welds for flaws with manual ultrasonics, (2) evaluate the zone under the nominal 6.3-mm (0.25-in.) clad for cracking (again with manual ultrasonics), (3) evaluate the cladding for cracks with a high-sensitivity fluorescent penetrant method, and (4) determine the source of indications detected

  18. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  19. Fracture behaviour assessment of a flawed pressure vessel in the hydro-test

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M; Rintamac, R

    1988-12-31

    This document deals with the fracture properties of a flawed pressure vessel. The experiment was carried out within the Nordic Countries on a vessel in a Finnish refinery. The instrumentation used included acoustic emission. Some results are provided. (TEC).

  20. German boiler and pressure vessel codes and standards: materials, manufacture, testing, equipment, erection and operation

    International Nuclear Information System (INIS)

    Steffen, H.P.

    1987-01-01

    The methods by which the safety objectives on the operation of steam boilers and pressure vessels in Germany can be reached are set out in Technical Rules which are compiled and established in technical committees. Typical applications are described in the Technical Rules. A chart shows how the laws, provisions and Technical Rules for the sections 'steam boiler plant' and 'pressure vessels' are interlinked. This chapter concentrates on legal aspects, materials, manufacture, testing, erection and operation of boilers and pressure vessels in Germany. (U.K.)

  1. Midland reactor pressure vessel flaw distribution

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.; Rosinski, S.T.

    1993-12-01

    The results of laboratory nondestructive examination (NDE), and destructive cross-sectioning of selected weldment sections of the Midland reactor pressure vessel were analyzed per a previously developed methodology in order to develop a flaw distribution. The flaw distributions developed from the NDE results obtained by two different ultrasonic test (UT) inspections (Electric Power Research Institute NDE Center and Pacific Northwest Laboratories) were not statistically significantly different. However, the distribution developed from the NDE Center's (destructive) cross-sectioning-based data was found to be significantly different than those obtained through the UT inspections. A fracture mechanics-based comparison of the flaw distributions showed that the cross-sectioning-based data, conservatively interpreted (all defects considered as flaws), gave a significantly lower vessel failure probability when compared with the failure probability values obtained using the UT-based distributions. Given that the cross-sectioning data were reportedly biased toward larger, more significant-appearing (by UT) indications, it is concluded that the nondestructive examinations produced definitively conservative results. In addition to the Midland vessel inspection-related analyses, a set of twenty-seven numerical simulations, designed to provide a preliminary quantitative assessment of the accuracy of the flaw distribution method used here, were conducted. The calculations showed that, in more than half the cases, the analysis produced reasonably accurate predictions

  2. Recent evaluation of 'wet' thermal annealing to resolve reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Server, W.L.; Biemiller, E.C.

    1993-01-01

    Prior to the decision to close the Yankee Rowe plant in 1992, a great deal of effort was expended in trying to resolve the degree of neutron embrittlement that the reactor pressure vessel had experienced after 30 years of operation. One mitigative measure that was examined in detail was the possibility of performing a relatively low temperature thermal anneal (at approximately 650 deg. F) to partially restore the original design level of mechanical properties of the reactor pressure vessel beltline region which were lost due to the neutron radiation exposure. This low temperature anneal was to involve heating of the primary coolant water using pump heat in a similar manner as that used to anneal the Belgian BR-3 reactor pressure vessel in the early 1980s. This 'wet' anneal was successful in recovering mechanical properties for the BR-3 vessel, but the extent of the recovery, as well as the rate of re-embrittlement after the anneal, were issues that were difficult to quantify since the exact reactor pressure vessel steels were not available for experimental verification. For the case of Yankee Rowe, material was available from past surveillance programs for at least one of the materials in the vessel, as well as materials obtained from various sources which could act as bounding surrogates. An irradiation /annealing/reirradiation program was developed to better quantify the degree of recovery and re-embrittlement for these materials, but this program was halted before significant test results were obtained. Prior to the initiation of the testing program, a review of past annealing data was performed and the data were scrutinized for direct relevance to the annealing response of the Yankee Rowe vessel. This paper discusses the results derived from this review. The results from the critical review of the past annealing data indicated that a 'wet' anneal of the Yankee Rowe vessel may have been successful in reducing the degree of embrittlement to the point that the

  3. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    Science.gov (United States)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  4. Fatigue and fracture mechanics in pressure vessels and piping. PVP-Volume 304

    International Nuclear Information System (INIS)

    Mehta, H.S.; Wilkowski, G.; Takezono, S.; Bloom, J.; Yoon, K.; Aoki, S.; Rahman, S.; Nakamura, T.; Brust, F.; Yoshimura, S.

    1995-01-01

    Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The paper presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in six sections: (1) fatigue and fracture--vessels; (2) fatigue and fracture--piping; (3) fatigue and fracture--material property evaluations; (4) constraint effects in fracture mechanics; (5) probabilistic fracture mechanics analyses; and (6) user's experience with failure assessment diagrams. Separate abstracts were prepared for most of the papers in this book

  5. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  6. Cracking at nozzle corners in the nuclear pressure vessel industry

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Cracks in nozzle corners at the pressure boundary of nuclear reactors have been frequently observed in service. These cracks tend to form with radial orientations with respect to the nozzle central axis and are believed to be initiated by thermal shock. However, their growth is believed to be primarily due to a steady plus a fluctuating internal pressure. Due to the impracticality of fracture testing of full-scale models, the Oak Ridge National Laboratory instituted the use of an intermediate test vessel (ITV) for use in fracture testing which had the same wall thickness and nozzle size as the prototype but significantly reduced overall length and diameter. In order to determine whether or not these ITVs could provide realistic data for full-scale reactor vessels, laboratory models of full-scale boiling water reactors and ITVs were constructed and tested. After briefly reviewing the laboratory testing and correlating results with service experience, results obtained will be used to draw some general conclusions regarding the stable growth of nonplanar cracks with curved crack fronts which are the most common precursors to fracture of pressure vessel components near junctures. Use of linear elastic fracture mechanics is made in determining stress-intensity distribution along the crack fronts

  7. Remote controlled ultrasonic pre-service and in-service inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Mueller, G.

    1990-01-01

    The first mechanised in-service inspection of the reactor pressure vessel on unit one of Eskom's Koeberg nuclear power station has been carried out. Since 1968 a whole range of manipulators to carry out remote controlled ultrasonic inspections of nuclear power station equipment has been developed. The inspection of a reactor pressure vessel using a central mast manipulator is described. 3 figs., 1 ill

  8. Annealing of the BR3 reactor pressure vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Motte, F.; Stiennon, G.; Debrue, J.; Gubel, P.; Van de Velde, J.; Minsart, G.; Van Asbroeck, P.

    1985-01-01

    The pressure vessel of the Belgian BR-3 plant, a small (11 MWe) PWR presently used for fuel testing programs and operated since 1962, was annealed during March, 1984. The anneal was performed under wet conditions for 168 hours at 650 0 F with core removal and within plant design margins justification for the anneal, summary of plant characteristics, description of materials sampling, summary of reactor physics and dosimetry, development of embrittlement trend curves, hypothesized pressurized and overcooling thermal shock accidents, and conclusions are provided in detail

  9. On the Adequacy of API 521 Relief-Valve Sizing Method for Gas-Filled Pressure Vessels Exposed to Fire

    DEFF Research Database (Denmark)

    Andreasen, Anders; Nieto, Marcos Zan; Borroni, Filippo

    2018-01-01

    sense of security. Often the vessel wall will be weakened by high temperatures, before the PRV relieving pressure is reached. In this article, a multiparameter study has been performed taking into consideration various vessel sizes, design pressures (implicitly vessel wall thickness), vessel operating...

  10. Calculation method for residual stress analysis of filament-wound spherical pressure vessels

    International Nuclear Information System (INIS)

    Knight, C.E. Jr.

    1976-01-01

    Filament wound spherical pressure vessels may be produced with very high performance factors. These performance factors are a calculation of contained pressure times enclosed volume divided by structure weight. A number of parameters are important in determining the level of performance achieved. One of these is the residual stress state in the fabricated unit. A significant level of an unfavorable residual stress state could seriously impair the performance of the vessel. Residual stresses are of more concern for vessels with relatively thick walls and/or vessels constructed with the highly anisotropic graphite or aramid fibers. A method is established for measuring these stresses. A theoretical model of the composite structure is required. Data collection procedures and techniques are developed. The data are reduced by means of the model and result in the residual stress analysis. The analysis method can be used in process parameter studies to establish the best fabrication procedures

  11. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary.

  12. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary

  13. Stress-rupture lifetimes of organic fiber-epoxy strands and pressure vessels

    International Nuclear Information System (INIS)

    Hahn, H.T.; Chiu, I.L.; Gates, T.L.

    1979-01-01

    Long-term behavior of filament-wound pressure vessels were tested, Kevlar 49 epoxy strands were studied in stress-rupture for more than a year. Because the strands are the smallest structural unit in filament winding, their behavior directly controls the performance of vessels. Five different stress levels were studied: 86, 80, 74, 68, and 50% of the mean ultimate tensile strength (UTS). At each stress level, approximately one-hundred strands were hung in a room maintained at 22 to 24 0 C and below 20% relative humidity. Failure times were automatically recorded by a data acquisition system. Lifetimes were analyzed statistically using a two-parameter Weibull distribution. The maximum-likelihood method was used to estimate the parameters. The shape parameter, which is a measure of scatter and failure-rate change, increased with decreasing stress level. Less scatter and increasing failure rates were observed at lower stresses. There was no sign of an endurance limit down to 68% UTS. At 50% UTS no failure had yet occurred after 9000 h. The strand data were compared with data on lifetimes of pressure vessels wound with the same fiber and epoxy. The strands had slightly longer characteristic lifetimes, except at 86% UTS, and slightly less scatter, except at 68% UTS. The results of this study indicate that strands can provide valuable information about the long-term performance of filament-wound pressure vessels

  14. Analysis and evaluation system for elevated temperature design of pressure vessels

    International Nuclear Information System (INIS)

    Hayakawa, Teiji; Sayawaki, Masaaki; Nishitani, Masahiro; Mii, Tatsuo; Murasawa, Kanji

    1977-01-01

    In pressure vessel technology, intensive efforts have recently been made to develop the elevated temperature design methods. Much of the impetus of these efforts has been provided mainly by the results of the Liquid Metal Fast Breeder Reactor (LMFBR) and more recently, of the High Temperature Gas-cooled Reactor (HTGR) Programs. The pressure vessels and associated components in these new type nuclear power plants must operate for long periods at elevated temperature where creep effects are significant and then must be designed by rigorous analysis for high reliability and safety. To carry out such an elevated temperature designing, numbers of highly developed analysis and evaluation techniques, which are so complicated as to be impossible by manual work, are indispensable. Under these circumstances, the authors have made the following approaches in the study: (1) Study into basic concepts and the associated techniques in elevated temperature design. (2) Systematization (Analysis System) of the procedure for loads and stress analyses. (3) Development of post-processor, ''POST-1592'', for strength evaluation based on ASME Code Case 1592-7. By linking the POST-1592 together with the Analysis System, an analysis and evaluation system is developed for an elevated temperature design of pressure vessels. Consequently, designing of elevated temperature vessels by detailed analysis and evaluation has easily and effectively become feasible by applying this software system. (auth.)

  15. Study of radiation damage of steels for light water pressure vessels at UJV

    International Nuclear Information System (INIS)

    Vacek, N.; Stoces, B.

    1980-01-01

    Preoperational determination of radiation resistance of pressure vessel steels is performed at accelerated neutron exposure in a test or materials research reactor. The results obtained at accelerated and operating exposure are not fully identical and surveillance bodies are therefore used manufactured from the pressure vessel material. Currently, the following steels are used for the manufacture of light water reactor pressure vessels: Mn-Mo-Ni (ASTM-A533-B, ASTM-A508), Cr-Mo-V (15Kh2M1FA). At UJV Rez, for irradiation Chanca-M probes imported from France are used featuring electric temperature control. Almost identical radiation embrittlement was measured for all three steels after irradiation with a neutron fluence of 3x10 23 n.m -2 at a temperature of 290 degC. (H.S.)

  16. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall be designed, constructed, and inspected in accordance with section VIII of the ASME Boiler and Pressure Vessel...

  17. Manipulator for pressure vessel open at the top

    International Nuclear Information System (INIS)

    Bauer, R.; Kastl, H.

    1985-01-01

    A manipulator is provided, which has a mast, which can be fixed inside the reactor pressure vessel with a support surrounding the mast which can be moved along the mast for a carrier, which can turn around the mast and is provided with a measuring, testing, inspection or repair device. (orig./HP) [de

  18. Safety of nuclear pressure vessels and its regulatory aspects in France

    Energy Technology Data Exchange (ETDEWEB)

    de Torquat, G; Queniart, D; Barrachin, B; Roche, R

    1979-01-01

    Having outlined the basic French regulations governing the safety of both pressure vessels and also of nuclear installations in general the particular safety regulations covering prestressed concrete vessels for nuclear reactors are considered. The regulations now being prepared to cover heat transfer systems of water reactors are detailed under sections headed; general provisions, sizing, and construction.

  19. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  20. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.

    1984-01-01

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  1. Embrittlement of the nuclear icebreaker Lenin reactor pressure vessel materials reconstruction

    International Nuclear Information System (INIS)

    Krasikov, E.A.; Nikolaenko, V.A.

    2008-01-01

    Paper deals with the results of the efforts to examine the radiation damage of the Lenin nuclear-powered ice-breaker decommissioned reactor pressure vessel on the basis of which one has determined the peculiar features of the metal radiation embrittlement. Under 10 10 -10 11 s -1 cm -2 low density neutron flux irradiation one notes the most intensive embrittlement of the metal. Then, as the noxious element content in the metal matrix grows smaller the embrittlement reduces up to the change of sign as to the normal curve plotted at the neutron flux density exceeding 10 13 s -1 cm -2 . One assumes that as a result of the low density neutron flux irradiation the reactor pressure vessel edge spaces at some operation stages may be damaged more severely in contrast to these near the reactor core. The neutron irradiation density is the factor affecting the reactor vessel material embrittlement, that is why, it is important to study the damage mechanism of the materials of the power reactor vessels under design characterized by the low radiation load. The mentioned is important, as well, to evaluate the efficiency of the efforts undertaken to mitigate the effect of the neutron radiation on the reactor vessel [ru

  2. Experimental and theoretical studies on the high pressure vessel

    International Nuclear Information System (INIS)

    So, Dong Sup

    1992-02-01

    A High Pressure Melt Ejection (HPME) is one of the most important phenomena relevant to Direct Containment Heating(DCH) which could lead to an early containment failure in a several accident of PWRs. Dispersal of core debris following a postulated high pressure failure of PWR reactor vessel has been investigated by experimental works and one-dimensional computer modeling to find the relation between the fraction of melt simulant retained in the cavity and the reactor vessel initial conditions as well as to examine the hydrodynamic processes in a reactor cavity geometry. Simulated HPME experiments have been performed with two small-scale (1/25-th and 1/41-st) transparent reactor cavity models of the Young-Gwang unit 1 and 2. Wood's metal and water have been used as melt sumulants while high pressure nitrogen and carbon dioxide have been used as driver gases to simulate the blowdown steam and gas from the breach of the reactor pressure vessel. The high speed movies of the transient tests showed that no fraction of the melt simulant exits the cavity model via the vertical cavity tunnel under its own momentum, and that the discharged simulant from the pressure vessel exits the reactor cavity model during the gas blowdown. The principal removal mechanism seemed to be a combined mechanism of film entrainment and particle levitation due to the driving force of the blowdown gas. Experimental data for the fraction of melt simulant retained in the cavity model (Y f ) during a postulated scenario of the HPME from PWR pressure vessels have been obtained as a function of various test parameters. These data have been used to develop a correlation for Y f that fits all the data (a total of 313 data points) within the standard deviation of 0.054 by means of dimensional analysis and nonlinear least squares optimization technique. The basic effects of important parameters used to describe the HPME accident sequence on the Y f are determined based on the correlation obtained here and

  3. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  4. Analysis of mechanical property data obtained from nuclear pressure vessel surveillance capsules

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1977-01-01

    A typical pressure vessel surveillance capsule examination program provides mechanical property data from tensile, Charpy V-notch impact, and, in some cases, fracture mechanics specimens. This data must be analyzed in conjunction with the unirradiated baseline mechanical property data to determine the effect of irradiation on the mechanical properties. In the case of Charpy impact specimens, for example, irradiation typically causes an increase in the transition temperature, and a decrease in the upper shelf energy level. The results of the Charpy impact and other mechanical specimen tests must be evaluated to determine if property changes are occurring in the manner expected when the reactor was put into service. The large amount of data obtained from surveillance capsule examinations in recent years enables one to make fairly good predictions. After the changes in the mechanical properties of specimens from a particular surveillance capsule have been experimentally determined and evaluated, they must be related to the reactor pressure vessel. This requires a knowledge of the neutron fluence of the surveillance capsule, and the ratio of the surveillance capsule fluence to the pressure vessel wall fluence. This ratio is frequently specified by the reactor manufacturer, or can be calculated from a knowledge of the geometry and materials of the reactor components inside the pressure vessel. A knowledge of the exact neutron fluence of the capsule specimens and the capsule to vessel wall neutron fluence ratio is of great importance, since inaccuracies in these numbers cause just as serious a problem as inaccuracies in the mechanical property determinations. A further area causing analysis difficulties is problems encountered in recent capsule programs relating to capsule design, construction, operation, and dismantling. (author)

  5. Assessment of the TRINO reactor pressure vessel integrity: theoretical analysis and NDE

    Energy Technology Data Exchange (ETDEWEB)

    Milella, P P; Pini, A [ENEA, Rome (Italy)

    1988-12-31

    This document presents the method used for the capability assessment of the Trino reactor pressure vessel. The vessel integrity assessment is divided into the following parts: transients evaluation and selection, fluence estimate for the projected end of life of the vessel, characterization of unirradiated and irradiated materials, thermal and stress analysis, fracture mechanics analysis and eventually fracture input to Non Destructive Examination (NDE). For each part, results are provided. (TEC).

  6. Computational analysis of transient gas release from a high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, G.; Oshkai, P.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Penau, F. [CERAM Euro-American Inst. of Technology, Sophia Antipolis (France)

    2006-07-01

    Gas jets exiting from compressed vessels can undergo several regimes as the pressure in the vessel decreases, and a greater understanding of the characteristics of gas jets is needed to determine safety requirements in the transport, distribution, and use of hydrogen. This paper provided a study of the bow shock waves that typically occur during the initial stage of a gas jet incident. The transient behaviour of an initiated jet was investigated using unsteady, compressible flow simulations. The gas was considered to be ideal, and the domain was considered to be axisymmetric. Tank pressure for the analysis was set at a value of 100 atm. Jet structure was examined, as well as the shock structures and separation due to adverse pressure gradients at the nozzle. Shock structure displacement was also characterized.

  7. Evaluation of structural reliability for vacuum vessel under external pressure and electromagnetic force

    International Nuclear Information System (INIS)

    Minato, Akio

    1983-08-01

    Static and dynamic structural analyses of the vacuum vessel for a Swimming Pool Type Tokamak Reactor (SPTR) have been conducted under the external pressure (hydraulic and atmospheric pressure) during normal operation or the electromagnetic force due to plasma disruption. The reactor structural design is based on the concept that the adjacent modules of the vacuum vessel are not connected mechanically with bolts in the torus inboard region each other, so as to save the required space for inserting the remote handling machine for tightenning and untightenning bolts in the region and to simplify the repair and maintenance of the reactor. The structural analyses of the vacuum vessel have been carried out under the external pressure and the electromagnetic force and the structural reliability against the static and dynamic loads is estimated. The several configurations of the lip seal between the modules, which is required to make a plasma vacuum boundary, have been proposed and the structural strength under the forced displacements due to the deformation of the vacuum vessel is also estimated. (author)

  8. Pre-service Acoustic Emission Testing for Metal Pressure Vessel

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Lee, Tae Hee; Lee, Jong Kyu

    2003-01-01

    The field application of acoustic emission(AE) testing for brand-new metal pressure vessel were performed. We will introduce the test procedure for acoustic emission test such as instrument check distance between sensors, sensor location, whole system calibration, pressurization sequence, noise reduction and evaluation. The data of acoustic emission test contain many noise signal, these noise can be reduced by time filtering which based on the description of observation during AE test

  9. Brief account of the effect of overcooling accidents on the integrity of PWR pressure vessels

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1982-01-01

    The occurrence in recent years of several (PWR) accident initiating events that could lead to severe thermal shock to the reactor pressure vessel, and the growing awareness that copper and nickel in the vessel material significantly enhance radiation damage in the vessel, have resulted in a reevaluation of pressure-vessel integrity during postulated overcooling accidents. Analyses indicate that the accidents of concern are those involving both thermal shock and pressure loadings, and that an accident similar to that at Rancho Seco in 1978 could, under some circumstances and at a time late in the normal life of the vessel, result in propagation of preexistent flaws in the vessel wall to the extent that they might completely penetrate the wall. More severe accidents have been postulated that would result in even shorter permissible lifetimes. However, the state-of-the-art fracture-mechanics analysis may contain excessive conservatism, and this possibility is being investigated. Furthermore, there are several remedial measures, such as fuel shuffling, to reduce the damage rate, and vessel annealing, to restore favorable material properties, that may be practical and used if necessary. 5 figures

  10. Dynamic fracture characterization of a pressure vessel steel

    International Nuclear Information System (INIS)

    Schmitt, W.; Boehme, W.; Klemm, W.; Memhard, D.; Winkler, S.

    1991-01-01

    Dynamic events are characterized by time and space-dependent stress and strain fields caused by wave or inertia effect. The dynamic effect at cracks may be originated from the rapid loading rate or impact loading of a structure containing a stationary crack or the time-dependent stress and strain fields of a propagating or arresting crack itself. Dynamic effects complicate the analysis of crack tip stress and strain fields, and usually considerable experimental effort and numerical technique are required. High loading rate influences the deformation and yield behavior and also the fracture toughness of materials. In order to know the propagation and arrest behavior of cracks, a heat of a German reactor pressure vessel steel was investigated, and the dynamic J-resistance curves were evaluated with large three-point bending specimens by impact loading, moreover, the crack propagation energy at large crack extension was determined with wide tension plates. The material tested was a ferritic pressure vessel steel, ASTM A 508 Cl 2. The dynamic J-resistance curves and numerical simulation and fractographic examination, and crack propagation energy are reported. (K.I.)

  11. A fracture mechanics and reliability based method to assess non-destructive testings for pressure vessels

    International Nuclear Information System (INIS)

    Kitagawa, Hideo; Hisada, Toshiaki

    1979-01-01

    Quantitative evaluation has not been made on the effects of carrying out preservice and in-service nondestructive tests for securing the soundness, safety and maintainability of pressure vessels, spending large expenses and labor. Especially the problems concerning the time and interval of in-service inspections lack the reasonable, quantitative evaluation method. In this paper, the problems of pressure vessels are treated by having developed the analysis method based on reliability technology and probability theory. The growth of surface cracks in pressure vessels was estimated, using the results of previous studies. The effects of nondestructive inspection on the defects in pressure vessels were evaluated, and the influences of many factors, such as plate thickness, stress, the accuracy of inspection and so on, on the effects of inspection, and the method of evaluating the inspections at unequal intervals were investigated. The analysis of reliability taking in-service inspection into consideration, the evaluation of in-service inspection and other affecting factors through the typical examples of analysis, and the review concerning the time of inspection are described. The method of analyzing the reliability of pressure vessels, considering the growth of defects and preservice and in-service nondestructive tests, was able to be systematized so as to be practically usable. (Kako, I.)

  12. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1983-01-01

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along with applications to pressure vessel experiments

  13. Online Monitoring of Composite Overwrapped Pressure Vessels (COPV)

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Figueiredo, Joana; Faria, Hugo

    2015-01-01

    product development, design and optimization, as well as to minimize the risks and improve the public acceptance. Within the scope of developing different COPV models for a wide range of operating pressures and applications, optical fiber Bragg grating (FBG) sensors were embedded in the liner......Composite overwrapped pressure vessels (COPV) have been increasingly pointed to as the most effective solution for high pressure storage of liquid and gaseous fluids. Reasonably high stiffness-to-weight ratios make them suitable for both static and mobile applications. However, higher operating...... pressures are sought continuously, to get higher energy densities in such storage systems, and safety aspects become critical. Thus, reliable design and test procedures are required to reduce the risks of undesired and unpredicted failures. An in-service health monitoring system may contribute to a better...

  14. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound

  15. Pressure Vessel Steel Research: Belgian Activities

    International Nuclear Information System (INIS)

    Van Walle, E.; Fabry, A.; Ait Abderrahim, H.; Chaouadi, R.; D'hondt, P.; Puzzolante, J.L.; Van de Velde, J.; Van Ransbeeck, T.; Gerard, R.

    1994-03-01

    A review of the Belgian research activities on Nuclear Reactor Pressure Vessel Steels (RPVS) and on related Neutron Dosimetry Aspects is presented. Born out of the surveillance programmes of the Belgian nuclear power plants, this research has lead to the development of material saving techniques, like reconstitution and miniaturization, and to improved neutron dosimetry techniques. A physically- justified RPVS fracture toughness indexation methodology, supported by micro-mechanistic modelling, is based on the elaborate use of the instrumented Charpy impact signal. Computational tools for neutron dosimetry allow to reduce the uncertainties on surveillance capsule fluences significantly

  16. Pressure Vessel Steel Research: Belgian Activities

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E; Fabry, A; Ait Abderrahim, H; Chaouadi, R; D` hondt, P; Puzzolante, J L; Van de Velde, J; Van Ransbeeck, T [Centre d` Etude de l` Energie Nucleaire, Mol (Belgium); Gerard, R [TRACTEBEL, Brussels (Belgium)

    1994-03-01

    A review of the Belgian research activities on Nuclear Reactor Pressure Vessel Steels (RPVS) and on related Neutron Dosimetry Aspects is presented. Born out of the surveillance programmes of the Belgian nuclear power plants, this research has lead to the development of material saving techniques, like reconstitution and miniaturization, and to improved neutron dosimetry techniques. A physically- justified RPVS fracture toughness indexation methodology, supported by micro-mechanistic modelling, is based on the elaborate use of the instrumented Charpy impact signal. Computational tools for neutron dosimetry allow to reduce the uncertainties on surveillance capsule fluences significantly.

  17. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1987-01-01

    This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals and gas bubble nucleation in molten metals are relevant problems which are addressed in this work. Models are developed for jet expansion, primary breakup of the jet and secondary fragmentation of melt droplets resulting from violent effervescence of dissolved gas. The jet expansion model is based on a general relation for bubble growth which includes both inertia-controlled and diffusion-controlled growth phases. The jet expansion model is able to predict the jet void fraction, jet radius as a function of axial distance from the pressure vessel, bubble size and bubble pressure. The number density of gas bubbles in the melt, which is a basic parameter in the model, was determined experimentally and is about 10 8 per m 3 of liquid. The primary breakup of the jet produces a spray of droplets, about 2-3 mm in diameter. Parametric calculations for a TMLB' reactor accident sequence show that the corium jet is disrupted within a few initial jet diameters from the reactor vessel and that the radius of corium spray at the level of the reactor cavity floor is in the range of 0.8 to 2.6 m. (orig./HP)

  18. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  19. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    International Nuclear Information System (INIS)

    Ingham, T.; Dawson, D.G.

    1975-01-01

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  20. Advanced nickel/hydrogen dependent pressure vessel (DPV) cell and battery concepts

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, D.B. [Technologies Div., Eagle Picher Industries, Inc., Joplin, MO (United States); Fox, C.L. [Technologies Div., Eagle Picher Industries, Inc., Joplin, MO (United States); Miller, L.E. [Technologies Div., Eagle Picher Industries, Inc., Joplin, MO (United States)

    1997-03-01

    The dependent pressure vessel (DPV) nickel/hydrogen (NiH{sub 2}) design is being developed by Eagle-Picher industries, Inc. (EPI) as an advanced battery for military and commercial aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established individual pressure vessel (IPV) technology, flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks. (orig.)

  1. Acoustic emission signal measurements in pressure vessel testing

    International Nuclear Information System (INIS)

    Peter, A.

    1984-01-01

    The number of acoustic emission events per plastically deformed unit of volume caused by artificial notches in real pressure vessels has been calculated taking into account reference voltage, distance between acoustic emission source and sensor as well as the effect of noise background. A test performed at a 100 m 3 gasholder verifies the theoretical considerations. (author)

  2. Research to sustain cases for Magnox-reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Graham, W.J.

    1997-01-01

    Britain's Magnox Electric plc owns and operates six power stations, each of which has twin gas-cooled reactors of the Magnox-fuel type. The older group of four power stations has steel pressure-circuits. The reactor cores are housed within spherical, steel vessels. This article describes some of the research which is undertaken to sustain the safety cases for these steel vessels which have now been in operation for just over 30 years. (author) 2 figs., 4 refs

  3. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  4. A quick guide to API 510 certified pressure vessel inspector syllabus example questions and worked answers

    CERN Document Server

    Matthews, Clifford

    2010-01-01

    The API Individual Certification Programs (ICPs) are well established worldwide in the oil, gas, and petroleum industries. This Quick Guide is unique in providing simple, accessible and well-structured guidance for anyone studying the API 510 Certified Pressure Vessel Inspector syllabus by summarizing and helping them through the syllabus and providing multiple example questions and worked answers.Technical standards are referenced from the API 'body of knowledge' for the examination, i.e. API 510 Pressure vessel inspection, alteration, rerating; API 572 Pressure vessel inspection; API

  5. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1985-01-01

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed at ORNL for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along wih applications to pressure vessel experiments. (orig./HP)

  6. Nuclear reactor pressure vessel surveillance capsule examinations. Application of American Society for Testing and Materials Standards

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1978-01-01

    A series of pressure vessel surveillance capsules is installed in each commercial nuclear power plant in the United States. A capsule typically contains neutron dose meters, thermal monitors, tensile specimens, and Charpy V-notch impact specimens. In order to determine property changes of the pressure vessel resulting from irradiation, surveillance capsules are periodically removed during the life of a reactor and examined. There are numerous standards, regulations, and codes governing US pressure vessel surveillance capsule programmes. These are put out by the US Nuclear Regulatory Commission, the Boiler and Pressure Vessel Committee of the American Society of Mechanical Engineers, and the American Society for Testing and Materials (ASTM). A majority of the pertinent ASTM standards are under the jurisdiction of ASTM Committee E-10 on Nuclear Applications and Measurements of Radiation Effects. The standards, regulations, and codes pertaining to pressure vessel surveillance play an important role in ensuring reliability of the nuclear pressure vessels. ASTM E 185-73 is the Standard Recommended Practice for Surveillance Tests for Nuclear Reactors. This standard recommends procedures for both the irradiation and subsequent testing of surveillance capsules. ASTM E 185-73 references many additional specialized ASTM standards to be followed in specific areas of a surveillance capsule examination. A key element of surveillance capsule programmes is the Charpy V-notch impact test, used to define curves of fracture behaviour over a range of temperatures. The data from these tests are used to define the adjusted reference temperature used in determining pressure-temperature operating curves for a nuclear power plant. (author)

  7. Aging results for PRD 49 III/epoxy and Kevlar 49/epoxy composite pressure vessels

    Science.gov (United States)

    Hamstad, M. A.

    1983-01-01

    Kevlar 49/epoxy composite is growing in use as a structural material because of its high strength-to-weight ratio. Currently, it is used for the Trident rocket motor case and for various pressure vessels on the Space Shuttle. In 1979, the initial results for aging of filament-wound cylindrical pressure vessels which were manufactured with preproduction Kevlar 49 (Hamstad, 1979) were published. This preproduction fiber was called PRD 49 III. This report updates the continuing study to 10-year data and also presents 7.5-year data for spherical pressure vessels wound with production Kevlar 49. For completeness, this report will again describe the specimens of the original study with PRD 49 as well as specimens for the new study with Kevlar 49.

  8. Deformation of cylindrical vessel and the effect of barrel on deformation under inpulsive pressure of high explosive

    International Nuclear Information System (INIS)

    Iikura, Shoichi; Yashizawa, Hiroyasu; Sasanuma, Katsumi.

    1982-01-01

    According to the research performed so far, the result that the amount of deformation due to impulsive pressure was able to be evaluated by the impulse of impulsive pressure waves has been obtained. The analysis treating impulsive pressure waves as plane waves has been made frequently, but the analysis in which impulsive pressure waves must be treated as spherical waves, or the analysis of a vessel with a barrel (internal cylinder) is complex and difficult. In this report, the results of element test, which was carried out in the Oita Works, Asahi Chemical Industry Co., Ltd., in 1973 by the Power Reactor and Nuclear Fuel Development Corp. as the impact resistance test for fast breeder reactors, are rearranged and investigated. The specimens were the cylindrical vessels with upper and lower flanges, and 10 vessels and 9 kinds of barrels were made. Water was used as the pressure medium. The residual deformation and dynamic strain of the vessels and the wave form of pressure waves were measured. The deformation of cylindrical vessels subjected to the impulsive pressure from a point pressure source was able to be evaluated by the impulse distribution in normal direction. The maximum amount of deformation depended on the total plate thickness of barrels. (Kako, I.)

  9. Basic conceptions for reactor pressure vessel manipulators and their evaluation

    International Nuclear Information System (INIS)

    Popp, P.

    1987-01-01

    The study deals with application fields and basic design conceptions of manipulators in reactor pressure vessels as well as their evaluation. It is shown that manipulators supported at the reactor flange have essential advantages

  10. Modeling Scala Media as a Pressure Vessel

    Science.gov (United States)

    Lepage, Eric; Olofsson, A.˚Ke

    2011-11-01

    The clinical condition known as endolymphatic hydrops is the swelling of scala media and may result in loss in hearing sensitivity consistent with other forms of low-frequency biasing. Because outer hair cells (OHCs) are displacement-sensitive and hearing levels tend to be preserved despite large changes in blood pressure and CSF pressure, it seems unlikely that the OHC respond passively to changes in static pressures in the chambers. This suggests the operation of a major feedback control loop which jointly regulates homeostasis and hearing sensitivity. Therefore the internal forces affecting the cochlear signal processing amplifier cannot be just motile responses. A complete account of the cochlear amplifier must include static pressures. To this end we have added a third, pressure vessel to our 1-D 140-segment, wave-digital filter active model of cochlear mechanics, incorporating the usual nonlinear forward transduction. In each segment the instantaneous pressure is the sum of acoustic pressure and global static pressure. The object of the model is to maintain stable OHC operating point despite any global rise in pressure in the third chamber. Such accumulated pressure is allowed to dissipate exponentially. In this first 3-chamber implementation we explore the possibility that acoustic pressures are rectified. The behavior of the model is critically dependent upon scaling factors and time-constants, yet by initial assumption, the pressure tends to accumulate in proportion to sound level. We further explore setting of the control parameters so that the accumulated pressure either stays within limits or may rise without bound.

  11. Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.

  12. Advanced dependent pressure vessel (DPV) nickel-hydrogen spacecraft battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Grindstaff, B.; Swaim, O.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH{sub 2}) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. The limitations of standard NiH{sub 2} individual pressure vessel (IPV) flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher energy density and reduced cost, while retaining the established IPV technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The geometry of the DPV cell promotes compact, minimum volume packaging and weight efficiency. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks.

  13. The evolution and structural design of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Hannah, I.W.

    1978-01-01

    The introduction of the prestressed concrete pressure vessel to contain the main gas coolant circuit of nuclear reactors has marked a major step forward. This chapter traces the evolution and development of the PCPV, and lists the principal parameters adopted. Current design and loading standards are discussed in relation to the two main limit states of serviceability and safety. Prestressed concrete pressure vessel analysis has called for very extensive adaptation and expansion of conventional finite element and finite difference methods in order to deal with the elevated temperature of operation, together with extensive concrete testing at temperature and under multi-directional stressing. These new methods and extra data are being adopted in prestressed applications in other fields and may well prove to be of much wider significance than is presently appreciated. (author)

  14. The coolability limits of a reactor pressure vessel lower head

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Syri, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    Configuration II of the ULPU experimental facility is described, and from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related the observed two-phase flow regimes.

  15. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  16. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  17. Reactor pressure vessel embrittlement of NPP borssele: Design lifetime and lifetime extension

    International Nuclear Information System (INIS)

    Blom, F.J.

    2007-01-01

    Embrittlement of the reactor pressure vessel of the Borssele nuclear power plant has been investigated taking account of the design lifetime of 40 years and considering 20 years subsequent lifetime extension. The paper presents the current licensing status based on considerations of material test data and of US nuclear regulatory standards. Embrittlement status is also evaluated against German and French nuclear safety standards. Results from previous fracture toughness and Charpy tests are investigated by means of the Master curve toughness transition approach. Finally, state of the art insights are investigated by means of literature research. Regarding the embrittlement status of the reactor pressure vessel of Borssele nuclear power plant it is concluded that there is a profound basis for the current license up to the original end of the design life in 2013. The embrittlement temperature changes only slightly with respect to the acceptance criterion adopted postulating further operation up to 2033. Continued safe operation and further lifetime extension are therefore not restricted by reactor pressure vessel embrittlement

  18. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  19. Stresses in reactor pressure vessel nozzles -- Calculations and experiments

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1995-01-01

    Reactor pressure vessel nozzles are characterized by a high stress concentration which is critical in their low-cycle fatigue assessment. Program of experimental verification of stress/strain field distribution during elastic-plastic loading of a reactor pressure vessel WWER-1000 primary nozzle model in scale 1:3 is presented. While primary nozzle has an ID equal to 850 mm, the model nozzle has ID equal to 280 mm, and was made from 15Kh2NMFA type of steel. Calculation using analytical methods was performed. Comparison of results using different analytical methods -- Neuber's, Hardrath-Ohman's as well as equivalent energy ones, used in different reactor Codes -- is shown. Experimental verification was carried out on model nozzles loaded statically as well as by repeated loading, both in elastic-plastic region. Strain fields were measured using high-strain gauges, which were located in different distances from center of nozzle radius, thus different stress concentration values were reached. Comparison of calculated and experimental data are shown and compared

  20. Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends

    International Nuclear Information System (INIS)

    Zhang, Q.; Wang, Z.W.; Tang, C.Y.; Hu, D.P.; Liu, P.Q.; Xia, L.Z.

    2012-01-01

    Limited work has been reported on determining the thermo-mechanical stresses in a multilayered composite pressure vessel when the influence of its closed ends is considered. In this study, an analytical solution was derived for determining the stress distribution of a multilayered composite pressure vessel subjected to an internal fluid pressure and a thermal load, based on thermo-elasticity theory. In the solution, a pseudo extrusion pressure was proposed to emulate the effect of the closed ends of the pressure vessel. To validate the analytical solution, the stress distribution of the pressure vessel was also computed using finite element (FE) method. It was found that the analytical results were in good agreement with the computational ones, and the effect of thermal load on the stress distribution was discussed in detail. The proposed analytical solution provides an exact means to design multilayered composite pressure vessels. Highlights: ► The thermal-mechanical stress was derived for a multilayered pressure vessel. ► A new pseudo extrusion pressure was proposed to emulate the effect of closed ends. ► The analytical results are in good agreement with the computational ones using FEM. ► The solution provides an exact way to design the multilayered pressure vessel.

  1. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Zahoor, A.; Ghassemi, B.B.

    1991-01-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.)

  2. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Ghassemi, B.B. (NOVETECH Corp., Rockville, MD (USA))

    1991-04-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.).

  3. Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure

    International Nuclear Information System (INIS)

    Roche, R.L.; Alix, M.

    1980-05-01

    Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design

  4. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    A carriage-supported manipulator for taking an ultrasonic scanner mechanism into a coolant nozzle of a nuclear reactor pressure vessel is described. The manupulator is rotatable about the axis of the nozzle and is radially expansible to urge the scanner mechanism into a scanning position within the nozzle

  5. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  6. Stress analysis in a non axisymmetric loaded reactor pressure vessel

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de; Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel

    1995-01-01

    In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author)

  7. Pressurization of Containment Vessels from Plutonium Oxide Contents

    International Nuclear Information System (INIS)

    Hensel, S.

    2012-01-01

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  8. NDE and Stress Monitoring on Composite Overwrapped Pressure Vessels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Damage caused by composite overwrapped pressure vessels (COPVs) failure can be catastrophic. Thus, monitoring condition and stress in the composite overwrap,...

  9. Development and application of an LWR reactor pressure vessel-specific flaw distribution

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.

    1991-01-01

    Previous efforts by the US Department of Energy have shown that the PWR reactor vessel integrity predictions performed through probabilistic fracture mechanics analysis for a pressurized thermal shock event are significantly sensitive to the overall flaw distribution input. It has also been shown that modern vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. The methodology helped provide original insight into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. This paper briefly discusses the development and application of the methodology and the impact to future vessel integrity analyses

  10. Minimum weight designs for reinforcement of spherical pressure vessels with flush radial nozzles

    International Nuclear Information System (INIS)

    Yeo, K.T.; Robinson, M.

    1978-01-01

    A cylinder-sphere pressure vessel, reinforced in the sphere by a section of constant thickness, has been analysed from the point of view of minimum weight. The reinforcement is allowed to be offset from the main sphere and the design has to be such that the test pressure of the vessel equals the limit pressure. It is shown that in most circumstances an economy of weight may be obtained by making the reinforcement thicker, but less extensive, than suggested in a previous proposal. Further benefit can be obtained by offsetting the reinforcement radially outwards so that the inside surfaces of main sphere and reinforcement are flush. (author)

  11. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs) . Volume 2; Appendices

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.

  12. Test of 6-in.-thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.

    1977-01-01

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 88 0 C (190 0 F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 25 0 C (75 0 F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted

  13. Preventive protection device and method for bottom of reactor pressure vessel

    International Nuclear Information System (INIS)

    Hayashi, Eisaku; Kurosawa, Koichi; Furukawa, Hideyasu; Morinaka, Ren; Enomoto, Kunio; Otaka, Masahiro; Yoshikubo, Fujio; Chiba, Noboru; Sato, Kazunori.

    1995-01-01

    In a preventive protection device for improving stresses in reactor structural components by jetting highly pressurized water with cavitation bubbles from a jetting nozzle toward structural components in a reactor pressure vessel, a fixed structure to a CRD housing is provided with a rotational body attached to the structure, a multi joint arm and a jetting nozzle supported to the multi joint arm. The jetting nozzle is disposed at a position where the center of the jetting deviates from the center of the CRD housing. In addition, a monitoring camera is disposed for displaying the target for preventive protection. The state of stresses on a plurality of targets for preventive protection can be improved by the preventive protection device at a fixed position in the bottom of a reactor pressure vessel where housings stand densely, thereby enabling to attain the preventive protection operation easily and rapidly. (N.H.)

  14. The dynamic relaxation method in the structural analysis of concrete pressure vessels

    International Nuclear Information System (INIS)

    Davidson, I.; Assis Bastos, M.R. de; Camargo, P.B. de.

    1977-01-01

    The dynamic relaxation method, applied to 3 dimensional concrete structures, especially pressure vessels, is demonstrated. It utilizes the finite difference method and allows the growth of cracks to be followed up to the point of vessel rupture. A FORTRAN IV program is developed, which can also be utilized, with the necessary modifications, for other structure calculations [pt

  15. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1966-03-15

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO 345 and Fortiweld

  16. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    Grounes, M.

    1966-03-01

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO 345 and Fortiweld

  17. Slideline verification for multilayer pressure vessel and piping analysis

    International Nuclear Information System (INIS)

    Van Gulick, L.A.

    1983-01-01

    Nonlinear finite element method (FEM) computer codes with slideline algorithm implementations should be useful for the analysis of prestressed multilayer pressure vessels and piping. This paper presents closed form solutions useful for validating slideline implementations for this purpose. The solutions describe stresses and displacements of an internally pressurized elastic-plastic sphere initially separated from an elastic outer sphere by a uniform gap. Comparison of closed form and FEM results evaluates the usefulness of the closed form solution and the validity of the slideline implementation used

  18. Heavy section steel technology program technical report No. 38. Fracture toughness characterization of HSST intermediate pressure vessel material

    International Nuclear Information System (INIS)

    Mager, T.R.; Yanichko, S.E.; Singer, L.R.

    1974-12-01

    The primary objective of the Heavy Section Steel Technology (HSST) Program is to develop pertinent fracture technology to demonstrate the structural reliability of present and contemplated water-cooled nuclear reactor pressure vessels. In order to demonstrate the ability to predict failure of large, heavy-walled pressure vessels under service type loading conditions, the fracture toughness properties of the vessel's materials must be characterized. The sampling procedure and test results are presented for vessel material supplied by the Oak Ridge National Laboratory that were used to characterize the fracture toughness of the HSST Intermediate Test Vessels. The metallurgical condition and heat treatment of the test material was representative of the vessel simulated service test condition. Test specimen locations and orientations were selected by the Oak Ridge National Laboratory and are representative of flaw orientations incorporated in the test vessels. The fracture toughness is documented for the materials from each of the eight HSST Intermediate Pressure Vessels tested to date. 7 references. (U.S.)

  19. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  20. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  1. Standard practice for examination of Gas-Filled filament-wound composite pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examination of filament-wound composite pressure vessels, for example, the type used for fuel tanks in vehicles which use natural gas fuel. 1.2 This practice requires pressurization to a level equal to or greater than what is encountered in normal use. The tanks' pressurization history must be known in order to use this practice. Pressurization medium may be gas or liquid. 1.3 This practice is limited to vessels designed for less than 690 bar [10,000 psi] maximum allowable working pressure and water volume less than 1 m3 or 1000 L [35.4 ft3]. 1.4 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to gain additional insight into the emission source. Procedures for other NDE methods are beyond the scope of this practice. 1.5 This practice applies to examination of new and in-service filament-wound composite pressure vessels. 1.6 This practice applies to examinations conducted at amb...

  2. TORT application in reactor pressure vessel neutron flux calculations

    International Nuclear Information System (INIS)

    Belousov, S.I.; Ilieva, K.D.; Antonov, S.Y.

    1994-01-01

    The neutron flux values onto reactor pressure vessel for WWER-1000 and WWER-440 reactors, at the places important for metal embrittlement surveillance have been calculated by 3 dimensional code TORT and synthesis method. The comparison of the results received by both methods confirms their good consistency. (authors). 13 refs., 4 tabs

  3. Minimum critical crack depths in pressure vessels guidelines for nondestructive testing

    International Nuclear Information System (INIS)

    Crossley, M.R.; Townley, C.H.A.

    1983-09-01

    Estimates of the minimum critical depths which can be expected in high quality vessels designed to certain British and American Code rules are given. A simple means of allowing for fatigue crack growth in service is included. The data which are presented can be used to decide what sensitivity and what reporting levels should be employed during an ultrasonic inspection of a pressure vessel. It is emphasised that the minimum crack depths are those which would be relevant to a vessel in which the material is stressed to its maximum permitted value during operation. Stresses may, in practice, be significantly less than this. Less restrictive inspection standards may be established, if it were considered worthwhile to carry out a detailed stress analysis of the particular vessel under examination. (author)

  4. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    Directory of Open Access Journals (Sweden)

    Mespoulet Jérôme

    2015-01-01

    Full Text Available Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  5. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    Science.gov (United States)

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  6. Seal analysis technology for reactor pressure vessel

    International Nuclear Information System (INIS)

    Zheng Liangang; Zhang Liping; Yang Yu; Zang Fenggang

    2009-01-01

    There is the coolant with radiation, high temperature and high pressure in the reactor pressure vessel (RPV). It is closely correlated to RPV sealing capability whether the whole nuclear system work well or not. The aim of this paper is to study the seal analysis method and technology, such as the pre-tensioning of the bolt, elastoplastic contact and coupled technology of thermal and structure. The 3 D elastoplastic seal analysis method really and generally consider the loads and model the contact problem with friction between the contact plates. This method is easier than the specialized seal program and used widely. And it is more really than the 2 D seal analysis method. This 3 D elastoplastic seal analysis method has been successfully used in the design and analysis of RPV. (authors)

  7. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  8. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.M.; Vaidyanathan, H.

    1996-02-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  9. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    1996-01-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  10. Acoustic emission measurements at the pressure vessel ZB2

    International Nuclear Information System (INIS)

    Tirbonod, B.; Hanacek, L.

    1990-01-01

    The work presented here is the Swiss contribution to the project 'Zwischenbehaelter 2 (ZB2)' hosted by the 'Bundesministerium fuer Forschung und Technologie' of the Federal Republic of Germany. One of the crack-like defects introduced at the inside surface of the thick-walled pressure vessel ZB2 was locally monitored by acoustic emission. The measurement system was broadband (0.5 - 5 MHz) and allowed a threedimensional location of the source. The vessel was subjected to different tests. Signals were recorded during the second series of hydrotests, fast pressure cycles and fatigue test at 50 C. About 1 signal per hydrotest or cycle was recorded. For the hydrotests the signals were recorded generally at loading in the intermediate range of pressure; the sources were located in the artificial defect. Recurrent and non recurrent signals were recorded during the fatigue test. At loading, signals were captured up to the maximum pressure and for the recurrent signals at well defined pressure ranges. All the sources (except one, located in the base material ahead of the artificial defect) were situated in the artificial defect. The pressure and location depended on the loading phase and on the cycle range. The measurements were discussed by describing the signals by measurement, signal and source parameters. The goal was to identify the source mechanism and to assess the growth of the defect. For the hydrotests the identification of the mechanism at loading remains open. For the fatigue test the source situated in the base material was attributed to a primary mechanism; this source could assess the growth of the defect on the basis of linear elastic fracture mechanics. A secondary mechanism was suggested for recurrent sources active at loading. For all the tests, the sources active at unloading were attributed to a secondary mechanism. (author)

  11. Pressure vessels supported in the soil submitted to axissymetrical loads

    International Nuclear Information System (INIS)

    Gouvea, J.P. de; Bevilacqua, L.

    1982-01-01

    A pressure vessel, spherical segment or vertical cylinder, is supported in the soil and submitted to axissymetrical loads. The soil is considered as a semi-infinite elastic solid and the support as a lattice. The method of rigidity is used. (E.G.) [pt

  12. Fabrication of pressure vessels for nuclear power plants

    International Nuclear Information System (INIS)

    Sampaio, M.S.P. de

    1982-01-01

    The status of the technology used in the fabrication of pressure vessel for nuclear power plants and the performance of the Brazilian industry in this area are presented. The followng aspects are discussed: qualification of the industries for the supplying equipment in its requirement categories; the calculation of the components; the choice of the materials; the fabrication process; and, the destructive and nondestructive tests associated to the fabrication. (E.G.) [pt

  13. Effect of radiation damage on operating safety of steel pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Vacek, M.; Havel, S.; Stoces, B.; Brumovsky, M.

    1980-01-01

    The effects are assessed of the environment upon mechanical properties of steel used generally for pressure vessels of light water nuclear reactors. Changes caused by radiation affect the reliability of vessels. Deterioration of steel properties is mainly due to neutron radiation. The article deals with factors bearing upon damage and with methods allowing to evaluate the reliability of vessels and predict their service life. Operating reliability of vessels is very unfavourably affected by planned and accidental reactor transients. (author)

  14. Pressure vessel steels: influence of chemical composition on irradiation sensitivity

    International Nuclear Information System (INIS)

    Ghoniem, M.M.; Hammad, F.H.

    1998-01-01

    Neutron irradiation of the steels used in the construction of the nuclear reactor pressure vessels can lead to the embrittlement of these materials, increasing the ductile-to-brittle transition temperature and decreasing the fracture energy, which can limit the plant life. The knowledge of irradiation embrittlement and the means for minimizing such degradation is therefore important in the field of assuring the safety of the nuclear power plants. Irradiation embrittlement is quite a complex process. It involves many variables. The most important of these are irradiation temperature, neutron fluence (neutron dose), neutron flux (neutron dose rate), and chemical composition of the irradiated material. This paper is concerned with the effect of chemical composition, the role of residual and alloying elements in the irradiation embrittlement of nuclear reactor pressure vessel steels in light water reactors. It presents a critical review for the published work in this field through the last 25 years

  15. Development of PIE techniques for irradiated LWR pressure vessel steels

    International Nuclear Information System (INIS)

    Nishi, Masahiro; Kizaki, Minoru; Sukegawa, Tomohide

    1999-01-01

    For the evaluation of safety and integrity of light water reactors (LWRs), various post irradiation examinations (PIEs) of reactor pressure vessel (RPV) steels and fuel claddings have been carried out in the Research Hot Laboratory (RHL). In recent years, the instrumented Charpy impact testing machine was remodeled aiming at the improvement of accuracy and reliability. By this remodeling, absorbed energy and other useful information on impact properties can be delivered from the force-displacement curve for the evaluation of neutron irradiation embrittlement behavior of LWR-RPV steels at one-time striking. In addition, two advanced PIE technologies are now under development. One is the remote machining of mechanical test pieces from actual irradiated pressure vessel steels. The other is development of low-cycle and high-cycle fatigue test technology in order to clarify the post-irradiation fatigue characteristics of structural and fuel cladding materials. (author)

  16. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  17. Allowable minimum upper shelf toughness for nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1988-05-01

    The paper develops methodology and procedure for determining the allowable minimum upper shelf toughness for continued safe operation of nuclear reactor pressure vessels. Elastic-plastic fracture mechanics analysis method based on the J-integral tearing modulus (J/T) approach is used. Closed from expressions for the applied J and tearing modulus are presented for finite length, part-throughwall axial flaw with aspect ratio of 1/6. Solutions are then presented for Section III, Appendix G flaw. A simple flaw evaluation procedure that can be applied quickly by utility engineers is presented. An attractive feature of the simple procedure is that tearing modulus calculations are not required by the user, and a solution for the slope of the applied J/T line is provided. Results for the allowable minimum upper shelf toughness are presented for a range of reactor pressure vessel thickness and heatup/cooldown rates.

  18. Allowable minimum upper shelf toughness for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Zahoor, A.

    1988-01-01

    The paper develops methodology and procedure for determining the allowable minimum upper shelf toughness for continued safe operation of nuclear reactor pressure vessels. Elastic-plastic fracture mechanics analysis method based on the J-integral tearing modulus (J/T) approach is used. Closed from expressions for the applied J and tearing modulus are presented for finite length, part-throughwall axial flaw with aspect ratio of 1/6. Solutions are then presented for Section III, Appendix G flaw. A simple flaw evaluation procedure that can be applied quickly by utility engineers is presented. An attractive feature of the simple procedure is that tearing modulus calculations are not required by the user, and a solution for the slope of the applied J/T line is provided. Results for the allowable minimum upper shelf toughness are presented for a range of reactor pressure vessel thickness and heatup/cooldown rates. (orig.)

  19. Minimum weight design of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Boes, R.

    1975-01-01

    A method of non-linear programming for the minimization of the volume of rotationally symmetric prestressed concrete reactor pressure vessels is presented. It is assumed that the inner shape, the loads and the degree of prestressing are prescribed, whereas the outer shape is to be detemined. Prestressing includes rotational and vertical tension. The objective function minimizes the weight of the PCRV. The constrained minimization problem is converted into an unconstrained problem by the addition of interior penalty functions to the objective function. The minimum is determined by the variable metric method (Davidson-Fletcher-Powell), using both values and derivatives of the modified objective function. The one-dimensional search is approximated by a method of Kund. Optimization variables are scaled. The method is applied to a pressure vessel like for THTR. It is found that the thickness of the cylindrical wall may be reduced considerably for the load cases considered in the optimization. The thickness of the cover is reduced slightly. The largest reduction in wall thickness occurs at the junction of wall and cover. (Auth.)

  20. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  1. An assessment of acoustic emission for nuclear pressure vessel monitoring

    International Nuclear Information System (INIS)

    Scruby, C.B.

    1983-01-01

    Recent research has greatly improved our understanding of the basic mechanisms of deformation and fracture that generate detectable acoustic emission signals in structural steels. A critical review of the application of acoustic emission (AE) to the fabrication, proof testing and in-service monitoring of nuclear pressure vessels is presented in the light of this improved understanding. The detectability of deformation and fracture processes in pressure vessel steels is discussed, and recommendations made for improving source location accuracy and the development of quantitative source assessment techniques. Published data suggest that AE can make an important contribution to fabrication monitoring, and to the detection of defects in lower toughness materials during vessel proof testing. In high toughness materials, however, the signals generated during ductile crack growth may frequently be too weak for reliable detection. The feasibility of AE for continuous monitoring has not yet been adequately demonstrated because of high background noise levels and uncertainty about AE signal strengths from the defect growth processes that occur in service. In-service leak detection by AE shows considerable promise. It is recommended that further tests are carried out with realistic defects, and under realistic conditions of loading (including thermal shock and fatigue) and of environment. (author)

  2. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    Science.gov (United States)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  3. Pool critical assembly pressure vessel facility benchmark

    International Nuclear Information System (INIS)

    Remec, I.; Kam, F.B.K.

    1997-07-01

    This pool critical assembly (PCA) pressure vessel wall facility benchmark (PCA benchmark) is described and analyzed in this report. Analysis of the PCA benchmark can be used for partial fulfillment of the requirements for the qualification of the methodology for pressure vessel neutron fluence calculations, as required by the US Nuclear Regulatory Commission regulatory guide DG-1053. Section 1 of this report describes the PCA benchmark and provides all data necessary for the benchmark analysis. The measured quantities, to be compared with the calculated values, are the equivalent fission fluxes. In Section 2 the analysis of the PCA benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed for three ENDF/B-VI-based multigroup libraries: BUGLE-93, SAILOR-95, and BUGLE-96. An excellent agreement of the calculated (C) and measures (M) equivalent fission fluxes was obtained. The arithmetic average C/M for all the dosimeters (total of 31) was 0.93 ± 0.03 and 0.92 ± 0.03 for the SAILOR-95 and BUGLE-96 libraries, respectively. The average C/M ratio, obtained with the BUGLE-93 library, for the 28 measurements was 0.93 ± 0.03 (the neptunium measurements in the water and air regions were overpredicted and excluded from the average). No systematic decrease in the C/M ratios with increasing distance from the core was observed for any of the libraries used

  4. Safeguarding the nuclear safety of WWER-440 reactor pressure vessels at SKODA Plzen

    International Nuclear Information System (INIS)

    Hrbek, Z.

    1986-01-01

    The approach is described of the SKODA enterprise to safety assurance and to providing the reliability of WWER-440 reactor pressure vessels. The philosophy is analyzed of in-service inspection and determination of the residual service life of pressure vessels. This follows up on the so-called conception of basic safety whose main aim is to preclude failures at production stage by the selection of suitable material, namely by optimizing the choice of raw materials, of metallurgical procedures such as will lead to high purity of the pressure vessel material, by introducing multiple inspection in production, reducing the sensitivity of materials to technological operations, and by high-quality welds. The quality of in-service inspections is given by the use of technical diagnostic instruments of peak quality and of modern methods of nondestructive materials testing. The instruments and methods used are described. It is stated that the experience gained with in-service inspection will make it possible to draw up operating regulations and safety criteria for nuclear installations and own inspection regulations, this with regard to technical and economic factors. (Z.M.)

  5. Why and how acoustic emission in pressure vessel first hydrotest

    International Nuclear Information System (INIS)

    Panzani, C.; Tonolini, F.; Villa, G.; Regis, V.

    1985-01-01

    The main advantages obtained performing the Acoustic Emission (AE) examination during pressure vessel first hydrotest are presented. The characteristics and performance of the AE instrumentation to be used for a correct test are illustrated. The main criteria for AE source characterization (location, typical AE parameters and their correlation with pressure value), the calibration and test procedures are discussed. The ndt post-test examinations and laboratory specimen experiments are also outlined. Personnel qualification requirements are finally indicated. (Author) [pt

  6. Inservice inspection of Halden BWR pressure vessel

    International Nuclear Information System (INIS)

    Foerli, O.; Hernes, T.

    1978-01-01

    A description is given of how the recertification inspection of the 20 years old Halden Reactor pressure vessel was carried out in accordance with the latest ASME-CODES, despite the fact that inspection accessibility was poor. As no volumetric inspection had been carried out since the preservice radiography in 1957, the ultrasonic inspection included the high flux region of all welds. In total 70% of longitudinal welds and 20% of bottom circumferential welds were inspected as well as the bottom nozzle connection. The vessel was not designed with provisions for inservice inspection, the welds are unaccessible from the outside and removal of the lid is virtually impossible. The ultrasonic probes could only be loaded through 77 mm diameter holes in the top lid and remotely positioned inside the vessel. The inspection was performed using 450C and 60OC 1 MHz angle probes and 2.25 MHz normal probes in immersion technique. In a zone around the welds, small regions with lack of bonding between the stainless steel cladding and the boiler steel were revealed. One root defect known and accepted from the preservice radiographs was examined. The defect was found to be 6x30mm as a maximum and well within acceptable limits according to the fracture mechanics analysis method recommended in ASME X1. The inspection required a period of three weeks' work in the reactor hall. (UK)

  7. Prediction of thermoplastic failure of a reactor pressure vessel under a postulated core melt accident

    International Nuclear Information System (INIS)

    Duijvestijn, G.; Birchley, J.; Reichlin, K.

    1997-01-01

    This paper presents the lower head failure calculations performed for a postulated accident scenario in a commercial nuclear power plant. A postulated one inch break in the primary coolant circuit leads to dryout and subsequent meltdown of the core. The reference plant is a pressurized water reactor without penetrations in the reactor vessel lower head. The molten core material accumulates in the lower head, eventually causing failure of the vessel. The analysis investigates flow conditions in the melt pool, temperature evolution in the reactor vessel wall, and structure mechanical evaluation of the vessel under strong thermal loads and a range of internal pressures. The calculations were performed using the ADINA finite element codes. The analysis focusses on the failure processes, time and mode of failure. The most likely mode of failure at low pressure is global rupture due to gradual accumulation of creep strain over a large part of the heated area. In contrast, thermoplasticity becomes important at high pressure or following a pressure spike and can lead to earlier local failure. In situations in which part of the heat load is concentrated over a small area, resulting in a hot spot, local failure occurs, but not until the temperatures are close to the melting point. At low pressure, in particular, the hot spot area remains intact until the structure is molten across more than half of the thickness. (author) 14 figs., 16 refs

  8. Description of code system PLES/PTS for evaluation of pressure vessel integrity during PTS events

    International Nuclear Information System (INIS)

    Hirano, Masashi; Kohsaka, Atsuo.

    1992-02-01

    A code system PLES/PTS has been developed at the Japan Atomic Energy Research Institute (JAERI) to evaluate the integrity of the pressure vessel during plant thermal-hydraulic transients related to pressurized thermal shock (PTS) in a pressurized water reactor (PWR). The code system consists of several member codes to analyse the thermal-mixing behavior of emergency core cooling (ECC) water and primary coolant, transient stress distribution within the vessel wall, and crack growth behavior at the inner surface of the vessel. The crack growth behavior is evaluated by comparing the stress intensity factor (k I ) with the crack initiation toughness (k Ic ) and crack arrest toughness (k Ic ), taking into account the fast neutron irradiation embrittlement. This report describes the methods and models applied in PLES/PTS and the input data requirements. (author)

  9. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Neyra Astudillo, Miriam Rocío, E-mail: neyra@cnea.gov.ar [IT Sabato, Universidad Nacional de San Martín, UNSAM, Av. General Paz 1499, Buenos Aires (Argentina); Universidad Tecnológica Nacional UTN, Regional Delta, Buenos Aires (Argentina); López Pumarega, María Isabel, E-mail: lopezpum@cnea.gov.ar [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Núñez, Nicolás Marcelo, E-mail: nnunez@cnea.gov.ar [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Pochettino, Alberto, E-mail: alberto.poch@gmail.com [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental (3iA), Campus Miguelete, UNSAM, Av. 25 de Mayo y Francia, 1650 San Martín Argentina (Argentina); Ruzzante, José, E-mail: ruzzante@gmail.com [Universidad Tecnológica Nacional UTN, Regional Delta, Buenos Aires (Argentina); Universidad Nacional de Tres de Febrero UNTREF, Caseros, Buenos Aires (Argentina); Universidad Nacional de Chilecito, UNdeC, La Rioja (Argentina)

    2017-03-15

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier - Highlights: • MBN and MAE studied in nuclear power pressure vessel steel. • Comparison with macro graphic study of sulfides and texture analysis of the material. • Connections with magnetic anisotropy, texture and microstructure of material. • Plastic flow direction different from the forging direction indicated.

  10. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    International Nuclear Information System (INIS)

    Neyra Astudillo, Miriam Rocío; López Pumarega, María Isabel; Núñez, Nicolás Marcelo; Pochettino, Alberto; Ruzzante, José

    2017-01-01

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier - Highlights: • MBN and MAE studied in nuclear power pressure vessel steel. • Comparison with macro graphic study of sulfides and texture analysis of the material. • Connections with magnetic anisotropy, texture and microstructure of material. • Plastic flow direction different from the forging direction indicated.

  11. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  12. Quality changes of 'Sanguinello' oranges wrapped with different plastic films under simulated marketing conditions.

    Science.gov (United States)

    D'Aquino, S; Malinconico, M; Avella, M; Di Lorenzo, M L; Mura; Palma, A

    2013-01-01

    Chemical and eating quality of citrus fruit changes slowly after harvest, and quality alteration is mainly due to shrinkage, loss of firmness, excessive weight loss and decay rather than a reduction of nutritional value and taste features. Film wrapping may be a suitable means to reduce transpiration and preserve market quality provided film permeability to gases does not lead to: 1) a reduction of in-package O2 partial pressure at a point that would induce anaerobic respiration; 2) an increase of CO2 concentration to toxic levels. This experiment was carried out to study quality changes of 'Sanguinello' oranges treated or not treated with 500 mg/L imazalil (IMZ) and wrapped with continuous, macro- or micro-perforated polyolefinic films. Wrapped and no-wrapped fruit were stored at 20 degrees C and 60% RH for 20 or 30 days. In-package gas composition of the macro-perforated film showed no significant difference compared to air composition, while in-package partial pressure of CO2 and O2 ranged between 4 (continuous film) and 9.8 kPa (micro-perforated films), and 14.8 (continuous film) and 5 kPa (micro-perforated films), respectively. After 30 days of storage weight loss in fruit wrapped with the macro-perforated film was (4.3%) slightly lowerthan un-packed fruit (5%), while in all other packages weight loss never exceeded 0.7%.Quality changes were quite stable over storage in all treatments, although slight but significantly lower levels of total soluble solids and ascorbic acid were detected in micro-perforated films with the lowest degree of perforation. However, the sensory analysis denoted a remarkable decrease of firmness in un-wrapped or wrapped fruit with macro-perforated film, while a moderate build-up of off-flavour, which reduced the eating quality, developed in micro-perforated films. Decay ranged between 6 and 12% in not treated fruit, with the lowest incidence detected in un-wrapped fruit, whereas differences among the different films were not

  13. International pressure vessels and piping codes and standards. Volume 2: Current perspectives; PVP-Volume 313-2

    International Nuclear Information System (INIS)

    Rao, K.R.; Asada, Yasuhide; Adams, T.M.

    1995-01-01

    The topics in this volume include: (1) Recent or imminent changes to Section 3 design sections; (2) Select perspectives of ASME Codes -- Section 3; (3) Select perspectives of Boiler and Pressure Vessel Codes -- an international outlook; (4) Select perspectives of Boiler and Pressure Vessel Codes -- ASME Code Sections 3, 8 and 11; (5) Codes and Standards Perspectives for Analysis; (6) Selected design perspectives on flow-accelerated corrosion and pressure vessel design and qualification; (7) Select Codes and Standards perspectives for design and operability; (8) Codes and Standards perspectives for operability; (9) What's new in the ASME Boiler and Pressure Vessel Code?; (10) A look at ongoing activities of ASME Sections 2 and 3; (11) A look at current activities of ASME Section 11; (12) A look at current activities of ASME Codes and Standards; (13) Simplified design methodology and design allowable stresses -- 1 and 2; (14) Introduction to Power Boilers, Section 1 of the ASME Code -- Part 1 and 2. Separate abstracts were prepared for most of the individual papers

  14. The ASME Boiler and Pressure Vessel Code: overview

    International Nuclear Information System (INIS)

    Farr, J.R.

    1987-01-01

    To become familiar with the Boiler and Pressure Vessel Code of the American Society of Mechanical Engineers, it is necessary to understand the history, organization, and operation of the Boiler Code Committee as well as to become familiar with the important aspects of each Section of the Code. This chapter will review the background and contents of the Code as well as give a review of the salient contents of most sections. (author)

  15. A classification system for pressure vessel shell failures

    International Nuclear Information System (INIS)

    Harrop, L.P.

    1989-01-01

    A system for classifying failures of the shells of pressure vessels is presented. The classification system is based on the way a failure physically manifests itself and not on imputed economic or safety significance. It is believed the described way of classifying the failures is useful for transferring information from one situation to another. In assigning names to types of failure, the intention has been to adopt explicit definitions rather than supposed colloquial usage. (author)

  16. Integrity assessment of TAPS reactor pressure vessel at extended EOL using surveillance test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Shah, Priti Kotak

    2008-05-01

    Integrity assessment of pressure vessels of nuclear reactors (RPV) primarily concentrates on the prevention of brittle failure and conditions are defined under which brittle failure can be excluded. Accordingly, two approaches based on Transition Temperature Concept and Fracture Mechanics Concept were adopted using the impact test results of three credible surveillance data sets obtained from the surveillance specimens of Tarapur Atomic Power Station. RT NDT data towards end of life (EOL) were estimated from the impact test results in accordance with the procedures of USNRC Regulatory Guide 1.99, Rev. 2 and were used as primary input for assessment of the vessel integrity. SA302B (nickel modified) steel cladded with stainless steel is used as the pressure vessel material for the two 210 MWe boiling water reactors of the Tarapur Atomic Power Station (TAPS). The reactors were commissioned during the year 1969. The chemical compositions of SA302B (modified) steel used in fabricating the vessel and the specified tensile property and the Charpy impact property requirements of the steel broadly meet ASME specified requirements. Therefore, the pressure temperature limit curves prescribed by General Electric (G.E.) were compared with those as obtained using procedures of ASME Section XII, Appendix G. The tensile and the Charpy impact properties at 60 EFPY of vessel operation as derived from the surveillance specimens even fulfilled the specified requirements for the virgin material of ASME. Integrity assessment carried out using the two approaches indicated the safety of the vessel for continued operation up to 60 EFPY. (author)

  17. Prevention against fragile fracture in PWR pressure vessel in the presence of pressurized thermal shock

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Oliveira, L.F.S. de; Roberty, N.C.

    1984-01-01

    A method for the determination of operational limit curves (primary pressure versus temperature) for PWR is presented. Such curves give the operators indications related to the safety status of the plant concerning the possibility of a pressurized thermal shock. The method begins by a thermal analysis for several postulated transients, followed by the determination of the thermomechanical stresses in the vessel and finally it makes use of the linear elasticity fracture mechanics. Curves are shown for a typical PWR. (Author) [pt

  18. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts

  19. Void nucleation by the helium atoms during lifetime of reactor pressure vessel

    International Nuclear Information System (INIS)

    Rahman, F.A.

    1984-01-01

    Void formation and growth has a great influence on the reactor pressure vessel steels during its lifetime and during post-irradiation annealing to increase its life. The present investigation aimed at the fact that if one can prevent void nucleation, accordingly one would not wary about void formation and growth. From that concept a model for helium production by transmutation reaction and corresponding swelling under irradiation conditions for several number of steels have been developed. This was done for recommending a steel type that can oppose such a phenomena. In the same time the present investigation gives a procedure utilizing such phenomena for checking the validity of pressure vessel steel used in the NPP

  20. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  1. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  2. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  3. Overview of research trends and problems on Cr-Mo low alloy steels for pressure vessel

    International Nuclear Information System (INIS)

    Chi, Byung Ha; Kim, Jeong Tae

    2000-01-01

    Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding

  4. Filament wound pressure vessels with load sharing liners for space shuttle orbiter applications

    International Nuclear Information System (INIS)

    Ecord, G.M.

    1976-01-01

    Early in the development of orbiter propulsion and environmental control subsystems it was recognized that use of overwrapped pressure vessels with load sharing liners may provide significant weight savings for high pressure gas containment. A program is described which was undertaken by Rockwell International to assess the utility for orbiter applications of titanium 6Al--4V and Inconel 718 liners overwrapped with Kevlar fibers. Also briefly described are programs administered by the NASA Lewis Research Center to evaluate cryoformed steel liners overwrapped with Kevlar fibers and to establish a method that can guarantee cyclic life of the vessels

  5. Pressure vessels for reactors made from structural steel with limited tensile strength

    International Nuclear Information System (INIS)

    Machatti, H.

    1973-01-01

    The reactor pressure vessel is prestressed in several directions with prestressing elements fabricated of steel with a high yielding point. This design allows a substantial reduction of wall thickness or an increase of the inner diameter at equal wall thickness. The prestress of the prestressing elements is designed to achieve a maximum stress release of the vessel walls at normal operating conditions and to fully utilize the maximum load of the vessel walls. For safety reasons the cross section of the prestressing elements is constructed in a way that strain is always 20 % lower the yield point. (P.K.)

  6. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    Science.gov (United States)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  7. Damage-tolerant design and inspection philosophy for nuclear and other pressure vessels

    International Nuclear Information System (INIS)

    Adams, N.J.I.

    1980-01-01

    Statistical analyses of pressure vessel failure rates indicate that, to date, the record is very good. However, the public hazard and environmental consequences of failure in certain industrial processes now give cause for much greater concern. With the exception of an Appendix in ASME III, the current design codes and requirements for new vessels are all based on the assumption that they are free from cracklike defects, but engineers recognize tht such perfect vessels cannot be manufactured. Taking into account failure mechanisms, material properties, pre- and in-service inspection, proof testing, failure statistics and probabilistic methods, views are put forward on how a damage-tolerant design and inspection philosophy may be developed to reduce further the possibility of ''rogue'' vessel failure. 21 refs

  8. Evaluation of fatigue damage of pressure vessel materials by observation of microstructures

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1994-01-01

    As the important factor as the secular change mode of pressure vessel materials, there is fatigue damage. In USA, there is the move to use LWRs by extending their life, and it becomes necessary to show the soundness of the structures of machinery and equipment for long period. For exactly evaluating the soundness of the structures of machinery and equipment, it is important to clarify the degree of secular deterioration of the materials. In this report, by limiting to the fatigue damage of LWR pressure vessel steel, the method of grasping the change of microstructure and the method of estimating the degree of fatigue damage from the change of microstructure are shown. The change of microstructure arising in materials due to fatigue advances in the following steps, namely, the multiplication of dislocations, the tangling of dislocations, the formation of cell structure, the turning of cells, the formation of microcracks, the growth of cracks and fracture. In the case of pressure vessel steel, due to the quenching and tempering, the cell structure is formed from the beginning, and the advance of fatigue is recognized as the increase of the turning angle of cell structures. The detection of fatigue damage by microstructure is reported. (K.I.)

  9. Device for the burst protection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Daublebsky, P.

    1976-01-01

    The burst protection device has a hood over top and bottom of the pressure vessel with superimposed hinged supports lying in their turn against supporting rings which are connected with each other by vertical bracing. It is proposed to place an intermediate layer between hoods and vertical bracing absorbing thermal stresses, i.e. deforming plastically with gradually increasing pressure, but behaving like a rigid body in the case of shock loads. As a material lead e.g. is proposed. (UWI) [de

  10. Interpreting ASME limits and philosophy in FEA of pressure vessel parts

    International Nuclear Information System (INIS)

    Bezerra, L.M.; Cruz, J.R.B.; Miranda, C.A.J.; Neto, M.M.

    1995-01-01

    In recent years there has been an effort to interpret finite element (FE) stress results on the light of the ASME B and PV rules and philosophy. Many task groups have issued guidelines on stress linearization and classifications. All those attempts have come up trying to cope modern FE techniques with the rules imposed by the ASME Code. This paper is an independent contribution to the Pressure Vessel Research Council (PVRC) groups which are studying the stress classification and the failure mechanism in a FE framework. This work tries to complement the interesting work by Hollinger and Hechmer presented in the PVP-94 in Minneapolis. In that paper, the authors examined a typical support skirt and showed relations between the skirt collapse load obtained by finite element analysis and the loads allowed from the ASME stress limits. To complement such paper, in the present article, different skirt geometry configurations are analyzed. The configurations here investigated consist of similar support skirts but with different angles of attachments between cylinder and cone parts. It will be possible to observe the influence of the bending stress in the collapse load and its relation to the allowable loads inferred from the ASME limits. A pressure vessel with torispherical head under internal pressure is also examined. Using elastic and limit load FEA, the present paper determines the collapse loads of the configurations. It sets up the relations between these collapse loads, stress categories, and limits dictated by the ASME Code Subsection NB. On the light of NB rules and philosophy, this paper shows how different methods of stress assessment, classification, and limits may influence in the design of a pressure vessel

  11. Application of improved quality control technology to pressure vessels

    International Nuclear Information System (INIS)

    Kriedt, F.

    1985-01-01

    Within the last decade, ASME Boiler and Pressure Vessel Code Section VIII-1 instituted requirements for a formal written quality control system. The results, good and bad, of this requirement are discussed. The effects are far reaching from a national economic standpoint. Quality control technology has improved. These improvements are discussed and compared to existing requirements of the CODE. Recommended improvements are suggested

  12. Pressure vessels dossier restoration according to NR-13 requirements; Enquadramento de vasos de pressao a norma NR-13

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose L. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Goncalves, Osorio C. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Pressure vessels are static pressurized equipment typical in oil industry facilities. In TRANSPETRO terminals and stations as well as in the whole PETROBRAS, these equipment can be found in the form of condenser accumulators, separators, heat exchangers, storage spheres and others. Because they work sustaining pressure and, many times flammable fluids, pressure vessels have a reasonable potential for hazard. For this reason, the NR-13 regulation was created. It deals with the safety in maintenance, operation and inspection of pressure vessels and boilers. During the compliance to the NR- 13 rules, a problem usually found is the lack of documents for different reasons. In this case, the NR-13 obligates the owner to recreate the vessel documentation under the responsibility of a chartered professional. This paper presents a case study where NR-13 rules were conformed by tasks involving documentation reconstruction based on information collected by means of inspection and tests performed on the field. (author)

  13. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    Science.gov (United States)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  14. Welding electrode for peripheral welds of A-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    1975-01-01

    The properties are outlined of the VUZ-AC1-52 welding electrode used in welding the Bohunice A-1 reactor pressure vessel. The mechanical properties of welded joints after the final thermal treatment are summed up. (J.K.)

  15. Sealing performance test for main flange of pressure vessel of T2 test section in HENDEL

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Inagaki, Yoshiyuki; Matsumoto, Kiminori; Kondou, Yasuo; Suzuki, Kunihiko; Miyamoto, Yoshiaki; Asami, Masanobu.

    1990-12-01

    A pressure vessel of T 2 test section in helium engineering demonstration loop (HENDEL) was fabricated to the same scale of the reactor pressure vessel made of 2(1/4)Cr-1Mo steel in high temperature engineering test reactor (HTTR). Also, the sealing structure of a main flange of pressure vessel in T 2 test section was composed of the double metal O-rings and Ω-seal which would be used in the sealing structure of HTTR. The sealing performance test for the main flange of the pressure vessel in T 2 test section was carried out to confirm the integrity of sealing structure of a main flange in HTTR. T 2 test section has been operated about 7700 hours in previous 18 cycles. The leakage of helium gas from inner metal O-ring was measured by the static pressurized process under the operating condition of HTTR (helium gas: 400degC, 40kg/cm 2 G, 4gk/s). The calculated leakage of helium gas was less than 9.6x10 -7 atm·cm 3 /sec. From the result, it is expected that the sealing structure of main flange in HTTR would maintain the leak tightness in the life. (author)

  16. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  17. EQUATIONS FOR GAS RELEASING PROCESS FROM PRESSURIZED VESSELS IN ODH EVALUATION

    International Nuclear Information System (INIS)

    JIA, L.X.; WANG, L.

    2001-01-01

    IN THE EVALUATION OF ODH, THE CALCULATION OF THE SPILL RATE FROM THE PRESSURIZED VESSEL IS THE CENTRAL TASK. THE ACCURACY OF THE ENGINEERING ESTIMATION BECOMES ONE OF THE SAFETY DESIGN ISSUES. THIS PAPER SUMMARIZES THE EQUATIONS FOR THE OXYGEN CONCENTRATION CALCULATION IN DIFFERENT CASES, AND DISCUSSES THE EQUATIONS FOR THE GAS RELEASE PROCESS CALCULATION BOTH FOR THE HIGH-PRESSURE GAS TANK AND THE LOW-TEMPERATURE LIQUID CONTAINER

  18. Gamma dose rate estimation and operation management suggestions for decommissioning the reactor pressure vessel of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Fang; Hong Li; Jianzhu Cao; Wenqian Li; Feng Xie; Jiejuan Tong [Institute of Nuclear and New Energy Technology, Tsinghua, University, Beijing (China)

    2013-07-01

    China is now designing and constructing a high temperature gas cooled reactor-pebble bed module (HTR-PM). In order to investigate the future decommissioning approach and evaluate possible radiation dose, gamma dose rate near the reactor pressure vessel was calculated for different cooling durations using QAD-CGA program. The source term of this calculation was provided by KORIGEN program. Based on the calculated results, the spatial distribution and temporal changes of gamma dose rate near reactor pressure vessel was systematically analyzed. A suggestion on planning decommissioning operation of reactor pressure vessel of HTRPM was given based on calculated dose rate and the Chinese Standard GB18871-2002. (authors)

  19. Inspecting nuclear pressure vessels: the conundrum of minimizing risk

    International Nuclear Information System (INIS)

    Oestberg, G.

    1992-01-01

    The probability of a sudden, massive release of radioactivity from a light-water nuclear reactor through a breach of the containment is assessed on the basis of statistical data which partly consist of subjective estimates. This breach refers to the existence of crack-like defects remaining after a non-destructive examination of the main pressure vessel surrounding the reactor core. Two studies have recently been made of such sources of information about the effectiveness of non-destructive examination of pressure vessels with respect to defects. The results of these studies indicate that the data used as input in the probabilistic calculations do not possess the reliability that might be assumed from the assessments. This type of failure should therefore no longer be considered a de minimis case. In the present review the overconfidence in the efficiency of non-destructive examination is discussed from psychological, sociological and political science points of view. It is concluded that ingrained professional assumptions and values seem to be the main reason for the trust in the technology of inspection. However, there are also psychological constraints that can be understood only in their social and political contexts. (author)

  20. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  1. Heat and mass transfer in a concrete pressure vessel

    International Nuclear Information System (INIS)

    Zangle, K.; Sadouki, H.; Wittmann, F.H.

    1989-01-01

    Pressure vessels of prestressed concrete for high temperature reactors are subjected to high mechanical and thermal stresses during the reactors normal working conditions and in particular accidental conditions. According to a large temperature gradient between the inner liner and the outer side of the thickwalled vessel, physical as well as chemical processes take place in concrete. Temperature and moisture content of concrete have a big influence on these processes. During the last years different investigations have been conducted in order to determine characteristic values of concrete under these conditions. At present the authors conduct a series of experiments on model vessels of prestressed concrete and a large number of small specimens. The aims of these tests can be briefly summarized as follows: experimental determination of transport coefficients for a numerical analysis; determination of chemical reactions under hydrothermal conditions and their significance for the risk of corrosion; determination of temperature and moisture distribution as a function of time; and determination of the strength development in the zones subjected to elevated temperatures

  2. KVP meter errors induced by plastic wrap

    International Nuclear Information System (INIS)

    Jefferies, D.; Morris, J.W.; White, V.P.

    1991-01-01

    The purpose of this study was to determine whether erroneous kVp meter readings, induced by plastic wrap, affected the actual kVp (output) of a dental X-ray machine. To evaluate the effect of plastic wrap on dental X-ray machine kVp meters, a radiation output device was used to measure output in mR/ma.s. An intraoral dental X-ray unit (S.S. White Model number-sign 90W) was used to make the exposures. First, the kVp meter was not covered with plastic wrap and output readings were recorded at various kVp settings with the milliamperage and time held constant. Secondly, the same kVp settings were selected before the plastic wrap was placed. Milliamperage and time were again held to the same constant. The X-ray console was then covered with plastic wrap prior to measuring the output for each kVp. The wrap possessed a static charge. This charge induced erroneous kVp meter readings. Out-put readings at the various induced kVp settings were then recorded. A kVp of 50 with no wrap present resulted in the same output as a kVp of 50 induced to read 40 or 60 kVp by the presence of wrap. Similar results were obtained at other kVp settings. This indicates that the plastic wrap influences only the kVp meter needle and not the actual kilovoltage of the X-ray machine. Dental X-ray machine operators should select kVp meter readings prior to placing plastic wrap and should not adjust initial settings if the meter is deflected later by the presence of wrap. The use of such a procedure will result in proper exposures, fewer retakes, and less patient radiation. If plastic wrap leads to consistent exposure errors, clinicians may wish to use a 0.5% sodium hypochlorite disinfectant as an alternative to the barrier technique

  3. Dictionary of pressure vessel and piping technology

    International Nuclear Information System (INIS)

    Jentgen, L.; Schmitz, H.P.

    1986-01-01

    A specialised dictionary has been compiled containing the appropriate English and German terms in the following technical fields: materials science, welding, destructive and non-destructive testing, thermal and mass transfer, the design and construction in particular of pressure vessels, tanks, heat exchangers, piping, expansion joints, valves, and components associated with the above fields. This dictionary is the result of many years spent in evaluating technical terminology from the relevant American and British regulations, technical rules, standards, and specifications (see bibliography) and correlating these with the terminology of comparable German regulations, rules and standards, together with the essential technical literature. (orig.) [de

  4. Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material

    Science.gov (United States)

    Lyapin, A. A.; Chebakov, M. I.; Dumitrescu, A.; Zecheru, G.

    2015-07-01

    The nonlinear static problem of FEM modeling of a damaged pipeline repaired by a composite material and subjected to internal pressure is considered. The calculation is carried out using plasticity theory for the pipeline material and considering the polymeric filler and the composite wrap. The level of stresses in various zones of the structure is analyzed. The most widespread alloy used for oil pipelines is selected as pipe material. The contribution of each component of the pipeline-filler-wrap system to the level of stresses is investigated. The effect of the number of composite wrap layers is estimated. The results obtained allow one to decrease the costs needed for producing test specimens.

  5. Numerical analysis of coolant mixing in the pressure vessel of WWER-440 type nuclear reactors

    International Nuclear Information System (INIS)

    Boros, I.; Aszodi, A.

    2003-01-01

    The precise description of the coolant mixing processes taking place in the reactor pressure vessel (RPV) of pressurized water nuclear reactors has an essential importance during power operation, as well as in case of incidental or accidental conditions. In this paper the detailed CFD model of the pressure vessel of a WWER-440 type reactor and calculations performed with this RPV model are presented. The CFD model of the pressure vessel contains all the important internal structural elements of the RPV. Sensitivity study on the effect of these elements was also carried out. Both steady-state and transient calculation were performed using the CFD code CFX-5.5.1. The results of the steady-state calculations give the so called mixing factors, i.e. the effect of each single primary loop at the core inlet. The mixing factors can be given for nominal circumstances (i.e. all main coolant pumps are working) or in case of less than six working MCPs. In order to validate the model the calculated mixing factors are compared with the values measured in the Paks NPP (Authors)

  6. The Clementine Nickel Hydrogen Common Pressure Vessel Battery

    OpenAIRE

    Garner, Christopher

    1994-01-01

    The Clementine spacecraft was launched in January 1994 to demonstrate advanced lightweight technologies for the Ballistic Missile Defense Organization (BMDO). One of the key technologies was the first use of a multi-cell nickel hydrogen (NiH2) common pressure vessel (CPV) battery. The 5.0 inch diameter, 22 cell, 15.0 ampere-hour NiH2 CPV battery was manufactured by Johnson Controls Battery Group Inc., (JCBGI). Battery test and integration was performed by the Naval Research Laboratory (NRL). ...

  7. Prevention of catastrophic failure in pressure vessels and pipings

    International Nuclear Information System (INIS)

    Rintamaa, R.; Wallin, K.; Ikonen, K.; Toerroenen, K.; Talja, H.; Keinaenen, H.; Saarenheimo, A.; Nilsson, F.; Sarkimo, M.; Waestberg, S.; Debel, C.

    1989-01-01

    The fracture resistance and integrity of pressure-loaded components have been assessed in a Nordic research programme. Experiments were performed to validate the computational fracture assessment analysis. Two tests were also conducted on a large decommissioned pressure vessel from an oil refinery plant. Different fracture assessment methods were developed and subsequently applied to the tested components. Interlaboratory round robin programmes with the participation of several laboratories were arranged to examine elastic-plastic finit element calculations and fracture mechanics testing. The transferability of material parameters derived from small specimens with simple crack geometries to more realistic crack geometries in real components has been verified. (author)

  8. Dosimetry, metallurgical and code needs of the U.S. utilities related to radiation embrittlement of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rahn, F.J.; Marston, T.U.; Ozer, O.; Stahlkopf, K.

    1980-01-01

    Codes and regulation guides in the U.S.A., on performance of pressure vessel are examined. Limiting factors in the analysis and prediction of radiation embrittlement in reactor pressure vessels are: accurate measurement of neutron flux and spectrum in-situ, irradiation rate dependence, environmental conditions influence of flaws annealing, analysis of mechanical tests. The establishment of a self-consistent set of irradiated materials properties data taken at realistic flux rates is required, in conjunction with a careful technique in measuring with a careful technique in measuring the fluence and spectrum at the pressure vessel wall and material test specimen positions

  9. Applicability of newly developed 610MPa class heavy thickness high strength steel to boiler pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Norihiko; Kaihara, Shoichiro; Ishii, Jun [Ishikawajima-Harima Heavy Industries Corp., Yokohama (Japan); Kajigaya, Ichiro [Ishikawajima-Harima Heavy Industries Corp., Tokyo (Japan); Totsuka, Takehiro; Miyazaki, Takashi [Ishikawajima-Harima Heavy Industries Corp., Aioi (Japan)

    1995-11-01

    Construction of a 350 MW Class PFBC (Pressurized Fluidized Bed Combustion) boiler plant is under planning in Japan. Design temperature and pressure of the vessel are maximum 350 C and 1.69 MPa, respectively. As the plate thickness of the vessel exceeds over 100 mm, high strength steel plate of good weldability and less susceptible to reheat cracking was required and developed. The steel was aimed to satisfy the tensile strength over 610 MPa at 350 C after postweld heat treatment (PWHT), with good notch toughness. The authors investigated the welding performances of the newly developed steel by using 150 mm-thick plate welded by pulsed-MAG and SAW methods. It was confirmed that the newly developed steel and its welds possess sufficient strength and toughness after PWHT, and applicable to the actual pressure vessel.

  10. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  11. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-07-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  12. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    International Nuclear Information System (INIS)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-01-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  13. The inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Dickson, T.L.; Bass, B.R.; McAfee, W.J.

    1998-01-01

    Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K Ic , was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4

  14. The measurement for level of marine high-temperature and high-pressure vessels

    International Nuclear Information System (INIS)

    Lin Jie.

    1986-01-01

    The various error factors in measurement for level of marine high-temperature and high-pressure vessels are anslysed. The measuring method of error self compensation and its simplification for land use are shown

  15. 46 CFR 35.25-5 - Repairs of boilers and unfired pressure vessels and reports of repairs or accidents by chief...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Repairs of boilers and unfired pressure vessels and..., DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Engine Department § 35.25-5 Repairs of boilers and... any repairs to boilers or unfired pressure vessels, the chief engineer shall submit a report covering...

  16. The Combined Effects of Stress Concentration and Tensile Stresses from Autofrettage on the Life of Pressure Vessels

    Science.gov (United States)

    2017-02-01

    Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Thick walled pressure vessels are often...studies which will identify the cause of the reduced lives and propose corrective action. 15. SUBJECT TERMS Thick Walled Pressure Vessels...are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information. 13. SUPPLEMENTARY NOTES

  17. Assessment of environmentally assisted cracking in PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Tice, D.R.

    1991-01-01

    There is a possibility that extension of pre-existing flaws in the reactor pressure vessel of a pressurised water reactor (PWR) may occur by environmentally assisted cracking, in particular by corrosion fatigue under cyclic transient loading. Crack growth predictions have usually been carried out using cyclic crack growth rate (da/dN) versus stress intensity range (δK) curves, such as those given in Section XI, Appendix A of the ASME Boiler and Pressure Vessel Code. However, the inherent time dependent nature of environmental cracking processes renders such an approach unrealistic. The present paper describes the development of an alternative time based assessment methodology. Illustrative calculations of expected crack growth of assumed defects made using the cyclic (ASME XIA) and time-based approaches are compared. The results illustrate that crack growth predicted by the time-based approach can be greater or less than that calculated by the traditional method. For a PWR operated with good control of water chemistry, actual crack growth rates are expected to be well below those predicted by the ASME code. (Author)

  18. Analytical and experimental vibration analysis of BWR pressure vessel internals

    International Nuclear Information System (INIS)

    Krutzik, N.; Schad, O.

    1975-01-01

    This report attempts to evaluate the validity as well as quality of several analytical methods in the light of presently available experimental data for the internals of pressure vessels of boiling-water-reactor-types. The experimental checks were performed after the numerical analysis was completed and showed the accuracy of the numerical results. The analytical investigations were done by finite element programmes - 2-dimensional as well as 3-dimensional, where the effect of the mass distribution with parts of virtual masses on the dynamic response could be studied in depth. The experimental data were collected at various different plants and with different mass correlations. Besides evaluating the dynamic characteristics of the components, tests were also performed to evaluate the vibrations of the pressure vessel relative to the main structure. After analysing extensive recorded data much better understanding of the response under a variety of loading- and boundary conditions could be gained. The comparison of the results of analytical studies with the experimental results made a broad qualitative evaluation possible. (Auth.)

  19. Thermal and stress analyses of the reactor pressure vessel lower head of the Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Hashimoto, K.; Onizawa, K.; Kurihara, R.; Kawasaki, S.; Soda, K.

    1992-01-01

    Thermal and stress analyses were performed using the finite element analysis code ABAQUS to clarify the factors which caused tears in the stainless steel liner of the reactor pressure vessel lower head of the Three Mile Island Unit 2 (TMI-2) reactor pressure vessel during the accident on 28 March 1979. The present analyses covered the events which occurred after approximately 20 tons of molten core material were relocated to the lower head of the reactor pressure vessel. They showed that the tensile stress was highest in the case where the relocated core material consisting of homogeneous UO 2 debris was assumed to attack the lower head and the debris was then quenched. The peak tensile stress was in the vicinity of the welded zone of the penetration nozzle. This result agrees with the findings from the examination of the TMI-2 reactor pressure vessel that major tears in the stainless steel liner were observed around two penetration nozzles of the lower head. (author)

  20. Comparison of ASME pressure–temperature limits on the fracture probability for a pressurized water reactor pressure vessel

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2017-01-01

    Highlights: • P-T limits based on ASME K_I_a curve, K_I_C curve and RI method are presented. • Probabilistic and deterministic methods are used to evaluate P-T limits on RPV. • The feasibility of substituting P-T curves with more operational is demonstrated. • Warm-prestressing effect is critical in determining the fracture probability. - Abstract: The ASME Code Section XI-Appendix G defines the normal reactor startup (heat-up) and shut-down (cool-down) operation limits according to the fracture toughness requirement of reactor pressure vessel (RPV) materials. This paper investigates the effects of different pressure-temperature limit operations on structural integrity of a Taiwan domestic pressurized water reactor (PWR) pressure vessel. Three kinds of pressure-temperature limits based on different fracture toughness requirements – the K_I_a fracture toughness curve of ASME Section XI-Appendix G before 1998 editions, the K_I_C fracture toughness curve of ASME Section XI-Appendix G after 2001 editions, and the risk-informed revision method supplemented in ASME Section XI-Appendix G after 2013 editions, respectively, are established as the loading conditions. A series of probabilistic fracture mechanics analyses for the RPV are conducted employing ORNL’s FAVOR code considering various radiation embrittlement levels under these pressure-temperature limit conditions. It is found that the pressure-temperature operation limits which provide more operational flexibility may lead to higher fracture risks to the RPV. The cladding-induced shallow surface breaking flaws are the most critical and dominate the fracture probability of the RPV under pressure-temperature limit transients. Present study provides a risk-informed reference for the operation safety and regulation viewpoint of PWRs in Taiwan.

  1. Loads on reactor pressure vessel internals induced by low-pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-02-01

    Departing from the conservation theorems for mass and impulse the computer code DRUWE has been developed which allows to calculate loads on the core shell with simplifying assumptions for the first period just after the rupture has opened. It can be supposed that the whole rupture cross section is set free within 15 msec. The calculation progresses in a way that for a core shell the local, timely pressure- and load development, respectively, the total dynamic load as well as the moments acting on the fixing of the core shell, can be calculated. The required input data are merely geometric data on the concept of the pressure vessel and its components as well as the effective subcooling of the fluid. By means of some parameters the programm development can be controlled in a way that the results are available in form of listings or diagrams, respectively, as well as in form of card decks for following investigations, e.g. solidity calculations. (orig./RW) [de

  2. Selected bibliography on pressure vessels for light-water-cooled power reactors (LWRs)

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1975-01-01

    Abstracts on LWR pressure vessels are arranged in the following categories: general, design, materials technology, fabrication techniques, inspection and testing, and failures. Author, keyword, and KWIC (keyword-in-content) indices are provided. (U.S.)

  3. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    Zipser, R.; Dose, G.F.

    1977-01-01

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP) [de

  4. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-8. Fracture, fatigue and advanced mechanics

    International Nuclear Information System (INIS)

    Short, W.E.; Zamrik, S.Y.

    1985-01-01

    State-of-the-art engineering practices in pressure vessel and piping technology are the result of continual efforts in the evaluation of problems which have been experienced and the development of appropriate design and analysis methods for those applications. The resulting advances in technology benefit industry with properly engineered, safe, cost-effective pressure vessels and piping systems. To this end, advanced study continues in specialized areas of mechanical engineering such as fracture mechanics, experimental stress analysis, high pressure applications and related material considerations, as well as advanced techniques for evaluation of commonly encountered design problems. This volume is comprised of current technical papers on various aspects of fracture, fatigue and advanced mechanics as related to the design and analysis of pressure vessels and piping

  5. Adynamic Graciloplasty With a Pedicled Gracilis Muscle Flap Wrapped Around Bulbar Urethra for Treatment of Male Acquired Urinary Incontinence.

    Science.gov (United States)

    Guo, Hailin; Sa, Yinglong; Xu, Yuemin; Wang, Lin; Fei, Xiaofang

    2016-05-01

    To evaluate the efficacy of adynamic gracilis urethral myoplasty with a pedicled gracilis muscle flap wrapped around bulbar urethra for treatment of male acquired urinary incontinence. Twenty-four patients with acquired urinary incontinence (8 after radical prostatectomy, 7 after transurethral resection of the prostate, and 9 after posterior urethroplasty) were included in our study. Eighteen of these patients (75.0%) had mild to moderate urinary incontinence, and 6 (25.0%) had severe urinary incontinence. All patients received adynamic gracilis urethral myoplasty with a pedicled gracilis muscle flap wrapped around bulbar urethra and had a close follow-up. The mean postoperative maximum urethral pressure after the gracilis muscle wrapped around bulbar urethra was significantly higher than that of the preoperative measurements (P urethra can raise the urethral pressure. Adynamic graciloplasty with a pedicled gracilis muscle flap wrapped around bulbar urethra is a safe and effective surgical option in the treatment of male patients with mild to moderate incontinence, but is not suitable for severe incontinence. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  7. A structure for the protection of nuclear-reactor pressurized-vessels against rupture

    International Nuclear Information System (INIS)

    Marcellin, J.-P.; Aubert, Gilles

    1974-01-01

    Description is given of a structure for the protection of nuclear-reactor pressurized-vessels against rupture. Said structure comprises a pre-stressed concrete tank adapted to surround the tank side-wall and bottom, said tank being higher than said vessel, said tank being provided with ports for passing cooling fluid ducts therethrough, and a crown adapted to rest along the periphery of the reactor-cover and made integral therewith. This can be applied to reactors of the PWR type [fr

  8. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    Karnani, Hari

    1986-08-01

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93m Nb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  9. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  10. Use of Master Curve technology for assessing shallow flaws in a reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, Bennett Richard; Taylor, Nigel

    2006-01-01

    In the NESC-IV project an experimental/analytical program was performed to develop validated analysis methods for transferring fracture toughness data to shallow flaws in reactor pressure vessels subject to biaxial loading in the lower-transition temperature region. Within this scope an extensive range of fracture tests was performed on material removed from a production-quality reactor pressure vessel. The Master Curve analysis of this data is reported and its application to the assessment of the project feature tests on large beam test pieces.

  11. Detection and characterization of flaws in segments of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; McClung, R.W.

    1988-01-01

    Studies have been conducted to determine flaw density in segments cut from light water reactor )LWR) pressure vessels as part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology (H SST) Program. Segments from the Hope Creek Unit 2 vessel and the Pilgrim Unit 2 Vessel were purchased from salvage dealers. Hope Creek was a boiling water reactor (BWR) design and Pilgrim was a pressurized water reactor (PWR) design. Neither were ever placed in service. Objectives were to evaluate these LWR segments for flaws with ultrasonic and liquid penetrant techniques. Both objectives were successfully completed. One significant indication was detected in a Hope Creek seam weld by ultrasonic techniques and characterized by further analyses terminating with destructive correlation. This indication [with a through-wall dimension of ∼6 mm (∼0.24 in.)] was detected in only 3 m (10 ft) of weldment and offers extremely limited data when compared to the extent of welding even in a single pressure vessel. However, the detection and confirmation of the flaw in the arbitrarily selected sections implies the Marshall report estimates (and others) are nonconservative for such small flaws. No significant indications were detected in the Pilgrim material by ultrasonic techniques. Unfortunately, the Pilgrim segments contained relatively little weldment; thus, we limited our ultrasonic examinations to the cladding and subcladding regions. Fluorescent liquid penetrant inspection of the cladding surfaces for both LWR segments detected no significant indications [i.e., for a total of approximately 6.8 m 2 (72 ft 2 ) of cladding surface]. (author)

  12. Strain ageing in welds of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Otterberg, R.; Karlsson, C.

    1979-01-01

    Static and dynamic strain ageing have been investigated on submerged-arc welds and repair welds from plates of the pressure vessel steel A 533B. The results permit the determination of the worst strain ageing conditions existing in a nuclear pressure vessel. Static strain ageing was investigated by means of data from tension tests, hardness measurements and Charpy-V impact properties for prestrained and aged material for ageing temperatures from room temperature to 350 deg C and ageing times up to 1000h. Dynamic strain ageing was investigated by tensile tests up to 350 deg C at different strain rates. At the most static strain ageing was found to increase the impact transition temperature from -75 deg C in the as-received condition to -55 deg C after prestraining and ageing for the plate material, from -35 to -10 deg C for the submerged arc weld and from -90 to -40 deg C for the repair weld. Approximately 10 deg C of the deleterious effect is due to the effect of ageing for the two former materials whereas the corresponding figure for the repair weld amounts to 35 deg C. The dynamic strain ageing is strongest at very low strain rates at temperatures just below 300 deg C. The effect of strain ageing can be reduced by stress relief heat treatment or by other means decreasing the content of nitrogen in solution. (author)

  13. INETEC new system for inspection of PWR reactor pressure vessel head

    International Nuclear Information System (INIS)

    Nadinic, B.; Postruzin, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed new equipment for inspection of PWR and VVER reactor pressure vessel head. The new advances in inspection technology are presented in this article, as the following: New advance manipulator for inspection of RPVH with high speed of inspection possibilities and total automated work; New sophisticated software for manipulator driving which includes 3D virtual presentation of manipulator movement and collision detection possibilities; New multi axis controller MAC-8; New end effector system for inspection of penetration tube and G weld; New eddy current and ultrasonic probes for inspection of G weld and penetration tube; New Eddy One Raster scan software for analysis of eddy current data with mant advanced features which allows easy and quick data analysis. Also the results of laboratory testing and laboratory qualification are presented on reactor pressure vessel head mock, as well as obtained speed of inspection and quality of collected data.(author)

  14. Quality assuring measures for pressure vessels - system approaches, certification, accreditation, surveillance

    International Nuclear Information System (INIS)

    Link, M.

    1992-01-01

    Quality assurance measures for pressure vessels in accordance with German codes and standards and with the participation of manufacturers, plant operators and third party inspection agencies represent a high standard in terms of engineering, safety and availability. Technical competence and the autonomous action of German industry in the field of quality assurance set internationally recognized safety standards. The continuous exchange of experience through the active involvement of manufacturers, plant operators and third party inspection agencies in work establishing codes and standards and in th updating of the state of the art give the German system a control loop and feedback function (Technical Committees on Pressure Vessels). Within the framework of European harmonization it is a German concern that technical competence and expertise are not lost in a formally legal, bureaucratic certification procedure. In the course of the European harmonization process, the dual German QA concept should maintain its position by utilizing the specialist knowledge and competence of experts, and permit appropriate adaptation. (orig.)

  15. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  16. Pressure vessel codes: Their application to nuclear reactor systems

    International Nuclear Information System (INIS)

    1966-01-01

    A survey has been made by the International Atomic Energy Agency of how the problems of applying national pressure vessel codes to nuclear reactor systems have been treated in those Member States that had pressurized reactors in operation or under construction at the beginning of 1963. Fifteen answers received to an official inquiry form the basis of this report, which also takes into account some recently published material. Although the answers to the inquiry in some cases data back to 1963 and also reflect the difficulty of describing local situations in answer to standard questions, it is hoped that the report will be of interest to reactor engineers. 21 refs, 1 fig., 2 tabs

  17. Wrap Spinning: Principles and Development

    CSIR Research Space (South Africa)

    Brydon, AG

    1986-02-01

    Full Text Available A wrap yarn is a composite structure comprising a core of twisted or twisted fibres bound by a yarn or continuous filament. The term wrap yarn therefore include yarns produced by the hollow spindle method as well as similar structure such as selfil...

  18. EURCYL. A program to generate finite element meshes for pressure vessel nozzles

    International Nuclear Information System (INIS)

    De Windt, P.; Reynen, J.

    1974-12-01

    EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles

  19. Experimental modelling of core debris dispersion from the vault under a PWR pressure vessel: Part 1

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Trenberth, R.

    1987-12-01

    Modelling experiments have been done on a 1/25 scale model in Perspex of the vault under a PWR pressure vessel. Various liquids have been used to simulate molten core debris assumed to have fallen on to the vault floor from a breach at the bottom of the pressure vessel. High pressure air and helium have been used to simulate the discharge of steam and gas from the breach. The dispersion of liquid via the vault access shafts has been measured. Photographs have been taken of fluid flow patterns and velocity profiles have been obtained. The requirements for further experiments are indicated. (author)

  20. Stress intensities in flawed pressure vessels

    International Nuclear Information System (INIS)

    Smith, C.W.; Jolles, M.; Peters, W.H.

    1977-01-01

    A technique for determining the stess intensity factor (SIF) near pressure vessel flaws or cracks experimentally from photoelastic data for use in two-dimensional problems was developed in the 1950's. This technique was modified and extended to a variety of two-dimensional problems. The technique has been refined further and what has evolved may be regarded as a hybrid technique which affects a marriage between ''frozen stress'' photoelastic results and a simple least-squares digital computer program for estimating SIF values in three-dimensional problems. This technique, in its original modified form, has been shown to be applicable to a study of surface flaws and the applicability of the method to complex crack body geometries of current technological importance are discussed. The analytical foundations of the method are reviewed

  1. Design of pressure vessels. Part 2

    International Nuclear Information System (INIS)

    Grandemange, J.M.

    2008-01-01

    This document deals with the classification of stresses, necessary for the implementation of the mechanical code criteria defined for the pressure vessels of PWR-type reactors. It describes the general approach of design, analysis, and in-service monitoring, the regulatory tests and the modalities of equivalence between industrial construction codes. Content: 1 - damage modes and stresses classification: context, general approach, example of application; 2 - from the design stage to the in-service monitoring: liabilities, design conditions, materials choice and dimensioning, analysis, particular case of pipes and valve parts, in-service monitoring; 3 - regulatory tests: context, tests prescribed by the design and construction rules of PWR mechanical components (RCC-M); 4 - equivalence possibilities between codes: codes for nuclear reactor equipments, convergence between industrial codes and standards; 5 - conclusion. (J.S.)

  2. The design of lifting attachments for the erection of large diameter and heavy wall pressure vessels

    International Nuclear Information System (INIS)

    Antalffy, Leslie P.; Miller, George A.; Kirkpatrick, Kenneth D.; Rajguru, Anil; Zhu, Yong

    2016-01-01

    Lifting attachments for the erection of large diameter and heavy wall pressure vessels require special consideration to ensure that their attachment to their vessel shells or heads do not overstress the vessel during the erection process when lifting these from grade onto their respective foundations. Today, in refinery and petrochemical services, large diameter vessels with diameters ranging up to 15 m and reactors with lifting weights in the range of 700–1400 tons are not uncommon. In today's fabrication market, these vessels may be purchased and fabricated in shops dispersed globally and will require unique equipment for their safe handling, transportation and subsequent erection. The challenge is to design the lifting attachments in such a manner that the attachments provide a safe, cost effective and effective solution based upon the limitations of the job site lift equipment available for erection. Such equipment for the transportation and subsequent lifting of large diameter and heavy wall pressure equipment is usually scarce and quite expensive. Planning ahead, well in advance of the lift date is almost a mandatory requirement. Usually, the specific parameters of the vessel to be lifted and the lifting equipment available at the site will dictate the type of lifting attachments to be designed for the vessel. Once the type of vessel attachment has been chosen, careful consideration must be given to the design of attachments to the pressure vessel in consideration to ensure that the vessel and lifting components are not overstressed during the lifting process. The paper also discusses different types of lifting attachments that may be attached to each end of the vessel either by bolting or welding and discusses the pros and cons of each. The paper also provides an example of a finite element analysis (FEA) of a top nozzle, a FEA of a pair of lifting trunnions and a FEA of welded on lifting lugs for buried pipe. The purpose of the paper is to outline the

  3. Analisis Remaining Life dan Penjadwalan Program Inspeksi pada Pressure Vessel dengan Menggunakan Metode Risk Based Inspection (RBI

    Directory of Open Access Journals (Sweden)

    Dyah Arina Wahyu Lillah

    2017-01-01

    Full Text Available Seiring perkembangan eksplorasi minyak dan gas bumi di dunia, perusahaan minyak dan gas di Indonesia juga turut berlomba-lomba untuk mendapatkan ladang minyak dan gas bumi sebanyak-banyaknya. Perkembangan ini turut dipengaruhi oleh aturan-aturan pemerintah mengenai keselamatan dan pencegahan bahaya baik pada unit yang dikelola maupun tenaga kerja pengelola. Untuk itu semua perlatan-peralatan (unit kerja harus dijamin kehandalaannya agar tidak menimbulkan bahaya baik bagi pekerja maupun lingkungan. Subjek penelitian dalam tugas akhir ini ialah pada pressure vessel yang dimiliki oleh Terminal LPG Semarang. Kemungkinan bahaya yang dapat menyebabkan kerusakan pada pressure vessel perlu dianalisis agar dapat meminimalkan resiko yang akan terjadi. Metode Risk Based Inspection (RBI diharapkan dapat meminimalkan resiko yang ada pada pressure vessel. Penilaian resiko dalam tugas akhir ini mengacu pada standar API RP 581. Untuk mengetahui besarnya resiko yang ada pada plant, maka terlebih dahulu harus dihitung besarnya probabilitas kegagalan dan konsekuensi apabila terjadi kegagalan. Langkah selanjutnya ialah membandingkan besarnya resiko yang didapat dengan target resiko yang dimiliki oleh perusahaan. Dari hasil perbandingan ini dapat diketahui tingkat resiko pressure vessel, sehingga dapat ditentukan jadwal inspeksi dan metode inspeksi yang tepat.

  4. On the state of acoustic emission analysis in pressure vessel and model vessel testing

    International Nuclear Information System (INIS)

    Morgner, W.; Theis, K.; Henke, F.; Imhof, D.

    1985-01-01

    In the GDR acoustic emission analysis is being applied primarily in connection with hydraulic pressure testing of vessels in chemical industry. It is, however, also used for testing and monitoring of equipment and components in other branches of industry. The state-of-the-art is presented with regard to equipment needed, training of personnel, licensing of testing methods and appropriate testing procedures. In particular, the evaluation of the sum curves and amplitude distributions is explained, using rupture tests of two oxygen cylinders and a compressed-air bottle as examples. (author)

  5. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  6. Plastic limit pressure of spherical vessels with combined hardening involving large deformation

    International Nuclear Information System (INIS)

    Leu, S.-Y.; Liao, K.-C.; Lin, Y.-C.

    2014-01-01

    The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis. The onset of instability was also derived and solved iteratively by Newton's method. Numerically, elastic–plastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem formulation and the solution derivations presented here are validated by a very good agreement between the numerical results of exact solutions and the results of elastic–plastic finite-element analysis by ABAQUS. -- Highlights: • Sequential limit analysis is extended to consider combined hardening. • Exact solutions of plastic limit pressure are developed. • The onset of instability of a spherical vessel is derived and solved numerically

  7. Pressure vessel SBLOCA simulation with trace: application to ISTF (Rosa V) - 151

    International Nuclear Information System (INIS)

    Abella, V.; Gallardo, S.; Verdu, G.

    2010-01-01

    In this work, an overview of the results obtained in the simulation of an Upper Head Small Break Loss-Of-Coolant-Accident (SBLOCA) under the assumption of total failure of High Pressure Injection System (HPIS) in the Large Scale Test Facility (LSTF) is provided. In previous works, an SBLOCA located in the Pressure Vessel (PV) Lower Plenum was simulated with TRACE. In that case, an asymmetrical steam generator secondary-side depressurization was produced as an accident management action at the Steam Generator in loop without pressurizer after the generation of safety injection signal to achieve a determined depressurization rate in the primary system. The new SBLOCA scenario has been simulated and results compared with experimental values, with the purpose of completing the analysis of PV SBLOCA. This study is developed in the frame of the OECD/NEA ROSA Project Test 6-1 (SB-PV-9 in JAEA). Finally, the present paper represents a contribution for the study of safety analysis of vessel SBLOCAs and the assessment of the predictability of thermal-hydraulic codes like TRACE. (authors)

  8. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  9. APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Blavette, D.

    1996-01-01

    Pressure vessel steels used in PWRs are known to be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are commonly supposed to result from the formation of point defects, dislocation loops, voids and copper-rich precipitates. However, the real nature of the irradiation induced damage, in these particularly low copper steels (>0,1 wt%), has not been clearly identify yet. A new experimental work has been carried out thanks to atom probe and field ion microscopy (APFIM) facilities and, more particularly with a new generation of atom probe recently developed, namely the tomographic atom probe (TAP), in order to improve: the understanding of the complex behavior of copper precipitation which occurs when low-alloyed Fe-Cu model alloys are irradiated with neutrons; the microstructural characterization of the pressure vessel steel of the CHOOZ A reactor under various fluences (French Surveillance Programme). The investigations clearly reveal the precipitation of copper-rich clusters in irradiated Fe-Cu alloys while more complicated Si, Ni, Mn and Cu-solute 'clouds' were observed to develop in the low-copper ferritic solid solution of the pressure vessel steel. (authors)

  10. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  11. Matching the results of a theoretical model with failure rates obtained from a population of non-nuclear pressure vessels

    International Nuclear Information System (INIS)

    Harrop, L.P.

    1982-02-01

    Failure rates for non-nuclear pressure vessel populations are often regarded as showing a decrease with time. Empirical evidence can be cited which supports this view. On the other hand theoretical predictions of PWR type reactor pressure vessel failure rates have shown an increasing failure rate with time. It is shown that these two situations are not necessarily incompatible. If adjustments are made to the input data of the theoretical model to treat a non-nuclear pressure vessel population, the model can produce a failure rate which decreases with time. These adjustments are explained and the results obtained are shown. (author)

  12. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and...-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure...

  13. LWR pressure vessel irradiation surveillance dosimetry. Quarterly progress report, July--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G L; McElroy, W N; Lippincott, E P; Gold, R

    1978-12-01

    Program objectives and progress to date by the national laboratories in LWR pressure vessel irradiation surveillance dosimetry are summarized. Participants in the program include: Rockwell International, Hanford Engineering Development Laboratory, National Bureau of Standards, and Oak Ridge National Laboratory.

  14. Mechanical properties of reactor pressure vessel steels studied by static and dynamic torsion tests

    International Nuclear Information System (INIS)

    Munier, A.; Maamouri, M.; Schaller, R.; Mercier, O.

    1993-01-01

    Internal friction measurements and torsional plastic deformation tests have been performed in reactor pressure vessel steels (unirradiated, irradiated and irradiated/annealed specimens). The results of these experiments have been interpreted with help of transmission electron microscopy observations (conventional and in situ). It is shown how the interactions between screw dislocations and obstacles (Peierls valleys, impurities and precipitates) could explain the low temperature hardening and the irradiation embrittlement of ferritic steels. In addition, it appears that the nondestructive internal friction technique could be used advantageously to follow the evolution of the material properties under irradiation, as for instance the irradiation embrittlement of the reactor pressure vessel steels. (orig.)

  15. Improvement of methods to evaluate brittle failure resistance of the WWER reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A A; Parshutin, E V [Engineering Center of Nuclear Equipment Strength, Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rogov, M F; Dragunov, U G [Experimenter` s and Designer` s Office ` ` Hydropress` ` (Russian Federation)

    1997-09-01

    At the next 10 years a number of Russian WWER nuclear power plants will complete its design lifetime. Normative methods to evaluate brittle failure resistance of the reactor pressure vessels used in Russia have been intended for design stage. The evaluation of reactor pressure vessel lifetime in operation stage demands to create new methods of calculation and new methods for experimental evaluation of brittle failure resistance degradation. The main objective of the study in this type of reactor is weldment number 4. In this report an analysis is made of methods to determine critical temperature of reactor materials including the results of instrumented Charpy testing. 12 figs.

  16. Prevention of non-ductile fracture in 6061-T6 aluminum nuclear pressure vessels

    International Nuclear Information System (INIS)

    Yahr, G.T.

    1995-01-01

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Committee has approved rules for the use of 6061-T6 and 6061-T651 aluminum for the construction of Class 1 welded nuclear pressure vessels for temperatures not exceeding 149 C (300 F). Nuclear Code Case N-519 allows the use of this aluminum in the construction of low temperature research reactors such as the Advanced Neutron Source. The rules for protection against non-ductile fracture are discussed. The basis for a value of 25.3 MPa √m (23 ksi √in.) for the critical or reference stress intensity factor for use in the fracture analysis is presented. Requirements for consideration of the effects of neutron irradiation on the fracture toughness are discussed

  17. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  18. The influence of fire exposure on austenitic stainless steel for pressure vessel fitness-for-service assessment: Experimental research

    Science.gov (United States)

    Li, Bo; Shu, Wenhua; Zuo, Yantian

    2017-04-01

    The austenitic stainless steels are widely applied to pressure vessel manufacturing. The fire accident risk exists in almost all the industrial chemical plants. It is necessary to make safety evaluation on the chemical equipment including pressure vessels after fire. Therefore, the present research was conducted on the influences of fire exposure testing under different thermal conditions on the mechanical performance evolution of S30408 austenitic stainless steel for pressure vessel equipment. The metallurgical analysis described typical appearances in micro-structure observed in the material suffered by fire exposure. Moreover, the quantitative degradation of mechanical properties was investigated. The material thermal degradation mechanism and fitness-for-service assessment process of fire damage were further discussed.

  19. The criteria of fracture in the case of the leak of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Habil; Ziliukas, A.

    1997-04-01

    In order to forecast the break of the high pressure vessels and the network of pipes in a nuclear reactor, according to the concept of leak before break of pressure vessels, it is necessary to analyze the conditions of project, production, and mounting quality as well as of exploitation. It is also necessary to evaluate the process of break by the help of the fracture criteria. In the Ignalina Nuclear Power Plant of, in Lithuania, the most important objects of investigation are: the highest pressure pipes, made of Japanese steel 19MN5 and having an anticorrosive austenitic: coal inside, the pipes of distribution, which arc made of 08X1810T steel. The steel of the network of pipes has a quality of plasticity: therefore the only criteria of fragile is impossible to apply to. The process of break would be best described by the universal criteria of elastic - plastic fracture. For this purpose the author offers the criterion of the double parameter.

  20. Flow distribution and pressure loss in subchannels of a wire-wrapped 37-pin rod bundle for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Euh, Dong Jin; Choi, Hae Seob; Kim, Hyung Mo; Choi, Sun Rock; Lee, Hyeong Yeon [Thermal-Hydraulic Safety Research Department, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and 60 degrees C (equivalent to Re ∼ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.