WorldWideScience

Sample records for woven glass fiber

  1. Mechanical properties of woven glass fiber-reinforced composites.

    Science.gov (United States)

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2006-06-01

    The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.

  2. Mechanical properties of non-woven glass fiber geopolymer composites

    Science.gov (United States)

    Rieger, D.; Kadlec, J.; Pola, M.; Kovářík, T.; Franče, P.

    2017-02-01

    This experimental research focuses on mechanical properties of non-woven glass fabric composites bound by geopolymeric matrix. This study investigates the effect of different matrix composition and amount of granular filler on the mechanical properties of final composites. Matrix was selected as a metakaolin based geopolymer hardened by different amount of potassium silicate activator. The ceramic granular filler was added into the matrix for investigation of its impact on mechanical properties and workability. Prepared pastes were incorporated into the non-woven fabrics by hand roller and final composites were stacked layer by layer to final thickness. The early age hardening of prepared pastes were monitored by small amplitude dynamic rheology approach and after 28 days of hardening the mechanical properties were examined. The electron microscopy was used for detail description of microstructural properties. The imaging methods revealed good wettability of glass fibers by geopolymeric matrix and results of mechanical properties indicate usability of these materials for constructional applications.

  3. Woven Glass Fiber Composites with Aligned Carbon Nanotube Sheet Interlayers

    Directory of Open Access Journals (Sweden)

    Hardik Bhanushali

    2016-01-01

    Full Text Available This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB and end notched flexure (ENF experiments, respectively. Short beam strength (SBS and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2 were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.

  4. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  5. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    Science.gov (United States)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  6. Water sorption and dimensional changes of denture base polymer reinforced with glass fibers in continuous unidirectional and woven form.

    Science.gov (United States)

    Cal, N E; Hersek, N; Sahin, E

    2000-01-01

    The aim of this study was to determine the dimensional accuracy and water sorption of a denture base polymer that was reinforced with glass fibers in continuous unidirectional and woven form in different weight fractions. Ten rhombic brass plates were prepared with reference points, and 70 heat-cured denture base polymer specimens were produced using these brass models. Ten of 70 were used for controls, and 60 were reinforced with glass fibers in continuous parallel and woven form. The dimensional changes of polymer and fiber-reinforced composite specimens after processing, drying for 4 days at 37 degrees C, and storage in 37 degrees C water for 90 days were calculated by the change of the distance vector. The measurements were made between the reference points on the specimens and were compared with those on the brass model at 4 different stages. The water sorption calculations were made at 10 different time intervals on 70 specimens, which were immersed in a 37 degrees C distilled water bath and weighed. The polymerization shrinkage and water sorption of denture base polymers is lower when the specimens are reinforced with glass fibers in continuous unidirectional and woven form. The highest fiber content showed the smallest dimensional change (0.069 mm, or 0.25%), and the unreinforced group showed the largest change (0.139 mm, or 0.54%). Water sorption occurred mainly during the first 14 days. As the fiber content increases, the dimensional change and water sorption decrease.

  7. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Science.gov (United States)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  8. The Effect of Temperature and Nanoclay on the Low Velocity and Ballistic Behavior of Woven Glass-Fiber Reinforced Composites

    Science.gov (United States)

    Patrin, Lauren

    The objective of this research was to study the effect of nanoclay and temperature on the behavior of woven glass-fabric reinforced epoxy composite under low velocity and ballistic impacts. The materials used in manufacturing the composite were S2 (6181) glass-fibers, epoxy resin (EPON 828), hardener (Epikure 3230), nanoclay and Heloxy 61 modifier. The nanoclay addition was 0%, 1%, 3% and 5% by weight, with respect to the resin. All specimens were manufactured at the City College facilities using vacuum infusion. Tensile tests were conducted to characterize the material and obtain the Young's modulus, ultimate stress, failure strain, Poisson's ratio, shear modulus and shear strength and their variation with nanoclay percentage and temperature. The tests were conducted at room temperature (21°C/70°F), -54°C (-65°F), -20°C (-4°F), 49°C (120°F) and 71°C (160°F). Next composite specimens with 0%, 1%, 3% and 5% nanoclay by weight, with respect to the resin, were subjected to low velocity impact at the previously specified temperatures to determine dynamic force, displacement and energy correlations. The extent of damage was studied using the ultrasound technique. Then ballistic tests were conducted on the nanoclay infused specimens at room temperature to obtain the ballistic limit (V50) and the damage behavior of the composite. The dynamic finite element analysis (FEA) software LS-DYNA was used to model and simulate the results of low velocity impact tests. Good agreement was obtained between experimental and numerical (FEA) results. Analytical analyses were undertaken to compare the results from the tensile experiments. The finite element analysis (FEA) allowed for further analytical comparison of the results. The FEA platform used was LS-DYNA due to its proficient dynamic and damage capabilities in composite materials. The FEA was used to model and simulate the low velocity impacts and compare the results to experiments.

  9. Dynamic Mechanical Analysis and High Strain-Rate Energy Absorption Characteristics of Vertically Aligned Carbon Nanotube Reinforced Woven Fiber-Glass Composites

    Directory of Open Access Journals (Sweden)

    Kiyun Kim

    2015-01-01

    Full Text Available The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT forests grown on woven fiber-glass (FG layer and embedded within 10 layers of woven FG, with polyester (PE and polyurethane (PU resin systems (FG/PE/VACNT and FG/PU/VACNT are investigated and compared with the baseline materials, FG/PE and FG/PU (i.e., without VACNT. A Dynamic Mechanical Analyzer (DMA was used for obtaining the mechanical properties. It was found that FG/PE/VACNT exhibited a significantly lower flexural stiffness at ambient temperature along with higher damping loss factor over the investigated temperature range compared to the baseline material FG/PE. For FG/PU/VACNT, a significant increase in flexural stiffness at ambient temperature along with a lower damping loss factor was observed with respect to the baseline material FG/PU. A Split Hopkinson Pressure Bar (SHPB was used to evaluate the energy absorption and strength of specimens under high strain-rate compression loading. It was found that the specific energy absorption increased with VACNT layers embedded in both FG/PE and FG/PU. The compressive strength also increased with the addition of VACNT forest layers in FG/PU; however, it did not show an improvement for FG/PE.

  10. Formable woven preforms based on in situ reinforced thermoplastic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.G.; Souza, J.P. de; Baird, D.G. [Virginia Polytechnic Institute & State Univ., Blacksburg, VA (United States)

    1995-12-01

    Blends of Vectra B950 (VB) and polypropylene (PP) were spun into fibers utilizing a dual extrusion process for use in formable fabric prepregs. Fibers of 50/50 weight composition were processed up to fiber draw ratios of 106. The tensile modulus of these fibers showed positive deviation from the rule of mixtures for draw ratios greater than 40, and the tensile modulus and strength properties did not level off within the range of draw ratios investigated. The fibers, pre-wetted with polypropylene, were woven into fabrics that were subsequently impregnated with polypropylene sheet to form composites. The tensile mechanical properties of these composites were nearly equivalent to those of long glass fiber reinforced polypropylene. At temperatures between 240 and 280{degrees}C, composites of 6.3 wt.% VB proved formable with elongation to break values in excess of 20%. Impregnated fabric composites were successfully thermoformed without noticeable fiber damage, and a combined fabric impregnation / thermoforming process was developed.

  11. Electromagnetic Properties of Multifunctional Composites Based on Glass Fiber Prepreg and Ni/Carbon Fiber Veil

    OpenAIRE

    Silveira, Daniel Consoli; Gomes, Newton; Rezende, Mirabel Cerqueira; Botelho, Edson Cocchieri

    2017-01-01

    ABSTRACT: Multifunctional composites combine structural and other physicochemical properties, with major applications in aeronautical, space, telecommunication, automotive, and medical areas. This research evaluates electromagnetic properties of multifunctional composites based on glass fiber woven fabric pre-impregnated with epoxy resin laminated together carbon fiber non-woven veil metalized with Ni. In this way, searching for possible application as radar absorbing structures or electromag...

  12. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  13. LCO flutter of cantilevered woven glass/epoxy laminate in subsonic flow

    Science.gov (United States)

    Majid, Dayang Laila Abang Haji Abdul; Basri, Shahnor

    2008-02-01

    The paper presents aeroelastic characteristics of a cantilevered composite wing, idealized as a composite flat plate laminate. The composite laminate was made from woven glass fibers with epoxy matrix. The elastic and dynamic properties of the laminate were determined experimentally for aeroelastic calculations. Aeroelastic wind tunnel testing of the laminate was performed and the result showed that flutter, a dynamic instability occurred. The cantilevered laminate also displayed limit cycle amplitude, post-flutter oscillation. The experimental flutter velocity and frequency were verified by our computational analysis.

  14. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats.

    Science.gov (United States)

    Xiang, Chunhui; Frey, Margaret W

    2016-04-07

    Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber-fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young's modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young's modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young's modulus of the electrospun nylon 6 non-woven fiber mats.

  15. Tensile Behavior Analysis on Different Structures of 3D Glass Woven Perform for Fibre Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Mazhar Hussain Peerzada

    2013-01-01

    Full Text Available Three common 3D (Three Dimensional Glass woven structures were studied to analyze the tensile behavior. Each type of strand (Warp, weft and binder of 3D woven structure was studied in detail. Crimp percentage of those strands was measured by crimp meter. Standard size samples of each 3D woven structure were cut in warp and weft direction and were stretched by Instron Tensile testing computerized machine. Results reveal that hybrid possesses lowest crimp in core strands and higher strength in warp as well as weft direction. Layer to layer woven structure appeared with lower strength and higher strain value due to highest crimp percentage in core strands.

  16. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    Directory of Open Access Journals (Sweden)

    Chunhui Xiang

    2016-04-01

    Full Text Available Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats.

  17. Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman J. Sharba

    2016-01-01

    Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.

  18. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    National Research Council Canada - National Science Library

    Soichiro Kumamoto; Kazuya Okubo; Toru Fujii

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP...

  19. Dielectric Behaviour of Some Woven Fabrics on the Basis of Natural Cellulosic Fibers

    Directory of Open Access Journals (Sweden)

    Florin St. C. Mustata

    2014-01-01

    Full Text Available The electrical permittivity of the weaves obtained from natural cellulosic yarns or mixed with synthetic fibers was established with capacitor method. The highest value of relative electrical permittivity in case of the woven fabric from natural cellulosic fibers has been observed at the weave made of pure hemp (13.55 and the lowest at the weave obtained from the pure jute—weave packing (1.87. Electrical permittivity value of the pure jute weave packing is comparable to that of the permittivity for the glass thread, when the work conditions are as follows: temperature 25°C and air humidity 35%. The relative electrical permittivity of the weave is depending on the degree of crimping yarns especially in the weft direction, technological density in direction of the warp and weft, and surface mass of the weave.

  20. Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites

    Science.gov (United States)

    2016-09-01

    compression using experiments and XFEM modeling. The cylinder was constructed of unidirectional ( non - woven ) tapes oriented along the hoop and...NUWC-NPT Technical Report 12,216 1 September 2016 Effects of Crimped Fiber Paths on Mixed-Mode Delamination Behaviors in Woven Fabric...Mode Delamination Behaviors in Woven Fabric Composites 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paul V. Cavallaro

  1. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    OpenAIRE

    Chunhui Xiang; Frey, Margaret W.

    2016-01-01

    Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 w...

  2. Cryogenic Interlaminar Fracture Properties of Woven Glass/Epoxy Composite Laminates Under Mixed-Mode I/III Loading Conditions

    Science.gov (United States)

    Miura, Masaya; Shindo, Yasuhide; Takeda, Tomo; Narita, Fumio

    2013-08-01

    We characterize the combined Mode I and Mode III delamination fracture behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. The eight-point bending plate (8PBP) tests were conducted at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K) using a new test fixture. A three-dimensional finite element analysis was also performed to calculate the energy release rate distribution along the delamination front, and the delamination fracture toughnesses were evaluated for various mixed-mode I/III ratios. Furthermore, the microscopic examinations of the fracture surfaces were carried out with scanning electron microscopy (SEM), and the mixed-mode I/III delamination fracture mechanisms in the woven GFRP laminates at cryogenic temperatures were assessed. The fracture properties were then correlated with the observed characteristics.

  3. Numerical and Experimental Investigations on Deep Drawing of G1151 Carbon Fiber Woven Composites

    Science.gov (United States)

    Gherissi, A.; Abbassi, F.; Ammar, A.; Zghal, A.

    2016-06-01

    This study proposes to simulate the deep drawing on carbon woven composites in order to reduce the manufacturing cost and waste of composite material during the stamping process, The multi-scale anisotropic approach of woven composite was used to develop a finite element model for simulating the orientation of fibers accurately and predicting the deformation of composite during mechanical tests and forming process. The proposed experimental investigation for bias test and hemispherical deep drawing process is investigated in the G1151 Interlock. The mechanical properties of carbon fiber have great influence on the deformation of carbon fiber composites. In this study, shear angle-displacement curves and shear load-shear angle curves were obtained from a bias extension test. Deep drawing experiments and simulation were conducted, and the shear load-displacement curves under different forming depths and shear angle-displacement curves were obtained. The results showed that the compression and shear between fibers bundles were the main deformation mechanism of carbon fiber woven composite, as well as the maximum shear angle for the composites with G1151 woven fiber was 58°. In addition, during the drawing process, it has been found that the forming depth has a significant influence on the drawing force. It increases rapidly with the increasing of forming depth. In this approach the suitable forming depth deep drawing of the sheet carbon fiber woven composite was approximately 45 mm.

  4. Safely splicing glass optical fibers

    Science.gov (United States)

    Korbelak, K.

    1980-01-01

    Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

  5. Woven electrodes for flexible organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kylberg, William; Chu, Bryan Tsu-Te; Nueesch, Frank; Hany, Roland [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Functional Polymers, Duebendorf (Switzerland); De Castro, Fernando Araujo [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Functional Polymers, Duebendorf (Switzerland); Electrochemistry and Corrosion Group, National Physical Laboratory, Teddington, Middlesex (United Kingdom); Chabrecek, Peter; Sonderegger, Uriel [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Functional Polymers, Duebendorf (Switzerland); Sefar AG, Freibach, Thal (Switzerland)

    2011-02-22

    A stable, conductive, transparent, and flexible electrode based on a precision fabric with metal wires and polymer fibers woven into a mesh is presented. Organic solar cells on woven mesh electrodes and on conventional glass/ITO substrates with very similar performance characteristics are demonstrated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Numerical and Experimental Investigations on Deep Drawing of G1151 Carbon Fiber Woven Composites

    OpenAIRE

    GHERISSI, A; ABBASSI, F; Ammar, Amine; Zghal, A.

    2016-01-01

    International audience; This study proposes to simulate the deep drawing on carbon woven composites in order to reduce the manufacturing cost and waste of composite material during the stamping process, The multi-scale anisotropic approach of woven composite was used to develop a finite element model for simulating the orientation of fibers accurately and predicting the deformation of composite during mechanical tests and forming process. The proposed experimental investigation for bias test ...

  7. Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2015-01-01

    Full Text Available In the present work, natural Polyalthiacerasoide woven fabrics were extracted from the bark of the tree and using these woven fabrics/glass fibre as reinforcements and epoxy as matrix the hybrid composites were prepared by the hand lay-up technique...

  8. Simulation of Glass Fiber Forming Processes

    DEFF Research Database (Denmark)

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...

  9. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-01-01

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251

  10. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  11. Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties

    Science.gov (United States)

    Samsur, R.; Rangari, V. K.; Jeelani, S.; Zhang, L.; Cheng, Z. Y.

    2013-06-01

    Multiwall carbon nanotubes (CNTs) were directly grown on woven carbon fibers using chemical vapor deposition technique and iron acetate as a catalyst. These CNTs grown woven carbon fibers were further infused with epoxy resin to fabricate fiber reinforced nanocomposites. Both electric and mechanical properties of these composites were studied and found that the electric resistivity of composite reduced significantly as the amount of CNTs on woven carbon fiber increased. For the neat composite without CNTs, the resistivity observed was 25 Ω.m, while it was only 0.2 Ω.m for the composite with 3.3 wt. % of CNTs grown on woven carbon fiber. The flexure test results showed a 34% increase in strength and 126% increase in stiffness for 1.65 wt. % CNTs grown on woven carbon fiber.

  12. Effect of Sea Water and Natural Ageing on Residual Strength of Epoxy Laminates, Reinforced with Glass and Carbon Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Andrzej Komorek

    2016-01-01

    Full Text Available This paper reports the results of the effect of sea water, natural ageing, and cross-impact loading on flexural strength and residual flexural strength of epoxy laminates with glass woven fabrics and hybrid reinforcement with glass and carbon woven fabrics. The tests were conducted on samples with different fibre reinforcement both before and after low energy cross-impact loading. Carbon fabrics decreased residual strength of the composites.

  13. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  14. Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites

    OpenAIRE

    Li, Li; Swolfs, Yentl; Straumit, Ilya; Yan, Xiong; Lomov, Stepan Vladimirovitch

    2016-01-01

    Understanding the failure mechanisms in textile composites based on acoustic emission (AE) signals is a challenging task. In the present work, unsupervised cluster analysis is performed on the AE data registered during tensile tests on 2D and 3D woven carbon fiber/epoxy composites. The analysis is based on the k-means++ algorithm and principal component analysis. Peak amplitude and frequency features – peak frequency for 2D woven composites and frequency centroid for 3D woven composites – wer...

  15. Containerless Manufacture of Glass Optical Fibers

    Science.gov (United States)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  16. Visual classification of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber reinforced polymer specimens

    OpenAIRE

    Weissenböck, Johannes; Bhattacharya, Arindam; Plank, Bernhard; Heinzl, Christoph; Kastner, Johann

    2016-01-01

    In recent years, advanced composite materials such as carbon fiber reinforced polymers (CFRP) are used in many fields of application (e.g., automotive, aeronautic and leisure industry). These materials are characterized by their high stiffness and strength, while having low weight. Especially, woven carbon fiber reinforced materials have outstanding mechanical properties due to their fabric structure. To analyze and develop the fabrics, it is important to understand the course of the individu...

  17. Development of new radiopaque glass fiber posts

    Energy Technology Data Exchange (ETDEWEB)

    Furtos, Gabriel, E-mail: gfurtos@yahoo.co.uk [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania); Baldea, Bogdan [Dep. of Prosthodontics, Faculty of Dental Medicine, Timisoara (Romania); Silaghi-Dumitrescu, Laura [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania)

    2016-02-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  18. Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures

    Science.gov (United States)

    Takeda, Tomo; Miura, Masaya; Shindo, Yasuhide; Narita, Fumio

    2013-12-01

    We investigate the cryogenic delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode II/III fatigue loading. Fatigue delamination tests were conducted with six-point bending plate (6PBP) specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), and the delamination growth rate data for various mixed-mode ratios of Modes II and III were obtained. The energy release rate was evaluated using the three-dimensional finite element method. In addition, the fatigue delamination growth mechanisms were characterized by scanning electron microscopic observations of the specimen fracture surfaces.

  19. Glass fiber and silica reinforced rigid polyurethane foams

    National Research Council Canada - National Science Library

    M W Kim; S H Kwon; H Park; B K Kim

    2017-01-01

    Ternary composites of rigid polyurethane foam (RPUF)/glass fiber/silica as well as RPUF/glass fiber have been fabricated from glass fiber, silica, polymeric 4,4'-di-phenylmethane diisocyanate (PMDI...

  20. Complementary methods for nondestructive testing of composite materials reinforced with carbon woven fibers

    Science.gov (United States)

    Steigmann, R.; Iftimie, N.; Sturm, R.; Vizureanu, P.; Savin, A.

    2015-11-01

    This paper presents complementary methods used in nondestructive evaluation (NDE) of composite materials reinforced with carbon woven fibers as two electromagnetic methods using sensor with orthogonal coils and sensor with metamaterials lens as well as ultrasound phased array method and Fiber Bragg gratings embedded instead of a carbon fiber for better health monitoring. The samples were impacted with low energy in order to study delamination influence. The electromagnetic behavior of composite was simulated by finite- difference time-domain (FDTD) software, showing a very good concordance with electromagnetic nondestructive evaluation tests.

  1. Mechanical analysis of three dimensional woven carbon fiber-reinforced composites using fiber-based continuum model

    Science.gov (United States)

    Ahn, Hyunchul; An, Yongsan; Yu, Woong-Ryeol

    2016-10-01

    A new numerical method for analyzing the mechanical behavior of three-dimensional (3D) woven carbon fiber-reinforced composites was developed by considering changes in the fiber orientation and calculating the stress increments due to incremental deformations. The model consisted of four steps, starting update of the yarn orientation based on incremental deformation gradient. The stiffness matrix was then computed using the updated yarn orientation. Next, partial damage and propagation were incorporated into the stress calculation using modified ply discount method. The failure conditions were obtained by testing the unidirectional composites and formulated using Puck's criterion. This numerical model was finally implemented into commercial finite element software, ABAQUS, as a user material subroutine. As for experiment, 3D woven composite samples was manufactured using laboratory built-in system and characterized, the results of which were compared with simulated results, demonstrating that the current numerical model can properly predict the mechanical behavior of 3D fiber-reinforced composites.

  2. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    Science.gov (United States)

    Kumamoto, Soichiro; Okubo, Kazuya; Fujii, Toru

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP). To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF) test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages) in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  3. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    Kumamoto Soichiro

    2016-01-01

    Full Text Available The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP. To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  4. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor.

    Science.gov (United States)

    Zhang, Ye; Chotteau, Véronique

    2015-12-01

    This data article shows how the recombinant Chinese Hamster Ovary (CHO) cells are located in the interstices of the matrix fibers of a CellTank bioreactor after completion of a perfusion culture, supporting the article entitled "Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor" by Zhang et al. [1]. It provides a visualization of the cell distribution in the non-woven fiber matrix in a deeper view.

  5. Woven glass fabric reinforced laminates based on polyolefin wastes: Thermal, mechanical and dynamic-mechanical properties

    Science.gov (United States)

    Russo, Pietro; Acierno, Domenico; Simeoli, Giorgio; Lopresto, Valentina

    2014-05-01

    Potentialities of polyolefin wastes in place of virgin polypropylene to produce composite laminates have been investigated. Plaques reinforced with a woven glass fabric were prepared by film-stacking technique and systematically analyzed in terms of thermal, mechanical and dynamic-mechanical properties. In case of PP matrices, the use of a typical compatibilizer to improve the adhesion at the interface has been considered. Thermal properties emphasized the chemical nature of plastic wastes. About mechanical properties, static tests showed an increase of flexural parameters for compatibilized systems due to the coupling effect between grafted maleic anhydride and silane groups on the surface of the glass fabric. These effects, maximized for composites based on car bumper wastes, is perfectly reflected in terms of storage modulus and damping ability of products as determined by single-cantilever bending dynamic tests.

  6. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  7. Visual classification of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber reinforced polymer specimens

    Directory of Open Access Journals (Sweden)

    Johannes Weissenböck

    2016-11-01

    Full Text Available In recent years, advanced composite materials such as carbon fiber reinforced polymers (CFRP are used in many fields of application (e.g., automotive, aeronautic and leisure industry. These materials are characterized by their high stiffness and strength, while having low weight. Especially, woven carbon fiber reinforced materials have outstanding mechanical properties due to their fabric structure. To analyze and develop the fabrics, it is important to understand the course of the individual fiber bundles. Industrial 3D X-ray computed tomography (XCT as a nondestructive testing method allows resolving these individual fiber bundles. In this paper, we show our findings when applying the method of Bhattacharya et al. [6] for extracting fiber bundles on two new types of CFRP specimens. One specimen contains triaxial braided plies in an RTM6 resin and another specimen woven bi-diagonal layers. Furthermore, we show the required steps to separate the individual bundles and the calculation of the individual fiber bundles characteristics which are essential for the posterior visual analysis and exploration. We further demonstrate the classification of the individual fiber bundles within the fabrics to support the domain experts in perceiving the weaving structure of XCT scanned specimens.

  8. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  9. Germanate Glass Fiber Lasers for High Power

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-JP-TR-2016-0020 Germanate glass fiber lasers for high power David Lancaster THE UNIVERSITY OF ADELAIDE Final Report 01/04/2016...COVERED (From - To) 01-07-2014 to 30-06-2015 4. TITLE AND SUBTITLE Germanate glass fiber lasers for high power 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...germanate based glasses with a specific focus on glass stability during thermal-cycling which is representative of the steps required to fabricate a doped

  10. Effects of glass fiber layering on the flexural strength of microfill and hybrid composites.

    Science.gov (United States)

    Eronat, Nesrin; Candan, Umit; Türkün, Murat

    2009-01-01

    In stress-bearing cavities, low fracture resistance adversely affects the longevity of the dental resin composite restorations. The aim of this in vitro study was to investigate the effect of glass fiber layering on the flexural strength of microfill and hybrid composites. Flexural test specimens (N = 75) were prepared according to International Organization for Standardization (ISO) 4049 specifications (25 x 2 x 2 mm) by using a standard metallic mold. Materials used and groups were as follows (N = 15): group 1: hybrid composite (Clearfil APX, Kuraray Co.Ltd, Osaka, Japan); group 2: microfill composite (Clearfil ST, Kuraray Co.Ltd.); group 3: hybrid + microfill composite; group 4: woven glass fiber (EverstickNet, StickTech Ltd, Turku, Finland) + hybrid composite; group 5: woven glass fiber + microfill composite. The specimens were stored in distilled water at 37 degrees C for 7 days. Afterward, they were loaded to fracture (1 mm/min) by using a universal testing machine (AG-50 kNG Shimadzu Co., Kyoto, Japan). Flexural strengths were expressed as maximum flexural load per cross-sectional area of the specimen. The results were statistically analyzed with Kruskall-Wallis and Mann-Whitney U tests (p 0.01). Glass fiber layering of microfill and hybrid composites presented higher flexural strength, and veneering of hybrid composite with microfill composite increased the resistance of the restoration.

  11. Drop Weight Impact Studies of Woven Fibers Reinforced Modified Polyester Composites

    Directory of Open Access Journals (Sweden)

    Muhammed Tijani ISA

    2014-02-01

    Full Text Available Low velocity impact tests were conducted on modified unsaturated polyester reinforced with four different woven fabrics using hand-layup method to investigate the effect of fiber type and fiber combinations. The time-load curves were analysed and scanning electron microscopy was used to observe the surface of the impacted composite laminates. The results indicated that all the composites had ductility index (DI of above two for the test conducted at impact energy of 27J with the monolithic composite of Kevlar having the highest DI. The damage modes observed were mainly matrix cracks and fiber breakages. Hybridization of the fibers in the matrix was observed to minimize these damages.

  12. In vitro evaluation of glass fiber post

    OpenAIRE

    Kaur, Jasjit; Sharma, Navneet; Singh, Harpal

    2012-01-01

    Statement of problem: Techniques and recommendations for the restoration of endodontically treated teeth have changed from the use of custom cast metal post and core system to glass fiber-reinforced (GFRC) post and composite core system. Has this latest prefabricated glass fiber reinforced post and composite core system increased the fracture resistance of teeth and reduced the incidence of unrestorable root fractures. Purpose: The purpose of this study was to evaluate the incidence of root f...

  13. Hollow glass fibers in reinforcing glass ionomer cements.

    Science.gov (United States)

    Garoushi, Sufyan; Vallittu, Pekka; Lassila, Lippo

    2017-02-01

    This study investigated the reinforcing effect of hollow and solid discontinuous glass fiber fillers with two different loading fractions on select mechanical properties of conventional and resin modified glass ionomer cements (GICs). Experimental fiber reinforced GIC was prepared by adding discontinuous glass fiber (hollow/solid) of 0.5mm in length to the powder of commercial GICs (GC Fuji IX and II LC) with two different weight ratios (5 and 10wt%) using a high speed mixing machine. Fracture toughness, work of fracture, flexural strength, flexural modulus, compressive strength and diametral tensile strength were determined for each experimental and control material. The specimens (n=7) were wet stored (37°C for one day) before testing. Scanning electron microscopy was used to evaluate the microstructure of the experimental fiber reinforced GICs. Fiber length analysis was carried out to investigate the fiber length distribution of experimental GICs. The results were analyzed statistically using ANOVA followed by Tukey's post hoc test. Level of significance was set at 0.05. An increase in fracture toughness (280 and 200%) and flexural strength (170 and 140%) of hollow discontinuous glass fiber reinforced (10wt%) conventional and resin modified GICs respectively, were achieved compared to unreinforced materials (p0.05) between the fiber reinforced and unreinforced GICs. The use of hollow discontinuous glass fiber fillers with conventional and resin modified GIC matrix is a novel reinforcement. It yielded superior toughening and flexural performance compared to the particulate GICs used. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    Science.gov (United States)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Polyamide 6-long glass fiber injection mouldings

    NARCIS (Netherlands)

    Bijsterbosch, H.; Gaymans, R.J.; Bijsterbosch, H.

    1995-01-01

    The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of

  16. Effect of sterilization on non-woven polyethylene terephthalate fiber structures for vascular grafts.

    Science.gov (United States)

    Dimitrievska, Sashka; Petit, Alain; Doillon, Charles J; Epure, Laura; Ajji, Abdellah; Yahia, L'Hocine; Bureau, Martin N

    2011-01-10

    Non-woven polyethylene terephthalate (PET) fibers produced via melt blowing and compounded into a 6 mm diameter 3D tubular scaffold were developed with artery matching mechanical properties. This work compares the effects of ethylene oxide (EtO) and low temperature plasma (LTP) sterilization on PET surface chemistry and biocompatibility. As seen through X-ray photoelectron spectroscopy (XPS) analysis, LTP sterilization led to an increase in overall oxygen content and the creation of new hydroxyl groups. EtO sterilization induced alkylation of the PET polymer. The in vitro cytotoxicity showed similar fibroblastic viability on LTP- and EtO-treated PET fibers. However, TNF-α release levels, indicative of macrophage activation, were significantly higher when macrophages were incubated on EtO-treated PET fibers. Subcutaneous mice implantation revealed an inflammatory response with foreign body reaction to PET grafts independent of the sterilization procedure. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In vitro evaluation of glass fiber post.

    Science.gov (United States)

    Kaur, Jasjit; Sharma, Navneet; Singh, Harpal

    2012-10-01

    Techniques and recommendations for the restoration of endodontically treated teeth have changed from the use of custom cast metal post and core system to glass fiber-reinforced (GFRC) post and composite core system. Has this latest prefabricated glass fiber reinforced post and composite core system increased the fracture resistance of teeth and reduced the incidence of unrestorable root fractures. The purpose of this study was to evaluate the incidence of root fracture and mode of failure of endodontically treated teeth restored with two different post and core systems. Forty maxillary central incisors were randomly divided into two groups. (n=20). All teeth received endodontic treatment. First group was restored with custom cast post and core system. Second group was restored with glass fiber post and composite core system. In Both the groups posts were cemented with adhesive resin cement. Compressive load was applied at an angle of 130 to the long axis of teeth at a cross head speed of 1 mm/min until fracture occurred. Data were analyzed with student "t" test Ppost and core and (237.0625) N in Group -II Glass fiber reinforced post and composite core system. Students "t" test shows the significant difference in fracture resistance of two groups. This study showed that the incidence of root fracture was significantly higher in custom cast Ni-Cr post and core system than glass fiber post and composite core system. A more favourable mode of failure was observed in teeth restored with Group II glass fiber post system. Key words:Post-and-core technique, glass fiber post, cast post and-core system, fracture resistance, endodontically treated teeth.

  18. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    2015-12-01

    Full Text Available This data article shows how the recombinant Chinese Hamster Ovary (CHO cells are located in the interstices of the matrix fibers of a CellTank bioreactor after completion of a perfusion culture, supporting the article entitled “Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor” by Zhang et al. [1]. It provides a visualization of the cell distribution in the non-woven fiber matrix in a deeper view.

  19. Mechanical Properties of Non-Woven Polyester Fibers and Polymer-Modified Bitumen Composites

    Directory of Open Access Journals (Sweden)

    V. Hadadi

    2007-12-01

    Full Text Available Blown bitumen (110/10 was mixed with heavy vacuum slops (H.V.S, 60/70 penetration grade bitumen and recycled isotactic polypropylene (iPP at different levels. The resulting resins were used to impregnate non-woven poly(ethylene terephthalate fibers to form composites. The modulus and penetration grade of the resulting bituminous resins were determined. It was found that these bituminous resins drastically affect the modulus of the composites formed by low-Young’s modulus fibers such as polyesters. Consequently, interactions between resin and fibers and the correlation length of asphalthenes (in absence of iPP and interdiffused coalescence and segregated network of asphalthenes (in presence of iPP result in a non-linear behavior of composite’s modulus. The behavior of the composites with or without iPP is controlled by resin toughness and resin interactions with the fiber through the viscosity. Comparison of the experimental composite modulus data with the theoretical modulus data revealed that the Takayanangi’s model best predicts the behavior of these composites. The adjustment factors of this model were reported and proposed as an indication of fiber-resin interaction. It was also found that the modulus of fibers is affected by toughness, viscosity and the iPP content of the bituminous resin.

  20. Experimental investigation of quasi-static and intermediate strain rate behaviour of polypropylene glass fibre (PPGF) woven composite

    OpenAIRE

    Martin, Antoine; Othman, Ramzi; Rozycki, Patrick

    2015-01-01

    International audience; This article covers an in plane experimental characterisation of a polypropylene glass fibre reinforced woven composite. Tensile, shear and compression loadings were carried out with a standard tensile rig and a crossbow/Hopkinson pressure bar rig. The specimen strain was measured by digital image correlation technique. It is concluded that the composite stiffness and strength are highly sensitive to strain rate. Static and dynamic multicycle tests were also undertaken...

  1. Glass-clad single crystalline fiber lasers

    Science.gov (United States)

    Lai, C. C.; Hsu, K. Y.; Huang, C. W.; Jheng, D. Y.; Wang, S. C.; Lin, S. L.; Yang, M. H.; Lee, Y. W.; Huang, D. W.; Huang, S. L.

    2012-06-01

    Yttrium aluminium garnet (YAG) has been widely used as a solid-state laser host because of its superior optical, thermal, mechanical properties, as well as its plurality in hosting active ions with a wide range of ionic radii. Drawing YAG into single crystalline fiber has the potential to further scale up the attainable power level with high mode quality. The recent advancement on the codrawing laser-heated pedestal growth (CDLHPG) technique can produce glass-clad YAG crystalline fibers for laser applications. The drawing speed can reach 10 cm/min for mass production. The CDLHPG technique has shown advantages on transition-metal ion doped YAG and short-fluorescent-lifetime ion doped YAG host. Compared to silica fiber lasers, the crystalline core offers high emission cross section for transition metal ions because of the unique local matrix. The challenges on the development of glass-clad YAG fibers, including core crystallinity, diameter uniformity, dopant segregation, residual strain, post-growth thermal treatment, and the thermal expansion coefficient mismatch between the crystalline core and glass clad are discussed. Chromium, ytterbium, and neodymium ions doped YAG fiber lasers have been successfully achieved with high efficiency and low threshold power. Power scaling with a clad-pump/side-coupling scheme using single clad or double clad YAG fibers is also discussed.

  2. Development of new radiopaque glass fiber posts.

    Science.gov (United States)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura

    2016-02-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p b 0.05)when evaluatedwith one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84wt.% and 86.02wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Futureglass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler.

  3. Durability of self-healing woven glass fabric/epoxy composites

    Science.gov (United States)

    Yin, Tao; Rong, Min Zhi; Zhang, Ming Qiu; Zhao, Jian Qing

    2009-07-01

    In this work, the durability of the healing capability of self-healing woven glass fabric/epoxy laminates was investigated. The composites contained a two-component healing system with epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-methylimidazole)4 (CuBr2(2-MeIm)4) as the latent hardener. It was found that the healing efficiency of the laminates firstly decreased with storage time at room temperature, and then leveled off for over two months. By means of a systematic investigation and particularly verification tests with dynamic mechanical analysis (DMA), diffusion of epoxy monomer from the microcapsules due to volumetric contraction of the composites during manufacturing was found to be the probable cause. The diffusing sites on the microcapsules were eventually blocked because the penetrated resin was gradually cured by the remnant amine curing agent in the composites' matrix, and eventually the healing ability was no longer reduced after a longer storage time. The results should help to develop approaches for improving the service stability of the laminates.

  4. Glass Fiber Reinforced Polymer Dowel Bar Evaluation

    Science.gov (United States)

    2012-09-01

    Glass Fiber Reinforced Polymer (GFRP) dowel bars were installed on one new construction project and two dowel bar : retrofit projects to evaluate the performance of this type of dowel bar in comparison to steel dowel bars installed on the same : cont...

  5. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Science.gov (United States)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  6. Thermoset composite recycling: Properties of recovered glass fiber

    DEFF Research Database (Denmark)

    Beauson, Justine; Fraisse, Anthony; Toncelli, C.

    2015-01-01

    Recycling of glass fiber thermoset polymer composite is a challenging topic and a process able to recover the glass fibers original properties in a limited cost is still under investigation. This paper focuses on the recycling technique separating the glass fiber from the matrix material. Four...

  7. Technical characterization of sintered glass-ceramics derived from glass fibers recovered by pyrolysis

    OpenAIRE

    Martín, María Isabel; López Gómez, Félix Antonio; Alguacil,Francisco José; Romero, Maximina

    2015-01-01

    Sintered wollastonite-plagioclase glass-ceramics were prepared through crystallization of a parent glass generated by vitrification of pyrolysis residual glass fibers that had been pyrolytically recovered from waste composite materials. A vitrifiable mixture consisting of 95 wt.% glass fiber and 5 wt.% Na2O was melted at 1450ºC to obtain a glass frit. The glass-ceramic materials were produced by a sinter-crystallization process from the powdered glass frit. The effect of firing temperature on...

  8. Load-bearing capacity and fracture behavior of glass fiber-reinforced composite cranioplasty implants.

    Science.gov (United States)

    Piitulainen, Jaakko M; Mattila, Riina; Moritz, Niko; Vallittu, Pekka K

    2017-11-10

    Glass fiber-reinforced composites (FRCs) have been adapted for routine clinical use in various dental restorations and are presently also used in cranial implants. The aim of this study was to measure the load-bearing capacity and failure type of glass FRC implants during static loading with and without interconnective bars and with different fixation modes. Load-bearing capacities of 2 types of FRC implants with 4 different fixation modes were experimentally tested. The sandwich-like FRC implants were made of 2 sheets of woven FRC fabric, which consisted of silanized, woven E-glass fiber fabrics impregnated in BisGMA-TEGDMA monomer resin matrix. The space between the outer and inner surfaces was filled with glass particles. All FRC implants were tested up to a 10-mm deflection with load-bearing capacity determined at 6-mm deflection. The experimental groups were compared using nonparametric Kruskal-Wallis analysis with Steel-Dwass post hoc test. FRC implants underwent elastic and plastic deformation until 6-mm deflection. The loading test did not demonstrate any protrusions of glass fibers or cut fiber even at 10-mm deflection. An elastic and plastic deformation of the implant occurred until the FRC sheets were separated from each other. In the cases of the free-standing setup (no fixation) and the fixation with 6 screws, the FRC implants with 2 interconnective bars showed a significantly higher load-bearing capacity compared with the implant without interconnective bars. FRC implants used in this study showed a load-bearing capacity which may provide protection for the brain after cranial bone defect reconstruction.

  9. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  10. Optical Fiber Embedded in Epoxy Glass Unidirectional Fiber Composite System.

    Science.gov (United States)

    Severin, Irina; El Abdi, Rochdi; Corvec, Guillaume; Caramihai, Mihai

    2013-12-20

    We aimed to embed silica optical fibers in composites (epoxy vinyl ester matrix reinforced with E-glass unidirectional fibers in mass fraction of 60%) in order to further monitor the robustness of civil engineering structures (such as bridges). A simple system was implemented using two different silica optical fibers (F1-double coating of 172 µm diameter and F2-single coating of 101.8 µm diameter respectively). The optical fibers were dynamically tensile tested and Weibull plots were traced. Interfacial adhesion stress was determined using pull-out test and stress values were correlated to fracture mechanisms based on SEM observations. In the case of the optical fiber (OF) (F1)/resin system and OF (F1)/composite system, poor adhesion was reported that may be correlated to interface fracture at silica core level. Relevant applicable results were determined for OF (F2)/composite system.

  11. Using woven carbon fiber fabric to construct gradient porous structure for passive direct methanol fuel cells

    Science.gov (United States)

    Yuan, Wei; Hu, Jinyi; Zhou, Bo; Deng, Jun; Zhang, Zhaochun; Tang, Yong

    2015-09-01

    The passive direct methanol fuel cell (DMFC) is a promising candidate power source for portable applications but has to deal with many technical challenges before practical use. This study presents a preliminary investigation on the use of a woven carbon fiber fabric (WCFF) for constructing a gradient porous structure based on the traditional design. The WCFF, carbon paper and carbon-black micro porous layer (MPL) combine into a carbon-based assembly which acts as a mass-transfer-controlling medium at the anode of a passive DMFC. Results show that this novel setup is able to significantly improve the cell performance and facilitate high-concentration operation. A maximum power density of 16.4 mWcm-2 is obtained when two layers of the WCFF are used at a methanol concentration of 8M. This work provides an effective method for using concentrated methanol with no need for major change of the fuel cell configuration.

  12. Vacuum Characterization of a Woven Carbon Fiber Cryosorber in Presence of $H_2$

    CERN Document Server

    Baglin, V; Garcin, T

    2004-01-01

    Some of the cold bores of the Large Hadron Collider (LHC) will operate at 4.5K. In these elements, the desorbed H2 pressure will rapidly reach the saturated vapour pressure, 3 orders of magnitude larger than the design pressure. Therefore, the use of cryosorbers is mandatory to provide the required pumping capacity and pumping speed. The behaviour of a woven carbon fiber to be potentially used as a cryosorber has been studied under H2 injection. The pumping speed and capacity measured in the range 6 to 30 K are described. Observations made with an electron microscope are shown. A proposed pumping mechanism and the implications for the LHC are discussed.

  13. An integrated computational materials engineering method for woven carbon fiber composites preforming process

    Science.gov (United States)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-10-01

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

  14. Technical compatibility and safety of glass fiber in battery separators

    Energy Technology Data Exchange (ETDEWEB)

    Bender, R. [Schuller International, Toledo, OH (United States); Versen, R. [Schuller International, Littleton, CO (United States)

    1995-07-01

    Nonwovens comprised of glass fibers are both compatible with the relatively harsh chemical environment in lead acid batteries, and yet are safe to handle. The health and safety of glass fibers may seem confusing from a regulatory viewpoint, but are in fact highly tested and well understood scientifically to not cause respiratory disease. Nonwoven separators made from glass fibers are well situated to withstand scientific scrutiny in these times of suspicion of negative health effects ranging from second-hand smoke to tap water. This paper examines technical compatibility of the glass fibers in the battery, the health and safety aspects of glass fibers, and governmental and regulatory interpretation of studies.

  15. Effects of short glass fibers on the mechanical properties of glass fiber fabric/PVC composites

    Science.gov (United States)

    Park, Su Bin; Lee, Joon Seok; Kim, Jong Won

    2017-03-01

    Fiber-reinforced composites using glass fiber and polyvinylchloride (PVC) have been used widely as architectural materials, electrical applications, automotive sector, and packing materials because of their reasonable price, chemical resistance, and dimensional stability. On the other hand, most of the composites are short fiber-reinforced PVC composites. In particular, in the case of fabric reinforced composites, undulated regions exist where there is only resin due to the characteristics of the weave construction, which causes a decrease in strength. In this paper, PVC was reinforced with chopped glass fibers with different lengths and contents to produce glass fiber fabric/PVC composites. The physical properties of the composites, such as thickness, density, volume fraction (V f), and void content (V c) were identified. The mechanical properties, including tensile strength, flexural strength, and interlaminar shear strength (ILSS) were also identified. A cross section of the composites was observed by scanning electron microscopy. Compared to the fabric reinforced composite without chopped glass fiber, the tensile strength was increased by 3.90% (from 316.15 MPa to 328.48 MPa at 5 wt.% chopped fibers with 3 mm length), flexural strength was increased by 7.15% (from 87.07 MPa to 93.30 MPa at 10 wt.% chopped fibers with 2 mm length), and ILSS was increased by 8.71% (from 7.34 MPa to 7.98 MPa at 10 wt.% chopped fibers with 1 mm length). Therefore, the critical fiber aspect ratio of chopped fiber works differently on each of the three mechanical properties.

  16. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    Science.gov (United States)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The

  17. Fracture strength of endodontically treated teeth reconstructed with woven polyethylene fiber posts and biological posts

    Directory of Open Access Journals (Sweden)

    Kátia Rodrigues Reis

    2009-01-01

    Full Text Available Objective: To investigate the fracture strength and mode of endodontically treated teeth with structurally weakened roots reconstructed with woven polyethylene fiber posts and biological posts. Methods: After removing the crowns, 60 endodontically treated maxillary canines were distributed into 4 groups: 1 conventional root canal preparation and reconstruction with polyethylene fiber posts; 2 conventional root canal preparation and reconstruction with biological posts; 3 moderately flared root canals and reconstruction with biological posts; 4 widely flared root canals and reconstruction with biological posts. The posts were cemented with resin cement Enforce (Dentsply Ind. e Com., Petrópolis, Rio de Janeiro, Brasil and the core was constructed with Ti-Core (EssentialDental Systems, S. Hackensack, NJ, USA resin composite. The specimens were tested under compression in a universal testing machine. Results: The following fracture strength values were obtained: Group 1 – 45.46kgf; Group 2 – 53.30kgf; Group 3 – 58.67kgf; Group 4 – 47.91kgf, with statistically significant differences between Groups 1 and 3 (p<0.05. The following fracture modes were observed: Group 1 – predominance of fracture of the coronal portion of the post; Groups 2 and 3 – various fracture patterns; Group 4 – all roots fractured. Conclusion: Both posts were shown to be promising (adequate fracture strength and favorable pattern of fracture. Biological posts appear to be capable of reinforcing the root to some extent; however, fracture occured in all roots with widely flared root canals.

  18. Glass Fiber Resin Composites and Components at Arctic Temperatures

    Science.gov (United States)

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN ...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...dependent on the reaction between the fiber and the resin , but little research has been conducted that was geared toward naval applications at arctic

  19. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    Science.gov (United States)

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  20. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste

    Science.gov (United States)

    Zheng, Jieying; Zhao, Quanlin; Ye, Zhengfang

    2014-04-01

    In this study, the activated carbon fibers (ACFs) were prepared using cotton woven waste as precursor. The cotton woven waste was first partly dissolved by 80% phosphoric acid and then was pre-soaked in 7.5% diammonium hydrogen phosphate solution. Finally, carbonization and activation were proceeded to get ACF. The optimum preparation conditions, including carbonization temperature, carbonization time, activation temperature and activation time, were chosen by orthogonal design. Nitrogen adsorption/desorption test was conducted to characterize the prepared ACF's pore structure. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscope (ESEM) were employed to characterize its chemical properties and morphology. Adsorption of oilfield wastewater was used to evaluate its adsorption properties. The results show that the prepared ACF is in the form of fiber, with the sectional diameters of 11.7 × 2.6 μm and the surface area of 789 m2/g. XPS results show that carbon concentration of the prepared ACF is higher than that of the commercial ACF. When the prepared ACF dosage is 6 g/L, over 80% of COD and over 70% of chrominance can be removed after 24 h of adsorption at 18 °C. We demonstrated the catalytic growth of m-axial InxGa1-xN (0.10 ≤ x ≤ 0.17) nanocolumn arrays with high crystallinity on silicon substrates using metal-organic chemical vapor deposition with trimethylindium (TMIn), triethylgallium (TEGa), and ammonia as precursors. The high quality of InGaN nanocolumns (NCs) were believed to be due to the utilization of TEGa that achieved less carbon impurities and offered more comparable vapor pressure with that of TMIn at low temperature. In addition, these NCs were grown in non-polar m-axis, which the internal electric field of the InGaN that often deteriorates the device performances might be able to be eliminated. Furthermore, the bandgap of this InGaN can be modulated from

  1. Commingled Yarn Spinning for Thermoplastic/Glass Fiber Composites

    National Research Council Canada - National Science Library

    Niclas Wiegand; Edith Mäder

    2017-01-01

    ...) and polylactic acid (PLA) and glass fibers. Tailored sizings were applied for the three matrices and the resulting mechanical performance of unidirectional composites was evaluated and compared...

  2. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    OpenAIRE

    Lapena, Mauro Henrique; Marinucci,Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  3. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  4. Modal parameter analysis for crown glass and phosphate glass photonic crystal fiber

    Science.gov (United States)

    Paul, D.; Biswas, R.; Bhattacharyya, N. S.

    2015-07-01

    The dependence of modal parameter on different photonic crystal fiber has been taken into consideration for a comparative analysis. We consider here phosphate glass and crown glass photonic crystal fiber for our modal analysis for seven air-hole missing photonic crystal fiber. By the use of effective index method, the analysis has been put forwarded for L and C communication bands. Crown glass is found to be a good candidate for spot size and single mode application. Also most importantly, it is very much reliable for low loss and dispersion in comparison with theoretically computed phosphate glass and experimental results of silica core photonic crystal fiber.

  5. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    Science.gov (United States)

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  7. Enhanced Terahertz Imaging of Small Forced Delamination in Woven Glass Fibre-reinforced Composites with Wavelet De-noising

    Science.gov (United States)

    Dong, Junliang; Locquet, Alexandre; Citrin, D. S.

    2016-03-01

    Terahertz (THz) reflection imaging is applied to characterize a woven glass fibre-reinforced composite laminate with a small region of forced delamination. The forced delamination is created by inserting a disk of 25- μ m-thick Upilex film, which is below the THz axial resolution, resulting in one featured echo with small amplitude in the reflected THz pulses. Low-amplitude components of the temporal signal due to ambient water vapor produce features of comparable amplitude with features associated with the THz pulse reflected off the interfaces of the delamination and suppress the contrast of THz C- and B-scans. Wavelet shrinkage de-noising is performed to remove water-vapor features, leading to enhanced THz C- and B-scans to locate the delamination in three dimensions with high contrast.

  8. Effect of delamination on vibration behaviour of woven Glass/Epoxy composite plate-An experimental study

    Science.gov (United States)

    Hirwani, C. K.; Sahoo, S. S.; Panda, S. K.

    2016-02-01

    We have analysed the free vibration responses of the laminated composite plate with delamination numerically and validated with subsequent experiment. In order to compute the numerical frequencies, the delaminated composite plate is modelled with two sub-laminate approaches in the commercial finite element package (ANSYS) using ANSYS parametric design language code in ANSYS environment. For the experimental analysis, the woven Glass/Epoxy composite plate is fabricated using hand layup method with the desired delamination. The natural frequencies of the delaminated plate are also computed experimentally with the help of the vibration analyser (NI-CDAQ) and validated by comparing with the simulation result. Further, the simulation model is extended for various design parameter and discussed in detail.

  9. Electrospun submicron bioactive glass fibers for bone tissue scaffold.

    Science.gov (United States)

    Lu, H; Zhang, T; Wang, X P; Fang, Q F

    2009-03-01

    Submicron bioactive glass fibers 70S30C (70 mol% SiO(2), 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N(2) gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young's modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.

  10. Glass fiber and silica reinforced rigid polyurethane foams

    Directory of Open Access Journals (Sweden)

    M. W. Kim

    2017-05-01

    Full Text Available Ternary composites of rigid polyurethane foam (RPUF/glass fiber/silica as well as RPUF/glass fiber have been fabricated from glass fiber, silica, polymeric 4,4′-di-phenylmethane diisocyanate (PMDI and polyol using HFC 365mfc as blowing agent. Foam formation kinetics, morphology, thermal conductivity, glass transition temperature, decomposition temperatures as well as the mechanical strengths of the foam have been studied. With the addition an increasing amount of glass fiber cream time, rise time, gel time, tack free time, density, compression strength, thermal conductivity (k monotonically increased while the glass transition temperature showed a maximum at 2%. At constant glass fiber content (2%, addition of silica further increased the process times, density and compression strength while the Tg and thermal decomposition temperature showed a maximum at 3% silica. The k value of RFUF/glass fiber composite decreased with the addition of silica up to 3%, where it was even lower than the virgin RPUF. However, beyond the content k value increased. Overall, the variation of k value with silica content showed identical tendency with cells size and closed cells content.

  11. Transverse Strength of Reinforced Denture Base Resin with Metal Wire and E-Glass Fibers

    Directory of Open Access Journals (Sweden)

    M. Vojdani

    2006-12-01

    Full Text Available Statement of problem: Fracture strength of a denture base resin is of great concern,and many approaches have been used to strengthen acrylic resin dentures.Purpose: The aim of this study was to measure the transverse strength of a heat polymerized acrylic resin, after reinforcement with metal wire and two types of glass fibers.Materials and Methods: Forty rectangular specimens (65.0×10.0×3.3 mm of a heatcured acrylic resin were made according to ISO/FDI 1567. Group I (control groupconsisted of 10 specimens with no reinforcement. Specimens in group II reinforced with sandblasted metal wires. Group III and IV strengthened with woven (Stick Net andcontinuous unidirectional (Stick fibers respectively. The specimens were polymerized according to manufacturer’s recommendation. The transverse strengths were assessed with a 3- point bending test at cross head speed of 5mm/min. One-way ANOVA was carried out to compare and detect any differences among groups (α=0.05.Results: Mean transverse strength (SD of unreinforced specimens was 85.44 (8.6MPa. The transverse strength increased significantly to 97.97 (5.5 MPa, 109.69 (5.8MPa, and 127.13 (6.4 MPa in Metal wires, Stick Net, and stick fibers groups,respectively.Conclusion: The transverse strength of heat-polymerized denture base resin was enhanced considerably by using metal wire and glass fibers reinforcements. However,the addition of unidirectional glass fibers was significantly more effective method to improve flexural strength of denture base acrylic resin.

  12. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...... products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...

  13. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  14. Improvement in mechanical properties of glass fiber fabric/PVC composites with chopped glass fibers and coupling agent

    Science.gov (United States)

    Lee, Jaewoong; Park, Su Bin; Lee, Joon Seok; Kim, Jong Won

    2017-07-01

    Glass fiber reinforced polyvinylchloride (PVC) composite is used widely because of its low price, chemical resistance, and dimensional stability, but most are short fiber reinforced PVC composites. Fabric reinforced composite have undulated regions, which is the only region without fiber, due to the characteristics of the weave construction, and it limits increasing the mechanical properties. Therefore, in this study, to increase the mechanical properties, the undulated regions of the glass fiber fabric/PVC composite were filled with a silane coupling agent treated chopped fiber. The physical properties, dynamic mechanical thermal properties, and mechanical properties of the prepared composite were observed. The critical fiber aspect ratio of the chopped fiber is different for each mechanical property. This shows that the fabric-reinforced composite of chopped fibers affect each of the mechanical properties differently. In addition, the silane coupling treatment increases the compatibility of the composite components, improving the mechanical properties.

  15. Pengaruh komposisi beberapa glass fiber non dental terhadap kelarutan komponen fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    Ariyani Faizah

    2017-01-01

    Full Text Available The effect of composition glass fiber non dental on water solubility of fiber reinforced composites. E glass fiber dental is one of the most used dental fibers in several applications in the dental  field. However, the available of E glass fiber dental in Indonesia is very limited. A variety of types of non-dental glass fiber material is easily found as the materials engineering. The purpose of the study was to evaluate the effect of composition non dental glass fiber on the component solubility of FRC. The materials used in the research was E glass fiber dental (Fiber splint, Polydentia SA, Switzerland, composition A non-dental glass fiber (LT, China, composition B (CMAX, China, composition C (HJ, China, flowable composite (Charmfill Flow, Denkist, Korea and silane coupling agent (Monobond S, Ivoclair Vivadent, Liechtenstein. The subject was divided into 4 groups. Component solubility test was based on the ISO 4049. The result was then analyzed with one way ANOVA (α=0,05. The result of the research showed that on the average percentage of the solubility (%, the lowest was on the group of E glass fiber dental (0.476±0.03 and the highest was on the non dental glass fiber C (0.600±0.01. The result of the one way ANOVA test showed a significant difference between the compositiom fiber on the component solubility. The conclusion the research was that low content of Na2O K2O, CaO and MgO decreased the component solubility of FRC.

  16. Fiber Fabrication Facility for Non-Oxide and Specialty Glasses

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Unique facility for the research, development, and fabrication of non-oxide and specialty glasses and fibers in support of Navy/DoD programs.DESCRIPTION:...

  17. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  18. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  19. Multifunctionality in epoxy/glass fibers composites with graphene interphase

    OpenAIRE

    Mahmood, Haroon

    2017-01-01

    In this project, the synergetic effect of a graphene interphase in epoxy/glass fibers composites was investigated by coating glass fibers (GF) with graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets by an electrophoretic deposition (EPD) technique. Graphite oxide was prepared using modified Hummers method in which raw graphite powder was oxidized using potassium permanganate (KMnO4) in acidic solution. Using ultrasonic technique, the graphite oxide was dispersed homogenously in w...

  20. Chemical cleaning agents and bonding to glass-fiber posts

    OpenAIRE

    Ana Paula Rodrigues Gonçalves; Aline de Oliveira Ogliari; Patrícia dos Santos Jardim; Rafael Ratto de Moraes

    2013-01-01

    The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreate...

  1. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  2. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Takahashi, Yoshitake; Tabata, Yasuhiko

    2004-01-01

    The proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) was investigated in three-dimensional non-woven fabrics prepared from polyethylene terephthalate (PET) fiber with different diameters. When seeded into the fabrics of cell scaffold, more MSC attached in the fabric of thicker PET fibers than that of thinner ones, irrespective of the fabric porosity. The morphology of cells attached became more spreaded with an increase in the fiber diameter of fabrics. The rate of MSC proliferation depended on the PET fiber diameter and porosity of fabrics: the bigger the fiber diameter of fabrics with higher porosity, the higher their proliferation rate. When the alkaline phosphatase (ALP) activity and osteocalcin content of MSC cultured in different types of fabrics was measured to evaluate the ostegenic differentiation, they became maximum for the non-woven fabrics with a fiber diameter of 9.0 microm, although the values of low-porous fabrics were significantly high compared with those of high porous fabrics. We concluded that the attachment, proliferation and bone differentiation of MSC was influenced by the fiber diameter and porosity of non-woven fabrics as the scaffold.

  3. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  4. Enhanced degree of monomer conversion of orthodontic adhesives using a glass-fiber layer under the bracket.

    Science.gov (United States)

    Shinya, Makiha; Shinya, Akikazu; Lassila, Lippo V J; Varrela, Juha; Vallittu, Pekka K

    2009-05-01

    To test the hypothesis that there is no difference in the degree of conversion (DC%) of orthodontic composites during the light-curing process with or without the use of a glass-fiber reinforcement. Two light-curing orthodontic adhesives, Transbond XT (TB) and Beauty Ortho Bond (BO), were used with woven preimpregnated glass fibers. The degree of monomer conversion was determined for both adhesives in three settings (n = 5 per group): in the first group, the adhesive was cured without a bracket (control); in the second group, the bracket was bonded using adhesive without fiber reinforcement; and in the third group, a layer of glass-fiber net was added between the bracket and resin. The adhesive resin was light cured, and the DC% was determined by Fourier transform infrared spectroscopy. A two-way analysis of variance revealed significant differences in the DC% (P light cured under the brackets, the DC% was significantly lower (TB: 37.0%, SD 3.4; BO: 36.9%, SD 1.9) compared with the control (TB: 54.7%, SD 0.6; BO: 65.9%, SD 0.5). A higher DC% was found when the resin was light cured in the presence of a glass-fiber net (TB: 44.1%, SD 0.3; BO: 55.3%, SD 1.7). The hypothesis is rejected. The degree of monomer conversion of the light-curing adhesive resin under stainless steel bracket can be improved by adding a thin layer of glass-fiber-reinforced composite between the bracket and adhesive resin.

  5. Experimental Investigation of the Interface Behavior of Balanced and Unbalanced E-Glass/Polyester Woven Fabric Composite Laminates

    Science.gov (United States)

    Triki, E.; Zouari, B.; Jarraya, A.; Dammak, F.

    2013-12-01

    The aim of this work is to study the influence of weave structure on the crack growth behavior of thick E-glass/polyester woven fabric composites laminates. Two different types of laminates were fabricated: (i) balanced: plain weave (taffetas T)/chopped strand mat weave (M) [T/M]6 and (ii) unbalanced: 4-hardness satin weave (S)/chopped strand mat weave [S/M]7. In order to accurately predict damage criticality in such structures, mixed mode fracture toughness data is required. So, the experiments were conducted using standards delamination tests under mixed mode loading and pure mode loading. These tests were carried out in mode II using End Load Split (ELS) tests and in mixed-mode I+II by Mixed Mode Flexure (MMF) tests under static conditions. The test methodology used for the experiments will be presented. The experimental results have been expressed in terms of total strain energy release rate and R-curves. The fracture toughness results show that the T/M interface is more resistant to delamination than the S/M interface.

  6. Characterization of Erbium-Doped Tellurite Glasses and Fibers

    Science.gov (United States)

    Marjanovic, Sasha; Toulouse, Jean; Dierolf, Volkmar; Sandmann, Christian; Himanshu, Jain; Kortan, Ahmet R.; Kopylov, Nonna; Ahrens, Robert G.

    2003-03-01

    The emission spectrum from erbium in new tellurite glasses is almost twice as broad as the corresponding spectrum in silica. We have carried out a study of these glasses using high resolution combined excitation-emission spectroscopy (CEES) and the erbium emission in fibers fabricated from the same glasses. Different lasing lines are observed corresponding to the erbium transitions identified in the CEES study. We show that specific lasing lines can be selected by adjusting the length of the fiber. A model is proposed for this length dependence. As the length of the fiber is increased, lower energy transitions contribute to the lasing since the scattering probability increases with the length. Emission spectra from both techniques show erbium transitions obeying selection rules calculated for these glasses.

  7. Fiber movements and sound attenuation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1999-01-01

    Propagation of a plane harmonic sound wave in fiber materials such as glass wool is studied theoretically and experimentally. Wave equations are set up that take into account the movement of the fiber skeleton. The attenuation of the sound wave in slabs of glass wool was calculated and measured....... The main new result is that the experimental attenuation at low-frequency propagating wave is lower when the fibers move. For wave with frequency 100 Hz in glass wool of density 20 kg/m3, the attenuation of a layer of thickness 0.20 m is 4 dB if the fibers move, and 12 dB if they do not move...

  8. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  9. Post-impact mechanical characterisation of E-glass/basalt woven fabric interply hybrid laminates

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Post-impact properties of different configurations (symmetrical and non-symmetrical of hybrid laminates including E-glass and basalt fibre composites, all with volume fraction of fibres equal to 0.38±0.02 and manufactured by RTM, have been studied. With this aim, interlaminar shear strength tests and four-point flexural tests of laminates impacted with different energies (0, 7.5, 15 and 22.5 J have been performed. Acoustic emission (AE localisation and AE evolution with applied flexural stress was studied to support impact damage characterisation, provided by SEM and transient thermography. The results indicate that a symmetrical configuration including E-glass fibre laminate as a core for basalt fibre laminate skins presents the most favourable degradation pattern, whilst intercalation of layers may bring to further improvement of the laminate properties, but also to more extended and complex damage patterns.

  10. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...... from 1M-3.5M. With HNO3 concentrations of 3.5 M, 100 % resin removal was achieved at 208°C and recovery of pristine glass fibers without damage on the surface. Furthermore, it was possible to recover the monomer phthalic acid most efficiently at HNO3 concentrations ≤ 3.5M. Decreased level...

  11. Testing and simulation of a polypropylene-glass fibre reinforced woven composite on a wide range of strain-rates

    Directory of Open Access Journals (Sweden)

    Rozycki P.

    2012-08-01

    Full Text Available Medium costs composites materials are good candidates to develop lightweight and economical shock absorber for the next generation of cars. In this context we are interested in characterising and modelling of Twintex a long glass fiber reinforced polypropylene. Testing will be carried with a standard tensile rig and an original layout using a crossbow/Hopkinson rig. A special attention is made to compression behaviour identification, often neglected but critical for crash absorber behaviour. The model will be checked on the testing specimen and its validity will be discussed.

  12. Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review.

    Science.gov (United States)

    Mafi, Arash; Karbasi, Salman; Koch, Karl W; Hawkins, Thomas; Ballato, John

    2014-07-28

    Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement.

  13. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  14. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    Science.gov (United States)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480–900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible with any other fabrication method. PMID:25317501

  15. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...... makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible...

  16. Physical Properties of AR-Glass Fibers in Continuous Fiber Spinning Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Sun; Lee, MiJai; Lim, Tae-Young; Lee, Youngjin; Jeon, Dae-Woo; Kim, Jin-Ho [Korea Institute of Ceramic Engineering and Technology, Jinju (Korea, Republic of); Hyun, Soong-Keun [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt%zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

  17. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  18. hybrid effect on the mechanical properties of sisal fiber and e-glass

    African Journals Online (AJOL)

    focusing on the use of lingo-cellulosic (natu- ral) fibers such as flax, hemp, sisal, jute, coil, oil palm and waste silk etc as replacements for glass fibers [7]. These natural fibers have some ecological advantage over glass fibers since they are renewable and can be inciner- ated. The use of natural fiber-reinforced plas-.

  19. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser

    Science.gov (United States)

    Wu, Ruikun; Myers, John D.; Myers, Michael J.

    2001-04-01

    High power, high brightness fiber lasers have numerous potential commercial and military applications. Fiber lasers with cladding pump designs represent a new generation of diode pumped configurations that are extremely efficient, have single mode output and may be operated with or without active cooling. Kigre has invented a new family of Er/Yb/Nd phosphate laser glass materials (designated QX) that promise to facilitate a quantum leap in fiber laser technology of this field. The new phosphate glass Rare-Earth doped fiber exhibit many advantages than Silica or Fluoride base fiber, see table.1. Instead of 30 to 50 meters of fused silica with a 50 mm bend radii; Kigre's phosphate glass fiber amplifiers may be designed to be less than 4 meters long .Laser performance and various design parameters, such as the fiber core diameter, NA, inner cladding shape and doping concentration are evaluated. Laser performances was demonstrated for an experimental QX/Er doubled clading fiber commissioned by MIT having 8 micron core, a 240 X 300 micron rectangle shaped inner cladding with 0.4 NA and 500 micron outer clading.. Kigre obtained approximately 2 dB/cm gain from 15cm long fiber under 940nm pumping The same fiber was evaluated by researcher at MIT. They used 975nm pump source. Maximum 270mW output was demonstrated by 30 cm long fiber with Fresnel reflection resonator mirrors. The slope efficiency of absorbed pump power s 47%.

  20. Stimulated Raman scattering in soft glass fluoride fibers

    DEFF Research Database (Denmark)

    Petersen, Christian; Dupont, Sune Vestergaard Lund; Agger, Christian

    2011-01-01

    We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650 nm. We found a peak gain of gR=4.0±2×10−14 m W−1.......We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650 nm. We found a peak gain of gR=4.0±2×10−14 m W−1....

  1. Stimulated Raman scattering in soft glass fluoride fibers

    DEFF Research Database (Denmark)

    Petersen, Christian; Dupont, Sune; Agger, Christian

    2011-01-01

    We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1.......We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1....

  2. Chemical cleaning agents and bonding to glass-fiber posts.

    Science.gov (United States)

    Gonçalves, Ana Paula Rodrigues; Ogliari, Aline de Oliveira; Jardim, Patrícia dos Santos; Moraes, Rafael Ratto de

    2013-01-01

    The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  3. Chemical cleaning agents and bonding to glass-fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Paula Rodrigues Gonçalves

    2013-02-01

    Full Text Available The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  4. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    Glass fiber polymer composites are used in wind turbine blades because of their high-specific strength and stiffness, good fatigue properties, and low cost. The wind industry is moving offshore to satisfy economies of scale with larger turbines. High humidity in this environment degrades mechanical...... performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...... the degradation mechanisms. Single-fiber tensile testing was also performed at different moisture conditions. The water-diffusion mechanism was studied to quantify the diffusion coefficients as a function of salt concentration, sample geometry, and fiber direction. Three degradation mechanisms were observed...

  5. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    Science.gov (United States)

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Numerical simulating and experimental study on the woven carbon fiber-reinforced composite laminates under low-velocity impact

    Science.gov (United States)

    Liu, Hanyang; Tang, Zhanwen; Pan, Lingying; Zhao, Weidong; Sun, Baogang; Jiang, Wenge

    2016-05-01

    Impact damage has been identified as a critical form of the defects that constantly threatened the reliability of composite structures, such as those used in the aerospace structures and systems. Low energy impacts can introduce barely visible damage and cause the degradation of structural stiffness, furthermore, the flaws caused by low-velocity impact are so dangerous that they can give rise to the further extended delaminations. In order to improve the reliability and load carrying capacity of composite laminates under low-velocity impact, in this paper, the numerical simulatings and experimental studies on the woven fiber-reinforced composite laminates under low-velocity impact with impact energy 16.7J were discussed. The low velocity impact experiment was carried out through drop-weight system as the reason of inertia effect. A numerical progressive damage model was provided, in which the damages of fiber, matrix and interlamina were considered by VUMT subroutine in ABAQUS, to determine the damage modes. The Hashin failure criteria were improved to cover the failure modes of fiber failure in the directions of warp/weft and delaminations. The results of Finite Element Analysis (FEA) were compared with the experimental results of nondestructive examination including the results of ultrasonic C-scan, cross-section stereomicroscope and contact force - time history curves. It is found that the response of laminates under low-velocity impact could be divided into stages with different damage. Before the max-deformation of the laminates occurring, the matrix cracking, fiber breakage and delaminations were simulated during the impactor dropping. During the releasing and rebounding period, matrix cracking and delaminations areas kept increasing in the laminates because of the stress releasing of laminates. Finally, the simulating results showed the good agreements with the results of experiment.

  7. The Effect of Two Different E Glass Fiber Reinforcements on Mechanical Properties of Polymethyl Metacrylate Denture Base Resins

    OpenAIRE

    Sinmazisik, G.; Ozyegin, LS.; Akesi, S.

    2002-01-01

    Denture base polymers were reinforced with various types of fibers, such as glass, carbon/graphite and ultrahigh-modulus polyethylene fibers. These procedures were performed to take advantage of the good esthetic qualities of glass fibers and good bonding of glass fibers to polymers via silane coupling agents. The most common type of glass used in fiber production is the so-called E glass (electrical glass). This study investigated the effect of chopped fibers with two different silane coupli...

  8. Immobilization of the iron on the surface of non-woven carbon fiber for use in a microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Nichanan Phansroy

    2016-09-01

    Full Text Available Abstract Iron particles were immobilized onto non-woven carbon fiber via electroplating for use in a microbial fuel cell (MFC. Electroplating was performed under an applied voltage at a current of 0.2 A for 5, 10, and 15 min. The scanning electron microscope (SEM observations show that 5 min was not adequate for the particles to be immobilized, whereas 10 and 15 min of electroplating resulted in an adequate number of particles on the surface. To evaluate the strength of the binding of iron via electroplating on the surface of the fiber, the samples were washed with pure water and observed using an SEM. The 10 min electroplated sample has a larger surface area, which is suitable for the MFC anode, than the 15 min electroplated sample. According to X-ray photoelectron spectroscopy and X-ray diffraction analysis, the peaks corresponded to those of Fe2O3, and the sample dipped into tannic acid shows the peaks of Fe3O4. The amount of biofilm of Shewanella oneidensis MR-1 was evaluated using crystal violet staining, and living bacteria were counted as colony forming units. Electroplated Fe2O3 and Fe3O4 were found to be effective for producing biofilm and immobilizing S. oneidensis MR-1.

  9. Numerical modeling of non-woven fiber mats: Their effective mechanical and electrical properties

    Science.gov (United States)

    Tuncer, Enis; L'Abee, Roy

    2015-06-01

    Numerical simulations on non-woven fibrous, porous structures were performed to determine material design space for energy storage device (battery and ultra-capacitor) separators. Material simulations were performed initially with a commercial program called GeoDict using its demo version. Later, in-house computational tools were developed and employed. The numerical routines were created to model mechanical and electrical properties of porous structures. The tools were built as a pre-processor for a commercial finite element package. Effective properties were estimated in the post-processing phase using the current and stress distributions. No multi-physics assumptions were considered to couple electrical and mechanical fields at this stage. The numerical results between two numerical platforms, GeoDict and in-house tools. Regions of interest in porosity for battery separators are discussed.

  10. Effects of glass fibers on the properties of micro molded plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...... distribution and orientation of glass fibers....

  11. Determinants of airborne fiber size in the glass fiber production industry.

    Science.gov (United States)

    Quinn, Margaret M; Smith, Thomas J; Schneider, Thomas; Eisen, Ellen A; Wegman, David H

    2005-01-01

    Size distributions of airborne fiber exposures should be characterized for studies of respiratory disease because size determines the region of the lung where a fiber will deposit and its ability to produce toxic effects in cells. Yet fiber size is not measured precisely with standard air sampling methods. Specific fiber dimensions hypothesized to have biologic activity have been proposed, but these have not been evaluated in epidemiologic studies because there has not been a way to account for fiber size in historical air monitoring data. In this study, methods were developed to predict fibrous aerosol size fractions generated during glass wool fiber production using regression models and factors related to bulk fiber products and processing. A set of air samples representing a range of products and process applications was collected in eight fiber glass production facilities. The samples were analyzed more intensively than standard methods require. For each air sample, total fiber size distributions were measured using electron microscopy and two proportions were then calculated: (1) fibers meeting the size criteria of the standard NIOSH Method 7400 B rules method (pB), and (2) fibers meeting the size criteria for a biologically based exposure index, the hypothetically active fiber (HAF1) index (pH1). The fiber size proportions were used as dependent variables in regression models with production process factors. It was found that two factors, the nominal diameter of the bulk fiber product and whether oil was applied to it, determine more than 80% of the variability in the proportions (for the pB model, R2 = 0.86; for the pH1 model, R2 = 0.82). Using these two predicted proportions, it is possible to estimate the concentration of fibers in the biologically based HAF1 size fraction from a standard fiber concentration measurement. The models developed here can be used to size-adjust historical fiber concentration measurements for use in epidemiologic studies of

  12. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    National Research Council Canada - National Science Library

    Coburn, William

    1998-01-01

    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  13. Infrared Evanescent-Absorption Spectroscopy with Chalcogenide Glass-Fibers

    OpenAIRE

    Sanghera, J S; Kung, F H; Pureza, P. C.; Nguyen, V Q; Miklos, R. E.; Aggarwal, I D

    1994-01-01

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  14. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  15. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  16. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    Science.gov (United States)

    2016-02-15

    DISTRIBUTION STATEMENT A. Approved for Public Release: distribution unlimited. All- glass Fiber Amplifier Pumped by Ultra-high Brightness Pumps...temperature profile of the active fiber, assuming perfect heat sinking along its periphery. Even though both inner and outer-clad of the fiber is glass , there...is still an acrylate coating outside the glass clad for fiber handling and protection. Calculation shows that the temperature of the fiber acrylate

  17. Durability of Waste Glass Flax Fiber Reinforced Mortar

    Science.gov (United States)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  18. Comparative Studies on the Mechanical Properties of Nonwoven- and Woven-Flax-Fiber-Reinforced Poly(Butylene Adipate-Co-Terephthalate)-Based Composite Laminates

    Science.gov (United States)

    Phongam, N.; Dangtungee, R.; Siengchin, S.

    2015-03-01

    Textile biocomposites made from woven- and nonwoven-flax-fiber-reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression molding using the film stacking method, and their tensile strength and stiffness, flexural strength and modulus, and impact strength were determined experimentally. The PBAT-based composites were subjected to water absorption tests. The mechanical properties of pure PBAT and the textile composites were compared, and the influence of flax weave styles on the properties were evaluated. The biocomposite reinforced with 4 × 4-plain weave fibers showed the highest strength and stiffness compared with those of the other textile biocomposites and pure PBAT.

  19. Influence of wool and thermo-binder fibers relative fractions on the adhesion of non-woven Alfa fibers reinforced unsaturated polyester hybrid composites

    Science.gov (United States)

    Amin Omri, Med; Triki, A.; Ben Hassen, Med; Arous, M.; Bulou, A.

    2016-10-01

    Alfa/wool/thermo-binder fibers hybrid composites were investigated in order to analyze adhesion state. Bearing in mind the chemical structure of wool and thermo-binder fibers, this study revealed a good compatibility between the reinforcement and the matrix. Dielectric measurements revealed the presence of two dielectric relaxations in the composite. The first relaxation was attributed to the α mode relaxation and the second one was associated with the conductivity noted for high temperature. This study allowed the analysis of the interfacial polarization effect using the Havrilliak-Negami model in the electric modulus formalism. The lowness of this relaxation intensity revealed a good adhesion of the fibers in the matrix. Differential Scanning Calorimetry (DSC) showed a slow decrease of the Tg glass transition temperature compared to the matrix, which could be explained by the existence of interactions between the fibers and the matrix. Vibrational analysis, based on FTIR measurements, showed a less hydrophilic character of Alfa fibers owing to a basic dissociation that occurs between the wool fibers and the water molecules associated with Alfa fibers. Furthermore, adhesion mechanism in the composite material was established by covalent and hydrogen bonds. Tensile testing performed on this composite confirmed that such adhesion was improved by increasing the thermo-binder fibers relative fraction.

  20. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  1. Quantitative risk assessment for a glass fiber insulation product.

    Science.gov (United States)

    Fayerweather, W E; Bender, J R; Hadley, J G; Eastes, W

    1997-04-01

    California Proposition 65 (Prop65) provides a mechanism by which the manufacturer may perform a quantitative risk assessment to be used in determining the need for cancer warning labels. This paper presents a risk assessment under this regulation for professional and do-it-yourself insulation installers. It determines the level of insulation glass fiber exposure (specifically Owens Corning's R-25 PinkPlus with Miraflex) that, assuming a working lifetime exposure, poses no significant cancer risk under Prop65's regulations. "No significant risk" is defined under Prop65 as a lifetime risk of no more than one additional cancer case per 100,000 exposed persons, and nonsignificant exposure is defined as a working lifetime exposure associated with "no significant risk." This determination can be carried out despite the fact that the relevant underlying studies (i.e., chronic inhalation bioassays) of comparable glass wool fibers do not show tumorigenic activity. Nonsignificant exposures are estimated from (1) the most recent RCC chronic inhalation bioassay of nondurable fiberglass in rats; (2) intraperitoneal fiberglass injection studies in rats; (3) a distributional, decision analysis approach applied to four chronic inhalation rat bioassays of conventional fiberglass; (4) an extrapolation from the RCC chronic rat inhalation bioassay of durable refractory ceramic fibers; and (5) an extrapolation from the IOM chronic rat inhalation bioassay of durable E glass microfibers. When the EPA linear nonthreshold model is used, central estimates of nonsignificant exposure range from 0.36 fibers/cc (for the RCC chronic inhalation bioassay of fiberglass) through 21 fibers/cc (for the i.p. fiberglass injection studies). Lower 95% confidence bounds on these estimates vary from 0.17 fibers/cc through 13 fibers/cc. Estimates derived from the distributional approach or from applying the EPA linear nonthreshold model to chronic bioassays of durable fibers such as refractory ceramic fiber

  2. Commingled Yarn Spinning for Thermoplastic/Glass Fiber Composites

    Directory of Open Access Journals (Sweden)

    Niclas Wiegand

    2017-07-01

    Full Text Available Online commingled yarns were spun with three different polymeric matrices, namely polypropylene (PP, polyamide (PA and polylactic acid (PLA and glass fibers. Tailored sizings were applied for the three matrices and the resulting mechanical performance of unidirectional composites was evaluated and compared. Significant improvements in the fiber/matrix bonding were achieved by employed sizing chemistry in order to achieve multifunctional interphases. The pure silane coupling agents provide the best performance for all matrices investigated. However, an additional film former has to be added in order to achieve fiber processing. Film formers compatible to the matrices investigated were adapted. The consolidation behavior during isothermal molding was investigated for polypropylene matrix. Different fiber volume contents could be realized and the resulting mechanical properties were tested.

  3. Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks.

    Science.gov (United States)

    Taynton, Philip; Ni, Huagang; Zhu, Chengpu; Yu, Kai; Loob, Samuel; Jin, Yinghua; Qi, H Jerry; Zhang, Wei

    2016-04-20

    Carbon-fiber reinforced composites are prepared using catalyst-free malleable polyimine networks as binders. An energy neutral closed-loop recycling process has been developed, enabling recovery of 100% of the imine components and carbon fibers in their original form. Polyimine films made using >21% recycled content exhibit no loss of mechanical performance, therefore indicating all of the thermoset composite material can be recycled and reused for the same purpose. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface treatment of glass fiber and carbon fiber posts: SEM characterization.

    Science.gov (United States)

    Naves, Lucas Zago; Santana, Fernanda Ribeiro; Castro, Carolina Guimarães; Valdivia, Andréa Dolores Correia Miranda; Da Mota, Adérito Soares; Estrela, Carlos; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2011-12-01

    Morphology, etching patterns, surface modification, and characterization of 2 different fiber posts: Gfp, Glass fiber post; and Cfp, carbon fiber were investigated by SEM analysis, after different surface treatments. Thirty fiber posts, being 15 Gfp and 15 Cfp were divided into a 5 surface treatments (n = 3): C-alcohol 70% (control); HF 4%-immersion in 4% hydrofluoric acid for 1min; H(3) PO(4) 37%-immersion in 37% phosphoric acid for 30s; H(2) O(2) 10%-immersion in 10% hydrogen peroxide for 20 min; H(2) O(2) 24%-immersion in 24% hydrogen peroxide for 10 min. Morphology, etching patterns, surface modification and surface characterization were acessed by SEM analysis. SEM evaluation revealed that the post surface morphology was modified following all treatment when compared with a control group, for both type of reinforced posts. HF seems to penetrate around the fibers of Gfp and promoted surface alterations. The Cfp surface seems to be inert to treatment with HF 4%. Dissolution of epoxy resin and exposure of the superficial fiber was observed in both post groups, regardless the type of reinforcing fiber, H(2) O(2) in both concentrations. Relative smooth surface area was produced by H(3) PO(4) 37% treatment, but with similar features to untreated group. Surface treatment of fiber post is a determinant factor on micromechanical entanglement to resin composite core. Post treatment with hydrogen peroxide resulted strength of carbon and glass/epoxy resin fiber posts to resin composite core. Copyright © 2011 Wiley Periodicals, Inc.

  5. Precipitation Coating of Monazite on Woven Ceramic Fibers: 1. Feasibility (Postprint)

    Science.gov (United States)

    2007-02-01

    by dissolving concentrated phosphoric acid ( Fish - er Scientific Co., Pittsburgh, PA) or a combination of lantha- num nitrate (Aldrich Chemical Co...testing of the fibers used in this work and Marlin Cook for his assist- ance in the preparation of microscopy samples. References 1A. G. Evans and D. B

  6. Three-Year Follow Up of Customized Glass Fiber Esthetic Posts

    OpenAIRE

    da Costa, Rogério Goulart; De Morais, Eduardo Christiano Caregnatto; Moira Pedroso LEÃO; Bindo, Márcio José Fraxino; Edson Alves CAMPOS; Correr, Gisele Maria

    2011-01-01

    Customized glass fiber posts that is well adjusted into the root canal and have mechanical properties similar to those of dentin may be a suitable treatment for severely compromised endodontically treated teeth. This article reports a 3-year follow up of severely damaged endodontically treated teeth restored with unidirectional fiber glass customized post and core system instead of a conventional fiber post. The fabrication of this glass fiber customized post is a simple technique, providing ...

  7. Glass fiber effect on mechanical properties of Eco-SCC

    Science.gov (United States)

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  8. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    OpenAIRE

    Pankaj Pandey; Dilpreet Bajwa; Chad Ulven; Sreekala Bajwa

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expans...

  9. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    José Díaz-Álvarez

    2014-06-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRPs composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained.

  10. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite.

    Science.gov (United States)

    Díaz-Álvarez, José; Olmedo, Alvaro; Santiuste, Carlos; Miguélez, María Henar

    2014-06-12

    Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained.

  11. Bearing Stress at Failure of Double-Lap Hybrid Joints in Woven Fabric Kenaf Fiber Composite Plates under Quasi-static Loading

    Directory of Open Access Journals (Sweden)

    Lee Sim Yee

    2017-01-01

    Full Text Available The present paper is focused on the bearing stress at failure of double-lap woven fabric kenaf fiber reinforced polymer (KFRP hybrid bonded-bolted joints in experimental frameworks. The effects of different normalized plate width (plate width/hole diameter, W/d, lay-up types and bolt loads were incorporated in current study as specified in testing series. Generally, hybrid joint coupons separated within adhesive layer prior to net-tension failure or bearing/net-tension failure. The bearing stress at failure increased as W/d ratio increment, critical W/d is given as four and three in clamped and finger tight condition respectively. Lay-up types present insignificant effect to bearing stress at failure due to low volume fiber fraction in kenaf fiber composites. Combination of thicker and clamped conditions plate demonstrated greater bearing stress than equivalent finger-tight (FT conditions due to higher load transferred from friction, as expected.

  12. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope

  13. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  14. Pengaruh Komposisi Glass Fiber Non Dental dan Penambahan Silane terhadap Kekuatan Geser Fiber Reinforced Composite sebagai Retainer Ortodonsi

    OpenAIRE

    Imam, Dian Noviyanti Agus; Sunarintyas, Siti; Nuryono, Nuryono

    2015-01-01

    Retainer dibutuhkan untuk membantu menstabilkan posisi gigi geligi selama proses reorganisasi jaringan periodontal berlangsung. Retainer FRC ortodonsi dikembangkan sebagai alternatif material estetika serta aman bagi pasien alergi terhadap nikel. E-glass fiber lebih sering digunakan sebagai retainer ortodonsi. Penelitian ini bertujuan untuk mengkaji pengaruh komposisi glass fiber non dental dan penambahan silane terhadap kekuatan geser FRC sebagai retainer ortodonsi. Subjek penelitian terdiri...

  15. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p fiber decreased the flexural strength (p fibers, carbon fiber exhibited higher flexural strength than glass fiber (p carbon and glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  16. Characterization of Esthetic Orthodontic Wires Made from Glass-Fiber-Reinforced Thermoplastic Containing High-Strength, Small-Diameter Glass Fibers

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tanimoto

    2018-01-01

    Full Text Available In this work, we investigated the properties of a glass-fiber-reinforced thermoplastic (GFRTP composed of small-diameter (ϕ = 5 μm, high-strength glass (T-glass fibers and polycarbonate for esthetic orthodontic wires formed using pultrusion. After fabricating such GFRTP round wires, the effects of varying fiber diameter (5 to 13 mm on the mechanical properties, durabilities, and color stabilities were evaluated. The results showed that the mechanical properties of GFRTPs tend to increase with decreasing fiber diameter. Additionally, it was confirmed that the present GFRTP wires containing T-glass fibers have better flexural properties than previously reported GFRTP wires containing E-glass fibers. Meanwhile, thermocycling did not significantly affect the flexural properties of the GFRTP wires. Furthermore, the GFRTP wires showed color changes lower than the acceptable threshold level for color differences on immersion in coffee. From these results obtained in the present work, the GFRTP wires containing high-strength glass fibers have excellent properties for orthodontic applications. Our findings suggest that the GFRTPs might be applied to all phases of orthodontic treatment because their properties can be tuned by changing the fiber properties such as fiber type and diameter.

  17. Fabrication of transparent superhydrophobic glass with fibered-silica network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Shi, Zhenwu, E-mail: zwshi@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Jiang, Yingjie; Xu, Chengyun; Wu, Zhuhui; Wang, Yanyan [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Peng, Changsi, E-mail: changsipeng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2017-06-15

    Highlights: • Superhydrophobic fibred-silica film with water contact angle of 166° and sliding angle of 1° was efficiently prepared using soot as template by CVD. • The film showed transmittance of 88% in visible range. • The superhydrophobic film possesses excellent mechanical robustness, chemical corrosion resistance, and thermal stability. • The superhydrophobic film showed outstanding self-cleaning behavior. - Abstract: In this paper, silica was deposited on the soot film pre-coated glass via chemical vapor deposition. Through calcination at 500 °C with the assistance of O{sub 2} airflow, the soot film was removed and a novel robust fibered-silica network film was then decorated onto the glass substrate. After modification with fluorosilane, the surface water contact angle (WCA) was 166° and sliding angle (SA) was 1° which behaves a good self-cleaning for the as-prepared glass. And its average transmittance was still over 88% in visible wavelength. Moreover, this fibered-silica coating showed a strong tolerance for heavy water droplets, acid/alkali corrosion, salt solution immersion and thermal treatment.

  18. Tensile Characterization of Injection-Molded Fuzzy Glass Fiber/Nylon Composite Material

    Science.gov (United States)

    2016-05-01

    ARL-TR-7668 ● MAY 2016 US Army Research Laboratory Tensile Characterization of Injection - Molded Fuzzy Glass Fiber/Nylon...Army Research Laboratory Tensile Characterization of Injection - Molded Fuzzy Glass Fiber/Nylon Composite Material by Michael A Minnicino...Characterization of Injection - Molded Fuzzy Glass Fiber/Nylon Composite Material 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  19. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    Energy Technology Data Exchange (ETDEWEB)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  20. Hybrid Three-Dimensional (3-D) Woven Thick Composite Architectures in Bending

    Science.gov (United States)

    Pankow, Mark; Quabili, Ashiq; Yen, Chian-Fong

    2013-11-01

    In this study, three 3-dimensional (3-D) woven composite materials were examined to determine how yarn tow configurations affect the flexural response of the structure. Woven fabric preforms were manufactured with a Z-fiber architecture in 2-3 in. thicknesses. These preforms contained S-2 Glass (AGY, Aiken, SC, USA), carbon, and Twaron (Teijin Aramid, Arnhem, The Netherlands) yarns in different architectures creating a hybrid material system. Due to the thickness of the material, these samples required a significant span length (30 in.). The results showed a change in the strength and degradation after failure with the addition of carbon layers in tension.

  1. Array fiber welding on micro optical glass substrates for chip-to-fiber coupling

    Science.gov (United States)

    Schröder, Henning; Neitz, Marcel; Brusberg, Lars; Queiser, Marco; Arndt-Staufenbiel, Norbert; Lang, K.-D.

    2014-03-01

    High bandwidth parallel optical transceivers are highly demanded for optical interconnects in data centers and in high performance computing. Such transceivers are composed of VCSEL- and photodiode components which have to be fiber coupled, and the appropriate driving and amplifying circuitry. For high density fiber optical connectors lens arrays for improved coupling efficiency have to be used. We propose an advantageous adhesive free method to interconnect optical fibers with such kind of lens arrays. Common approaches using adhesive bonding have high challenges in terms of yield, reliability and optical performance. We introduce our novel fiber welding approach for joining directly fused silica fibers on borosilicate glass substrates with integrated micro optics, e.g. lenses and lens arrays. It is a thermal process with a precise heat input by CO2-laser processing, which is combinable with sequential passive or active alignment of each single fiber to the substrate causing flexibility and highest coupling efficiencies. Since the fiber is accessed only from one side, a two dimensional high-density fiber array can be realized. The manufacturing time of such an interconnection is very short. Due to the adhesive free interface high power transmission is enabled and the occurrence of polymer caused misalignment and degradation are prevented. The paper presents current results in thin glass-based opto-electronic packaging. In particular our laboratory setup for array fiber welding and experimental results of such connections will be discussed and compared to UV-adhesive joining. Also further investigation, for example optical characterization and reliability tests are included. Finally a machine concept, which is under development, will be discussed.

  2. Fracture resistance of weakened teeth restored using accessory glass fiber posts.

    Science.gov (United States)

    da Rosa, Ricardo Abreu; Barreto, Mirela Sangoi; da Rosa, Tiago Abreu; Reis, Katia Rodrigues; Kaizer, Osvaldo Bazzan

    2013-01-01

    This study used differential root weakening to evaluate the fracture resistance of bovine teeth restored using glass fiber posts (with or without accessory glass fiber posts). Fifty bovine mandibular incisors were sectioned 14 mm from the apex, fixed in acrylic resin blocks, and divided into 5 groups: healthy roots with a glass fiber post (Group 1), partially weakened teeth with a glass fiber post (Group 2), partially weakened teeth with a glass fiber post and 2 accessory glass fiber posts (Group 3), extensively weakened teeth with a glass fiber post (Group 4), and extensively weakened teeth with a glass fiber post and 5 accessory glass fiber posts (Group 5). Posts were luted with resin cement, cores were prepared using composite resin, and metallic crowns were cemented. The specimens were stored in distilled water at 37°C for more than 72 hours until the fracture resistance test. Specimens were loaded at 135 degrees relative to the long axis of the tooth at a crosshead speed of 0.5 mm/minute in a universal testing machine. All groups predominantly exhibited favorable failure patterns and there were no statistically significant differences between groups (two-way ANOVA, α = 0.05).

  3. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    Science.gov (United States)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  4. Pengaruh Komposisi Glass Fiber Non Dental dan Penambahan Silane terhadap Kekuatan Geser Fiber Reinforced Composite sebagai Retainer Ortodonsi

    Directory of Open Access Journals (Sweden)

    Dian Noviyanti Agus Imam

    2015-06-01

    Full Text Available Retainer dibutuhkan untuk membantu menstabilkan posisi gigi geligi selama proses reorganisasi jaringan periodontal berlangsung. Retainer FRC ortodonsi dikembangkan sebagai alternatif material estetika serta aman bagi pasien alergi terhadap nikel. E-glass fiber lebih sering digunakan sebagai retainer ortodonsi. Penelitian ini bertujuan untuk mengkaji pengaruh komposisi glass fiber non dental dan penambahan silane terhadap kekuatan geser FRC sebagai retainer ortodonsi. Subjek penelitian terdiri dari 9 kelompok perlakuan dengan 3 jenis glass fiber yang berbeda yaitu glass fiber non dental A (LT, Cina, B (CMAX, Cina dan C (HJ, Cina. Masing-masing glass fiber diberi perlakuan yang bervariasi yaitu tanpa penambahan silane, penambahan silane 1x dan 2x. Subjek penelitian direndam dalam akuades dan disimpan pada suhu 37ºC selama 24 jam sebelum dilakukan uji kekuatan geser dengan menggunakan alat Universal Testing Machine. Hasil penelitian dianalisis variansi dua jalur dan post hoc Tukey untuk mengetahui perbedaan statistik masing-masing kelompok. Hasil penelitian menunjukkan bahwa glass fiber non dental A dengan penambahan 2x silane memiliki rerata kekuatan geser tertinggi (12,72±2,02 MPa sedangkan glass fiber non dental B tanpa penambahan silane memiliki rerata kekuatan geser terendah (6,96±1,69 MPa. Terdapat perbedaan bermakna antara komposisi fiber maupun penambahan silane terhadap kekuatan geser FRC (p0,05. Berdasarkan hasil penelitian dapat disimpulkan bahwa komposisi SiO2 dan Al2O3 yang tinggi pada glass fiber non dental serta penambahan silane dapat meningkatkan kekuatan geser FRC.   The Effect of Non Dental Glass Fiber Composition and Silane Addition on The Shear Bond Strength of Fiber Reinforced Composite as An Orthodontic Retainer. Retainers are required to stabilize the position of the teeth to permit reorganization of periodontal tissue. FRC orthodontic retainer was developed as an alternative material aesthetic and safe for nickel

  5. Evaluation of Mechanical Performance of a New Glass Fiber Reinforced Mineral Matrix Composite

    OpenAIRE

    Ţăranu, George; Toma, Ionuţ-Ovidiu; Pleşu, Raluca; Budescu, Mihai

    2012-01-01

    The use of fibers in different combinations with mineral matrices has started since Biblical times. Clay with different natural fibers like straw or horse hair where combined and obtained strengthened building materials. In the past decades synthetic fibers e.g. glass fibers, carbon fibers, were used with polymeric resins and cement matrices also. Finding an appropriate material and structural system made of fiber reinforced mineral matrix which has adequate mechanical performance, possibilit...

  6. A comparison of mathematical methods for the determination of in vitro dissolution constants for glass fibers.

    Science.gov (United States)

    Foy, Jeffrey W-D; Collier, Clare; Swauger, James E

    2003-02-01

    Biopersistence plays a significant role in determining the potential bioactivity of respirable fibers. In vivo biopersistence in the lung is frequently assessed by in vitro fiber dissolution studies using simulated biological solutions and flow-through techniques. The dissolution rate (k) of a fiber is typically determined by elemental analysis of the flow-through solution to measure the mass of material leached from the fibers over a given time. Various methods may be used to estimate the value of k from these results. The present study compared the in vitro dissolution characteristics of seven experimental glass fiber compositions to those obtained for four recognized fiber compositions (MMVF 10-glass fiber; MMVF 11-glass fiber; MMVF 21-rockwool fiber; crocidolite fiber). Fiber dissolution was examined over a 17-wk period using a flow-through system designed to simulate the conditions encountered by fibers in the extracellular environment of the lung. Mass loss and changes in fiber diameter were determined over time and were then used to calculate k using five different methods. Although the selected methodologies did not produce identical estimations of k for each fiber, the resulting ranking of fiber solubility for each method was consistent. The seven experimental glass fibers were found to have k values intermediate between those of MMVF 11 and MMVF 21.

  7. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  8. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  9. Synthesis of silica glass fibers and nanoparticles by continuous-wave laser backside irradiation

    Science.gov (United States)

    Saito, Namiko; Hidai, Hirofumi; Matsusaka, Souta; Chiba, Akira; Morita, Noboru

    2017-10-01

    We have developed a novel method to synthesize fibers and nanoparticles of silica glass using a continuous-wave laser. The synthesis process operates through continuous-wave laser backside irradiation (CW-LBI) of a glass substrate. In CW-LBI, a spindle-shaped emission is generated in the glass bulk along the optical axis; the emission propagates toward the light source as a confined plasma. The emission and its surroundings contain vaporized and molten glass. When the laser irradiation continues for a sufficient duration, the emission forefront reaches the glass surface, at which point vaporized and molten glass are ejected explosively. The ejected glass forms fibers and nanoparticles. Some of the nanoparticles become attached to the fiber surfaces during the explosion. The fiber diameters range from hundreds of nanometers to more than 10 μm. The particles on the fiber surfaces have diameters of tens of nanometers. A spindle-shaped hole remained in the glass substrate after the ejection, which had a depth of 3.8 mm. This result indicated that the ejected materials originated from deep inside the glass bulk. High-speed camera observations of the ejection process and scanning electron microscopy of the ejected materials indicated that the fibers formed from the extraction from molten silica glass and particles formed by aggregation of vaporized silica glass.

  10. Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation

    Science.gov (United States)

    Koyanagi, Jun; Nagayama, Hideo; Yoneyama, Satoru; Aoki, Takahira

    2016-06-01

    This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen's macro-strain over time was investigated based on the results obtained by the DIC measurement.

  11. Kekuatan transversa resin akrilik hybrid setelah penambahan glass fiber dengan metode berbeda (The transverse strength of the hybrid acrylic resin after glass fiber reinforcement with different method

    Directory of Open Access Journals (Sweden)

    Intan Nirwana

    2006-03-01

    Full Text Available Different types of fibers have been added to acrylic resin materials to improve their mechanical properties. The purpose of this study was to know the transverse strength of the hybrid acrylic resins after glass fiber reinforcement with difference method. This study used rectangular specimens of 65 mm in length, 10 mm in width and 2.5 mm in thickness. There were 3 groups consisting of 6 specimens each, hybrid acrylic resin without glass fiber (control, glass fibers dipped in methyl methacrylate monomer for 15 minutes before being reinforced into hybrid acrylic resin (first method, glass fibers reinforced into a mixture of polymer powder and monomer liquid after the hybrid acrylic resin was mixed directly (second method. All of the specimens were cured for 20 minutes at 100° C. Transverse strength was measured using Autograph. The statistical analyses using one way ANOVA and LSD test showed that there were significant differences in transverse strength (p < 0.05 among the groups. The means of transverse strength were 94,94; 118,27; and 116,34 MPa. It meant that glass fibers reinforcement into hybrid acrylic resin enhanced their transverse strength compared with control. Glass fiber reinforcement into hybrid acrylic resin with differenciate method didn’t enhance their transverse strength.

  12. Prevention of cancer risk of workers of glass fibers manufacture

    Directory of Open Access Journals (Sweden)

    G.F. Mukhammadieva

    2016-09-01

    Full Text Available In the process of producing of continuous glass fiber workers are exposed to complex impact of carcinogenic chemicals released into the air of the working area (including formaldehyde, epichlorohydrin, ethane acids, aerosol of mineral oil. The penetrating effect of harmful substances through the skin is enhanced by the fine glass dust, which has a traumatic and irritating effect. Aggravating factors of the impact of lubricants on the body of the operators is the increased temperature and the excess of heat radiation. A risk factor is also the unfavorable climate of the workplace. Among the professional patients (71 person of 170 examined employees most of persons aged 50–59 years. The average age of the patients at the time of detection of hyperkeratosis was 51,9 ± 0,9 years, skin cancer – 57,3 ± 1,7 years. Professional skin neoplasms were diagnosed mainly in workers who have been working for more than 10 years (average period of 12.6 ± 2.4 years. The period of transformation of limited hyperkeratosis to the skin cancer was on average 5–8 years. It was found that the molecular-genetic factors predisposing to the development of professional skin lesions are polymorphic variants of the gene suppressor of tumor growth TP53 (Ex4 + 119G>C, IVS3 16 bp Del/Ins and IVS6+62A>G. It has been shown that the development of preventive measures aimed at reducing the risk of occupational diseases is relevant and should include the interaction of administration, engineering and technical staff of the enterprise, labor protection service, Rospotrebnadzor specialists, doctors specialized in occupational diseases and the workers themselves. The complex of measures of primary and secondary prevention of health problems is suggested. The necessity of including the continuous glass fiber production to the list of carcinogen production processes, presented in national normative documents.

  13. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    Science.gov (United States)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-03-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products.

  14. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  15. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    OpenAIRE

    Pereira,Jefferson Ricardo; Ricardo Abreu da ROSA; SÓ, Marcus Vinícius Reis; AFONSO,Daniele; Kuga, Milton Carlos [UNESP; HONÓRIO, Heitor Marques; Valle,Accácio Lins do; Vidotti, Hugo Alberto

    2014-01-01

    OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resinmodified glass ionomer cements (RMGICs). MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to t...

  16. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  17. Effect of fiber volume fraction and length on the wear characteristics of glass fiber-reinforced dental composites.

    Science.gov (United States)

    Callaghan, David J; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2006-01-01

    The main objective of this study was to evaluate the wear characteristics of fiber-reinforced dental composites. Variables under investigation include the fiber weight percent added to the matrix as well as fiber length. Dental specimens with glass fiber content of 2, 5.1, 5.7, and 7.6 wt% with fiber length of either 1.5 or 3 mm, were prepared by mixing an activated dental resin with commercial glass fibers. The specimens were then tested on a pin on disc setup, where the antagonist disc was manufactured of a similar fiber-reinforced composite with 5.1 wt% fiber and fiber length of 3 mm. The volume loss and coefficient of friction of the specimens was monitored periodically throughout testing. In addition, the wear surfaces of all specimens were evaluated using a scanning electron microscope. The specimens with 5.7 wt% fibers and fiber length of 3 mm performed better in this study compared to all other fiber-reinforced specimens under all load conditions. In fact, this specimen had a comparable wear rate to a particle-filled dental composite. For the fiber lengths considered, increasing the length of the fibers increased the wear resistance of the specimen. The coefficient of friction showed a good correlation with the wear resistance of specimens. Fiber-reinforced composites demonstrated a high resistance to wear and may therefore be advantageous for dental applications, where high wear resistance is essential to functionality.

  18. Stress Corrosion Cracking in Polymer Matrix Glass Fiber Composites

    Science.gov (United States)

    Kosak, Jonathan

    With the use of Polymer Matrix Glass Fiber Composites ever expanding, understanding conditions that lead to failure before expected service life is of increasing importance. Stress Corrosion Cracking (SCC) has proven to be one such example of conditions found in use in high voltage transmission line applications that leads to brittle fracture of polymer matrix composites. SCC has been proven to be the result of acid buildup on the lines due to corona discharges and water buildup. This acid leaches minerals from the fibers, leading to fracture at low loads and service life. In order to combat this problem, efforts are being made to determine which composites have greater resistance to SCC. This study was used to create a methodology to monitor for damage during SCC and classify damage by mechanism type (matrix cracking and fiber breaking) by using 4-point SCC bend testing, 3-point bend testing, a forward predictive model, unique post processing techniques, and microscopy. This would allow a classification in composite resistance to SCC as well as create a methodology for future research in this field. Concluding this study, only matrix cracking was able to be fully classified, however, a methodology was developed for future experimentation.

  19. Customized fiber glass posts. Fatigue and fracture resistance.

    Science.gov (United States)

    Costa, Rogério Goulart; De Morais, Eduardo Christiano Caregnatto; Campos, Edson Alves; Michel, Milton Domingos; Gonzaga, Carla Castiglia; Correr, Gisele Maria

    2012-02-01

    To evaluate the root fracture strength of human single-rooted premolars restored with customized fiberglass post-core systems after fatigue simulation. 40 human premolars had their crowns cut and the root length was standardized to 13 mm. The teeth were endodontically treated and embedded in acrylic resin. The specimens were distributed into four groups (n=10) according to the restorative material used: prefabricated fiber post (PFP), PFP+accessory fiber posts (PFPa), PFP+unidirectional fiberglass (PFPf), and unidirectional fiberglass customized post (CP). All posts were luted using resin cement and the cores were built up with a resin composite. The samples were stored for 24 hours at 37 degrees C and 100% relative humidity and then submitted to mechanical cycling. The specimens were then compressive-loaded in a universal testing machine at a crosshead speed of 0.5 mm/minute until fracture. The failure patterns were analyzed and classified. Data was submitted to one-way ANOVA and Tukey's test (alpha = 0.05). The mean values of maximum load (N) were: PFP - 811.4 +/- 124.3; PFPa - 729.2 +/- 157.2; PFPf- 747.5 +/- 204.7; CP - 762.4 +/- 110. Statistical differences were not observed among the groups. All groups showed favorable restorable failures. Fiberglass customized post did not show improved fracture resistance or differences in failure patterns when compared to prefabricated glass fiber posts.

  20. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  1. Characterization of Nylon 6 Nano Fiber/E-Glass Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Vinod Kumar, T.; Chandrasekaran, M.; Santhanam, V.; Udayakumar, N.

    2017-03-01

    In the paper thermoplastic polymer Nylon-6 is generated in the form of Nanofibers by using an electro spinning method, and concentration of a solution is 4% as a constant then, by varying the process parameters such as flow rate (0.8 ml/hr, 1ml/hr and 1.2 ml/hr) of the solution. The results indicated Nanofibers with 4% concentration and 1 ml/hr produced optimum fibers due to continuous fiber formation. Composites Plates are fabricated by using a Hand lay-up method with different volume fraction (0.5, 1, 2 % v/v) of Nanofibers ratio. Then, the optimum Nanofibers volume ratio (2 % v/v) is reinforced with E-glass fibers and epoxy resin as a matrix. In order to find Nanofibers effect, Mechanical properties like (Tensile, Flexural and Impact) is performed and evaluated.

  2. R&D on glass fiber reinforced epoxy resin composites for superconducting Tokamak.

    Science.gov (United States)

    Hu, Nannan; Wang, Ke; Ma, Hongming; Pan, Wanjiang; Chen, Qingqing

    2016-01-01

    The glass fiber reinforced epoxy resin composites play an important role in superconducting Tokamak, which are used to insulate the metal components, such as superconducting winding, cooling pipes, metal electrodes and so on. For the components made of metal and glass fiber reinforced epoxy resin composites, thermal shrinkage leads to non-ignorable thermal stress, therefore, much attention should be paid on the thermal shrinkage rate of glass fiber reinforced epoxy resin composites. The structural design of glass fiber reinforced epoxy resin composites should aim at reducing thermal stress. In this paper, the density, glass fiber content and thermal shrinkage rate of five insulation tubes were tested. The testing results will be applied in structural design and mechanical analysis of isolators for superconducting Tokamak.

  3. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  4. Comparison between three glass fiber post cementation techniques.

    Science.gov (United States)

    Migliau, Guido; Piccoli, Luca; Di Carlo, Stefano; Pompa, Giorgio; Besharat, Laith Konstantinos; Dolci, Marco

    2017-01-01

    The aim of this experimental study was to compare the traditional cement systems with those of the latest generation, to assess if indeed these could represent of viable substitutes in the cementation of indirect restorations, and in the specific case of endodontic posts. The assessment of the validity of the cementing methods was performed according to the test of the push-out, conducted on sections obtained from the roots of treated teeth. The samples were divided into three groups. Group A (10 samples): etching for 30 seconds with 37% orthophosphoric acid (Superlux-Thixo-etch-DMG) combined with a dual-curing adhesive system (LuxaBond-Total Etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). Group B (10 samples): self-adhesive resin cement (Breeze-Pentron Clinical) and glass fiber posts (LuxaPost-DMG). Group C (10 samples): 3 steps light-curing, self-etching, self-conditioning bonding agent (Contax-Total-etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). The survey was conducted by examining the breaking resistance of the post-cement-tooth complex, subjected to a mechanical force. Statistical analysis was performed using SPSS Inc. ver. 13.0, Chicago, IL, USA. Group A values of bond strenth ranged from a minimum of 10.14 Mpa to a maximum value of 14.73 Mpa with a mean value of 12.58 Mpa. In Group B the highest value of bond strength was 6.54 Mpa and the minimum 5.55 Mpa. The mean value of the bond strength for the entire group was 6.58 Mpa. In Group C the highest bond strength was 6.59 Mpa whereas the lowest bond strength was 4.84 Mpa. Mean value of the bond strength of Group C was calculated at 5.7 Mpa. Etching with orthophosphoric acid combined with a dual-curing adhesive system and a dual-cured resin-composite cement was the technique that guaranteed the highest bond strength. Lowest bond strength values were obtained when dual self-adhesive cement was used.

  5. The Mechanical Strength of Acrylic Palatal Plates Reinforced with Net or Bundle Glass Fibers

    OpenAIRE

    Hedzelek, W.; Gajdus, P.; Joniak, S.

    2002-01-01

    The aim of the study was to evaluate the resistant forces of acrylic palatal plates reinforced with glass net and unidirectional glass fibers. The form and models of the edentulous jaw (Frasaco) were used in the study. Palatal plates were made from hot polymerised acrylic SR Triplex Hot (Ivoclar). In the total reinforced method the studied palatal plates used were reinforced with one or three layers of fiber glass net (Stick Net). In the partial reinforced method acrylic palatal plates wer...

  6. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  7. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses

    Directory of Open Access Journals (Sweden)

    Ioannis Konidakis

    2014-08-01

    Full Text Available Silver iodide metaphosphate glasses of the xAgI + (1−xAgPO3 family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO3 metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the xAgI + (1−xAgPO3/PCFs is also considered.

  8. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  9. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Directory of Open Access Journals (Sweden)

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  10. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite.

    Science.gov (United States)

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-05-19

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  11. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Science.gov (United States)

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512

  12. Evaluation of the flexural strength of carbon, quartz, and glass fiber-based posts

    OpenAIRE

    Sita Rama Raju; Krishna Rao Kilaru; Kidyoor Krishnamurthy Haridas; Balaram Naik; Krishnaprasad Shetty; Satish Sarvepalli Venkata

    2014-01-01

    Objectives: This study was done to evaluate the flexural strength of carbon, quartz, and glass fiber posts by means of three-point bending test. Materials and Methods: Thirty pre-fabricated fiber posts were used and divided into three groups. Group I carbon fiber posts (C-Post), group II quartz fiber post (Aestheti Plus), group III glass fiber post (Para Post White) Ten posts (N = 10) were used for each experimental group and were measured with digital caliper before test accomplishment. The ...

  13. Pengaruh volumetrik e-glass fiber terhadap kekuatan transversal reparasi plat gigi tiruan resin akrilik

    Directory of Open Access Journals (Sweden)

    Pramudya Aditama

    2017-01-01

    Full Text Available ABSTRACT: The effect of e-glass fiber volumetric on transverse strength of an acrylic resin denture plate repair. Acrylic resin is the most commonly material for the denture base. A disadvantage of acrylic resin is that it is easily to be cracked. One of the ways to resolve this problem is by adding the E-glass fibers. The purpose of this research was to find out the effect of volumetric E-glass fiber on transverse strength of an acrylic resin denture plate repair. The experiment involved thirty plates of heat cured acrylic with the dimensions of 65 × 10 × 2.5 mm. The specimens were prepared to create a 3-mm gap and 45° bevel. Subjects were divided in to 3 groups, each of which contained 10. Group I (control was with no fiber reinforcement, group II was reinforced with 3.7vol % E-glass fiber, and group III was reinforced with 7.4 volume % E-glass fiber. All plates were soaked in distillation water for one day at 37 °C. Plates were tested for transverse strength with Universal Testing Machine and all data obtained was analyzed with one way anova at 95% confidence level (α= 0.05. The significant difference was found between the transversal force of acrylic resin plat enforced with fiber and other group without being reinforced with fibers (p<0.05. Group reinforced with 7.4 vol % E-glass fibers showed a significant difference (higher than the group reinforced with 3.7 volume % fibers. The addition of E-glass fibers in an acrylic resin plate repair material increased the transverse strength. The increase in volumetric fibers might improve the transverse strength of an acrylic resin plate repair material.

  14. In-plane spectroscopy with optical fibers and liquid-filled APEX™ glass microcuvettes

    Science.gov (United States)

    Gaillard, William R.; Hasan Tantawi, Khalid; Waddell, Emanuel; Fedorov, Vladimir; Williams, John D.

    2013-10-01

    Chemical etching and laser drilling of microstructural glass results in opaque or translucent sidewalls, limiting the optical analysis of glass microfluidic devices to top down or non-planar topologies. These non-planar observation topologies prevent each layer of a multilayered device from being independently optically addressed. However, novel photosensitive glass processing techniques in APEX™ have resulted in microfabricated glass structures with transparent sidewalls. Toward the goal of a transparent multilayered glass microfluidic device, this study demonstrates the ability to perform spectroscopy with optical fibers and microcuvettes fabricated in photosensitive APEX™ glass.

  15. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing

    Science.gov (United States)

    Jia, S. J.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Jiang, H. W.; Zhang, L.; Feng, Y.; Qin, G. S.; Ohishi, Y.; Qin, W. P.

    2018-01-01

    Ho3+ doped fluoroaluminate glass fibers based on chemically durable AlF3–BaF2–YF3–PbF2–MgF2–CaF2 glasses are fabricated by using a rod-in-tube method. By using an 84 cm long Ho3+-doped fluoroaluminate glass fiber as the gain medium and a 1120 nm fiber laser as the pump source, lasing at 2868 nm is obtained, the maximum unsaturated power is about 57 mW for a pump power of 1224 mW, and the corresponding slope efficiency is ~5.1%. The effect of the fiber length on lasing at 2868 nm is also investigated. Our results show that Ho3+-doped fluoroaluminate glass fibers are promising gain media for 2.9 µm laser applications.

  16. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  17. Highly tunable interfacial adhesion of glass fiber by hybrid multilayers of graphene oxide and aramid nanofiber.

    Science.gov (United States)

    Park, Byeongho; Lee, Wonoh; Lee, Eunhee; Min, Sa Hoon; Kim, Byeong-Su

    2015-02-11

    The performance of fiber-reinforced composites is governed not only by the nature of each individual component comprising the composite but also by the interfacial properties between the fiber and the matrix. We present a novel layer-by-layer (LbL) assembly for the surface modification of a glass fiber to enhance the interfacial properties between the glass fiber and the epoxy matrix. Solution-processable graphene oxide (GO) and an aramid nanofiber (ANF) were employed as active components for the LbL assembly onto the glass fiber, owing to their abundant functional groups and mechanical properties. We found that the interfacial properties of the glass fibers uniformly coated with GO and ANF multilayers, such as surface free energy and interfacial shear strength, were improved by 23.6% and 39.2%, respectively, compared with those of the bare glass fiber. In addition, the interfacial adhesion interactions between the glass fiber and the epoxy matrix were highly tunable simply by changing the composition and the architecture of layers, taking advantage of the versatility of the LbL assembly.

  18. Investigating the Properties of Asphalt Concrete Containing Glass Fibers and Nanoclay

    Directory of Open Access Journals (Sweden)

    Hasan Taherkhani

    2016-06-01

    Full Text Available The performance of asphaltic pavements during their service life is highly dependent on the mechanical properties of the asphaltic layers. Therefore, in order to extend their service life, scientists and engineers are constantly trying to improve the mechanical properties of the asphaltic mixtures. One common method of improving the performance of asphaltic mixtures is using different types of additives. This research investigated the effects of reinforcement by randomly distributed glass fibers and the simultaneous addition of nanoclayon some engineering properties of asphalt concrete have been investigated. The properties of a typical asphalt concrete reinforced by different percentages of glass fibers were compared with those containing both the fibers and nanoclay. Engineering properties, including Marshall stability, flow, Marshall quotient, volumetric properties and indirect tensile strength were studied. Glass fibers were used in different percentages of 0.2, 0.4 and 0.6% (by weight of total mixture, and nanoclay was used in 2, 4 and 6% (by the weight of bitumen. It was found that the addition of fibers proved to be more effective than the nanoclay in increasing the indirect tensile strength. However, nanoclay improved the resistance of the mixture against permanent deformation better than the glass fibers. The results also showed that the mixture reinforced by 0.2% of glass fiber and containing 6% nanoclay possessed the highest Marshall quotient, and the mixture containing 0.6% glass fibers and 2% nanoclay possessedthe highest indirect tensile strength.

  19. Fiber glass plastic insulation of power transmission lines. Stekloplastikovaya izolyatsiya liniy elektroperedachi

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, G.N.; Ivanov, V.L.

    1983-01-01

    Results are described of comprehensive studies of electrophysical characteristics of polymer electrical insulation of external design under the main operating effects. The current state of the problem of creation, use and selection of polymer electrical insulation are presented. Fundamentals are presented of the technique of selecting the polymer electrical insulation taking into consideration the specific nature of the fiber glass plastic structure. A technique is developed for calculation and selection of screen fittings for fiber glass plastic electrical insulation designs for apparatus and overhead lines. Reference data are presented which can be used in calculating the fiber glass plastic electrical insulation.

  20. Mechanical Characterization and Fractography of Glass Fiber/Polyamide (PA6) Composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Pillai, Saju; Charca, Samuel

    2015-01-01

    The mechanical properties of the glass fiber reinforced Polyamide (PA6) composites made by prepreg tapes and commingled yarns were studied by in-plane compression, short-beam shear, and flexural tests. The composites were fabricated with different fiber volume contents (prepregs—47%, 55%, 60...... (SEM) were used. Both commingled and prepreg glass fiber/PA6 composites (with Vf ∼ 48%) give mechanical properties such as compression strength (530–570 MPa), inter-laminar shear strength (70–80 MPa), and transverse strength (80–90 MPa). By increasing small percentage in the fiber content show...... significant rise in compression strength, slight decrease in the ILSS and transverse strengths, whereas semipreg give very poor properties with the slight increase in fiber content. Overall comparison of mechanical properties indicates commingled glass fiber/PA6 composite shows much better performance...

  1. Flexural Strength of Glass and Polyethylene Fiber Combined with Three Different Composites

    OpenAIRE

    Sharafeddin F; Alavi AA.; Talei Z.

    2013-01-01

    Statement of Problem: The flexure of the fiber- reinforced composites (FRC) which can be generally used instead of fixed metal- framework prostheses have been more advocated due to the enormous demands for the conservative and esthetic restoration. The flexure of the fiber should be well-fitted to its covering composite. No study has been reported the comparison of the combination of glass and polyethylene fiber with particulate filled composite and fiber reinforced composite yet. Purpose: Th...

  2. Influence of the Initial Fiber Orientation on the Weld Strength in Welding of Glass Fiber Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Isabel Fiebig

    2016-01-01

    Full Text Available The welding factors are significantly lower in welding of fiber reinforced thermoplastics than in welding of unreinforced thermoplastics due to the fiber orientation in the weld. This paper presents results from investigations on the influence of the initial fiber orientation on the weld strength in hot plate and vibration welding for glass fiber reinforced polypropylene and polyamide 6. Injection molded specimens are compared to specimens with main initial fiber orientation being longitudinal and transverse to the joining direction. The results of CT analysis of the fiber orientation in the weld show the opportunity to achieve a higher weld strength by using specimens with fibers being initially oriented longitudinally to the joining direction. The influence of the initial fiber orientation in the parts to be welded on the weld strength in hot plate welding is more distinct than in vibration welding.

  3. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    Directory of Open Access Journals (Sweden)

    Tae-Il Seo

    2013-05-01

    Full Text Available Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %. The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  4. Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites

    Directory of Open Access Journals (Sweden)

    Daiane Romanzini

    2012-06-01

    Full Text Available The use of ramie fibers as reinforcement in hybrid composites is justified considering their satisfactory mechanical properties if compared with other natural fibers. This study aims to verify changes in chemical composition and thermal stability of the ramie fibers after washing with distilled water. One additional goal is to study glass fiber and washed ramie fiber composites focusing on the effect of varying both the fiber length (25, 35, 45 and 55 mm and the fiber composition. The overall fiber loading was maintained constant (21 vol.%. Based on the results obtained, the washed ramie fiber may be considered as an alternative for the production of these composites. The higher flexural strength presented being observed for 45 mm fiber length composite, although this difference is not significant for lower glass fiber volume fractions: (0:100 and (25:75. Also, by increasing the relative volume fraction of glass fiber until an upper limit of 75%, higher flexural and impact properties were obtained.

  5. Flexural performance of woven hybrid composites

    Science.gov (United States)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  6. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  7. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  8. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite.

    Science.gov (United States)

    Abdulmajeed, Aous A; Närhi, Timo O; Vallittu, Pekka K; Lassila, Lippo V

    2011-04-01

    This study was designed to evaluate the effect of an increase of fiber-density on some mechanical properties of higher volume fiber-reinforced composite (FRC). Five groups of FRC with increased fiber-density were fabricated and two additional groups were prepared by adding silanated barium-silicate glass fillers (0.7 μm) to the FRC. The unidirectional E-glass fiber rovings were impregnated with light-polymerizable bisGMA-TEGDMA (50-50%) resin. The fibers were pulled through a cylindrical mold with an opening diameter of 4.2mm, light cured for 40s and post-cured at elevated temperature. The cylindrical specimens (n=12) were conditioned at room temperature for 2 days before testing with the three-point bending test (Lloyd Instruments Ltd.) adapted to ISO 10477. Fiber-density was analyzed by combustion and gravimetric analyzes. ANOVA analysis revealed that by increasing the vol.% fraction of E-glass fibers from 51.7% to 61.7% there was a change of 27% (pfibers and volume of the polymer matrix more precisely than flexural strength when high fiber-density is used. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an

  10. Reinforcing Effect of Glass Fiber-incorporated ProRoot MTA and Biodentine as Intraorifice Barriers.

    Science.gov (United States)

    Nagas, Emre; Cehreli, Zafer C; Uyanik, Ozgur; Vallittu, Pekka K; Lassila, Lippo V J

    2016-11-01

    The purpose of this study was to investigate the fracture resistance of roots by using intraorifice barriers with glass fiber-incorporated ProRoot MTA and Biodentine. The diametral tensile strength and compressive strength of ProRoot MTA and Biodentine were determined after incorporation of 5 wt% and 10 wt% alkali resistant (AR) glass fiber powder into both cements. On the basis of higher diametral tensile strength and compressive strength values, ProRoot MTA and Biodentine with 5 wt% AR glass fiber were selected for further testing as intraorifice barriers. The 14-mm-long root specimens obtained from extracted mandibular premolars (n = 60) were prepared with nickel-titanium rotary files and obturated with gutta-percha + AH Plus sealer. After removal of coronal 3 mm of root fillings, the roots were grouped with respect to the intraorifice barrier material (n = 12/group): (1) ProRoot MTA, (2) ProRoot MTA with 5 wt% AR glass fibers, (3) Biodentine, (4) Biodentine with 5 wt% AR glass fibers, and (5) control (no intraorifice barrier). The specimens were loaded vertically at 1 mm/min crosshead speed until vertical root fracture occurred. The data were evaluated statistically by using 2-way analysis of variance and Tukey tests. Both incorporation of glass fiber and the type of material significantly affected fracture resistance (both P = .002). Roots with glass fiber-reinforced Biodentine barriers showed the highest fracture strength (P = .000). Incorporation of 5 wt% AR glass fiber can significantly improve the reinforcement effect of ProRoot MTA and Biodentine when used as intraorifice barriers. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Interface homogeneity of adhesively luted glass fiber posts.

    Science.gov (United States)

    Watzke, Ronny; Blunck, Uwe; Frankenberger, Roland; Naumann, Michael

    2008-11-01

    The aim of this study was to light microscopically evaluate the homogeneity of the cement interface of an adhesively luted glass fiber post (GFP) by using a new cement application aid compared to a conventional post cementation method. Twenty artificial root canals (n = 5) received GFP under the following experimental conditions: I = RelyX Unicem applied with a new application aid, II = RelyX Unicem, III = Panavia F 2.0 and IV = Variolink II (groups II-IV with conventional post cementation). From all specimens standardized photographs were taken perpendicularly to the post surface under a light-optical microscope from two opposite sides. The depicted cement interfaces were analysed using surface-analyzing software and related to the complete three-dimensional surface of the cement interface. Non-parametric tests were used to compare median values of the observed inhomogeneities (alpha = 5%). The median values (%) of inhomogeneities within the cement interface for the cervical, middle, and apical level of analysis were: I = 2, 2, 7; II = 15, 19, 24; III = 8, 16, 39; IV = 11, 16, 29. For the complete post length, median values (%) of inhomogeneities were: I = 4; II = 19; III = 20; IV = 18. The conventional application technique for luting endodontic post results in a large number of voids and bubbles. The combination of a flexible root-canal-shaped application aid achieves a more homogenous cement interface for the self-adhesive luting material tested.

  12. Flexural strength of glass and polyethylene fiber combined with three different composites.

    Science.gov (United States)

    Sharafeddin, F; Alavi, Aa; Talei, Z

    2013-03-01

    The flexure of the fiber- reinforced composites (FRC) which can be generally used instead of fixed metal- framework prostheses have been more advocated due to the enormous demands for the conservative and esthetic restoration. The flexure of the fiber should be well-fitted to its covering composite. No study has been reported the comparison of the combination of glass and polyethylene fiber with particulate filled composite and fiber reinforced composite yet. This study compared the flexural strength of two types of fibers combined with three types of composites. Sixty-six specimens were prepared in a split mold (25×2×2 mm). The specimens were divided into six groups according to the type of resin and the fiber (N = 11): group 1: Z250 composite + Polyethylene fiber; group 2: Build It composite + Polyethylene fiber; group 3: Nulite F composite+ Polyethylene fiber; group 4: glass fiber + Z250 composite; group 5: glass fiber + Build-It composite and group 6: glass fiber + Nulite F. The mean flexural strengths (MPa) values were determined in a 3-point bending test at a crosshead speed of 1 mm/min by a universal testing machine (Zwick/Roell Z020, Germany). The results were statistically analyzed, using one and two- way ANOVA and LSD post-hoc tests (pglass fiber in combination with Z250 composite (500 MPa) and the lowest for polyethylene fiber in combination with Build-It composite (188 MPa). One-way ANOVA test revealed that there was no statistically significant difference between polyethylene fiber combinations (p= 0.62) but there was a significant difference between glass fiber combinations (p= 0.0001). Two-way ANOVA revealed that the fiber type had a significant effect on flexural strength (p= 0.0001). The choice of fiber and composite type was shown to have a significant positive influence on the flexural properties of the fiber-reinforced composite. Glass fiber has a significant influence on the flexural properties of directly- made specimens.

  13. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    Science.gov (United States)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  14. Three-Year Follow Up of Customized Glass Fiber Esthetic Posts

    Science.gov (United States)

    da Costa, Rogério Goulart; de Morais, Eduardo Christiano Caregnatto; Leão, Moira Pedroso; Bindo, Márcio José Fraxino; Campos, Edson Alves; Correr, Gisele Maria

    2011-01-01

    Customized glass fiber posts that is well adjusted into the root canal and have mechanical properties similar to those of dentin may be a suitable treatment for severely compromised endodontically treated teeth. This article reports a 3-year follow up of severely damaged endodontically treated teeth restored with unidirectional fiber glass customized post and core system instead of a conventional fiber post. The fabrication of this glass fiber customized post is a simple technique, providing an increased volume of fibers into the root canal, and an adequate polymerization of the post-core system. Over a three-year period, the treatments demonstrated good clinical and radiographic characteristics, with no fracture or loss of the post and/or crown. This technique can be considered effective, less invasive, and suitable for restore endodontically treated teeth. PMID:21228960

  15. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  16. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  17. Effect of SiC Nano powder on Multiaxial Woven and Chopped Randomly Oriented Flax/Sisal Fiber Reinforced composites

    Directory of Open Access Journals (Sweden)

    Kalagi Ganesh R.

    2018-01-01

    Full Text Available A study has been carried out to investigate effect of SiC Nano powder on tensile and impact properties of Multiaxial layers of Flax and Sisal fiber reinforced composites and randomly oriented chopped Flax and Sisal fiber reinforced composites. It has been observed that tensile strength and impact strength were improved using 6% of SiC Nanopowder into Multiaxial layer (+45º/-45º, 0º/90º of Flax and Sisal where as randomly oriented chopped Flax and Sisal fiber reinforced composites are improved in its stiffnes for the same composition of fiber, epoxy and SiC Nano powder. SEM Analysis are done to analyse the distribution of SiC in both Multiaxial layers of Flax and Sisal fiber reinforced composites and randomly oriented chopped Flax and Sisal fiber reinforced composites.

  18. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  19. Effect of discrete glass fibers on the behavior of R.C. Beams exposed to fire

    Directory of Open Access Journals (Sweden)

    Magdy Riad

    2017-08-01

    Full Text Available The main objective of this paper is to investigate the effect of adding discrete glass fibers on the behavior of reinforced concrete (RC beams under different fire and cooling conditions. Eighteen beams with different concrete compressive strengths were tested to study the behavior of reinforced concrete (RC beams containing discrete glass fibers when exposed to different fire and cooling conditions. Nine beams were prepared from normal strength concrete (NSC with compressive strength equal to 35 MPa while the other beams were prepared from high strength concrete (HSC with compressive strength equal to 60 MPa. The beams contained different contents of discrete glass fibers. The modes of failure of tested specimens show that the crack patterns change according to fire condition and fiber content. Analysis of test results show that adding discrete glass fibers to NSC increased the residual stiffness of the tested specimens after firing and decreased the rate of the deflection gain during firing. Also adding fibers to concrete has a limited positive effect on the ultimate strength of the specimens compared to the control specimens. Its effect on deflection due to fire is more pronounced. Finally, the recommended optimum ratio of discrete glass fibers is not more than 0.5% of the total concrete weight.

  20. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane.

    Science.gov (United States)

    Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo

    2016-01-01

    Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.

  1. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  2. Investigation of physical-mechanical and performance properties of glass fiber reinforced polyurethane materials used in the machine building industry

    Science.gov (United States)

    Shafigullin, L. N.; Astashchenko, V. I.; Romanova, N. V.; Ibragimov, A. R.; Shafigullina, G. R.; Shafigullina, A. N.

    2017-09-01

    The paper presents the investigation of physical-mechanical and performance properties of the glass fiber reinforced polyurethane (PUR) materials made using the long fiber injection process. It was found that glass fiber reinforced polyurethane could be used to manufacture interior parts with different surface textures (instrument panels, door trim, armrests).

  3. Effect of winding layer and speed on kenaf/glass fiber hybrid reinforced acrylonitrile butadiene styrene (ABS) composites

    Science.gov (United States)

    Khoni, Norizzahthul Ainaa Abdul; Sharifah Shahnaz S., B.; Ghazali, Che Mohd Ruzaidi

    2016-07-01

    The usage of natural fiber is becoming significant in composite industries due to their good performance. Single and continuous natural fibers have relatively high mechanical properties; especially their young modulus can be as high as glass fibers. Filament winding is a method to produce technically aligned composites which have high fibers content. The properties of filament winding can be tailored to meet the end product requirements. This research studied the compression properties of kenaf/glass fibers hybrid reinforced composites. Kenaf/glass fibers hybrid composite samples were fabricated by filament winding technique and their properties were compared with the properties of neat kenaf fiber and glass fibers composites. The kenaf/glass fiber hybrid composites exhibited higher strength compared to the neat glass fibers composites. Composites of helical pattern, which produced at low winding speed showed better compression resistance than hoop pattern winding, which produced at high winding speed. As predicted, kenaf composite showed highest water absorption; followed by kenaf/glass fiber hybrid composites while neat glass fiber has lowest water absorption capability.

  4. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  5. Interlaminar/interfiber failure of unidirectional glass fiber reinforced composites used for wind turbine blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Overgaard, Lars C. T.; M. Daniel,, Isaac

    2013-01-01

    A unidirectional glass fiber/epoxy composite was characterized under multi-axial loading by testing off-axis specimens under uniaxial tension and compression at various angles relative to the fiber direction. Iosipescu shear tests were performed with both symmetric and asymmetric specimens. Tests...

  6. Mechanical Behavior of Hybrid Glass/Steel Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Amanda K. McBride

    2017-04-01

    Full Text Available While conventional fiber-reinforced polymer composites offer high strength and stiffness, they lack ductility and the ability to absorb energy before failure. This work investigates hybrid fiber composites for structural applications comprised of polymer, steel fiber, and glass fibers to address this shortcoming. Varying volume fractions of thin, ductile steel fibers were introduced into glass fiber reinforced epoxy composites. Non-hybrid and hybrid composite specimens were prepared and subjected to monolithic and half-cyclic tensile testing to obtain stress-strain relationships, hysteresis behavior, and insight into failure mechanisms. Open-hole testing was used to assess the vulnerability of the composites to stress concentration. Incorporating steel fibers into glass/epoxy composites offered a significant improvement in energy absorption prior to failure and material re-centering capabilities. It was found that a lower percentage of steel fibers (8.2% in the hybrid composite outperformed those with higher percentages (15.7% and 22.8% in terms of energy absorption and re-centering, as the glass reinforcement distributed the plasticity over a larger area. A bilinear hysteresis model was developed to predict cyclic behavior of the hybrid composite.

  7. Erbium and ytterbium co-doped transparent oxyfluoride glass-ceramics optical fibers

    Science.gov (United States)

    Czerska, Elwira; Wiśniewski, Krzysztof; Augustyn, ElŻbieta; Koepke, Czesław; Lisiecki, Radosław; Kepińska, Mirosława; Żelechower, Michał

    2017-08-01

    According to the earlier author's papers, the erbium/ytterbium co-doped oxyfluoride glass-ceramics fibers should demonstrate better 1550 nm emission under 488/515/980 nm excitation (the erbium Er3+ ion transition 4I13/2->4I15/2) than corresponding glass fibers (the batch composition 48SiO211Al2O3-7Na2CO3-10CaO-10PbO-12PbF2- 1.5/0.6YbF3-0.5/0.2ErF3). Glass fibers provided as a core of standard multimode waveguide (the diameter of 62 μm) have been drawn with the mini-tower to the diameter between 50 μm and 80 μm, then annealed in the two-step regime (580°C/1h - nucleation of nano-crystals; 760oC/15/30 min - nano-crystals growth). This kind of heat treatment ensures the transparent glass-ceramics fibers with the microstructure of homogeneously distributed nano-crystals (lead, erbium and ytterbium enriched cubic fluorite-like crystals and hexagonal PbF2 crystals) embedded in a glassy host. Their transmission covers the range of 80-90% and seems to be sufficient with respect to their provided limited length ( 2m). The luminescence intensity for glass-ceramics fibers at 1530 nm is higher than that of respective glass fibers and the lifetimes of the erbium ion excited state 4I13/2 are of the same order ( 5 ms). In that context the glass-ceramics fibers discussed above seem to be promising candidates for cores of fiber lasers at the 1550 nm band.

  8. Study on effects of E-glass fiber hybrid composites enhanced with multi-walled carbon nanotubes under tensile load using full factorial design of experiments

    Science.gov (United States)

    Musthak, Md.; Madhavi, M.; Ahsanullah, F. M.

    2017-08-01

    Carbon nanotubes (CNT's) are attracting scientific and industrial interest by virtue of their outstanding characteristics. The present research problem deals with the fabrication and characterization of E-glass fiber composites enhanced by carbon nanotubes. In the present study, three factors with two levels are considered. Hence, the design is called 23 full factorial design of experiment. The process parameters considered for the present problem are weight of multi-walled carbon nanotubes, process to disperse nano-particles in resin, and orientation of woven fabric. In addition, their levels considered for the experiment are higher level (+1) and lower level (-1). Fabrication of E-glass fiber composites was carried out according to design, and the specimens were prepared with respect to the ASTM standards D3039-76 and tensile testing was performed. The results show that the nano-particulated composite plate can be manufactured by considering lower level nano-particles stirred with probe sonicator and plied-up with hybrid orientation.

  9. The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials.

    Science.gov (United States)

    Saygili, Gülbin; Sahmali, Sevil M; Demirel, Figen

    2003-01-01

    The fracture resistance of provisional restorations is an important concern for the restorative dentist. The fracture resistance of a material is directly related to its transverse strength. Six specimens of similar dimensions were prepared from three resins (PMMA, PEMA and BIS acryl-composite). The resins were reinforced with glass and aramid fibers. The samples were tested immediately after the material set, following seven days of wet storage using three-point compression loading. The results were analyzed with an analysis of variance (ANOVA). Fracture resistance of the specimens was statistically different (p fibers showed higher transverse strength (149.82 MPa). The fiber reinforcement of resin materials increased the strength values (20-50%). Within the limitations of this study, the transverse strengths of PMMA, PEMA and BIS acryl-resin composites were improved after reinforcement with glass and aramid fibers.

  10. Glass and Process Development for the Next Generation of Optical Fibers: A Review

    Directory of Open Access Journals (Sweden)

    John Ballato

    2017-03-01

    Full Text Available Applications involving optical fibers have grown considerably in recent years with intense levels of research having been focused on the development of not only new generations of optical fiber materials and designs, but also on new processes for their preparation. In this paper, we review the latest developments in advanced materials for optical fibers ranging from silica, to semi-conductors, to particle-containing glasses, to chalcogenides and also in process-related innovations.

  11. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  12. Monitoring ageing of alkali resistant glass fiber reinforced cement (GRC) using guided ultrasonic waves

    Science.gov (United States)

    Eiras, J. N.; Amjad, U.; Mahmoudabadi, E.; Payá, J.; Bonilla, M.; Kundu, T.

    2013-04-01

    Glass fiber reinforced cement (GRC) is a Portland cement based composite with alkali resistant (AR) glass fibers. The main drawback of this material is the ageing of the reinforcing fibers with time and especially in presence of humidity in the environment. Until now only destructive methods have been used to evaluate the durability of GRC. In this study ultrasonic guided wave inspection of plate shaped specimens has been carried out. The results obtained here show that acoustic signatures are capable of discerning ageing in GRC. Therefore, the ultrasonic guided wave based inspection technique is a promising method for the nondestructive evaluation of the durability of the GRC.

  13. Evaluation of the flexural strength of carbon, quartz, and glass fiber-based posts

    Directory of Open Access Journals (Sweden)

    Sita Rama Raju

    2014-01-01

    Full Text Available Objectives: This study was done to evaluate the flexural strength of carbon, quartz, and glass fiber posts by means of three-point bending test. Materials and Methods: Thirty pre-fabricated fiber posts were used and divided into three groups. Group I carbon fiber posts (C-Post, group II quartz fiber post (Aestheti Plus, group III glass fiber post (Para Post White Ten posts (N = 10 were used for each experimental group and were measured with digital caliper before test accomplishment. The fracture load of post specimens was measured, and flexural strength was obtained by the formula using S = 8FL/pd 3 . The values in Kgf/mm 2 were obtained and calculated to Mpa and submitted to ANOVA (a = 0.01 and to the Tukey′s test. Results: The mean values of flexural strength show that group II quartz fiber posts (666 MPa are significantly higher than group I carbon fiber (614 MPa and group III glass fiber (575 MPa. C onclusion: Hence, this study concluded that quartz fiber post showed significantly higher flexural strength values. Further scope of this study lies in the evaluation and evolution of a restorative materials used for post and core preparation, which have modulus of elasticity in harmony with that of dentin and near-natural esthetic appearance.

  14. Processing and characterization of core-clad tellurite glass preforms and fibers fabricated by rotational casting

    Science.gov (United States)

    Massera, J.; Haldeman, A.; Milanese, D.; Gebavi, H.; Ferraris, M.; Foy, P.; Hawkins, W.; Ballato, J.; Stolen, R.; Petit, L.; Richardson, K.

    2010-03-01

    We report results on the processing and characterization of tellurite-based glass preforms (core and cladding bulk glasses) and fibers within the TeO 2-Bi 2O 3-ZnO glass system. The core-clad fiber has been drawn from a core-clad preform prepared via rotational casting. Using Cu as a tracer to assess interface quality between the core and clad layers, we show excellent cladding layer thickness uniformity across lengths of up to 40 mm in a 65 mm long perform. No measurable diffusion of Cu between the core and the clad has been observed, within the accuracy of measurement, indicating good stability and interface quality during casting of melted glass. Micro-Raman spectroscopy has been used to identify subtle post-draw structural modification induced in the preform following the fiber drawing. These changes have been attributed to modification to the bulk glass' thermal history upon drawing and small scale molecular orientation of chain units within the tellurite glass matrix produced during the fiber drawing process. The resulting fiber was found to have an index step of (0.009 ± 0.002) between the fiber core and clad composition at 632 nm and propagation losses of (3.2 ± 0.1) dB/m at 632 nm and (2.1 ± 0.1) dB/m at 1.5 μm. The primary source of loss in the near-IR (NIR) is associated with residual hydroxyl (OH -) groups in the bulk preform which remain in the glass fiber.

  15. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  16. The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Meenal Nitin Gulve

    2013-01-01

    Conclusion: Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling.

  17. Use of a CAD/CAM-fabricated glass fiber post and core to restore fractured anterior teeth: A clinical report.

    Science.gov (United States)

    Liu, Peng; Deng, Xu-Liang; Wang, Xin-Zhi

    2010-06-01

    Prefabricated glass fiber posts are widely used; however, their shape cannot be changed and they can be unsuitable for severely damaged teeth with wide root canals. This clinical report describes a procedure for restoring a severely damaged anterior tooth with a customized 1-piece glass fiber post and core, fabricated using a CAD/CAM system. This 1-piece glass fiber post and core adapts better to the root canal than a prefabricated glass fiber post, and reduces the cement layer thickness. Furthermore, it does not require the use of a composite resin foundation. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Glass fiber contamination of cigarette filters: an additional health risk to the smoker?

    Science.gov (United States)

    Pauly, J L; Lee, H J; Hurley, E L; Cummings, K M; Lesses, J D; Streck, R J

    1998-11-01

    We report here the results of studies documenting the contamination of a cigarette-appearing smoking article labeled Eclipse with glass fibers, fragments, and particles. Eclipse, a product of the R. J. Reynolds Tobacco Company (RJR), was commercialized in June of 1996. Eclipse is unlike conventional cigarettes in that, like its predecessor Premier, it is designed to heat and not burn tobacco. The purpose of Eclipse was to simplify the chemical composition and reduce the biological activity of the mainstream and sidestream smoke and to achieve a significant reduction of environmental tobacco smoke. In Eclipse, tobacco pyrolysis is reduced by a carbon fuel rod that serves as a heat source for generating an aerosol having nicotine and tobacco flavor. The carbon rod, at the tip of the cigarette, is insulated and bound with two wrapping mats of glass fibers. Recently, Eclipse has been modified to address consumer complaints of burdensome draw and off-taste. The redesigned Eclipse, which we have termed the NEW Eclipse, has an unconventional filter-appearing mouthpiece that consists of a cellulose acetate cylindrical bundle with a central hollow tunnel. In our analysis of Eclipse, glass fibers (length:width aspect ratio, > or = 3:1) were: (a) observed protruding from the tip; (b) identified on the white cigarette wrapping paper; (c) viewed on the surface of the cork-appearing tipping paper; (d) found in the pack residue; (e) discovered lying freely on the cut surface of the filter by both light and electron microscopy; (f) harvested from the filter with adhesive tape; and (g) displaced when Eclipse was smoked mechanically. In a study of Eclipse that had not been removed from carefully opened packs, we observed that > or = 95% of the filters were contaminated with glass fibers (Eclipse: Regular, n = 114/120, 95%; Milds, n = 118/120, 98%; Menthol, n = 120/120, 100%). Likewise, 99% of NEW Eclipse had glass fibers on the redesigned filter (Regular, n = 119/120). In contrast

  19. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO2-CaO-Al2O3-B2O3-Fe2O3 glass system

    Science.gov (United States)

    Liu, Jianan; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-01

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO2-CaO-Al2O3-B2O3-Fe2O3 without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained.

  20. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  1. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  2. Environmental effects on the hybrid glass fiber/carbon fiber composites

    Science.gov (United States)

    Tsai, Yun-I.

    2009-12-01

    Fiber reinforced polymer composites (FRPCs) have been widely used to replace conventional metals due to the high specific strength, fatigue resistance, and light weight. In the power distribution industry, an advanced composites rod has been developed to replace conventional steel cable as the load-bearing core of overhead conductors. Such conductors, called aluminum conductor composite core (ACCC) significantly increases the transmitting efficiency of existing power grid system without extensive rebuilding expenses, while meeting future demand for electricity. In general, the service life of such overhead conductors is required to be at least 30 years. Therefore, the long-term endurance of the composite core in various environments must be well-understood. Accelerated aging by hygrothermal exposure was conducted to determine the effect of moisture on the glass fiber (GF)/carbon fiber (CF) hybrid composites. The influence of water immersion and humid air exposure on mechanical properties is investigated. Results indicated that immersion in water is the most severe environment for such hybrid GF/CF composites, and results in greater saturation and degradation of properties. When immersed directly in water, the hybrid GF/CF composites exhibit a moisture uptake behavior that is more complex than composite materials reinforced with only one type of fiber. The unusual diffusion behavior is attributed to a higher packing density of fibers at the annular GF/CF interface, which acts as a temporary moisture barrier. Moisture uptake leads to the mechanical and thermal degradation of such hybrid GF/CF composites. Findings presented here indicate that the degradation is a function of exposure temperature, time, and moisture uptake level. Results also indicate that such hybrid GF/CF composites recover short beam shear (SBS) strength and glass transition temperature (Tg) values comparable to pre-aged samples after removal of the absorbed moisture. In the hygrothermal environment

  3. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  4. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Science.gov (United States)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  5. Preparation and characterization of glass hollow fiber membrane for water purification applications.

    Science.gov (United States)

    Makhtar, Siti Nurfatin Nadhirah Mohd; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana

    2017-07-01

    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min -1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m -2  h -1  bar -1 . The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.

  6. Fracture resistance of endodontically treated teeth restored with glass fiber posts of different lengths.

    Science.gov (United States)

    Franco, Erico Braga; Lins do Valle, Accacio; Pompéia Fraga de Almeida, Ana Lúcia; Rubo, José Henrique; Pereira, Jefferson Ricardo

    2014-01-01

    Endodontically treated teeth are known to have reduced structural strength. Glass fiber posts may influence fracture resistance and should be evaluated. The purpose of this study was to evaluate the influence of glass fiber post length on the fracture resistance of endodontically treated teeth. Forty intact human maxillary canines were selected and divided into 4 groups, the control group consisting of teeth restored with a custom gold cast post and core, with a length of two-thirds of the root. Other groups received prefabricated glass fiber posts in different lengths: group 1/3, removal of one-third of the sealing material (5 mm); group 1/2, removal of one-half of the sealing material (7.5 mm); and group 2/3, removal of two-thirds of the sealing material (10 mm). All the posts were cemented with resin cement, and the specimens with glass fiber posts received a composite resin core. All the specimens were restored with a metal crown and submitted to a compressive load until failure occurred. The results were evaluated by 1-way ANOVA, and the all pairwise multiple comparison procedures (Tukey honestly significantly difference test) (α=.05). The ANOVA showed significant differences among the groups (Pglass fiber posts, the failure occurred at the junction between the composite resin core and the root. The length of glass fiber posts did not influence fracture load, but cast post and cores that extended two-thirds of the root length had significantly greater fracture resistance than glass fiber posts. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  7. Ply Thickness Fiber Glass on Windmill Drive Salt Water Pump

    Science.gov (United States)

    Sifa, Agus; Badruzzaman; Suwandi, Dedi

    2016-04-01

    Factors management of salt-making processes need to be considered selection of the location and the season is very important to support the efforts of salting. Windmills owned by the farmers are still using wood materials are made each year it is not effectively done and the shape of windmills made not in accordance with the requirements without considering the wind speed and the pumping speed control influenced by the weight and size of windmill, it affects the productivity of salt. to optimize the function of windmills on pumping salt water by change the material blade on the wheel by using a material composite, composite or fiberglass are used for blades on windmills made of a material a mixture of Epoxy-Resin and Matrix E-Glass. The mechanical characteristics of the power of his blade one of determining the materials used and the thickness of the blade, which needed a strong and lightweight. The calculation result thick fiberglass with a composition of 60% fiber and 40% epoxy, at a wind speedof area salt fields 9 m/s, the drag force that occurs at 11,56 kg, then the calculation result by 0,19 mm thick with a layer of 10, the total thickness of 1,9 mm, with a density of 1760 kg/m3, mechanical character of elongated elastic modulus of 46200 MPa, modulus of transverse elasticity of 10309,6 MPa, shear modulus of 3719 MPa and Poisson ratio of 0,31, then the calculation using the finite element ABAQUS obtained critical point at the confluence of the blade to the value of Von Mises tension was happening 1,158e9 MPa maximum and minimum 2,123e5 MPa, for a maximum value of displacement occurred condition at the tip of the blade. The performance test results windmills at a wind speed of 5,5 m/s wind power shows that occur 402,42 watts and power turbines produced 44,21 watt, and TSR 0,095 and the value Cp of 0,1, test results windmill in salt fields in the beginning rotation windmill lighter, able to move above wind speed of 5.5 m/s.

  8. Optimization of draw processing parameters for As2Se3 glass fiber

    Science.gov (United States)

    Xu, Dong; Dai, Shixun; You, Chenyang; Wang, Yingying; Han, Xin; Lin, Changgui; Liu, Yongxing; Liu, Zijun; Wang, Xunsi; Xu, Yinsheng; Chen, Feifei

    2017-11-01

    As2Se3 glass fibers measuring 250 μm in diameter were fabricated based on different draw processing parameters, including preform dropping temperatures (T1 = Tg + ΔT, ΔT = 20, 30, 40, 50 °C), fiber-drawing temperatures (T2 = Tg + ΔT, ΔT = 10, 20, 50 °C), and drawing speeds. Raman spectra indicated crystallization on fiber surface at high temperatures. After fiber drawing, oxygen was detected on fiber surface by energy dispersive X-ray spectra. High-quality fiber with minimum loss of 1.88 dB/m (at 9.05 μm) was achieved under optimal dropping temperature of 218.1 °C (Tg + 30 °C), fiber-drawing temperature of 208.1 °C (Tg + 20 °C), and drawing speed of 0.10 m/min.

  9. High energy, high average and peak power phosphate-glass fiber amplifiers for 1micron band

    Science.gov (United States)

    Akbulut, M.; Miller, A.; Wiersma, K.; Zong, J.; Rhonehouse, D.; Nguyen, D.; Chavez-Pirson, A.

    2014-03-01

    Heavy doping of common silica gain fibers is not practical; therefore long fibers are required for efficient amplification (usually 5-10m). This is undesirable due to nonlinearities that grow with fiber length. In contrast, NP Photonics phosphate-glass based fibers can be heavily doped without any side-effects, and hence can provide very high gain in short lengths (less than 0.5m). This enables an ideal pulsed fiber amplifier for a MOPA system that maximizes the energy extraction and minimizes the nonlinearities. We demonstrate 1W average power, 200μJ energy, and >10kW peak power from a SBS-limited all-fiber MOPA system at 1550nm, and 32W average power, 90μJ energy, and 45kW peak power from a SRS and SPM limited all-fiber MOPA system at 1064 nm. These results were limited by the seed and pump sources.

  10. Experimental Study on RC Beams Strengthened with Carbon and Glass Fiber Sheets

    Directory of Open Access Journals (Sweden)

    Thaksin Thepchatri

    2009-05-01

    Full Text Available This study investigates the effects of the two types of fiber sheets, namely, carbon and glass fiber sheets, on the flexural behaviors of reinforced concrete (RC beams when they are bonded to the tension zones of the beams. A total of eight full-scale beams were tested in the experiments. The flexural strength and stiffness of RC beams were found to increase significantly after the installation of fiber sheets. An analytical model based on the principle of virtual work was developed to predict the load-deflection relationship of the hybrid beams. The paper also highlights the characteristics of debonding problem which limits the effective use of fiber materials.

  11. Flexural Strength Comparison of Silorane- and Methacrylate-Based Composites with Pre-impregnated Glass Fiber.

    Science.gov (United States)

    Doozandeh, Maryam; Alavi, Ali Asghar; Karimizadeh, Zahra

    2016-06-01

    Sufficient adhesion between silorane/methacrylate-based composites and methacrylate impregnated glass fiber increases the benefits of fibers and enhances the mechanical and clinical performance of both composites. The aim of this study was to evaluate the compatibility of silorane and methacrylate-based composites with pre-impregnated glass fiber by using flexural strength (FS) test. A total of 60 bar specimens were prepared in a split mold (25×2×2 mm) in 6 groups (n=10). In groups 1 and 4 (control), silorane-based (Filtek P90) and nanohybrid (Filtek Z350) composites were placed into the mold and photopolymerized with a high-intensity curing unit. In groups 2 and 5, pre-impregnated glass fiber was first placed into the mold and after two minutes of curing, the mold was filled with respective composites. Prior to filling the mold in groups 3 and 6, an intermediate adhesive layer was applied to the glass fiber. The specimens were stored in distilled water for 24 hours and then their flexural strength was measured by 3 point bending test, using universal testing machine at the crosshead speed of 1 mm/min. Two-way ANOVA and post-hoc test were used for analyzing the data (pglass fiber, and application of intermediate adhesive layer .The lowest FS was obtained in Filtek P90 alone. Cohesive failure in composite was the predominant failure in all groups, except group 5 in which adhesive failure between the composite and fiber was exclusively observed. Significant improvement in FS was achieved for both composites with glass fiber. Additional application of intermediate adhesive layer before composite build up seems to increase FS. Nanohybrid composite showed higher FS than silorane-based composite.

  12. A multicore compound glass optical fiber for neutron imaging

    Science.gov (United States)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason

    2017-04-01

    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  13. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  14. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Rosa, Ricardo Abreu da; Só, Marcus Vinícius Reis; Afonso, Daniele; Kuga, Milton Carlos; Honório, Heitor Marques; Valle, Accácio Lins do; Vidotti, Hugo Alberto

    2014-01-01

    The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resinmodified glass ionomer cements (RMGICs). Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Except for Ionoseal, all cements provided satisfactory bond strength values.

  15. Analysis of upconversion luminescence in germanate glass and optical fiber codoped with Yb3+/Tb3+.

    Science.gov (United States)

    Kochanowicz, M; Zmojda, J; Miluski, P; Sitarz, M; Pisarska, J; Pisarski, W A; Dorosz, D

    2016-03-20

    In this paper, upconversion (UC) luminescence processes in a GeO2-Ga2O3-BaO glass system codoped with 0.7Yb2O3/(0.07-0.7)Tb2O3 (mol.%) and double-clad optical fiber codoped with 0.7Yb2O3/0.7Tb2O3 (mol.%) were investigated. The highest emission intensity (energy transfer efficiency equals 12.92%) was obtained for 0.7Yb2O3/0.7Tb2O3 codoped glass. Comparative analysis showed significant differences in the shape of luminescence of fabricated germanate glass and optical fiber. Due to dominant transition from D45 sublevel the main green UC peak (Tb3+:  D45→F57) of fabricated double-clad optical fiber is shifted by 4 nm toward longer wavelengths.

  16. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber.

    Science.gov (United States)

    Buczynski, Ryszard; Bookey, Henry; Klimczak, Mariusz; Pysz, Dariusz; Stepien, Ryszard; Martynkien, Tadeusz; McCarthy, John E; Waddie, Andrew J; Kar, Ajoy K; Taghizadeh, Mohammad R

    2014-06-19

    In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700-3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500-4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW) at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700-3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950-2500 nm range.

  17. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  18. [Investigation on the short-term clinical application of two types of glass fiber posts].

    Science.gov (United States)

    Song, Hui; Wang, Jingwen; Deng, Xuliang; Wei, Yan

    2014-08-01

    The clinical results of restoring defective teeth with two types of glass fiber prothetic systems is investigated to acquire clinical experience for further application of glass fiber posts with independent intellectual property rights. A total of 120 out-patients with restored defective teeth were selected from the Department of Stomatology, Beijing Xuanwu Hospital of Traditional Chinese Medicine and Peking University School and Hospital of Stomatology and randomly divided into two groups. OUYA FIBER posts and Tenax Fiber White posts were used to restore defective teeth in the experimental group and the control group, respectively. Clinical evaluation was conducted one week and three months post-restoration. Both clinical satisfactory rates of OUYA FIBER posts and Tenax Fiber White posts were higher than 98% one week post-restoration and higher than 96% three months post-restoration. No significant differences were observed between the clinical results of restoring defective teeth with the two types of fiber posts. Throughout the healing process, no root canal fracture or marginal staining were observed. OUYA FIBER post and Tenax Fiber White post showed similar clinical outcomes during the period of observation in this study. However, the long-term effects should be observed in future studies.

  19. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl2 ·2H2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  20. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Measurement of the nonlinear refractive index of tellurite glass fiber by using induced grating autocorrelation technique

    Science.gov (United States)

    Traore, Aboubakar

    Nonlinear phenomena in optical fibers have been attracting considerable attention because of the rapid growth of the fiber optics communication industry. The increasing demand in internet use and the expansion of telecommunications in the developing world have triggered the need for high capacity and ultra-fast communication devices and also the need to increase the number of transmission channels in the fibers. Wavelength Division Multiplexing (WDM) and Dense Wavelength Division Multiplexing (DWDM) systems are capable of transmitting large volumes of data at very high rates into huge numbers of optical transmission channels. This ability is limited by the gain bandwidth of Silica based fiber optics amplifiers already installed in the communication networks. Tellurite based fiber amplifiers offer the necessary bandwidth for amplification of WDM and DWDM channels. To investigate the nonlinear properties of the optical fibers in this research, we used a 10 picoseconds pulse width passively mode-locked Nd:Vanadate ( Nd:YVO4) laser operating at 1342nm with a repetition rate of 76 MHz. We accurately measured the nonlinear refractive index of single mode silica fibers utilizing the Induced Grating Autocorrelation (IGA) technique. IGA technique was extended furthermore to study nonlinear effects in multimode fibers, and for the first time, we successfully measured the nonlinear refractive index (n2) of a multimode silica fiber. Confident of the ability of IGA technique for determining n 2 of multimode silica fibers, we measured the nonlinear refractive index of multimode Tellurite glass fibers with length as short as 0.5 meter. The goal of this work is to provide accurate and reliable information on the nonlinear optical properties of Tellurite glass fibers, novel fibers with promising future for developing ultrafast and high transmission capacity communication devices.

  2. Infrared Supercontinuum Generation in Soft-glass Fibers

    DEFF Research Database (Denmark)

    Agger, Christian

    sources. A novel SC system, incorporating a fluor based (ZBLAN) step-index fiber (SIF), has been developed by an industrial collaborator. Numerical simulations show good agreement with measurements of fs-pumped SC generation stretching above 4 μm in a ZBLAN fiber. Furthermore, a design parameter, useful...

  3. Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments.

    Science.gov (United States)

    Pereira, Gabriel Kalil Rocha; Lançanova, Mateus; Wandscher, Vinicius Felipe; Kaizer, Osvaldo Bazzan; Limberger, Inácio; Özcan, Mutlu; Valandro, Luiz Felipe

    2015-08-01

    Several rotary instruments have been daily employed on clinic to promote cut aiming to adjust the length of fiber posts to the radicular conduct, but there is no information on the literature about the effects of the different rotary instruments and its impact on the micromorphology of surface and mechanical properties of the glass fiber post. This study aimed the impact of rotary instruments upon fiber-matrix integrity, micromorphology and flexural-strength of glass-fiber posts (GFP). GFP (N=110) were divided into 5 groups: Ctrl: as-received posts, DBc: coarse diamond-bur, DBff: extra-fine diamond-bur, CB: carbide-bur, DD: diamond-disc. Cutting procedures were performed under abundant irrigation. Posts exposed to rotary instruments were then subjected to 2-point inclined loading test (compression 45°) (n=10/group) and 3-point flexural-strength test (n=10/group). Fiber-matrix integrity and micromorphology at the cut surface were analyzed using a SEM (n=2/group). Cutting procedures did not significantly affect the 2-point (51.7±4.3-56.7±5.1 MPa) (p=0.0233) and 3-point flexural-strength (671.5±35.3-709.1±33.1 MPa) (p=0.0968) of the posts (One-way ANOVA and Tukey׳s test). Fiber detachment was observed only at the end point of the cut at the margins of the post. Cut surfaces of the CB group were smoother than those of the other groups. After 3-point flexural strength test, fiber-matrix separation was evident at the tensile side of the post. Rotary instruments tested with simultaneous water-cooling did not affect the resistance of the tested fiber posts but caused disintegration of the fibers from the matrix at the end of the cut, located at the margins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Design and Development of Glass Fiber Reinforced Polymer Matrix Composites for Engineering Application

    OpenAIRE

    Vijayakumar, R.; , Dr.H.Maheshappa; Dr.Sarath Kumar Maharana; Dr.Yogananda

    2017-01-01

    An experimental investigation has been carried out to develop new PMC using commercially available Epoxy and Polyurethane resin systems. These resin systems would be reinforced with glass fibers, filler materials and aluminium foils. Laminates are prepared by using the hand lay-up techniques of eight layers and mechanical test such as tensile test and compression test have been conducted. This work has been carried out to identify the appropriate resin systems, filler materials and glass fibe...

  5. Glass surface metal deposition with high-power femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Deng, Cheng; Bai, Shuang

    2016-12-01

    Using femtosecond fiber laser-based additive manufacturing (AM), metal powder is deposited on glass surface for the first time to change its surface reflection and diffuse its transmission beam. The challenge, due to mismatch between metal and glass on melting temperature, thermal expansion coefficient, brittleness, is resolved by controlling AM parameters such as power, scan speed, hatching, and powder thickness. Metal powder such as iron is successfully deposited and demonstrated functions such as diffusion of light and blackening effects.

  6. Influence of the stacking sequence on the mechanical proprieties of glass fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Bere Paul

    2017-01-01

    Full Text Available The reinforced composite materials are in a very impressive development in the last decades. In this paper the influence of the plystacking sequence of glass fiber reinforced polymer on mechanical properties is investigated. Composite material structures consist of layers from glass mat and fabrics with different disposal sequence. The mechanical properties of the manufactured composite materials have been determined by tensile and bending tests. The obtained results are used to design the optimal materials architecture.

  7. An experimental intraarticular implantation of woven carbon fiber pad into osteochondral defect of the femoral condyle in rabbit.

    Science.gov (United States)

    Kang, H J; Han, C D; Kang, E S; Kim, N H; Yang, W I

    1991-06-01

    The defects of the articular cartilage structure are not replaced unless the subchondral plate has been breached. However, following the creation of a defect in the subchondral plate, the area is filled in with a fibrous tissue which gradually transforms to hyaline cartilage. The porous nontoxic materials of both biologic and synthetic origin have reportedly been used as matrices for repairing bone and cartilage. Following implantation, carbon fibre, chemically inert and well-tolerated by the body, induces a proliferation of ordered fibrous tissue. We implanted carbon fiber pads in osteochondral defects in rabbits. Those repairs were compared to control holes with no implants. The pads appeared to induce the gross appearance of a restored joint surface, mechanically strong to loading for periods from 2 to 6 weeks. Also, carbon fiber pads promoted the healing of the osteochondral defects in the rabbit femoral condyle, supplying well-organized cartilagenous tissue over repaired subchondral bone. The use of carbon fiber pads as implant material is suggested for the restoration of articular surface in osteoarthritis and osteochondritis dissecans.

  8. Effect of Marble Dust Addition on the Sulphate Resistance of Glass Fiber Reinforced Cement Mortars

    OpenAIRE

    Alişer, Birsu; YILDIZ, Servet; Oğuzhan KELEŞTEMUR

    2016-01-01

    In this study, effect of marble dust addition on the sulphate resistance of glass fiber reinforced cement mortar exposed to sulphate attack was investigated. For this purpose, marble dust was added by replacing with filler material 10%, 20% , 30%, 40%, and 50% ratios by volume to mortars samples containing 0 kg/m3, 0.25 kg/m3, 0.50 kg/m3, 0.75 kg/m3 and 1 kg/m3 glass fiber. Length changes and capillary water absorption of the mortar samples under sulphate attack were determined. As a result o...

  9. Damage Assessment in Glass Fiber-Epoxy Matrix Composite under High Velocity Impact of Ice

    Directory of Open Access Journals (Sweden)

    Shokoofeh Dolati

    2013-12-01

    Full Text Available This study investigated the influence of nanoclay on the impact damage resistance of glass fiber-epoxy composites under high velocity ice impact loading. Addition of 0.5 wt. % nanoclay into epoxy was shown to improve damage resistance compared to composite plates having no nanoclay platelet. The glass fiber-epoxy composites containing nanoclay brought about substantial improvement in ice impact damage resistance and damage tolerance in the form of smaller damage area. Delamination followed by high velocity ice impact constituted major damage mode in the specimens tested.

  10. Adhesion strategy and early bond strengths of glass-fiber posts luted into root canals

    Directory of Open Access Journals (Sweden)

    André Luis Faria-e-Silva

    2012-10-01

    Full Text Available This study investigated the effect of coinitiator solutions and self-adhesive resin cement on the early retention of glass-fiber posts. Cylindrical glass-fiber posts were luted into 40 incisor roots with different adhesion strategies (n = 10: SB2, Single Bond 2 + conventional resin cement (RelyX ARC; AP, Scotchbond Multipurpose Plus (SBMP activator + primer + ARC; APC, SBMP activator + primer + catalyst + ARC; and UNI, self-adhesive cement (RelyX Unicem. Pull-out bond strength results at 10 min after cementation showed APC > UNI > SB2 = AP (P < 0.05. The adhesion strategy significantly affected early bonding to root canals.

  11. Adhesion strategy and early bond strengths of glass-fiber posts luted into root canals.

    Science.gov (United States)

    Faria-e-Silva, André Luis; Mendonça, Adriano Augusto Melo; Garcez, Rosa Maria Viana de Bragança; Oliveira, Aline da Silva de; Moreira, Andressa Goicochea; Moraes, Rafael Ratto de

    2012-01-01

    This study investigated the effect of coinitiator solutions and self-adhesive resin cement on the early retention of glass-fiber posts. Cylindrical glass-fiber posts were luted into 40 incisor roots with different adhesion strategies (n = 10): SB2, Single Bond 2 + conventional resin cement (RelyX ARC); AP, Scotchbond Multipurpose Plus (SBMP) activator + primer + ARC; APC, SBMP activator + primer + catalyst + ARC; and UNI, self-adhesive cement (RelyX Unicem). Pull-out bond strength results at 10 min after cementation showed APC > UNI > SB2 = AP (P < 0.05). The adhesion strategy significantly affected early bonding to root canals.

  12. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    The possibility to combine silica photonic crystal fiber (PCF) as low-loss platform with advanced functional materials, offers an enormous range of choices for the development of fiber-based tunable devices. Here, we report a tunable hybrid silica PCF with integrated As2S3 glass nanolayers inside...... the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from similar to 500 nm up to similar to 1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed...... antiresonances by taking advantage the high thermo-optic coefficient of the solution-processed nanolayers. Two different hybrid fiber structures, with core diameter 10 and 5 mu m, were developed and characterized using a supercontinuum source. The maximum sensitivity was measured to be as high as 3.6 nm...

  13. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  14. Freeform extrusion fabrication of titanium fiber reinforced 13-93 bioactive glass scaffolds.

    Science.gov (United States)

    Thomas, Albin; Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E

    2017-06-01

    Although implants made with bioactive glass have shown promising results for bone repair, their application in repairing load-bearing long bone is limited due to their poor mechanical properties in comparison to human bone. This work investigates the freeform extrusion fabrication of bioactive silicate 13-93 glass scaffolds reinforced with titanium (Ti) fibers. A composite paste prepared with 13-93 glass and Ti fibers (~16µm in diameter and lengths varying from ~200µm to ~2 mm) was extruded through a nozzle to fabricate scaffolds (0-90° filament orientation pattern) on a heated plate. The sintered scaffolds measured pore sizes ranging from 400 to 800µm and a porosity of ~50%. Scaffolds with 0.4vol% Ti fibers measured fracture toughness of ~0.8MPam 1/2 and a flexural strength of ~15MPa. 13-93 glass scaffolds without Ti fibers had a toughness of ~0.5MPam 1/2 and a strength of ~10MPa. The addition of Ti fibers increased the fracture toughness of the scaffolds by ~70% and flexural strength by ~40%. The scaffolds' biocompatibility and their degradation in mechanical properties in vitro were assessed by immersing the scaffolds in a simulated body fluid over a period of one to four weeks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering.

    Science.gov (United States)

    Song, Kwang Yong; Abedin, Kazi S; Hotate, Kazuo

    2008-01-07

    We demonstrate superluminal propagation of optical pulses with amplification in optical fibers based on stimulated Brillouin scattering. A triple gain peak configuration is used for the generation of narrowband anomalous dispersion in 2 m tellurite glass fiber, where the group index change as much as -1.19 is achieved with 6.9 dB amplification in 34 ns Gaussian pulses, leading to the group index of 0.84.

  16. Sitotoksisitas resin akrilik hybrid setelah penambahan glass fiber dengan metode berbeda (Cytotoxicity of the hybrid acrylic resin after glass fiber reinforcement with difference method

    Directory of Open Access Journals (Sweden)

    Intan Nirwana

    2005-06-01

    Full Text Available Glass fiber reinforcement of the hybrid acrylic resin with difference method can enhance residual monomer content of the material; it can cause cytotoxic effect on fibroblast cells. The purpose of this study was to know the cytotoxicity of hybrid acrylic resins after glass fiber reinforcement with difference method on the cultured fibroblasts. The squared specimens of 10 mm in length, 10 mm in width and 1.5 mm in thickness were cured for 20 minutes at 100° C. The fibroblast cells were grown in Eagle's Minimum Essential Medium to be 2 × 105 cells/ml, then the cells were added to the samples in the plates and incubated at 37° C. After 48 hours, the cytotoxic effect was determined by direct cell number count using microscope and a hemocytometer. The statistical analyses using one way ANOVA and LSD test showed that there were significant difference in cell viability (p < 0.05 among the groups. The means percentage of cell viability were 90.00%, 99.,11%, 98.66%, it could be concluded that glass fiber reinforcement into hybrid acrylic resin with either first method or second method was not toxic.

  17. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    Science.gov (United States)

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers.

    Science.gov (United States)

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-03

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10-3 and 10-1 S·cm-1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  19. Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites.

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Roh, Hyung Doh; Park, Young-Bin; Park, Hyung Wook

    2017-10-18

    Well-aligned NiCo2S4 nanowires, synthesized hydrothermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCo2S4 nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Hierarchical and high growth density of the nanowires led to exceptional mechanical properties of the composites. Compared with bare WKF/PES, the tensile strength and absorbed impact energy were enhanced by 96.2% and 92.3%, respectively, for WKF/NiCo2S4/rGO (1.5%)/PES. The synergistic effect of NiCo2S4 nanowires and rGO in the fabricated composites improved the electrical conductivity of insulating WKF/PES composites, reducing the resistance to ∼103 Ω. Joule heating performance depended strongly on the precursor concentration of the nanowires and the presence of rGO in the composite. A maximum surface temperature of 163 °C was obtained under low-voltage (5 V) application. The Joule heating performance of the composites was demonstrated in a surface deicing experiment; we observed that 17 g of ice melted from the surface of the composite in 14 min under an applied voltage of 5 V at -28 °C. The excellent performance of WKF/NiCo2S4/rGO/PES composites shows great potential for aerospace structural applications requiring outstanding mechanical properties and Joule heating capability for deicing of surfaces.

  20. THE PROPERTIES OF GUIDED ELECTROMAGNETIC FIELD MODES ON THE GaAs-BASED FIBER GLASS AND LASERS

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1999-03-01

    Full Text Available On the lasers or fiber optic communication electromagnetic waves are transmitted by confining and guiding between special layer's or fiber glass respectively. It is desired that electric and magnetic waves are in the active region of the lasers and in the core of the fiber glass. It is obtained by making more larger the of refractive index of the regions. On this work, the behavior and varying of the electric and magnetic waves and the effects on the electromagnetic waves in the fiber glass and lasers are investigated.

  1. The glass transition and interfacial dynamics of single strand fibers of polymers.

    Science.gov (United States)

    Cho, Hyun Woo; Sung, Bong June

    2017-02-08

    We investigate the glass transition and interfacial dynamics of single strand fibers of flexible polymers by employing molecular dynamics (MD) simulations along with a coarse grained model. While the polymer fiber has drawn significant attention due to its applicability in tissue engineering and stretchable electronics, its dynamic properties, especially the glass transition temperature (Tg), are yet to be understood at the molecular level. For example, there has been a controversy on the effect of the polymer fiber radius (R) on Tg: Tg decreased with a decrease in R for some polymer fibers, whereas Tg of other polymer fibers was not sensitive to R. In this article, we estimate the bond relaxation time of polymers and evaluate both Tg and fragility (m) as a function of R. We illustrate that Tg of the polymer fiber decreased with a decrease in R monotonically and also that the values of Tg follow faithfully the empirical equation proposed by Keddie et al. as a function of R, which was successfully employed to fit the values of Tg of both polyvinyl alcohol (PVA) fibers and polyethylene (PE) fibers. We also find that the dynamics of polymers at the interface between a polymer fiber and air is faster than that of polymers at the center. By employing Adam-Gibbs theory, we show that the fast interface dynamics of polymer fibers should influence the cooperative motion of monomers, which should be responsible for the decrease in Tg for smaller values of R. Near the interface there are more mobile monomers that participate in the cooperative motions of polymers. Interesting is that due to the curved surface (unlike flat polymer films) the cooperative motion of monomers is anisotropic in polymer fibers.

  2. Research on Sliding Wear Behavior of TiO2 Filled Glass Fiber Reinforced Polymer Composite

    OpenAIRE

    S. Srinivasa Moorthy; K. Manonmani

    2014-01-01

    In this study, Titanium Oxide (TiO2) particulate filled e-glass fiber reinforced composites in the unsaturated polyester resin matrix were prepared and its dry sliding wear behavior was optimized. Composites of varying fiber lengths of 1, 2 and 3 cm, respectively with different fiber content of 30, 40 and 50 wt. %, respectively were made. The particulate was varied with 2, 5 and 9 wt. %, respectively. The hybrid reinforced composites were prepared by hand layup method and the wear was measure...

  3. Iosipesco shear resistance in composites of carbon and glass fiber with epoxi resin

    Directory of Open Access Journals (Sweden)

    Vanderlei O. Gonçalves

    2009-01-01

    Full Text Available The main aim of the present work was the determination of the shear modulus (G12 and the maximum shear strength (ô12 using the Iosipescu Shear Test. Tests were carried out on two types of composites, carbon fiber/epoxy and glass fiber/epoxy, used in the aerospace industry, and also a molded epoxy resin matrix. The results indicate the effective contribution of fiber reinforcements to the shear strength (ô12 and shear modulus (G12 compared to the no reinforcement polymer matrix.

  4. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading...

  5. Experimental Study on RC Beams Strengthened with Carbon and Glass Fiber Sheets

    OpenAIRE

    Thaksin Thepchatri; Akhrawat Lenwari

    2009-01-01

    This study investigates the effects of the two types of fiber sheets, namely, carbon and glass fiber sheets, on the flexural behaviors of reinforced concrete (RC) beams when they are bonded to the tension zones of the beams. A total of eight full-scale beams were tested in the experiments. The flexural strength and stiffness of RC beams were found to increase significantly after the installation of fiber sheets. An analytical model based on the principle of virtual work was developed to predi...

  6. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  7. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  8. Bond strength between root dentin and three glass-fiber post systems.

    Science.gov (United States)

    Kalkan, Mustafa; Usumez, Aslihan; Ozturk, A Nilgun; Belli, Sema; Eskitascioglu, Gurcan

    2006-07-01

    Glass-fiber posts were introduced for use after endodontic therapy instead of metal alloy and ceramic posts. There are several new types of glass-fiber post systems available, but little is known about how well these posts bond to the root surface. The purpose of this in vitro study was to compare the bond strengths of 3 different types of glass-fiber post systems-opaque, translucent, and electrical glass-in 3 different locations of prepared post spaces. Sixty human intact single-rooted extracted teeth were used. The root canals were prepared using a step-back technique and obturated with gutta-percha using lateral condensation. The roots were divided into 3 experimental groups and further divided into 2 subgroups according to testing time (n=10). Roots were restored with 1 of the following post systems according to the manufacturer's instructions: opaque glass-fiber posts (Snowpost), translucent glass-fiber posts (FiberMaster), and electrical glass-fiber posts (Everstick). A self-etching primer (Clearfil Liner Bond) was applied to the walls of the post spaces, allowed to etch for 30 seconds, and gently air dried. A dual-polymerized bonding agent (Clearfil Liner Bond, Bond A and B) was then applied to the same walls. A dual-polymerizing resin luting agent (Panavia F) was mixed for 20 seconds and then placed in the post spaces using a lentulo spiral instrument. The roots were placed in light-protected cylinders; then the light source was placed directly on the flat cervical tooth surfaces and the cement was polymerized. Specimens were stored in light-proof boxes for 24 hours or 1 week after the polymerization procedure. Each root was cut horizontally, and six 1-mm-thick root segments (2 apical, 2 middle, and 2 cervical) were prepared. Using a push-out test, the bond strength between post and dentin was measured after 24 hours or 1 week using a universal testing machine. Statistical analysis was performed with 3-way ANOVA followed by independent t tests (alpha=.05

  9. Optical coherence elastography for measuring the deformation within glass fiber composite

    NARCIS (Netherlands)

    Liu, P.; Groves, R.M.; Benedictus, R.

    2014-01-01

    Optical coherence elastography (OCE) has been applied to the study of microscopic deformation in biological tissue under compressive stress for more than a decade. In this paper, OCE has been extended for the first time, to the best of our knowledge, to deformation measurement in a glass fiber

  10. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    NARCIS (Netherlands)

    Put, L.W.; Lembrechts, J.; van der Graaf, E.R.; Stoop, P.

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested to us that these dosimeters may give

  11. Spatial resolution in X-ray imaging with scintillating glass optical fiber plates

    Science.gov (United States)

    Pavan, P.; Zanella, G.; Zannoni, R.; Marigo, A.

    1993-04-01

    Some scintillating optical fiber plates, fabricated with terbium glasses are tested for their intrinsic spatial resolution under X-ray irradiation and the result is compared with a typical phosphor screen. The spatial resolution (CTF and MTF) is measured as a function of spatial frequency and the standard deviation of the corresponding Gaussian PSF is derived.

  12. Study of sound-absorbing properties of glass-fiber reinforced materials used in engineering

    Science.gov (United States)

    Egorova, V. E.; Habibova, R. R.; Shafigullin, L. N.

    2017-09-01

    Modern engineering makes high demands to the noise level in the passenger compartment or cabin of KAMAZ. An effective means of dealing with noise is to use sound absorbing materials produced by the automotive industry. To increase sound-absorbing capacity of materials and structures using glass fibre reinforced polyurethane foams (PUF) obtained by the technology Fiber Composite Spraying.

  13. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of aro...

  14. Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling

    Science.gov (United States)

    McNeil, Shirley; Battle, Philip; Hawthorne, Todd; Lower, John; Wiley, Robert; Clark, Brett

    2012-01-01

    The key advantages of this approach include the fact that the index of interface glass (such as Pb glass n = 1.66) greatly reduces Fresnel losses at the fiber-to-waveguide interface, resulting in lower optical losses. A contiguous structure cannot be misaligned and readily lends itself for use on aircraft or space operation. The epoxy-free, fiber-to-waveguide interface provides an optically pure, sealed interface for low-loss, highpower coupling. Proof of concept of this approach has included successful attachment of the low-melting-temperature glass to the x-y plane of the crystal, successful attachment of the low-meltingtemperature glass to the end face of a standard SMF (single-mode fiber), and successful attachment of a wetted lowmelting- temperature glass SMF to the end face of a KTP crystal. There are many photonic components on the market whose performance and robustness could benefit from this coupling approach once fully developed. It can be used in a variety of fibercoupled waveguide-based components, such as frequency conversion modules, and amplitude and phase modulators. A robust, epoxy-free, contiguous optical interface lends itself to components that require low-loss, high-optical-power handling capability, and good performance in adverse environments such as flight or space operation.

  15. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  16. Polishing parameter optimization for end-surface of chalcogenide glass fiber connector

    Science.gov (United States)

    Guo, Fangxia; Dai, Shixun; Tang, Junzhou; Wang, Xunsi; Li, Xing; Xu, Yinsheng; Wu, Yuehao; Liu, Zijun

    2017-11-01

    We have investigated the optimization parameters for polishing end-surface of chalcogenide glass fiber connector in the paper. Six SiC abrasive particles of different sizes were used to polish the fiber in order of size from large to small. We analyzed the effects of polishing parameters such as particle sizes, grinding speeds and polishing durations on the quality of the fiber end surface and determined the optimized polishing parameters. We found that, high-quality fiber end surface can be achieved using only three different SiC abrasives. The surface roughness of the final ChG fiber end surface is about 48 nm without any scratches, spots and cracks. Such polishing processes could reduce the average insertion loss of the connector to about 3.4 dB.

  17. Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Moselund, Peter Morten; Rasmussen, Per Dalgaard

    2008-01-01

    the group-velocity profile of the nonlinear fiber in which the supercontinuum is generated, so that red-shifted solitons are group-velocity matched to dispersive waves in the desired ultraviolet-visible wavelength region. The group-velocity profile of a photonic crystal fiber (PCF) can be engineered through...... the structure of the PCF, but this mostly modifies the group-velocity in the long-wavelength part of the spectrum. In this work, we first consider how the group-velocity profile can be engineered more directly in the short-wavelength part of the spectrum through alternative choices of the glass material from...... which the PCF is made. We then make simulations of supercontinuum generation in PCFs made of alternative glass materials. It is found that it is possible to increase the blue-shift of the generated supercontinuum by about 20 nm through a careful choice of glass composition, provided that the alternative...

  18. Mid infrared supercontinuum generation from chalcogenide glass waveguides and fibers

    DEFF Research Database (Denmark)

    Luther-Davies, Barry; Yu, Yi; Zhang, Bin

    2015-01-01

    I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from <2µm to >11µm.......I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from 11µm....

  19. Comparative study on the mechanical properties of banana and sisal woven rovings polyester composites

    OpenAIRE

    A. Faizur Rahman; B. Giriraj; A. P. Arun; B. Sanjay Gandhi

    2014-01-01

    Natural fiber polymer composites are widely used in many applications. Banana and sisal woven rovings reinforced polyester composites were manufactured by hand lay-up technique. The woven rovings were modified chemically by alkali treatment to enhance the mechanical properties. Tensile strength, flexural strength and impact strength were evaluated for 5%, 10%, 15% and 20% volume fractions of both woven rovings. The results of banana and sisal woven rovings composites were compared...

  20. CHARACTERIZATION OF SHORT E-GLASS FIBER REINFORCEDGRAPHITE AND BRONZE FILLED EPOXY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. Patil

    2016-03-01

    Full Text Available The mechanical characterization of short E- glass fiber reinforced, graphite and sintered bronze filled epoxy composite was carried out in this study. The aim of the present study was to develop tribological engineering material. In this study the flexural strength, theoretical and experimental density, Hardness and Impact strength of composites was investigated experimentally. The results showed that the increased percentage of graphite (10 to 15%Vol and Eglass fiber (10 to 15%Vol enhanced flexural strength (149 MPa of the composite and the maximum flexural modulus (13.3 GPa and 13.1 GPa was obtained for composite C2 and C5 respectively. Maximum hardness (84 on L scale and impact energy (90 Joule was obtained for the composite C6 with increased percentage of glass fiber and graphite filler. The metallurgical electron microscopic images were discussed to interpret the effect of graphite and sintered bronze on mechanical characterization of composite

  1. Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder

    Directory of Open Access Journals (Sweden)

    H. Rashidian-Dezfouli

    2017-10-01

    Full Text Available Strength and durability characteristics of geopolymers produced using three precursors, consisting of fly ash, Ground Glass Fiber (GGF, and glass-powder were studied. Combinations of sodium hydroxide and sodium silicate were used as the activator solutions, and the effect of different sodium and silica content of the activators on the workability and compressive strength of geopolymers was investigated. The parameters used in this study were the mass ratio of Na2O-to-binder (for sodium content, and SiO2-to-Na2O of the activator (for silica content. Geopolymer mixtures that achieved the highest compressive strength from each precursor were assessed for their resistance to alkali-silica reaction and compared against the performance of portland cement mixtures. Test results revealed that GGF and fly ash-based geopolymers performed better than glass-powder-based geopolymer mixtures. The resistance of GGF-based and fly ash-based geopolymers to alkali-silica reaction was superior to that of portland cement mixtures, while glass-powder-based geopolymer showed inferior performance.

  2. Telluride glass step index fiber for the far infrared

    NARCIS (Netherlands)

    Maurugeon, S.; Boussard-Plédel, C.; Troles, J.; Faber, A.J.; Lucas, P.; Zhang, X.H.; Lucas, J.; Bureau, B.

    2010-01-01

    Nulling interferometry is an important technique under development for the DARWIN planet finding mission which enables the detection of the weak infrared emission lines of an orbiting planet. This technique requires the use of single mode optical fibers transmitting light as far as possible in the

  3. Machinability of glass fiber reinforced plastic (GFRP) composite ...

    African Journals Online (AJOL)

    This paper deals with the study of machinability of GFRP composite tubes of different fiber orientation angle vary from 300 to 900. Machining studies were carried out on an all geared lathe using three different cutting tools: namely Carbide (K-20), Cubic Boron Nitride (CBN) and Poly-Crystalline Diamond (PCD). Experiments ...

  4. Process for Converting Waste Glass Fiber into Value Added Products, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, Raymond T.

    2005-12-31

    Nature of the Event: Technology demonstration. The project successfully met all of its technical objectives. Albacem has signed an exclusive licensing agreement with Vitro Minerals Inc., a specialty minerals company, to commercialize the Albacem technology (website: www.vitrominerals.com). Location: The basic research for the project was conducted in Peoria, Illinois, and Atlanta, Georgia, with third-party laboratory verification carried out in Ontario, Canada. Pilot-scale trials (multi-ton) were conducted at a facility in South Carolina. Full-scale manufacturing facilities have been designed and are scheduled for construction by Vitro Minerals during 2006 at a location in the Georgia, North Carolina, and South Carolina tri-state area. The Technology: This technology consists of a process to eliminate solid wastes generated at glass fiber manufacturing facilities by converting them to value-added materials (VCAS Pozzolans) suitable for use in cement and concrete applications. This technology will help divert up to 250,000 tpy of discarded glass fiber manufacturing wastes into beneficial use applications in the concrete construction industry. This technology can also be used for processing glass fiber waste materials reclaimed from monofills at manufacturing facilities. The addition of take-back materials and reclamation from landfills can help supply over 500,000 tpy of glass fiber waste for processing into value added products. In the Albacem process, waste glass fiber is ground to a fine powder that effectively functions as a reactive pozzolanic admixture for use in portland ce¬ment-based building materials and products, such as concrete, mortars, terrazzo, tile, and grouts. Because the waste fiber from the glass manufacturing industry is vitreous, clean, and low in iron and alkalis, the resulting pozzolan is white in color and highly consistent in chemical composition. This white pozzolan, termed VCAS Pozzolan (for Vitreous Calcium-Alumino-Silicate). is

  5. Effect of weave tightness and structure on the in-plane and through-plane air permeability of woven carbon fibers for gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Caston, Terry B.; Murphy, Andrew R.; Harris, Tequila A.L. [Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-01-15

    In this study, woven gas diffusion layers (GDLs) with varying weave type and tightness are investigated. Plain and twill weave patterns were manufactured in-house. The in-plane and through-plane air permeability of the woven samples were tested, and mercury intrusion porosimetry (MIP) tests were performed to study the pore structure. It was found that the twill weave has a higher permeability than the plain weave, which is consistent with literature. Like non-woven carbon papers, woven GDLs have higher in-plane permeability than through-plane permeability; however it has been shown that it is possible to manufacture a GDL with higher through-plane permeability than in-plane permeability. It was also concluded that the percentage of macropores in the weave is the driving factor in determining the through-plane air permeability. This work lays the groundwork for future studies to attempt to characterize the relationship between the weave structure and the air permeability in woven GDLs. (author)

  6. Fracture strength of direct versus indirect laminates with and without fiber application at the cementation interface

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Ozcan, Mutlu

    Objectives. This study compared the fracture strength of direct and indirect resin composite laminate veneers and evaluated the effect of a bidirectional E-glass woven fiber application at different locations at the cementation interface. Methods. Standard preparations on canines (N = 50, 10 per

  7. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers.

    Science.gov (United States)

    Markos, Christos

    2016-08-19

    The possibility to combine silica photonic crystal fiber (PCF) as low-loss platform with advanced functional materials, offers an enormous range of choices for the development of fiber-based tunable devices. Here, we report a tunable hybrid silica PCF with integrated As2S3 glass nanolayers inside the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from ~500 nm up to ~1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed antiresonances by taking advantage the high thermo-optic coefficient of the solution-processed nanolayers. Two different hybrid fiber structures, with core diameter 10 and 5 μm, were developed and characterized using a supercontinuum source. The maximum sensitivity was measured to be as high as 3.6 nm/°C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements.

  8. Midinfrared optical rogue waves in soft glass photonic crystal fiber

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Steffensen, Henrik; Ebendorff-Heidepriem, Heike

    2011-01-01

    extreme events such as formation of highly energetic pulses located at the red end of the spectrum and we obtain right-skewed heavy-tailed distributions characteristic of extreme events statistics. On the other hand, when loss is included bandwidth fluctuations follow Gaussian-like statistical...... distributions. Our results thus implicitly show that rogue waves will not occur in any SC spectrum that is limited by loss, such as commercial silica fiber based SC sources. © 2011 Optical Society of America....

  9. Voronoi polygons and self-consistent technique used to compute the airflow resistivity of randomly placed fibers in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    Sound in glass wool propagates mainly in the air between glass fibers. For sound waves considered here, the distance between fibers is much smaller than the wavelength. Therefore, the sound velocity and attenuation can be computed from an effective mass density and compressibility. For simple...... harmonic waves at low frequencies, the effective mass density is determined by the friction between air and fibers. The friction is described by the airflow resistivity, which depends on frequency, but for frequencies below 1000 Hz in glass wool with density 15–30 kg/m3, the resistivity to airflow...

  10. Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite

    Science.gov (United States)

    Arnaboldi, S.; Bassani, P.; Biffi, C. A.; Tuissi, A.; Carnevale, M.; Lecis, N.; Loconte, A.; Previtali, B.

    2011-07-01

    In this article, an advanced laminated composite is developed, combining the high damping properties of shape memory alloy (SMA) with mechanical properties and light weight of a glass-fiber reinforced polymer. The composite is formed by stacking a glass-fiber reinforced epoxy core between two thin patterned strips of SMA alloy, and two further layers of fiber-glass reinforced epoxy. The bars of the laminated composite were assembled and cured in autoclave. The patterning was designed to enhance the interface adhesion between matrix and SMA inserts and optimally exploit the damping capacity of the SMA thin ribbons. The patterned ribbons of the SMA alloy were cut by means of a pulsed fiber laser source. Damping properties at different amplitudes on full scale samples were investigated at room temperature with a universal testing machine through dynamic tension tests, while temperature dependence was investigated by dynamic mechanical analyses (DMA) on smaller samples. Experimental results were used in conjunction with FEM analysis to optimize the geometry of the inserts. Experimental decay tests on the laminated composite have been carried out to identify the adimensional damping value related to their first flexural mode.

  11. Solution-processable organic light emitting diode on glass fibers for textile applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Bjoern; Kerstin, Schulze; Silvia, Janietz [Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, 14476 Potsdam-Golm (Germany)

    2011-07-01

    Electronic devices based on organic materials offers the possibility to be a low-cost production technology on large area in several years. As a special application organic devices could be used in the field of electronic-textiles in future, for example for safety applications or as smart textiles. Therefore the direct integration of the electronic devices on the textile fibers is interesting. In this work, organic light emitting diodes (OLEDs) have been manufactured and investigated on cylindrical and flexible substrates. Especially the cylindrical geometry of the substrate hinders a homogeneous deposition of organic layers. Here, we present first results using solution processes for the preparation of the organic materials of an organic light emitting diode on glass fibers. The OLEDs were prepared on thin glass fibers using thermally evaporated metals and dip-coated polymeric layers. We focus on the challenging preparation steps of these layers on cylindrical substrates resulting in working devices. Additionally a current density-voltage-characteristic of a light emitting device on a glass fiber is presented and analyzed.

  12. Survival of glass fiber post retained endodontically treated teeth preliminary report.

    Science.gov (United States)

    Gbadebo, S O; Ajayi, D M; Abiodun-Solanke, I M F; Sulaiman, A O

    2013-09-01

    The use of fiber reinforced composite post in restoration of endodontically treated teeth have been found to prevent irreparable root fracture and the fact that the post is bonded to the root giving a monobloc restoration, also strengthens the tooth. This preliminary study aimed to evaluate the survival of endodontically treated teeth with compromised coronal tooth structure restored with glass-fiber posts after 6 months. Twenty endodontically treated teeth with less than 50% coronal tooth structure, were assessed and restored with glass fiber reinforced post cemented with dual cure composite and porcelain fused to metal crown. Patients were recalled and the teeth re-assessed at 3 and 6 months to evaluate their survival. The criteria for success included post and core in situ with no displacement or detachment of the post, no crown or prosthesis decementation, no post, core, or root fracture and absence of periradicular conditions requiring endodontic retreatment. Eighteen teeth were available for review at both 3rd and 6th months out of which none had post-core-crown fracture. One tooth (5%) had minimal crevice on probing the margin at 6 month's review, while another tooth had glass fiber post with respect to post -core- crown and root fracture at the end of the 6months recall visit.

  13. Effect of Laser Etching on Glass Fiber Posts Cemented with Different Adhesive Systems.

    Science.gov (United States)

    Parlar Oz, Ozge; Secilmis, Asli; Aydin, Cemal

    2017-10-19

    Glass fiber-reinforced posts have been preferred frequently because of some physical properties similar to the dentin, chemically bonding to dentin, biocompatibility, and esthetics. This study aimed to evaluate the microleakage and bond strength of glass fiber posts cemented with various adhesive systems on laser-etched root canal walls. Roots of 120 human mandibular premolars were divided into two groups for push-out bond strength test and the microleakage test (n = 60). Erbium-doped yttrium-aluminum-garnet (Er:YAG) laser etching of the root canal walls was carried out on half of the specimens in both test groups. The laser-treated and laser-nontreated groups were divided again into three subgroups (n = 10). Glass fiber posts (everStick Post) were luted using three different resin cements: total-etch (Variolink N), self-etch (Panavia F 2.0), and self-adhesive (Rely X Unicem). Three dentin discs were obtained from each root, and the bond strength of the glass fiber posts was measured by push-out tests. The dye penetration method was used to investigate coronal microleakage. In addition, surface treatments and the bonding interfaces were observed using scanning electron microscope. The highest bond strengths were observed for the total-etch and self-adhesive resin cement groups with laser etching (p  0.05), except for the self-adhesive resin cement group (p fiber posts. In addition, laser etching can reduce microleakage of self-adhesive resin cement.

  14. Stress generated by customized glass fiber posts and other types by photoelastic analysis.

    Science.gov (United States)

    Bosso, Kátia; Gonini Júnior, Alcides; Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Lopes, Murilo Baena

    2015-01-01

    Endodontic posts are necessary to provide adequate retention and support when no sufficient remaining structure is available to retain the core. There are different materials and techniques to construct post-and-core, but there is no consensus about which one promotes better stress distribution on the remaining tooth structure. This study aimed to quantify and evaluate the distribution of stress in the root produced by customized glass fiber posts compared to different endodontic posts. Twenty-five simulated roots from photoelastic resin were made and divided into 5 groups: CPC, cast post-and-core; SP, screw post; CF, carbon fiber post; GF, glass fiber post; and CGF, customized glass fiber post. After cementing CPC and SP posts with zinc phosphate cement, and CF, GF and CGF posts with resin cement, resin cores were made for groups 2-5. Specimens were evaluated with vertical or 45° oblique loading. To analyze the fringes, the root was divided into 6 parts: palatal cervical, palatal middle, palatal apical, vestibular cervical, vestibular middle, and vestibular apical. The formed fringes were photographed and quantified. Data were recorded and subjected to two-way ANOVA and Tukey's test (5%). SP (1.95±0.60) showed higher stress (pposts showed high stress in apical third (CPC-1.40±0.65; SP-2.30±0.44, CF-1.80±0.45, GF-1.20±0.45, CGF-1.70±1.03) Low stress was found in cervical third (CPC-0.20±0.45; CF-0.00±0.00, GF-0.00±0.00, CGF-0.00±0.00), except by SP (1.90±0.65), which showed statistical difference (ppost showed high stress concentration at the root and conventional glass fiber posts showed more favorable biomechanical behavior.

  15. Infrared Optical Properties of β-Spodumene Solid Solution Glass-Ceramic for Fiber-Optic Devices

    Science.gov (United States)

    Sakamoto, Akihiko; Yamamoto, Shigeru

    2006-09-01

    The IR optical properties of an opaque β-spodumene solid solution (s.s.) glass-ceramic for fiber-optic devices were studied in relation to its refractive indices in both crystalline and glass phases. We investigated the refractive indices of both phases on the basis of IR transmittance change due to the structural relaxation of the glass phase. The refractive indices of this β-spodumene s.s. glass-ceramic at a wavelength of 1550 nm in the crystalline and glass phases were first determined to be 1.530 and 1.495, respectively. It was found from the refractive index data that the optical scattering intensity of this glass-ceramic approximately follows the Rayleigh-Gans model. We also demonstrated that the inner diameter of an opaque glass-ceramic capillary used in optical fiber connectors can be optically measured with a sub-micrometer accuracy using an IR laser.

  16. Passive Impact Damage Detection of Fiber Glass Composite Panels

    Science.gov (United States)

    2013-12-19

    HEXCEL) and an epoxy matrix ( EPON 828 - MOMENTIVE) with a [0/90]10s layup and with overall dimensions 12x12x1/4’’ (305x305x6.4mm) were manufactured...fabric and an epoxy matrix (S2-6187 - HEXCEL, EPON 828 - MOMENTIVE) with a [0/90]10s layout. The dimensions of the panels are 12×12×1/4’’. The...min epoxy Fiber S2-6187 HEXCEL Epoxy resin EPON 828 Momentive Curing agent EPICURE 3230 Momentive Vacuum bag SL800 Airtech Flow media GREENFLOW

  17. Morphological analysis of glass, carbon and glass/carbon fiber posts and bonding to self or dual-cured resin luting agents

    Directory of Open Access Journals (Sweden)

    Aloísio Oro Spazzin

    2009-10-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF, carbon (CF and glass/carbon (G/CF fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM. Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05. Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p0.05, but higher than that of G/CF (p0.05 were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.

  18. Morphological analysis of glass, carbon and glass/carbon fiber posts and bonding to self or dual-cured resin luting agents.

    Science.gov (United States)

    Spazzin, Aloísio Oro; de Moraes, Rafael Ratto; Cecchin, Doglas; Farina, Ana Paula; Carlini-Júnior, Bruno; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (alpha=0.05). Failure modes were evaluated under optical microscopy and SEM. GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p0.05), but higher than that of G/CF (p0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.

  19. MORPHOLOGICAL ANALYSIS OF GLASS, CARBON AND GLASS/CARBON FIBER POSTS AND BONDING TO SELF OR DUAL-CURED RESIN LUTING AGENTS

    Science.gov (United States)

    Spazzin, Aloísio Oro; de Moraes, Rafael Ratto; Cecchin, Doglas; Farina, Ana Paula; Carlini, Bruno; Correr, Lourenço

    2009-01-01

    Objective: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. Material and Methods: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. Results: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p0.05), but higher than that of G/CF (p0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. Conclusion: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable. PMID:19936529

  20. Mechanisms of optical losses in Bi:SiO2 glass fibers.

    Science.gov (United States)

    Zlenko, Alexander S; Mashinsky, Valery M; Iskhakova, Ludmila D; Semjonov, Sergey L; Koltashev, Vasiliy V; Karatun, Nikita M; Dianov, Evgeny M

    2012-10-08

    The mechanisms of optical losses in bismuth-doped silica glass (Bi:SiO(2)) and fibers were studied. It was found that in the fibers of this composition the up-conversion processes occur even at bismuth concentrations lower than 0.02 at.%. Bi:SiO(2) core holey fiber drawn under oxidizing conditions was investigated. The absorption spectrum of this fiber has no bands of the bismuth infrared active center. Annealing of this fiber under reducing conditions leads to the formation of the IR absorption bands of the bismuth active center (BAC) and to the simultaneous growth of background losses. Under the realized annealing conditions (argon atmosphere, T(max) = 1100°C, duration 30 min) the BAC concentration reaches its maximum and begins to decrease in the process of excessive Bi reduction, while the background losses only increase. It was shown that the cause of these background losses is the absorption of light by nanoparticles of metallic bismuth formed in bismuth-doped glasses as a result of reduction of a part of the bismuth ions to Bi(0) and their following aggregation. The growth of background losses occurs owing to the increase of the concentration and the size of the metallic bismuth nanoparticles.

  1. Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers

    DEFF Research Database (Denmark)

    Klimczak, Mariusz; Siwicki, Bartłomiej; Zhou, Binbin

    2016-01-01

    Two all-solid glass photonic crystal fibers with all-normal dispersion profiles are evaluated for coherent supercontinuum generation under pumping in the 2.0 μm range. Inhouse boron-silicate and commercial lead-silicate glasses were used to fabricate fibers optimized for either flat dispersion......, albeit with lower nonlinearity, or with larger dispersion profile curvature but with much higher nonlinearity. Recorded spectra at the redshifted edge reached 2500-2800 nm depending on fiber type. Possible factors behind these differences are discussed with numerical simulations. The fiber enabling...

  2. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser

    OpenAIRE

    Xin Wen; Guowu Tang; Qi Yang; Xiaodong Chen; Qi Qian; Qinyuan Zhang; Zhongmin Yang

    2016-01-01

    Highly Tm3+ doped optical fibers are urgently desirable for 2.0??m compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6???1020 ions/cm3, being the reported highe...

  3. Fracture resistance of structurally compromised premolar roots restored with single and accessory glass or quartz fiber posts

    OpenAIRE

    Farahnaz Sharafeddin; Ali Asghar Alavi; Samira Zare

    2014-01-01

    Background: Glass and quartz fiber posts are used in restoration of structurally compromised roots. Accessory fiber posts are recently introduced to enhance the fiber post adaptation. This study evaluated the effectiveness of glass versus quartz accessory fiber posts. Materials and Methods: In this experimental study, 40 mandibular premolar roots with similar dimension (radius of 3.5 ± 0.2 mm and length of 13 ± 0.5 mm) were selected and their root canals were flared until 1.5 mm of dentin...

  4. Micromechanical Modeling of Woven Metal Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  5. Strength and fatigue of three glass fiber reinforced composite bridge decks with mechanical deck to stringer connections.

    Science.gov (United States)

    2012-02-01

    Replacement of the steel grating deck on the lift span of the Morrison Bridge in Portland, OR, will utilize glass : fiber reinforced polymer (FRP) panels to address ongoing maintenance issues of the deteriorated existing deck, improve driver : safety...

  6. Performance of a bridge deck with glass fiber reinforced polymer bars as the top mat of reinforcement.

    Science.gov (United States)

    2005-01-01

    The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advan...

  7. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2017-01-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters...... to be filled up with another Ch glass. Thermally compatible and fabrication suitable, two Ch glasses are chosen, one (higher RI) as background material and the other (of lower RI) to fill up the holes. Two sets of such pairs of thermally compatible Ch-glasses are considered as fiber structural materials....... Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors....

  8. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  9. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    Science.gov (United States)

    Liu, Ping; Guan, Qingbao; Gu, Aijuan; Liang, Guozheng; Yuan, Li; Chang, Jianfei

    2011-10-01

    Interface is the key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  10. EXPERIMENTAL ANALYSIS OF FLEXURAL STRENGTH ON GLASS FIBER SANDWICH COMPOSITE BY VARYING Z-PINS PITCHES

    OpenAIRE

    Pravin*, Jeyapratha

    2016-01-01

    This paper ambit to evaluate the flexural strength of glass fiber sandwich panels with varying z-pins pitches. Failure of sandwich panel are delamination and core shear, to minimize the crack propagation, pins are inserted in z-direction, by varying pitches through its thickness. During the insertion of pin, may cause the material some damage. Despite the damage, flexural property does not affected due interpolation of pins. Although the experiment were pull out with a phenomenal results of z...

  11. Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste

    OpenAIRE

    Mitsuuchi Tashima, Mauro; Soriano Martinez, Lourdes; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Cheeseman, C.R.; Paya Bernabeu, Jorge Juan

    2012-01-01

    The properties and microstructure of alkali-activated (AA) vitreous calcium aluminosilicate (VCAS) are presented in this paper. VCAS is manufactured from a by-product of the glass fiber industry and has been activated using NaOH and KOH solutions. The microstructure and mechanical properties of AA VCAS pastes and mortars are reported. The results show that depending on the type and concentration of hydroxide solution used, mortar samples with compressive strengths up to 77 MPa can be formed a...

  12. Precise quantitative addition of multiple reagents into droplets in sequence using glass fiber-induced droplet coalescence.

    Science.gov (United States)

    Li, Chunyu; Xu, Jian; Ma, Bo

    2015-02-07

    Precise quantitative addition of multiple reagents into droplets in sequence is still a bottleneck in droplet-based analysis. To address this issue, we presented a simple and robust glass fiber-induced droplet coalescence method. The hydrophilic glass fiber embedded in the microchannels can induce the deformation of droplets and trigger the coalescence. Serial addition of reagents with controlled volumes was performed by this method without the requirement for an external power source.

  13. Radiation on luminescent properties of quartz glasses and fiber light pipes

    CERN Document Server

    Abdurakhmanov, B S; Gulamova, R R; Alimov, R; Yuldashev, B S; Ashurov, M K; Rustamov, I R

    2002-01-01

    Paper contains the results of investigation into X-ray luminescence of KI and KU-1 quartz glasses and of various composition and size quartz fiber light pipes (FLP) gamma-irradiated within 10 sup 2 -10 sup 7 Gy dose range. On the basis of analysis of X-ray luminescence spectra of glasses and FLP and comparison of the experimental data one detected in spectra two luminescence bands within 410, 450-470 nm range. One determined dose dependences of X-ray luminescence intensity of every of these bands of luminescence and hypothesized about the nature of the relevant centers. The protective role of OH-groups in the process of radiation-induced generation of luminescence centres under gamma-irradiation of quartz glasses and FLP was confirmed experimentally

  14. Nanoarchitectures based on layered titanosilicates supported on glass fibers: application to hydrogen storage.

    Science.gov (United States)

    Pérez-Carvajal, Javier; Aranda, Pilar; Berenguer-Murcia, Angel; Cazorla-Amorós, Diego; Coronas, Joaquín; Ruiz-Hitzky, Eduardo

    2013-06-18

    This work reports on the synthesis of nanosheets of layered titanosilicate JDF-L1 supported on commercial E-type glass fibers with the aim of developing novel nanoarchitectures useful as robust and easy to handle hydrogen adsorbents. The preparation of those materials is carried out by hydrothermal reaction from the corresponding gel precursor in the presence of the glass support. Because of the basic character of the synthesis media, silica from the silicate-based glass fibers can be involved in the reaction, cementing its associated titanosilicate and giving rise to strong linkages on the support with the result of very stable heterostructures. The nanoarchitectures built up by this approach promote the growth and disposition of the titanosilicate nanosheets as a house-of-cards radially distributed around the fiber axis. Such an open arrangement represents suitable geometry for potential uses in adsorption and catalytic applications where the active surface has to be available. The content of the titanosilicate crystalline phase in the system represents about 12 wt %, and this percentage of the adsorbent fraction can achieve, at 298 K and 20 MPa, 0.14 wt % hydrogen adsorption with respect to the total mass of the system. Following postsynthesis treatments, small amounts of Pd (nanoparticules has been proposed to explain the high increase in the hydrogen uptake capacity after the incorporation of Pd into the nanoarchitecture.

  15. [H(2)O(2) treatment improves the bond strength between glass fiber posts and resin cement].

    Science.gov (United States)

    Zhang, Yong; Zhong, Bo; Tan, Jian guo; Zhou, Jian feng; Chen, Li

    2011-02-18

    To evaluate the effect of etching with H2O2 on the bond strength between epoxy-based glass fiber posts and resin cement. Sixteen epoxy-based glass fiber posts were randomly divided into 4 groups (4 posts in each group) for different surface treatments. Group 1, no surface treatment (Control group); Group 2, treated with silane coupling agent for 60 s; Group 3, immersed in 10% H2O2 for 10 min then treated with silane coupling agent for 60 s; Group 4, immersed in 30% H2O2 for 10 min then treated with silane coupling agent for 60 s. Resin cement was used for the post cementation to form resin slabs which were then sectioned and trimmed into dumbbell shape to obtain microtensile specimens. Microtensile bond strengths were tested and the failure modes were examined with a stereomicroscope. Statistical analysis of microtensile bond strengths was performed with Kruskal-Wallis test. The microtensile bond strengths (standard deviation) were 18.81 (4.04) MPa for Group 1, 26.70 (9.63) MPa for Group 2, 39.07 (6.47) MPa for Group 3, 46.05 (5.97) MPa for Group 4. Etching with H2O2 followed by silanization could significantly improve the bond strength between epoxy-based glass fiber posts and resin cement.

  16. Development of New Generation of Thermally-Enhanced Fiber Glass Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

    2010-03-01

    This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

  17. Randomized clinical study comparing metallic and glass fiber post in restoration of endodontically treated teeth.

    Science.gov (United States)

    Gbadebo, Olaide S; Ajayi, Deborah M; Oyekunle, Oyekunle O Dosumu; Shaba, Peter O

    2014-01-01

    Post-retained crowns are indicated for endodontically treated teeth (ETT) with severely damaged coronal tissue. Metallic custom and prefabricated posts have been used over the years, however, due to unacceptable color, extreme rigidity and corrosion, fiber posts, which are flexible, aesthetically pleasing and have modulus of elasticity comparable with dentin were introduced. To compare clinical performance of metallic and glass fiber posts in restoration of ETT. 40 ETT requiring post retained restorations were included. These teeth were randomly allocated into 2 groups. Twenty teeth were restored using a glass fiber-reinforced post (FRP) and 20 others received stainless steel parapost (PP), each in combination with composite core buildups. Patients were observed at 1 and 6 months after post placement and cementation of porcelain fused to metal (PFM) crown. Marginal gap consideration, post retention, post fracture, root fracture, crown fracture, crown decementation and loss of restoration were part of the data recorded. All teeth were assessed clinically and radiographically. Fisher's exact test was used for categorical values while log-rank test was used for descriptive statistical analysis. One tooth in the PP group failed, secondary to decementation of the PFM crown giving a 2.5% overall failure while none in the FRP group failed. The survival rate of FRP was thus 100% while it was 97.5% in the PP group. This however was not statistically significant (log-rank test, P = 0.32). Glass FRPs performed better than the metallic post based on short-term clinical performance.

  18. Fracture strengths of chair-side-generated veneers cemented with glass fibers.

    Science.gov (United States)

    Turkaslan, S; Bagis, B; Akan, E; Mutluay, M M; Vallittu, P K

    2015-01-01

    CAD/CAM (computer-aided design and computer-aided manufacturing) systems have refreshed the idea of chair-side production of restorations, but the fracture of ceramic veneers remains a problem. Cementation with glass fibers may improve the fracture strengths and affect the failure modes of CAD/CAM-generated ceramic veneers. Therefore, this study compared the fracture strengths of ceramic veneers produced at chair side and cemented with or without glass fibers with those of composite veneers. Thirty intact mandibular incisors were randomly divided into three groups ( n = 10) and treated with CAD/CAM-fabricated veneers cemented with dual-cure composite resin luting cement (CRLC; Group 1), CAD/CAM-fabricated veneers cemented with a glass fiber network (GFN) and dual-cure CRLC (Group 2), and a direct particulate filler composite veneer constructed utilizing fiber and a restorative composite resin (Group 3). The specimens were tested with a universal testing machine after thermal cycling treatment. The loads at the start of fracture were the lowest for traditionally fabricated composite veneers and higher for CAD/CAM-generated. Veneers cemented either without or with the GFN. The failure initiation loads (N) for the veneers were 798.92 for Group 1, 836.27 for Group 2, and 585.93 for Group 3. The predominant failure mode is adhesive failure between the laminates and teeth for Group 1, cohesive failure in the luting layer for Group 2, and cohesive laminate failure for Group 3, which showed chipping and small fractures. Ceramic material is a reliable alternative for veneer construction at chair side. Fibers at the cementation interface may improve the clinical longevity and provide higher fracture strength values.

  19. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement

    Science.gov (United States)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.

    2017-03-01

    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  20. Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources.

    Science.gov (United States)

    El-Amraoui, M; Gadret, G; Jules, J C; Fatome, J; Fortier, C; Désévédavy, F; Skripatchev, I; Messaddeq, Y; Troles, J; Brilland, L; Gao, W; Suzuki, T; Ohishi, Y; Smektala, F

    2010-12-06

    The aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As(2)S(3) microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers. Low losses MOFs are obtained by this way, with background level of losses reaching less than 0.5 dB/m. Optical characterizations of these fibers are then reported, especially dispersion measurements. The feasibility of all-optical regeneration based on a Mamyshev regenerator is investigated, and the generation of a broadband spectrum between 1 µm and 2.6 µm by femto second pumping around 1.5 µm is presented.

  1. Transmission performance analysis of WDM systems based on bismuth-doped phosphate glass fiber amplifiers

    Science.gov (United States)

    Ji, Jianhua; Huang, Qian; Wang, Ke; Xu, Ming; Jiang, Chun

    2018-01-01

    In this paper transmission performance of Allwave fiber WDM systems cascaded by bismuth-doped phosphate glass fiber amplifiers pumped by 808 nm lasers is analyzed for the first time, to the best of our knowledge. The rate and power propagation equations of a three-level system are used to model the signal amplification and noise figure in the doped fibers. The simulation results show that the channels in the 1460-1470 nm wavelength region in 32 × 40 Gbit/s WDM system with 10 nm channel space can reach a BER less than 1 × 10-9 with the transmission distance more than 600 km, but when the channel space is reduced to 1 nm, the performance of the system is degraded greatly.

  2. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  3. Comparative study on the mechanical properties of banana and sisal woven rovings polyester composites

    Directory of Open Access Journals (Sweden)

    A. Faizur Rahman

    2014-03-01

    Full Text Available Natural fiber polymer composites are widely used in many applications. Banana and sisal woven rovings reinforced polyester composites were manufactured by hand lay-up technique. The woven rovings were modified chemically by alkali treatment to enhance the mechanical properties. Tensile strength, flexural strength and impact strength were evaluated for 5%, 10%, 15% and 20% volume fractions of both woven rovings. The results of banana and sisal woven rovings composites were compared and it indicated that sisal woven rovings with higher volume fractions reveals better mechanical strength.

  4. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    Science.gov (United States)

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  5. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...

  6. Hydroxyapatite and bioactive glass surfaces for fiber reinforced composite implants via surface ablation by Excimer laser.

    Science.gov (United States)

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2017-11-01

    In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  8. Highly Tm(3+) doped germanate glass and its single mode fiber for 2.0 μm laser.

    Science.gov (United States)

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin

    2016-02-01

    Highly Tm(3+) doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm(3+) doped barium gallo-germanate (BGG) glasses. Highly Tm(3+) doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm(3+) doping concentration reaches 7.6 × 10(20) ions/cm(3), being the reported highest level in Tm(3+) doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm(3+) doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm(3+) doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber.

  9. In vitro fracture resistance of glass-fiber and cast metal posts with different lengths.

    Science.gov (United States)

    Giovani, Alessandro Rogério; Vansan, Luiz Pascoal; de Sousa Neto, Manoel Damião; Paulino, Silvana Maria

    2009-03-01

    Dental fractures can occur in endodontically treated teeth restored with posts. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha =.05). The ANOVA analysis indicated significant differences (Pposts of 6-mm length (26.5 N +/-13.4), 8-mm length (25.2 N +/-13.9), and 10-mm length (17.1 N +/-5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/-11.0) were compared with the 6-mm (6.9 N +/-4.6) and 10-mm (31.7 N +/-13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (Pglass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines.

  10. Relining effects on the push-out shear bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Adriana Rosado Valente ANDRIOLI

    Full Text Available Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R or non-relined (NR glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100] and conventional resin cement [RelyXTM ARC (ARC]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface, cohesive (cement or post, and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.

  11. Fracture Resistance of Endodontically-treated Maxillary Premolars Restored with Composite Resin along with Glass Fiber Insertion in Different Positions

    Directory of Open Access Journals (Sweden)

    Elmira Jafari Navimipour

    2012-11-01

    Full Text Available Background and aims. The aim was to evaluate the effect of three methods of fiber insertion on fracture resistance of root-filled maxillary premolars in vitro. Materials and methods. Sixty extracted human maxillary premolars received endodontic treatment followed by preparation of mesioocclusodistal (MOD cavities, with gingival cavosurface margin 1.5 mm coronal to the cementoenamel junction (CEJ. Subsequently, the samples were randomly divided into four groups: no-fiber group; occlusal fiber group (fiber was placed in the occlusal third; circumferential fiber group (fiber was placed circumferentially in the cervical third; and dual-fiber group (occlusal and circumferential fibers. Subsequent to restoring with composite resin and thermocycling, a compressive force was applied until fracture. Data was analyzed using one-way ANOVA and Tukey test at significance levels of P < 0.05 and P < 0.02, respectively. Results. Fiber placement significantly increased fracture resistance. Fracture resistance in the dual-fiber group was significantly higher than that in the circumferential fiber group (P < 0.007; however, there were no significant differences between the dual-fiber and occlusal fiber groups (P = 0.706. The highest favorable fracture rate was observed in the circumferential fiber group (60%. Conclusion. Composite resin restoration along with glass fiber in the occlusal and gingival thirds can be an acceptable treatment option for restoring root-filled upper premolars.

  12. Model to predict shrinkage and ejection forces of injection moulded tubular parts of short glass fiber reinforced thermoplastics

    OpenAIRE

    Garcia, M. C. R.; Netto, A. C. S.; Pontes, A. J.

    2011-01-01

    This work presents a model to predict shrinkage and ejection forces for glass fiber reinforced thermoplastics of tubular geometry. This mathematical model was based in Jansen’s Model to predict shrinkage and residual stresses in fiber reinforced injection molded products and Pontes’s Model to predict ejection forces for tubular parts of pure PP. The model used the modified classical laminate theory applied to injection moulding and it uses the fiber orientation state, temperatu...

  13. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mid-infrared fiber laser application: Er 3+-doped chalcogenide glasses

    Science.gov (United States)

    Moizan, Virginie; Nazabal, Virginie; Troles, Johann; Houizot, Patrick; Adam, Jean-Luc; Smektala, Frédéric; Doualan, Jean-Louis; Moncorgé, Richard; Canat, Guillaume; Cariou, Jean-Pierre

    2007-02-01

    Mid-infrared (IR) lasers are of interest for a variety of applications including environmental sensing, LIDAR and military counter measures. However, this wavelength range lacks powerful, coherent, robust and compact sources. A solution can lie in chalcogenide glasses as host materials for rare earth ions. With an extended infrared transparency, low phonon energy limiting the non radiative multiphonon relaxation rates and suitable rare earth solubility, sulfide glasses based on Ge-Ga-Sb-S system make available radiative transitions in the mid-IR range. The glasses with nominal composition of Ge 20Ga 5Sb 10S 65 doped with Er 3+ (500 to 10000 ppm) were prepared by means of conventional melting and quenching method. The Er 3+, widely studied in glass fibers for near-IR amplification, was initially selected for the transition 4I 9/2 to 4I 11/2 emitting at around 4.5 μm in order to demonstrate the ability of this sulfide composition for midinfrared fiber lasers application. In these objectives, absorption and emission spectra have been recorded and the radiative decay lifetime of excited levels ( 4I 9/2, 4I 11/2 and 4I 13/2) has been determined. These last experimental results were compared with those obtained by Judd-Ofelt model from absorption cross-sections of all observable transitions. Therefore, the 4I 9/2 radiative quantum efficiency was estimated at 67 %. The emission cross-section was 2.6x10 -21 cm2 at 4.6 μm obtained by Fütchbauer-Ladenburg theory. The product of measured lifetime and emission cross-section for 4I 9/2 -> 4I 11/2 transition is about 1.87x10 -24 cm2.s is comparable with that for GaLaS glasses. The fiber drawing of the Er 3+ doped Ge 20Ga 5Sb 10S 65 glasses and measurements of optical losses in mid-IR are currently in progress and first results were presented.

  15. Yb(3+) heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology.

    Science.gov (United States)

    Chu, Yingbo; Yang, Yu; Hu, Xiongwei; Chen, Zhangru; Ma, Yunxiu; Liu, Yongguang; Wang, Yibo; Liao, Lei; Xing, Yinbin; Li, Haiqing; Peng, Jinggagn; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2017-10-02

    We report a Yb(3+) heavily doped photonic crystal fiber with 30 μm core diameter manufactured for the first time by an alternative technique. Silica core rods with a diameter of 3 mm and a length of 280 mm were prepared by the sodium-borosilicate glass phase-separation technology. The measurements show that the fiber has an Yb(3+) concentration of 22810 ppm by weight, and a resultant absorption of approximately 8.5 dB/m at 976 nm. The Yb(3+) ions are distributed throughout the fiber core with an excellent homogeneity. The laser performance demonstrates a high slope efficiency of 64.5% for laser emission at 1033.4 nm and a low power threshold of 3 W within a short fiber length of 1 m. This novel approach provides an alternative means of preparing large active silica rods with high doping levels and excellent material homogeneity for large mode area fibers with complex designs.

  16. The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts.

    Science.gov (United States)

    Gulve, Meenal Nitin; Gulve, Nitin Dilip

    2013-11-01

    Scuba diving is one of the fastest growing sports in the world. The objective of this study was to evaluate the effect of pressure variations to which divers are exposed on the pull out strength of glass fiber post luted with different cements. In this in vitro study, 120 extracted, single-rooted lower premolars were endodontically treated. They were randomly divided into six groups and restored using the glass fiber post (Ivoclar Vivadent AG) and the following luting agents: Zinc phosphate, conventional glass ionomer, resin reinforced glass ionomer, resin cement with etch-and-rinse adhesive, resin cement with self-etching adhesive, and self-adhesive resin cement. Each group was randomly divided into two equal subgroups, one as a control, and the other to be used experimentally. After 7 days of storage, experimental groups were pressure cycled. The force required to dislodge each post was recorded in Newton (N) on Universal testing machine (Star Testing System) at a crosshead speed of 1 mm/min. Data were statistically analyzed using the ANOVA and Student's t-test (P posts cemented with zinc phosphate and conventional glass ionomer in pressure cycle group was significantly less than their control group. Although, no significant difference was found between pressure cycle and control group using resin reinforced glass ionomer cement and resin cements. Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling.

  17. Optimized process for recovery of glass- and carbon fibers with retained mechanical properties by means of near- and supercritical fluids

    DEFF Research Database (Denmark)

    Sokoli, Hülya U.; Beauson, Justine; Simonsen, Morten E.

    2017-01-01

    Degradation of hybrid fiber composites using near-critical water or supercritical acetone has been investigated in this study. Process parameters such as temperature (T= 260-300 ºC), pressure (p = 60-300 bar) and composite/solvent (c/s = 0.29-2.1 g/mL) ratio were varied to determine the effect...... on the resin degradation efficiency and the quality of the recovered glass and carbon fibers. Supercritical acetone at 260 ºC, 60 bar and a c/s ratio up to 2.1 g/mL could achieve nearly complete degradation of the resin. The glass fibers were recovered with up to 89% retained tensile strength compared...... to the virgin glass fibers. The use of near-critical water reduced the tensile strength of the glass fibers by up to 65%, whereas the carbon fibers were recovered with retained tensile strength compared to the virgin carbon fibers using water or acetone....

  18. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

    DEFF Research Database (Denmark)

    Dantanarayana, Harshana G.; Abdel-Moneim, Nabil; Tang, Zhuoqi

    2014-01-01

    We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses...... is measured over the 0.4 μm–33 μm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction...

  19. Fracture resistance of structurally compromised premolar roots restored with single and accessory glass or quartz fiber posts

    Directory of Open Access Journals (Sweden)

    Farahnaz Sharafeddin

    2014-01-01

    Full Text Available Background: Glass and quartz fiber posts are used in restoration of structurally compromised roots. Accessory fiber posts are recently introduced to enhance the fiber post adaptation. This study evaluated the effectiveness of glass versus quartz accessory fiber posts. Materials and Methods: In this experimental study, 40 mandibular premolar roots with similar dimension (radius of 3.5 ± 0.2 mm and length of 13 ± 0.5 mm were selected and their root canals were flared until 1.5 mm of dentin wall remained. They were randomly assigned to four groups (n = 10 and restored as follows: Exacto glass fiber post (EX, Exacto glass fiber post + 2 Reforpin accessories (EXR, D. T. Light quartz fiber post (DT, and D. T. Light quartz fiber post + 2 Fibercone accessories (DTF. All posts were cemented with Duo-Link resin cement and the cores were built with the particulate filler composite. Following 1-week water storage, specimens were subjected to fracture loads in a universal testing machine. The maximum loads and failure modes were recorded and analyzed with the two-way analysis of variance (ANOVA and Fisher′s exact tests (α = 0.05. Results: The mean fracture resistance values (N were 402.8 (EX, 378.4 (EXR, 400.1 (DT, and 348.5 (DTF. Two-way ANOVA test showed neither reinforcing method (P = 0.094, nor post composition (P = 0.462 had statistically significant differences on fracture resistance of the structurally compromised premolar teeth. Fisher′s exact test also demonstrated no statistically significant difference regarding two variables (P = 0.695. Core fracture was the most common failure mode (62.5%. Conclusion: Glass and quartz fiber posts with or without accessories restored the weakened premolar roots equally.

  20. Fracture resistance of structurally compromised premolar roots restored with single and accessory glass or quartz fiber posts.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Alavi, Ali Asghar; Zare, Samira

    2014-03-01

    Glass and quartz fiber posts are used in restoration of structurally compromised roots. Accessory fiber posts are recently introduced to enhance the fiber post adaptation. This study evaluated the effectiveness of glass versus quartz accessory fiber posts. In this experimental study, 40 mandibular premolar roots with similar dimension (radius of 3.5 ± 0.2 mm and length of 13 ± 0.5 mm) were selected and their root canals were flared until 1.5 mm of dentin wall remained. They were randomly assigned to four groups (n = 10) and restored as follows: Exacto glass fiber post (EX), Exacto glass fiber post + 2 Reforpin accessories (EXR), D. T. Light quartz fiber post (DT), and D. T. Light quartz fiber post + 2 Fibercone accessories (DTF). All posts were cemented with Duo-Link resin cement and the cores were built with the particulate filler composite. Following 1-week water storage, specimens were subjected to fracture loads in a universal testing machine. The maximum loads and failure modes were recorded and analyzed with the two-way analysis of variance (ANOVA) and Fisher's exact tests (α = 0.05). The mean fracture resistance values (N) were 402.8 (EX), 378.4 (EXR), 400.1 (DT), and 348.5 (DTF). Two-way ANOVA test showed neither reinforcing method (P = 0.094), nor post composition (P = 0.462) had statistically significant differences on fracture resistance of the structurally compromised premolar teeth. Fisher's exact test also demonstrated no statistically significant difference regarding two variables (P = 0.695). Core fracture was the most common failure mode (62.5%). Glass and quartz fiber posts with or without accessories restored the weakened premolar roots equally.

  1. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars.

    Science.gov (United States)

    Nicola, Scotti; Alberto, Forniglia; Riccardo, Michelotto Tempesta; Allegra, Comba; Massimo, Saratti Carlo; Damiano, Pasqualini; Mario, Alovisi; Elio, Berutti

    2016-10-01

    The study evaluated the fracture resistance and fracture patterns of endodontically treated mandibular first molars restored with glass-fiber-reinforced direct composite restorations. In total, 60 extracted intact first molars were treated endodontically; a mesio-occluso-distal (MOD) cavity was prepared and specimens were then divided into six groups: sound teeth (G1), no restoration (G2), direct composite restoration (G3), fiber-post-supported direct composite restoration (G4), direct composite reinforced with horizontal mesio-distal glass-fibers (G5), and buccal-palatal glass-fibers (G6). Specimens were subjected to 5000 thermocycles and 20,000 cycles of 45° oblique loading force at 1.3Hz and 50N; they were then loaded until fracture. The maximum fracture loads were recorded in Newtons (N) and data were analyzed with one-way ANOVA and post-hoc Tukey tests (pglass fibers inducted a partial deflection of the fracture, although they were not able to stop crack propagation. For the direct restoration of endodontically treated molars, reinforcement of composite resins with glass-fibers or fiber posts can enhance fracture resistance. The SEM analysis showed a low ability of horizontal glass-fibers to deviate the fracture, but this effect was not sufficient to lead to more favorable fracture patterns above the cement-enamel junction (CEJ). The fracture resistance of endodontically treated molars restored with direct composite restorations seems to be increased by reinforcement with fibers, even if it is insufficient to restore sound molar fracture resistance and cannot avoid vertical fractures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Iron-phosphate glass fiber scaffolds for the hard-soft interface regeneration: the effect of fiber diameter and flow culture condition on cell survival and differentiation.

    Science.gov (United States)

    Bitar, Malak; Salih, Vehid; Knowles, Jonathan C; Lewis, Mark P

    2008-12-15

    This work investigated the further development of a well-characterized, contiguous, glass fiber system for regeneration of the hard-soft tissue interface. We evaluated the effect of fiber diameter on human osteoblasts and fibroblasts attachment and viability using ternary glass fibers of the composition 0.48 CaO-0.02 Na(2)O-0.50 P(2)O(5). Fiber diameter significantly influenced cell attachment and survival, with fibers drawn at 800 revolutions per minute found to be optimal. Using a known composition of iron-phosphate glass fibers (composition 0.46 CaO-0.01 Na(2)O-0.03 Fe(2)O(3)-0.50 P(2)O(5)), scaffolds were produced. These scaffolds were incorporated within an open laminar flow culture system to provide nutrients, oxygen, and waste perfusion throughout the culture. The design of the chamber ensured that laminar flow was present, and changes in the differentiation of both osteoblast and fibroblast seeded scaffolds were assessed using quantitative polymerase chain reaction. Our data show that osteoblast and fibroblast differentiation is unaffected or enhanced by laminar flow when compared with static culture conditions. This system can therefore be adapted to construct larger, more complex, three-dimensional iron-phosphate fiber scaffolds for tissue engineering. 2008 Wiley Periodicals, Inc.

  3. Glass fibers and vapor phase components of cigarette smoke as cofactors in experimental respiratory tract carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Feron, V.J.; Kuper, C.F.; Spit, B.J.; Reuzel, P.G.; Woutersen, R.A.

    1985-01-01

    Syrian golden hamsters were given intratracheal instillations of glass fibers with or without BP suspended in saline, once a fortnight for 52 weeks; the experiment was terminated at week 85. No tumors of the respiratory tract were observed in hamsters treated with glass fibers alone. There was no indication that glass fibers enhanced the development of respiratory tract tumors induced by BP. In another study Syrian golden hamsters were exposed to fresh air or to a mixture of 4 major vapor phase components of cigarette smoke, viz. isoprene (800----700 ppm), methyl chloride (1000----900 ppm), methyl nitrite (200----190 ppm) and acetaldehyde (1400----1200 ppm) for a period of at most 23 months. Some of the animals were also given repeated intratracheal instillations of BP or norharman in saline. Laryngeal tumors were found in 7/31 male and 6/32 female hamsters exposed only to the vapor mixture, whereas no laryngeal tumors occurred in controls. The tumor response of the larynx most probably has to be ascribed entirely to the action of acetaldehyde. Simultaneous treatment with norharman or BP did not affect the tumor response of the larynx. Acetaldehyde may occur in the vapor phase of cigarette smoke at levels up to 2000 ppm. Chronic inhalation exposure of rats to acetaldehyde at levels of 0 (controls), 750, 1500 or 3000----1000 ppm resulted in a high incidence of nasal carcinomas, both squamous cell carcinomas of the respiratory epithelium and adenocarcinomas of the olfactory epithelium. It was discussed that acetaldehyde may significantly contribute to the induction of bronchogenic cancer by cigarette smoke in man.

  4. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Shi, Honglan [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xiao, Hai [Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634 (United States); Ma, Yinfa, E-mail: yinfa@mst.edu [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell–glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. - Highlights: • Bioactive glass nano-/micro-materials were effectively used for tissue wound healing. • The wound-healing effects of silicate-based 45S5, borate-based 13-93B3 and 1605 fibers were investigated. • Glass conversion rates were compared under either static or dynamic-flow modes. • Glass compositions and flow rates greatly influenced bioactivity and cell migration. • These results can

  5. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis

    Science.gov (United States)

    Velmuzhov, A. P.; Shiryaev, V. S.; Sukhanov, M. V.; Kotereva, T. V.; Churbanov, M. F.; Zernova, N. S.; Plekhovich, A. D.

    2018-01-01

    The high-purity Ge26As17Se25Te32 glass sample was prepared by chemical distillation purification method. This glass is characterized by high value of glass transition temperature (263°С), high optical transparency in the spectral range of 2-10 μm, and low content of residual impurities. The Ge26As17Se25Te32 glass rods were drawn into single-index fibers using the "rod" method and the single crucible technique. The optical losses in the 400 μm diameter fiber, fabricated by the "rod" method, were within 0.3-1 dB/m in the spectral range 5.2-9.3 μm. The minimum optical losses in the 320 μm diameter fiber, fabricated by the "crucible" technique, were 1.6-1.7 dB/m in the spectral range 6-8.5 μm. Using these Ge26As17Se25Te32 glass fibers as a sensor, the aqueous solutions of acetone (0-20 mol.%) and ethanol (0-90 mol.%) were analyzed by fiber evanescent wave spectroscopy. Peculiarities in the change of the integrated intensity and spectral position of absorption bands of these organic substances in dependence on the analyte composition and the length of the sensitive zone were established.

  6. The influence of glass fibers on the morphology of β-nucleated isotactic polypropylene evaluated by differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Janevski Aco

    2015-01-01

    Full Text Available The presence of fillers/fibers can significantly affect the polymorphic behavior of semi-crystalline polymers. The influence of glass fibers on morphology of β-nucleated iPP during isothermal and nonisothermal crystallization was analyzed in detail by DSC, and the kinetics and thermodynamic parameters were determined for the systems containing 10-60 % glass fibers. The presence of glass fibers in model composites with β-iPP has insignificant effect on the morphology of the polymer. Thermodynamic and kinetics parameters of crystallization of iPP in model composites are close to those obtained for the nucleated polymer. The relative content of β-crystalline phase is slightly affected by increasing glass fiber’s content from 10 % mas to 60 % mas, due to appearance of α-crystallites. However, the stability of β-crystalline phase is decreased by the increasing glass fibers content and there appeared certain amount of β1 and β2 phases which are known as disposed to recrystallization.

  7. Recommended Minimum Test Requirements and Test Methods for Assessing Durability of Random-Glass-Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-06-01

    This report provides recommended minimum test requirements are suggested test methods for establishing the durability properties and characteristics of candidate random-glass-fiber polymeric composites for automotive structural applications. The recommendations and suggestions are based on experience and results developed at Oak Ridge National Laboratory (ORNL) under a US Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures,'' which is closely coordinated with the Automotive Composites Consortium. The report is intended as an aid to suppliers offering new structural composites for automotive applications and to testing organizations that are called on to characterize the composites.

  8. Failure and impact behavior of facade panels made of glass fiber reinforced cement(GRC)

    OpenAIRE

    Enfedaque Diaz, Alejandro; Cendón Franco, David Angel; Galvez Diaz-Rubio, Francisco; Sanchez Galvez, Vicente

    2011-01-01

    GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may...

  9. Esthetic rehabilitation of severely decayed primary incisors using glass fiber reinforced composite: a case report.

    Science.gov (United States)

    Metha, Deepak; Gulati, Akanksha; Basappa, N; Raju, O S

    2012-01-01

    Restoration of primary maxillary incisors severely damaged by caries or trauma is a clinical challenge in pediatric dental clinics. Early childhood caries is observed in approximately half the child population. In the past, the only treatment option would have been to extract the affected teeth and replace them with prosthetic substitutes. With the introduction of new adhesive systems and restorative materials, alternative approaches in treating these teeth have been proposed. The purpose of this paper was to describe the rehabilitation of primary anterior teeth in a 5-year-old patient using glass fiber reinforced composite resin as an intracanal post.

  10. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    Science.gov (United States)

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Tailoring the interface in S-glass fiber polycarbonate composites for dental applications

    Science.gov (United States)

    Ranade, Shrirang Vijay

    1997-08-01

    Continuous S-Glass fiber reinforced polycarbonate composites have been evaluated clinically for orthodontic applications. It was found that the stability of the fiber/matrix interfaces in the oral environment was essential for satisfactory performance. To achieve maximum hydrolytic stability, polycarbonate oligomers were chemically grafted onto the glass fiber surface through use of a silicon tetrachloride intermediary. The interfacial shear strength, fracture toughness and hydrolytic stability of the resulting interphase was measured and compared to those of two commercial sizings and ozone cleaned surfaces. Evaluation was accomplished by measuring the stress transmission across the interface, tau, using an embedded single fiber fragmentation test and by using computer simulations and a finite element analysis to calculate the strain energy release rate, G, of the observed fiber-matrix debonding at the interface accompanying the first fiber fracture. The oligomer-grafted interphase exhibited improved stress transmissibility and toughness, particularly after 24 hours in boiling water. The tenacity of the tightly bound oligomers was confirmed via DRIFT, TGA and GC/MS experiments on Soxhlet extracted fibers. High resolution solid state sp{13}C and sp{29}Si CP/MAS NMR has been used to investigate the grafting mechanism, morphology and interfacial mobility of polycarbonate oligomer and bisphenol A grafted onto silica surfaces. The NMR spectra demonstrate differences between the neat and grafted PC oligomer that suggest strong bonding. A model compound, bisphenol A, was used to resolve signal overlaps due to repeat units and to verify the formation of primary bonding at the silica surface by the existence of a downfield shift of the Csb4 resonance peak and other changes in the spectrum. Proton spin-lattice relaxation times in the rotating frame offer secondary evidence of the formation of Si-O-C bonds on the silica surface. The proton spin-lattice relaxations of the

  12. Brillouin spectroscopy of a novel baria-doped silica glass optical fiber.

    Science.gov (United States)

    Dragic, P; Kucera, C; Furtick, J; Guerrier, J; Hawkins, T; Ballato, J

    2013-05-06

    Presented here for the first time to the best of our knowledge is a detailed Brillouin spectroscopic study of novel, highly-BaO-doped silica glass optical fibers. The fibers were fabricated utilizing a molten-core method and exhibited baria (BaO) concentrations up to 18.4 mole %. Physical characteristics such as mass density, acoustic velocity, visco-elastic damping, and refractive index are determined for the baria component of the bariosilicate system. It is found that, of each of these parameters, only the acoustic velocity is less than that of pure silica. The effect of temperature and strain on the acoustic velocity also is determined by utilizing estimates of the strain- and thermo-optic coefficients. The dependencies are found to have signs opposite to those of silica, thus suggesting both Brillouin-frequency a-thermal and a-tensic binary compositions. Via the estimate of the strain-optic coefficient and data found in the literature, the Pockels' photoelastic constant p(12) is estimated, and both a calculation and measured estimate of the Brillouin gain versus baria content are presented. Such novel fibers incorporating the unique properties of baria could be of great utility for narrow linewidth fiber lasers, high power passive components (such as couplers and combiners), and Brillouin-based sensor systems.

  13. Glass fiber-reinforced polymer packaged fiber Bragg grating sensors for low-speed weigh-in-motion measurements

    Science.gov (United States)

    Al-Tarawneh, Mu'ath; Huang, Ying

    2016-08-01

    The weight of rolling trucks on roads is one of the critical factors for the management of road networks due to the continuous increase in truck weight. Weigh-in-motion (WIM) sensors have been widely used for weight enforcement. A three-dimensional glass fiber-reinforced polymer packaged fiber Bragg grating sensor (3-D GFRP-FBG) is introduced for in-pavement WIM measurement at low vehicle passing speed. A sensitivity study shows that the developed sensor is very sensitive to the sensor installation depth and the longitudinal and transverse locations of the wheel loading position. The developed 3-D GFRP-FBG sensor is applicable for most practical pavements with a panel length larger than 6 ft, and it also shows a very good long-term durability. For the three components in 3-D of the developed sensor, the longitudinal component has the highest sensitivity for WIM measurements, followed by the transverse and vertical components. Field testing validated the sensitivity and repeatability of the developed 3-D GFRP-FBG sensor. The developed sensor provides the transportation agency one alternative solution for WIM measurement, which could significantly improve the measurement efficiency and long-term durability.

  14. The kinetics of crystallization of molten binary and ternary oxide systems and their application to the origination of high modulus glass fibers

    Science.gov (United States)

    Bacon, J. F.

    1971-01-01

    Emphasis on the consideration of glass formation on a kinetic process made it possible to think of glass compositions different from those normally employed in the manufacture of glass fibers. Approximately 450 new glass compositions were prepared and three dozen of these compositions have values for Young's modulus measured on bulk specimens greater than nineteen million pounds per square inch. Of the new glasses about a hundred could be drawn into fibers by mechanical methods at high speeds. The fiber which has a Young's modulus measured on the fiber of 18.6 million pounds per square inch and has been prepared in quantity as a monofilament (to date more than 150 million lineal feet of 0.2 to 0.4 mil fiber have been produced). This fiber has also been successfully incorporated both in epoxy and polyimide matrices. The epoxy resin composite has shown a modulus forty percent better than that achievable using the most common grade of competitive glass fiber, and twenty percent better than that obtainable with the best available grade of competitive glass fiber. Other glass fibers of even higher modulus have been developed.

  15. In vitro evaluation of the flexural properties of All-on-Four provisional fixed denture base resin partially reinforced with fibers.

    Science.gov (United States)

    Li, Bei Bei; Xu, Jia Bin; Cui, Hong Yan; Lin, Ye; Di, Ping

    2016-01-01

    The aim of this study was to assess the effects of partial carbon or glass fiber reinforcement on the flexural properties of All-on-Four provisional fixed denture base resin. The carbon or glass fibers were woven (3% by weight) together in three strands and twisted and tightened between the two abutments in a figure-of-"8" pattern. Four types of specimens were fabricated for the three-point loading test. The interface between the denture base resin and fibers was examined using scanning electron microscopy (SEM). Reinforcement with carbon or glass fibers between two abutments significantly increased the flexural strength and flexural modulus. SEM revealed relatively continuous contact between the fibers and acrylic resin. The addition of carbon or glass fibers between two abutments placed on All-on-Four provisional fixed denture base resin may be clinically effective in preventing All-on-Four denture fracture and can provide several advantages for clinical use.

  16. Efficiency and effectiveness evaluation of three glass fiber post removal techniques using dental structure wear assessment method.

    Science.gov (United States)

    Abe, Flávia Casale; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist; Davini, Felipe; Cunha, Rodrigo Sanches

    2014-01-01

    This study evaluated the efficiency and effectiveness of three glass fiber post removal techniques. Forty-five extracted maxillary teeth were endodontically treated and cross-sectioned in thirds. Presence of cementing agent and dental structure wear were assessed by analyzing images taken before luting of glass fiber post and after removal procedure. Teeth were divided into 3 groups: Group 1 - diamond bur + Largo reamer; Group 2 - ultrasonic insert; Group 3 - carbide bur + ultrasonic insert. Time spent on removal procedures, dental structure wear and amount of remaining cement agent were recorded and results submitted to ANOVA, Kruskal Wallis and Tukey-Kramer tests. Group 1 - 16'46", 33.33% and 6.99%; Group 2 - 12'31", 40% and 7.86%; and Group 3 - 10'24", 80% and 8.14%. Group 3 presented the most effective removal of glass fiber posts. There was no significant difference in efficiency among the evaluated techniques.

  17. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Science.gov (United States)

    Ahmad, Faiz; Ullah, Sami; Aziz, Hammad; Omar, Nor Sharifah

    2015-07-01

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  18. Alternative Hybrid Core Material For Vacuum Insulation Panels Silica-Fly Ash-Glass Fiber

    Directory of Open Access Journals (Sweden)

    Desire Emefa Awuye

    2017-11-01

    Full Text Available Vacuum insulation panels one of the most promising insulation materials consisting of an evacuated core material an air tight envelope and in special cases an absorbent known as getter. However despite its outstanding properties it faces some challenges such as relatively high cost and quite a short service life which can be attributed to the core material used. In this paper Hybrid core materials HCM consisting of various percentages of fly ash fumed silica and glass fiber were used as a core material for vacuum insulation panels and the composition ratio vs thermal conductivity were investigated to ascertain the optimum composition ratio that showed the lowest thermal conductivity and best insulation properties. This was to produce VIPs at a relatively cheaper cost. The optimum ratio of the HCM that showed the best insulation properties including lower thermal conductivity is that of 65 fly ash FA 30 fumed silica FS and 5 glass fiber GF. The HCM produced exhibited similar qualities as that of silica powder core VIPs. Even though produced at a relatively lower cost the insulation properties were not compromised. Furthermore the thermal conductivity of each of the VIPs from the HCMs prepared were measured after undergoing a temperature stress of 60 C for 6 months.

  19. An update on glass fiber dental restorative composites: a systematic review.

    Science.gov (United States)

    Khan, Abdul Samad; Azam, Maria Tahir; Khan, Maria; Mian, Salman Aziz; Ur Rehman, Ihtesham

    2015-02-01

    Dentistry is a much developed field in the last few decades. New techniques have changed the conventional treatment methods as applications of new dental materials give better outcomes. The current century has suddenly forced on dentistry, a new paradigm regarding expected standards for state-of-the-art patient care. Within the field of restorative dentistry, the incredible advances in dental materials research have led to the current availability of esthetic adhesive restorations. The chemistry and structure of the resins and the nature of the glass fiber reinforced systems in dental composites are reviewed in relation to their influence and properties including mechanical, physical, thermal, biocompatibility, technique sensitivity, mode and rate of failure of restorations on clinical application. It is clear that a deeper understanding of the structure of the polymeric matrix and resin-based dental composite is required. As a result of ongoing research in the area of glass fiber reinforced composites and with the development and advancement of these composites, the future prospects of resin-based composite are encouraging. Copyright © 2014. Published by Elsevier B.V.

  20. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  1. Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns.

    Science.gov (United States)

    Biacchi, G R; Basting, R T

    2012-01-01

    The aim of this in vitro study was to compare the fracture strength of full ceramic crowns using two techniques-indirect conventional crowns retained by glass fiber posts, and endocrowns with an "anchorage" in the pulp chamber-and analyze the failure mode. For this purpose, 20 healthy mandibular molars were divided into two groups (n=10): GroupGC contained teeth with indirect conventional crowns, filling cores, and glass fiber posts; Group GE contained teeth with restorations of the endocrown type. Teeth were endodontically treated and prepared for ceramic restorations fabricated by the injection technique(IPS e.max Press, Ivoclar-Vivadent), forming the GC and GE groups. Specimens were mount-ed in a universal test machine (EMIC) and were submitted to an oblique compression load, at an angle of 135 degrees to the long axis of the tooth, until failure. Statistical evaluation performed by the Mann-Whitney nonparametric test showed significant differences between the two groups (p=0.002), with Group GE shown to be more resistant to compressive forces than Group GC. The pre-dominant failure pattern in both groups was fracture of the tooth on the side of force application and/or consequent displacement of the restoration on the opposite side.

  2. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Directory of Open Access Journals (Sweden)

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  3. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  4. Quantification of defects depth in glass fiber reinforced plastic plate by infrared lock-in thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of); Choi, Man Yong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-03-15

    The increasing use of composite materials in various industries has evidenced the need for development of more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production cost. Infrared thermography is a noncontact, fast and reliable non-destructive evaluation technique that has received vast and growing attention for diagnostic and monitoring in the recent years. This paper describes the quantitative analysis of artificial defects in Glass fiber reinforced plastic plate by using Lockin infrared thermography. The experimental analysis was performed at several excitation frequencies to investigate the sample ranging from 2.946 Hz down to 0.019 Hz and the effects of each excitation frequency on defect detachability. The four point method was used in post processing of every pixel of thermal images using the MATLAB programming language. The relationship between the phase contrast with defects depth and area was examined. Finally, phase contrast method was used to calculate the defects depth considering the thermal diffusivity of the material being inspected and the excitation frequency for which the defect becomes visible. The obtained results demonstrated the effectiveness of Lock-in infrared thermography as a powerful measurement technique for the inspection of Glass fiber reinforced plastic structures.

  5. Comparison of Two Techniques for Evaluation of Coronal Leakage Along of a Glass Fiber Post

    Directory of Open Access Journals (Sweden)

    L. Sadighpour

    2010-09-01

    Full Text Available Objective: Contradictory results have been reported over microleakage studies of restorative materials and methods. Despite the number of publications on leakage there are few evidences comparing the different microleakage evaluation methods. The purpose of the present study was to compare the clearing technique and longitudinal sectioning in the evaluation of dye penetrationalong a glass fiber post.Materials and Methods: Fifteen single-rooted human teeth were endontically prepared and obturated with gutta percha points and a resin based sealer (AH26. A glass fiber post (Glassix was cemented into each post space with a dual polymerizing resin cement (Varilink II and the composite core (Tetric Ceram was fabricated. Specimens were immersed in Indian ink solution for 72 hours after completion of 1500 cycles of thermal cycling. Then demineralized, cleared andevaluated for the deepest length of dye penetration using a stereomicroscope. Specimens were then cut longitudinally and the length of penetration was measured again by the same instrument.The mean difference of the penetrated length was analyzed by two methods using the paired t test and an analysis of correlation ( = 0.05.Results: No significant difference was found in the mean microleakage measured by the two methods (P= 0.07. Significant correlation was found between them (P=0.0001, r= 0.9Conclusion: The clearing technique and longitudinal sectioning showed the same results in microleakage of Glassix post and composite core within the limitation of the present study.

  6. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    Directory of Open Access Journals (Sweden)

    Rodrigo Borges Fonseca

    2014-01-01

    Full Text Available This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I or pure (P, on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%. Six groups (n=10 were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10×2×1 mm and for compressive strength 9.5×5.5×3 mm and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P< 0.05 : I-sil: 155.89±45.27BC; P-sil: 155.89±45.27BC; I-sil/heat: 130.20±22.11C; P-sil/heat: 169.86±50.29AB; I: 131.87±15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25±188.77ab; P-sil: 867.61±102.76d; I-sil/heat: 1162.98±222.07c; P-sil/heat: 1499.35±339.06a; and I: 1245.78±211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate.

  7. Tm3+ and Tm(3+)-Ho3+ co-doped tungsten tellurite glass single mode fiber laser.

    Science.gov (United States)

    Li, Kefeng; Zhang, Guang; Wang, Xin; Hu, Lili; Kuan, Peiwen; Chen, Danping; Wang, Meng

    2012-04-23

    We investigated the ~2 μm spectroscopic and lasing performance of Tm(3+) and Tm(3+)-Ho(3+) co-doped tungsten tellurite glass single mode fibers with a commercial 800 nm laser diode. The double cladding single mode (SM) fibers were fabricated by using rod-in-tube method. The propagation loss of the fiber was ~2.5 dB/m at 1310 nm. The spectroscopic properties of the fibers were analyzed. A 494 mW laser operating at ~1.9 μm was achieved in a Tm(3+) doped 20 cm long fiber, the slope efficiency was 26%, and the laser beam quality factor M(2) was 1.09. A 35 mW ~2.1 μm laser output was also demonstrated in a 7 cm long of Tm(3+)-Ho(3+) co-doped tungsten tellurite SM fiber. © 2012 Optical Society of America

  8. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    Science.gov (United States)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  9. Fracture resistance of tooth restored with four glass fiber post systems of varying surface geometries: an in vitro study

    OpenAIRE

    Jayasenthil, Adhikesavan; Solomon-Sathish, Emmanuel; Venkatalakshmi-Aparna, Potluri; Balagopal, Sunderasan

    2016-01-01

    Background The purpose of this study was to relate the fracture resistance of endodontically treated teeth in relation to post geometry. Material and Methods Forty single rooted mandibular premolars were instrumented by step - back technique and obturated by lateral condensation. Forty teeth were randomly divided into four groups: Reforpost glass fiber X-ray?, RelyX?, Exacto conical? and Parapost Fiber Lux?. The post spaces were prepared using respective drills and luted. The core build up wa...

  10. Fatigue damage evaluation of plain woven carbon fiber reinforced plastic (CFRP) modified with MFC (micro-fibrillated cellulose) by thermo-elastic damage analysis (TDA)

    Science.gov (United States)

    Aoyama, Ryohei; Okubo, Kazuya; Fujii, Toru

    2013-04-01

    The aim of this study is to investigate characteristics of fatigue damage of CFRP modified with MFC by TDA under tensile cyclic loading. In this paper, fatigue life of CFRP modified with MFC was investigated under cyclic loading. Characteristics of fatigue damage of CFRP modified with MFC were evaluated by thermo-elastic damage analysis. Maximum improvement in fatigue life was also obtained under cyclic loading when epoxy matrix was enhanced with 0.3wt% of MFC as well as under static loading. Result of TDA showed same tendency as the result of fatigue test, and the result of TDA well expressed the fatigue damage behavior of plain woven CFRP plate. Eventually, TDA was effective for clear understanding the degree of fatigue damage progression of CFRP modified with MFC.

  11. Morphological analysis of glass, carbon and glass/carbon fiber posts and bonding to self or dual-cured resin luting agents

    OpenAIRE

    Aloísio Oro Spazzin; Rafael Ratto de Moraes; Doglas Cecchin; Ana Paula Farina; Bruno Carlini-Júnior; Lourenço Correr-Sobrinho

    2009-01-01

    OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (...

  12. Fracture resistance of short, randomly oriented, glass fiber-reinforced composite premolar crowns.

    Science.gov (United States)

    Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo V J

    2007-09-01

    The aim of this work was to determine the static load-bearing capacity of posterior composite crowns made of experimental composite resin (FC) with short fiber fillers and a semi-interpenetrating polymer network (IPN) matrix. In addition, we wanted to investigate how load-bearing capacity of surface composite resins was affected by substructures of fiber-reinforced composite (FRC) and FC, and by different curing systems. Five groups of crowns were fabricated (n=6). The crowns were either polymerized with a hand-light curing unit (LCU) or cured in a vacuum curing device (VLC) before they were statically loaded at a speed of 1mm min(-1) until fracture. Failure modes were visually examined. Data were analyzed using ANOVA. ANOVA revealed that crowns made from the FC had a statistically significant higher load-bearing capacity than the control PFC composite. Crowns with FRC substructure and PFC covering gave force values of 348N (LCU) and 1199N (VLC), respectively, which were lower than the values of FC composite. No statistically significant difference was found between crowns made from plain FC composite and those made from FC composite with a surface layer of PFC (P=0.892 and 1.00). Restorations made from short glass fiber-containing composite resin with IPN-polymer matrix showed better load bearing capacity than those made with either plain PFC or PFC reinforced with FRC substructure.

  13. Development and characterization of highly-nonlinear multicomponent glass photonic crystal fibers for mid-infrared applications

    Science.gov (United States)

    Nemecek, Tomas; Komanec, Matej; Suslov, Dmytro; Peterka, Pavel; Pysz, Dariusz; Buczynski, Ryszard; Nelsen, Bryan; Zvanovec, Stanislav

    2017-05-01

    We present a detailed chromatic dispersion characterization of heavy-metal oxide (HMO) glass photonic crystal fibers (PCFs) suitable for mid-infrared applications. Based on previous work with hexagonal and suspended-core fibers the focus was placed on determination of the chromatic dispersion curve to reach precise correlation between simulation model and real fiber based on both a post-draw model correction and broadband chromatic dispersion measurement. The paper covers the fiber design, discusses fiber manufacturing, presents measurements of fiber chromatic dispersion, provides the simulation model correction and finally proposes further applications. Selected fiber designs from simulation model were fabricated by the stack-and-draw technique. The dispersion measurement setup was based on an unbalanced Mach-Zehnder interferometer. The influence of optical elements on the measurement results and broadband coupling is discussed. We have proved that the critical factor represents the accuracy of the refractive index equation of the HMO glass and real fiber structure. By improved technique we reached the zero-dispersion wavelength with a reasonable precision of less than 30 nm.

  14. Validating the Classical Failure Criteria for Applicability to the Notched Woven-Roving Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed Mostafa Yousef Bassyouny Elshabasy

    2014-01-01

    Full Text Available The classical failure criteria are phenomenological theories as they ignore the actual failure mechanism and do not concentrate on the microscopic events of failure. The main objective of the current investigation is to modify the classical failure theories to comprise the essential failure mechanism (interfacial shear failure in the thin-layered woven-roving composite materials. An interfacial shear correction factor (MH6 is introduced into the nondimensional shear terms in the studied classical failure criteria. Thus the validity of applying these theories to the investigated material will be augmented. The experimental part of the current study is conducted on thin-layered circular specimens. The specimens are fabricated from two plies of fiber E-glass woven-roving fabric reinforced with polyester. The fabrics are laid to have [±45°] or [0°, 90°] fiber orientation. The specimens used are plain, where no macroscopic sources of stress concentration exist or having circular notches of five, seven, or nine mm radii. The specimens are subjected to low cycle completely reversed fatigue bending loading where the S-N and the R.D.-N curves are plotted for each group of specimens.

  15. Physical properties of recycled PET non-woven fabrics for buildings

    Science.gov (United States)

    Üstün Çetin, S.; Tayyar, A. E.

    2017-10-01

    Recycled fibers have been commonly used in non-woven production technology for engineering applications such as textile engineering and civil engineering. Nonwovens including recycled fibers can be utilized in insulation, roofing and floor separation applications. In this study, physical performance properties such as drape, bending resistance, tensile strength, and breaking elongation values of non-woven fabrics consisting of v-PET (virgin) and r-PET (recycled) fibers in five different blend ratios are examined comparatively. The test results indicated that r-PET can be used in non-wovens for civil engineering applications such as insulation, roofing and floor separation fulfilling the acceptable quality level values.

  16. Evaluation of the effect of synthetic fibers and non-woven geotextile reinforcement on the stability of heavy clay embankments : technical summary.

    Science.gov (United States)

    2004-07-01

    The objectives of this study were to evaluate the effects of soil density, moisture content, fiber content, and confining pressure on the shear strength of the clayey-fiber matrix, and of soil moisture content and confining pressure on the interface ...

  17. Electrochemical behaviors of a wearable woven textile Li-ion battery consisting of a core and wound electrode fibers coated with active materials

    Science.gov (United States)

    Kim, C.; Bang, S.; Zhou, D.; Yun, S.

    2017-04-01

    A new fiber-type Li-ion battery that consists of carbon nanotube fibers deposited with active materials has been developed and tested. The active materials, LiMn2O4 and Li4Ti5O12, were deposited on the surface of carbon nanotube fibers in order to use as electrodes. Tensile strength of the CNT fibers with active material was measured by tensile tests to investigate the mechanical characteristics. Electrochemical property is also measured by a battery tester during charging and discharging. The results show that current discharge capacity is about 25 mAh/g between 3.0 V and 4.2 V. That means the fiber with active materials is good for an anode electrode. Mathematical material models considering the lithium concentration and the length of Li-C bond have been established in order to predict the effective elastic modulus of electrode composite materials.

  18. Design of photonic crystal fibers with highly nonlinear glasses for four-wave-mixing based telecom applications.

    Science.gov (United States)

    Kanka, Jiri

    2008-12-08

    A fully-vectorial mode solver based on the finite element method is employed in a combination with the downhill simplex method the dispersion optimization of photonic crystal fibers made from highly nonlinear glasses. The nonlinear fibers are designed for telecom applications such as parametric amplification, wavelength conversion, ultra-fast switching and regeneration of optical signals. The optimization is carried in terms of the zero dispersion wavelength, dispersion magnitude and nonlinear coefficient and confinement loss in the wavelength range around 1.55 microm. We restrict our work to the index-guiding fiber structures a small number of hexagonally arrayed air holes.

  19. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    Science.gov (United States)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  20. Efficiency and effectiveness evaluation of three glass fiber post removal techniques using dental structure wear assessment method

    Directory of Open Access Journals (Sweden)

    Flávia Casale Abe

    2014-01-01

    Results: Group 1 - 16′46", 33.33% and 6.99%; Group 2 - 12′31", 40% and 7.86%; and Group 3 - 10′24", 80% and 8.14%. Group 3 presented the most effective removal of glass fiber posts. Conclusion: There was no significant difference in efficiency among the evaluated techniques.

  1. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    A gliding arc is a plasma generated between diverging electrodes and extended by a high speed gas flow. It can be operated in air at atmospheric pressure. It potentially enables selective chemical processing with high productivity, and is useful for adhesion improvement of material surfaces....... The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...... that ultrasonic irradiation reduced the OH rotational temperature of the gliding arc. The wettability of the GFRP surface was significantly improved by the plasma treatment without ultrasonic irradiation, and tended to improve furthermore at higher power to the plasma. Ultrasonic irradiation during the plasma...

  2. Flexural strengthening of Reinforced Concrete (RC Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP Laminates

    Directory of Open Access Journals (Sweden)

    Aravind N.

    2015-01-01

    Full Text Available Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP sheets for strengthening Reinforced Concrete (RC beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  3. Glass-fiber reinforced composite in management of avulsed central incisor: a case report.

    Science.gov (United States)

    Aydin, M Yalçin; Kargül, Betül

    2004-01-01

    Reimplantation failure of avulsed anterior tooth in an adolescent patient requires removal of the failed tooth and consideration of restorative options. These options may include a removable partial denture, conventional 3-unit fixed partial denture, implant, or a resin-bonded appliance with a metal substructure (Maryland bridge). The glass-fiber reinforced composite material (everSTICK, StickTech Ltd, Turku, Finland) offers a restorative solution that is conservative and esthetic when compared to other restorations. Advantages include reduction of cost compared to conventional bridges, saving of time, elimination of second visit, ease of application, absence of metal allergy, ease of cleaning, and naturalness of feel. Its limitations include occlusal factors, and the presence of unsuitable abutment teeth. Another traditional contraindication is the presence of diastemas, which may limit the potential esthetic gains. This case of an 11-year-old girl, addresses the indications, preparation guidelines, and restorative procedures for an everSTICK bridge.

  4. Glass fiber reinforced composite resin as an intracanal post--a clinical study.

    Science.gov (United States)

    Subramaniam, Priya; Babu, K L Girish; Sunny, Raju

    2008-01-01

    Restoration of primary incisors, which have been severely damaged by early childhood caries or trauma, is a difficult task for the pediatric dentist. With the introduction of new adhesive systems and restorative materials, alternative approaches for treating these teeth have been proposed. Ten healthy children aged between 3-4 years who had 28 grossly destructed primary maxillary incisors requiring intra canal retention were selected for the study. Following root canal treatment, either a Glass Fiber Reinforced Composite Resin (GFRCR everStick,, Finland) or an omega shaped stainless steel wire were placed as intracanal posts in these teeth. Flowable composite was used for cementation of posts and also to build up the coronal structure using celluloid strip crowns. Both types of intracanal posts were evaluated for retention and marginal adaptation at 1, 6 and 12 months. The data obtained was subjected to statistical analysis. GFRCR intracanal posts showed better retention and marginal adaptation than omega shaped stainless steel wire posts.

  5. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  6. Glass fiber reinforced polyester in the works of Tous and Fargas

    Directory of Open Access Journals (Sweden)

    D. Hernández Falagán

    2017-06-01

    Full Text Available The architects Enric Tous (1925; t 1952 and Josep Maria Fargas (1926-2011, t 1952 achieved remarkable success during the 1960s and 1970s thanks to their commitment to technical experimentation and exploration of new construction systems. Among their most significant contributions is the incorporation of polyester reinforced with glass fiber as a material applied to solutions of light facades. This article tracks the origin, context, and results they obtained with this material. We propose an approach to the GRC material through the experience developed by the architects, analyzing the characteristics and specific implications of the systems proposed in their projects. Through this reading, the industrial initiative implemented by Tous and Fargas is put into value, and the key aspects that limited the progression of the construction system are detected.

  7. Safer DNA extraction from plant tissues using sucrose buffer and glass fiber filter.

    Science.gov (United States)

    Takakura, Koh-Ichi; Nishio, Takayuki

    2012-11-01

    For some plant species, DNA extraction and downstream experiments are inhibited by various chemicals such as polysaccharides and polyphenols. This short communication proposed an organic-solvent free (except for ethanol) extraction method. This method consists of an initial washing step with STE buffer (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA), followed by DNA extraction using a piece of glass fiber filter. The advantages of this method are its safety and low cost. The purity of the DNA solution obtained using this method is not necessarily as high as that obtained using the STE/CTAB method, but it is sufficient for PCR experiments. These points were demonstrated empirically with two species, Japanese speedwell and common dandelion, for which DNA has proven difficult to amplify via PCR in past studies.

  8. Calibration of a hysteretic model for glass fiber reinforced gypsum wall panels

    Science.gov (United States)

    Janardhana, Maganti; Robin Davis, P.; Ravichandran, S. S.; Prasad, A. M.; Menon, D.

    2014-06-01

    Glass fiber reinforced gypsum (GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses identification and calibration of a suitable hysteretic model for GFRG wall panels filled with reinforced concrete. As considerable pinching was observed in the experimental results, a suitable hysteretic model with pinched hysteretic rule is used to conduct a series of quasi-static as inelastic hysteretic response analyses of GFRG panels with two different widths. The calibration of the pinching model parameters was carried out to approximately match the simulated and experimental responses up to 80% of the peak load in the post peak region. Interestingly, the same values of various parameters (energy dissipation and pinching related parameters) were obtained for all five test specimens.

  9. Low Velocity Impact Behavior of Glass Filled Fiber-Reinforced Thermoplastic Engine Components

    Directory of Open Access Journals (Sweden)

    Zakaria Mouti

    2010-03-01

    Full Text Available This paper concerns automotive parts located underneath the engine and in particular the engine oil pan. Classically made of stamped steel or cast aluminum, new developments have allowed the manufacture oil pans with polyamide 66 reinforced by 35% weight of short glass fiber. However, polyamides have some limitations and the most significant is their response to localized impact loading. The nature of the impact considered here is of a typical stone collected from the road and projected into the oil pan. Low velocity impact investigations were carried out using a gas gun and drop weight tower. The study shows that the design of the oil pan has a significant contribution in the shock absorption. In addition to the material properties, the geometry and the ribbing both cleverly combined, increase the impact resistance of the component significantly. Areas of oil pan design improvement have been identified and conclusions drawn.

  10. A systematic review of factors associated with the retention of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available This study aimed to identify factors that can affect the retention of glass fiber posts to intra-radicular dentin based on in vitro studies that compared the bond strength (BS of GFPs cemented with resin cements. Searches were carried out in PubMed and Scopus until December 2013. Bond strength values and variables as type of tooth, presence of endodontic treatment, pretreatment of the post, type of bonding agent (if present, type of cement and mode of cement application were extracted from the 34 included studies. A linear regression model was used to evaluate the influence of these parameters on BS. The presence of endodontic treatment decreased the BS values in 22.7% considering the pooled data (p = 0.013. For regular cement, cleaning the post increased BS when compared to silane application without cleaning (p = 0.032, considering cleaning as ethanol, air abrasion, or phosphoric acid application. Applying the cement around the post and into root canal decreased the resistance compared to only around the post (p = 0.02 or only into root canal (p = 0.041, on the other hand, no difference was found for self-adhesive resin cement for the same comparisons (p = 0.858 and p = 0.067. Endodontic treatment, method of cement application, and post pretreatment are factors that might significantly affect the retention of glass-fiber posts into root canals mainly when cemented with regular resin cement. Self-adhesive resin cements were found to be less technique-sensitive to luting procedures as compared with regular resin cements.

  11. A systematic review of factors associated with the retention of glass fiber posts.

    Science.gov (United States)

    Skupien, Jovito Adiel; Sarkis-Onofre, Rafael; Cenci, Maximiliano Sérgio; Moraes, Rafael Ratto de; Pereira-Cenci, Tatiana

    2015-01-01

    This study aimed to identify factors that can affect the retention of glass fiber posts to intra-radicular dentin based on in vitro studies that compared the bond strength (BS) of GFPs cemented with resin cements. Searches were carried out in PubMed and Scopus until December 2013. Bond strength values and variables as type of tooth, presence of endodontic treatment, pretreatment of the post, type of bonding agent (if present), type of cement and mode of cement application were extracted from the 34 included studies. A linear regression model was used to evaluate the influence of these parameters on BS. The presence of endodontic treatment decreased the BS values in 22.7% considering the pooled data (p = 0.013). For regular cement, cleaning the post increased BS when compared to silane application without cleaning (p = 0.032), considering cleaning as ethanol, air abrasion, or phosphoric acid application. Applying the cement around the post and into root canal decreased the resistance compared to only around the post (p = 0.02) or only into root canal (p = 0.041), on the other hand, no difference was found for self-adhesive resin cement for the same comparisons (p = 0.858 and p = 0.067). Endodontic treatment, method of cement application, and post pretreatment are factors that might significantly affect the retention of glass-fiber posts into root canals mainly when cemented with regular resin cement. Self-adhesive resin cements were found to be less technique-sensitive to luting procedures as compared with regular resin cements.

  12. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pglass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    Science.gov (United States)

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  15. Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro.

    Science.gov (United States)

    Kremeier, Karin; Fasen, Lutz; Klaiber, Bernd; Hofmann, Norbert

    2008-05-01

    To determine the influence of post type and luting material on bond strength to dentin. The root canals of extracted human upper central incisors were instrumented and post space was prepared using the respective drills for each post system. Glass fiber posts (Luscent Anchor, Dentatus [LA]) were luted using three dual-curing adhesive systems (Excite DSC/Variolink II, Vivadent [VL2]; EnaBond/EnaCem, Micerium [ENA]; Prime & Bond NT/Calibra, DentSply DeTrey [CAL]). A different brand of glass fiber post (EasyPost, DentSply Maillefer [EP]) and quartz fiber post (DT Light Post, VDW [DT]) were luted using CAL. Gold posts (Perma-dor, VDW) were luted either adhesively following tribo-chemical silicate coating (Rocatec, ESPE-Sil, 3M ESPE; CAL) or conventionally using glass ionomer cement (Ketac Cem, 3M ESPE). Three slices of 2mm height were cut perpendicular to the post from each restored root. Bond strength was determined by pushing out the post using a universal testing machine (/1449, Zwick). For all experimental groups combined, bond strength increased from the coronal to the apical section (Friedman test: Pposts (DT/CAL>LA/CAL; Mann-Whitney U-test with Bonferroni-Holm adjustment: Pposts were equivalent to DT/CAL with both luting procedures. Selection of post type may be more important for bond strength than luting material. Bond strength of fiber posts was equivalent but not superior to adhesively or conventionally luted gold posts.

  16. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  17. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    Science.gov (United States)

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  18. Fracture strength of endodontically treated molars transfixed horizontally by a fiber glass post.

    Science.gov (United States)

    Beltrão, Maria Cecilia Gomes; Spohr, Ana Maria; Oshima, Hugo Mitsuo Silva; Mota, Eduardo Gonçalves; Burnett, Luiz Henrique

    2009-02-01

    To assess the effect of a horizontally transfixed fiber glass post placed between buccal and palatal surfaces, on the fracture strength of endodontically treated molar teeth with MOD cavities, either restored with resin-based composite, or not. 75 sound maxillary human third molars were extracted, embedded in acrylic resin blocks and randomly assigned to five groups (n=15). Group A (sound teeth), (control) and Groups B, C, D and E, which were subjected to the following procedures after endodontic treatment: GB--(MOD+Endo), GC--(MOD+Endo+Post), GD--MOD and composite restoration (MOD+Endo+CR), GE--(MOD+Endo+Post+CR). The specimens were stored in distilled water at 37 degrees C for 24 hours. Later, a compressive force was applied by means of a universal testing machine at 1 mm/minute speed, parallel to the long axis of the teeth until fracture occurred. The means of the results (N) followed by the same letter represent no statistical difference by ANOVA and Tukey (Pfiber glass post transfixed horizontally in a MOD cavity significantly increased the fracture resistance of the teeth restored with resin composite.

  19. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  20. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    Science.gov (United States)

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (ppost space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  1. Microtensile Bond Strength of Translucent Glass Fiber Posts to Intra-radicular Dentin

    Directory of Open Access Journals (Sweden)

    N. Mohammadi

    2009-03-01

    Full Text Available Objective: The aim of the present study was to compare microtensile bond strengths (μTBS of glass fiber posts to different parts of intra-radicular dentin using conventional method and one-shot technique under different light intensities.Materials and Methods: Twenty-eight single-rooted teeth were prepared to receive fiber posts: Group 1: Conventional method at light intensity of 600 mW/cm2; Groups 2, 3 and 4:One-shot technique at light intensities of 600, 800 and 1000 mW/cm2 respectively. Dumbbell-shaped slices were obtained from the samples and submitted to micro-tensile testing.The data were analyzed using two-way ANOVA and paired-samples t-test.Results: There were no significant differences in μTBS values of the cervical and middle thirds between the groups (P>0.05. μTBS values in the cervical thirds in groups 2 and 3 were significantly higher than those in the middle thirds (P>0.05. However, there were nosuch differences in groups 1 and 4 (P>0.05.Conclusion: It is proper to simultaneously cure the resin cement and the adhesive agent (one-shot technique; however, in that case, high light intensities (1000 mW/cm2 are recommended to achieve identical bond strength values in the cervical and middle thirds.

  2. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu

    2015-12-29

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.

  3. PERBAIKAN KEKUATAN DAN DAKTILITAS KOLOM BETON BERTULANG YANG MENDAPAT BEBAN GEMPA MENGGUNAKAN GLASS FIBER REINFORCED POLYMER

    Directory of Open Access Journals (Sweden)

    Parmo Parmo

    2014-05-01

    Full Text Available Repairing the Strength and Ductility of Reinforced Concrete Column That Got Earthquake using Gla­ss Fiber Reinforced Polymer. This study aims to identify the additional strength and ductility of reinforced concrete columns af­ter being re­­­­tro­fitted using glass fiber reinforced polymer (GFRP and got the brunt of the earth­quake. This study uses two objects tested columns, which are being tested for three times. Each column size is 350 x 350 x 1100 mm with f'c = 20.34 MPa and fy = 549.94 MPa. The tes­t­ing is performed by giving a constant axial load of 748 kN and cyclic lateral load using con­trol displacement method in order to simulate the brunt of earth­quake. The results show an in­crea­se in lateral capacity of co­lumn by 43.96%. Re­tro­­fitting the column with GFRP has a duc­tile property, which is shown by the increase of the displacement ductility by 129.14% and curvature ductility by 118.27%.   Penelitian ini ber­tujuan untuk mengetahui penambahan kekuatan dan dak­ti­li­­­­tas kolom beton bertulang se­telah diretrofit menggunakan glass fiber reinforced po­ly­­­mer (GFRP dan mendapat be­ban gempa. Penelitian ini menggunakan benda ­uji dua buah kolom dengan tiga kali pengujian. Masing-masing ukuran kolom 350 x 350 x 1100 mm dengan f’c = 20,34 MPa dan fy = 549,94 MPa. Pengujian dilakukan de­ngan memberikan beban ak­sial konstan 748 kN dan beban lateral siklik yang meng­gu­nakan metode di­splacemet con­trol untuk mensimulasikan beban gempa. Hasil pe­ne­­­litian menunjukkan pe­ningkatan kapasitas lateral pada kolom sebesar 43,96%. Retrofit kolom dengan GFRP bersifat dak­tail yang ditunjukkan dengan meningkatnya daktilitas per­pindahan sebesar 129,14% dan dak­­­tilitas kurvatur se­besar 118,27%.

  4. Efficient catalytic ozonation by ruthenium nanoparticles supported on SiO2 or TiO2: Towards the use of a non-woven fiber paper as original support

    KAUST Repository

    Biard, Pierre-François

    2015-12-24

    This work focuses on the use of Ru(0) nanoparticles as heterogeneous catalyst for ozone decomposition and radical production. In a first set of experiments, the nanoparticles have been deposited on two inorganic supports (TiO2 or SiO2) by a wet impregnation approach. This study confirmed the high potential of Ru nanoparticles as active species for ozone decomposition at pH 3, since the ozone half-life time decreases by a factor 20-25, compared to the reference experiment carried out without any catalyst. The enhancement of the ozone decomposition kinetics provided an improved radical production and a higher transient radical concentration in a shorten ozone exposure. Consequently, lower oxidant dosage and contact time would be necessary. Thus, very significant atrazine consumption kinetics enhancements were measured. In a second set of experiments, a non-woven fiber paper composed of a TiO2/SiO2/zeolite mixture has been evaluated as an original support for ruthenium nanoparticles. Even if lower ozone decomposition kinetics was observed compared to TiO2 or SiO2, this support would be a promising alternative to inorganic powders to avoid the catalyst recovery step and to design reactors such as tubular reactors. A new numerical procedure is presented for the evaluation of the transient HO° concentration and of the Rct.

  5. Numerical approach to inter-fiber flow in nonwovens with super absorbent fibers

    Directory of Open Access Journals (Sweden)

    Ding Zhi-Rong

    2017-01-01

    Full Text Available This paper establishes a 3-D numerical model for inter-fiber flows in non-woven materials composed of super absorbent fibers. The velocity distribution of the inter-fiber flow is obtained. The effects of absorbent fibers and geometrical structure of non-woven fabrics on flow properties are analyzed.

  6. Effect of carbon and glass fiber posts on the flexural strength and modulus of elasticity of a composite resin.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; de Oliveira, Jonas Alves; do Valle, Accacio Lins; Zogheib, Lucas Villaca; Ferreira, Paulo Martins; Bastos, Luiz Gustavo Cavalcanti

    2011-01-01

    The aim of this study was to evaluate the effect of prefabricated fiber posts on the flexural strength and modulus of elasticity of a composite resin. Thirty bar-shaped specimens measuring 25 x 2.0 x 2.0 mm were made, containing posts that were 1.3 mm in diameter and 20 mm long. Each group contained 10 specimens: Group 1, resin without post; Group 2, resin with carbon fiber post; Group 3, resin with glass fiber post. The samples were immersed in water at 37 degrees C until the three-point loading test was performed at a speed of 1.0 mm/minute. The results were statistically analyzed by ANOVA and Tukey's test (P = 0.05). Both fiber posts were similar in strength and both were stronger than the control. Group 3 obtained a higher mean modulus of elasticity than Groups 1 and 2, which were similar. The results of this study demonstrated that the presence of a fiber post significantly raised flexural strength values and the glass fiber post significantly increased the modulus of elasticity of the evaluated composite resin.

  7. A classical lamination model of bi-stable woven composite tape-springs

    OpenAIRE

    Prigent, Yoann; Mallol, Pau; Tibert, Gunnar

    2011-01-01

    This extended abstract presents the work done so far on modeling woven composite materials, specifically two carbon fiber reinforced plastics materials: twill and plain weave. The material model has been initially verified against data available in a database. QC 20120215

  8. Calculation of Effective Material Strengths for 3D Woven Hybrid Preforms and Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The design concepts being considered for Heatshield for Extreme Entry Environment Technology (HEEET) rely on the use of 3D woven carbon fiber preforms. Therefore,...

  9. Geometrical Modeling of Woven Fabrics Weavability-Limit New Relationships

    Directory of Open Access Journals (Sweden)

    Dalal Mohamed

    2017-03-01

    Full Text Available The weavability limit and tightness for 2D and 3D woven fabrics is an important factor and depends on many geometric parameters. Based on a comprehensive review of the literature on textile fabric construction and property, and related research on fabric geometry, a study of the weavability limit and tightness relationships of 2D and 3D woven fabrics was undertaken. Experiments were conducted on a representative number of polyester and cotton woven fabrics which have been woven in our workshop, using three machines endowed with different insertion systems (rapier, projectiles and air jet. Afterwards, these woven fabrics have been analyzed in the laboratory to determine their physical and mechanical characteristics using air permeability-meter and KES-F KAWABATA Evaluation System for Fabrics. In this study, the current Booten’s weavability limit and tightness relationships based on Ashenhurst’s, Peirce’s, Love’s, Russell’s, Galuszynskl’s theory and maximum-weavability is reviewed and modified as new relationships to expand their use to general cases (2D and 3D woven fabrics, all fiber materiel, all yarns etc…. The theoretical relationships were examined and found to agree with experimental results. It was concluded that the weavability limit and tightness relationships are useful tools for weavers in predicting whether a proposed fabric construction was weavable and also in predicting and explaining their physical and mechanical properties.

  10. Surface modification of polypropylene non-woven fibers with TiO2 nanoparticles via layer-by-layer self assembly method: Preparation and photocatalytic activity.

    Science.gov (United States)

    Pavasupree, Suttipan; Dubas, Stephan T; Rangkupan, Ratthapol

    2015-11-01

    Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8hr of treatment. Copyright © 2015. Published by Elsevier B.V.

  11. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor.

    Science.gov (United States)

    Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang

    2015-01-01

    This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.

  12. Comparing non-woven, filmateci and woven gauze swabs.

    Science.gov (United States)

    Thomas, S; Loveless, P; Hay, N P; Toyick, N

    1993-01-02

    The physical characteristics and performance of seven non-woven swabs intended for topical use were compared with those of filmated swabs and woven cotton gauze in a series of laboratory tests. The results of this study suggest that the non-woven swabs have significant advantages over the other type examined. Based upon current pricing structures they represent a highly cost-effective alternative to the more traditional products for routine wound management procedures. As the various non-wovens have very different handling characteristics, it should be possible to select a swab to suit most requirements from the range of products available.

  13. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    OpenAIRE

    Sharma, Ashish; Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2015-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface ch...

  14. Epoxy/Glass Fiber Laminated Composites Integrated with Amino Functionalized ZrO2 for Advanced Structural Applications.

    Science.gov (United States)

    Halder, Sudipta; Ahemad, Soyeb; Das, Subhankar; Wang, Jialai

    2016-01-27

    This work demonstrates the successful silanization of ZrO2 nanoparticles (ZN) and their incorporation in glass fiber/epoxy composites. Microscopic investigation under transmission electron microscope elucidates antiaggregation and size enhancement of silanized ZrO2 nanoparticles (SZNs). FTIR spectroscopy has been used to demonstrate the chemical nature of the SZNs prepared. EDX results reveal the presence of Si onto SZNs. Incorporation of SZNs shows a strong influence on tensile and flexural properties of hybrid multiscale glass fiber composite (SZGFRP) compared to that of the neat epoxy glass fiber composite (GFRP). A significant variation of tensile strength, stiffness, and toughness of ∼27%, 62%, and 110% is observed with respect to GFRP. Strength and modulus under bending are also enhanced to ∼22% and ∼38%, respectively. Failure mechanisms obtained from macroscopic and microscopic investigation demonstrate reduced interfacial delamination for SZGFRP. Additionally, increased roughness of the fiber surface in SZGFRP laminates produces better interfacial bonding arising from SZN incorporation in laminates. This symptomatic behavior exposes the espousal of organically modified ZrO2 to enhance the interfacial bonding for their use in next generation hybrid laminates.

  15. In vitro evaluation of the fracture resistance of anterior endodontically treated teeth restored with glass fiber and zircon posts.

    Science.gov (United States)

    Qing, Hai; Zhu, ZhiMin; Chao, YongLie; Zhang, WeiQun

    2007-02-01

    The published information is equivocal regarding the fracture resistance of endodontically treated teeth restored with fiber posts. Additionally, little is known about the biomechanical performance of glass fiber and zircon posts. This in vitro study investigated the fracture resistance of anterior endodontically treated teeth prepared with a 2-mm ferrule, restored with glass fiber and zircon posts and composite resin cores or cast posts and cores. Twelve matched pairs of teeth were obtained from 4 cadavers, and all were endodontically treated and prepared with a standardized 2-mm ferrule. According to a random number table, the 2 teeth from each matched pair were randomly divided into 2 groups. The test group consisted of 12 specimens restored with a glass fiber and zircon post (Fibio) and composite resin (Durafil) core. Twelve matching specimens restored with a nickel-chromium (NiCr) cast post and core served as the control. Specimens in both groups were cemented with resin cement (Panavia F). After cementation of cast NiCr complete crowns with zinc polycarboxylate cement (ShangChi), the specimens were loaded with an incremental static force at an angle of 135 degrees to the long axis of the root until failure occurred. A paired sample t test was used to compare the fracture resistance (N) of teeth restored with the 2 post-and-core systems (alpha=.05). The mean failure load of paired differences between the 2 groups was -261.3+/-237.3 N. The test group exhibited significantly lower failure loads than the control group (P=.004). All specimens displayed root fractures, most of which were oblique, with cracks initiating from the palatal cervical margin and propagating in a labial-apical direction. Within the limitations of this study, the teeth restored with glass fiber and zircon posts demonstrated significantly lower failure loads than those with cast NiCr post and cores. All specimens failed via root fractures.

  16. Evaluating the virulence and longevity of non-woven fiber bands impregnated with Metarhizium anisopliae against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae)

    Science.gov (United States)

    Ryan P. Shanley; Melody Keena; Micheal M. Wheeler; Jarrod Leland; Ann E. Hajek

    2009-01-01

    Fiber bands impregnated with entomopathogenic fungi (=fungal bands) provide an effective method for controlling the invasive Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). In this study we investigated the effective longevity of fungal bands for use against A. glabripennis, using...

  17. Analysis of the strengthenings of mixed glass fibers E and fibers AR in plaster, as an alternative to monofiber (homogeneous strengthenings

    Directory of Open Access Journals (Sweden)

    del Río Merino, M.

    2002-12-01

    Full Text Available The company Vetrotex in collaboration with the Department of Architectural Constructions and their control (E.U.A.T of the Polytechnic University of Madrid, have deeply researched on plaster strengthened with glass fiber E. The conclusions of the influence of the dispersibility of glass fiber in the compound mechanical behavior and in its workability have been published in an earlier article. Here now are the results and conclusions of a study on mixed strengthenings of glass fibers E and AR combined at a 50%, as an alternative to the homogenous strengthening.

    La empresa Vetrotex, a través de sus técnicos y en colaboración con el Departamento de Construcciones Arquitectónicas y su control (E.U.A.T de la UPM, decide acometer un estudio en profundidad de la escayola reforzada con fibra de vidrio E. En un primer artículo se presentaron las conclusiones sobre la influencia del grado de dispersabilidad de las fibras de vidrio en el comportamiento mecánico del compuesto y en su trabajabilidad. En este segundo artículo se presentan los resultados y conclusiones del estudio de los refuerzos mixtos de fibras de vidrio E en combinación al 50% con fibras de vidrio AR, como alteruativa a los refuerzos actuales homogéneos.

  18. Effect of Zn addition on non-resonant third-order optical nonlinearity of the Cu-doped germano-silicate optical glass fiber.

    Science.gov (United States)

    Ju, Seongmin; Watekar, Pramod R; Jeong, Seongmook; Kim, Youngwoong; Han, Won-Taek

    2012-01-01

    Cu/Zn-codoped germano-silicate optical glass fiber was manufactured by using the modified chemical vapor deposition (MCVD) process and solution doping process. To investigate the reduction effect of Zn addition on Cu metal formation in the core of the Cu/Zn-codoped germano-silicate optical glass fiber, the optical absorption property and the non-resonant third-order optical nonlinearity were measured. Absorption peaks at 435 nm and 469 nm in the Cu/Zn-codoped germano-silicate optical glass fiber were contributed to Cu metal particles and ZnO semiconductor particles, respectively. The effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber was measured to be 1.5097 W(-1) x km(-1) by using the continuous-wave self-phase modulation method. The gamma of the Cu/Zn-codoped germano-silicate optical glass fiber was about four times larger than that of the reference germano-silicate optical glass fiber without any dopants. The increase of the effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber, can be attributed to the enhanced nonlinear polarization due to incorporated ZnO semiconductor particles and Cu metal ions in the glass network. The Cu/Zn-codoped germano-silicate optical glass fiber showed high nonlinearity and low transmission loss at the optical communication wavelength, which makes it suitable for high-speed-high-capacity optical communication systems.

  19. The effect of short polyethylene fiber with different weight percentages on diametral tensile strength of conventional and resin modified glass ionomer cements.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Ghaboos, Seyed-Ali; Jowkar, Zahra

    2017-03-01

    The aim of this study was to investigate the effect of polyethylene fiber on diametral tensile strength of conventional and resin modified glass ionomer cements. 60 specimens in 6 groups (n=10) were prepared. In group 1 conventional glass ionomer (Fuji GC) and in group 2 resin modified glass ionomer (Fuji LC) were as control groups. In group 3 and 4 conventional glass ionomers mixed with short polyethylene fibers in proportion of 1 wt% and 3 wt%, respectively. In fifth and sixth groups, resin modified glass ionomer and short polyethylene fibers were mixed in 1 and 3% wt, respectively. Samples were prepared in a round brass mold (6.5×2.5 mm). After thermo-cycling, the diametral tensile strength of the specimens were tested and data were analyzed with ANOVA and post-hoc tests (pglass ionomer cements increased after mixing with polyethylene fiber (pglass ionomer (pfiber was shown to have a significant positive influence on diametral tensile strength of two types of glass ionomers. Key words:Conventional glass ionomer, diametral tensile strength, polyethylene fiber, resin modified glass ionomer.

  20. Mechanical fatigue cycling on teeth restored with fiber posts: impact of coronal grooves and diameter of glass fiber post on fracture resistance.

    Science.gov (United States)

    Santini, M F; Wandscher, V; Amaral, M; Baldissara, P; Valandro, L F

    2011-10-01

    The aim of this paper was to evaluate the effect of different diameters and surface characteristics of a glass fiber post on the fracture resistance of teeth restored with fiber posts. Eighty single-rooted bovine teeth were prepared, embedded in a PVC cylinder using acrylic resin, and allocated into 8 groups (N.=10) according to post diameter and shape: (smooth double-tapered fiber post) G1, G2, G3, and G4 with cervical diameters of 1.4 mm, 1.6 mm, 1.8 mm, and 2 mm, respectively; (double-tapered fiber posts with coronal grooves) G5, G6, G7, and G8 with cervical diameters of 1.4 mm, 1.6 mm, 1.8 mm, and 2 mm, respectively. A self-adhesive cement was used for post cementation, and the core build-up was standardized and made with composite resin. Specimens were stored for 7 days and then submitted to the mechanical fatigue testing (load=50 N., angle= 45°, frequency=1 Hz, temperature=37 ± 1 °C, number of cycles=1000000); the specimens that survived were submitted to static resistance testing (1 mm/min, 45°). The fracture loads and fracture modes was recorded. Data were submitted to 2-way ANOVA, post-hoc Tukey test and Pearson Correlation analysis. The cervical diameter of the post (Ppost diameter was 1.4 mm (G1 and G5). A moderate positive correlation was found between the fracture resistance and the fiber post diameter (r2=0.4445; Pfiber post and the fracture strength of roots restored with fiber posts. But other factors may have influenced the fracture strength such as the reduction of intracanal dentin by the preparation for placement of wider fiber posts, since no difference was found for smooth fiber posts with different diameter. Otherwise, grooves at coronal part of the fiber post can damage the fracture resistance.

  1. Multiple visible emissions by means of up-conversion process in a microstructured tellurite glass optical fiber.

    Science.gov (United States)

    Boetti, Nadia G; Lousteau, Joris; Negro, Davide; Mura, Emanuele; Scarpignato, Gerardo; Abrate, Silvio; Milanese, Daniel

    2012-02-27

    We present a microstructured fiber whose 9 µm diameter core consists in three concentric rings made of three active glasses having different rare earth oxide dopants, Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Pr3+, respectively. Morphological and optical characterization of the optical fiber are presented. The photoluminescence spectrum is investigated for different pumping conditions using a commercial 980 nm laser diode. Tuning of the RGB (or white light) emission is demonstrated not only by adjusting the pump power but also by using an optical iris as spatial filter which, thanks to the microstructured core, also acts as a spectral filter.

  2. [Fatigue and fracture resistance of the flared roots restored with computer aided design and computer aided manufacturing glass fiber posts].

    Science.gov (United States)

    Li, Zhi; Wang, Xin-zhi; Gao, Cheng-zhi; Ivo, Krejci

    2013-02-18

    To evaluate the fatigue and fracture resistance of the flared roots restored with computer aided design (CAD) and computer aided manufacturing (CAM) glass fiber posts. In the study, 32 maxillary central incisors with roots longer than 13 mm were selected and their canals were flared, and the roots were allocated into 4 groups (n=8) by a random number chart: CAD/CAM glass fiber posts, prefabricated quartz fiber posts, cast gold alloy posts, and CAD/CAM zirconia posts. The posts were luted to the roots by resin cement and fabricate zirconia crown for every specimen. An addition-type silicone impression material was used to simulate the periodontal ligament. All the specimens were submitted to 1.2×10(6) cycles loaded with a 49 N force, at 45 degree to the long axis of the teeth simultaneously with 3 000 thermal cycles (5 °C-50 °C-5 °C). After that, the specimens were subjected to a load at a crosshead speed of 1 mm/min in a servo-hydraulic testing machine applied at 45 degree to the long axis of the tooth until fracture. The data were subjected to ANOVA test and the patterns of the failure were examined. After the cycling loading, 4 crowns from prefabricated quartz fiber posts groups were deboned, and no other failure was found after the cycling loading; the fracture strengths of CAD/CAM glass fiber posts group [(441.5± 103.2) N] and cast gold alloy posts group [(462.9±170.0) N] were higher (F=4.613, Pposts group [(284.1±99.0) N] and prefabricated quartz fiber posts group [(315.4±112.3) N]; the entire specimens presented unfavorable failures. Although further in vitro and in vivo studies are necessary, the results of this study show that the use of CAD/CAM glass fiber posts and cast gold alloy posts may achieve better outcomes in flared roots than that of CAD/CAM zirconia posts and prefabricated quartz fiber posts.

  3. Effects of chemical surface treatments of quartz and glass fiber posts on the retention of a composite resin.

    Science.gov (United States)

    Yenisey, Murat; Kulunk, Safak

    2008-01-01

    Failure of a fiber post and composite resin core often occurs at the junction between the 2 materials. This failure process requires better characterization. The purpose of this study was to evaluate the effect of 2 chemical solvents, hydrogen peroxide and methylene chloride, on the shear bond strength of quartz and glass fiber posts to a composite resin. Twenty-four posts (3 +/-0.1 mm in length) were prepared for each quartz (LIGHT-POST (LP)) and glass fiber (Cytec blanco (CB)) post. Posts were horizontally embedded in acrylic resin with half of the post diameter exposed. The exposed surfaces were successively ground with 400-, 800-, and 1200-grit silicon carbide papers, to ensure uniform smoothness. The specimens were divided into 3 subgroups (n=8) representing different surface treatment techniques, including application of silane for 60 seconds (S), etching with hydrogen peroxide for 20 minutes (H), and etching with methylene chloride for 5 seconds (M). Silane-treated specimens served as controls. A dual-polymerized composite resin (Tetric EvoCeram) was placed in a polytetrafluoroethylene mold (30 x 2 mm) positioned upon the post specimens and polymerized for 20 seconds with a light-emitting diode (LED) polymerization unit. The specimens were stored in water at 37 degrees C for 24 hours. Shear bond strength values (MPa) of posts and composite resin cores were measured using a universal testing machine with a crosshead speed of 0.5 mm/min. Data were analyzed by 2-way analysis of variance (ANOVA). Post hoc Tukey intervals for comparison among the 2 post materials and 3 surface treatment techniques were calculated (alpha =.05). The effect of the chemical surface treatments on glass and quartz fiber post surfaces were examined with a scanning electron microscope (SEM). There were significant differences between the shear bond strength for LP and CB (P.05). The SEM observations demonstrated that the fiber post surfaces were modified after chemical surface treatment

  4. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting.

    Science.gov (United States)

    Liang, Daxin; Yang, Haoran; Finefrock, Scott W; Wu, Yue

    2012-04-11

    Recent efforts on the development of nanostructured thermoelectric materials from nanowires (Boukai, A. I.; et al. Nature 2008, 451, (7175), 168-171; Hochbaum, A. I.; et al. Nature 2008, 451, (7175), 163-167) and nanocrystals (Kim, W.; et al. Phys. Rev. Lett. 2006, 96, (4), 045901; Poudel, B.; et al. Science 2008, 320, (5876), 634-638; Scheele, M.; et al. Adv. Funct. Mater. 2009, 19, (21), 3476-3483; Wang, R. Y.; et al. Nano Lett. 2008, 8, (8), 2283-2288) show the comparable or superior performance to the bulk crystals possessing the same chemical compositions because of the dramatically reduced thermal conductivity due to phonon scattering at nanoscale surface and interface. Up to date, the majority of the thermoelectric devices made from these inorganic nanostructures are fabricated into rigid configuration. The explorations of truly flexible composite-based flexible thermoelectric devices (See, K. C.; et al. Nano Lett. 2010, 10, (11), 4664-4667) have thus far achieved much less progress, which in principle could significantly benefit the conversion of waste heat into electricity or the solid-state cooling by applying the devices to any kind of objects with any kind of shapes. Here we report an example using a scalable solution-phase deposition method to coat thermoelectric nanocrystals onto the surface of flexible glass fibers. Our investigation of the thermoelectric properties yields high performance comparable to the state of the art from the bulk crystals and proof-of-concept demonstration also suggests the potential of wrapping the thermoelectric fibers on the industrial pipes to improve the energy efficiency. © 2012 American Chemical Society

  5. An Experimental Thermally Deposited Coating for Improved Bonding to Glass-fiber Posts.

    Science.gov (United States)

    Reis, Giselle Rodrigues; Silva, Fernanda Pereira; Oliveira-Ogliari, Aline; Faria-E-Silva, André Luis; Moraes, Rafael R; Novais, Veridiana Resende; Menezes, Murilo de Sousa

    To determine whether an experimental thermally deposited siloxane-methacrylate coating for use in industrial scale applications would improve the bond strength of resin-based materials to glass fiber posts (GFPs) without affecting their mechanical properties. An experimental 5% (w/v) solution of methacryloxypropyltrimethoxysilane was prepared. Two types of GFPs (Exacto, Angelus; White Post DC, FGM) were divided into the following groups: S: silane; SA: silane and adhesive; HS: 35% H₂O₂ and silane; HSA: 35% H₂O₂, silane and adhesive; Exp: siloxane-methacrylate coating (Si-O) via post immersion in experimental solution followed by heating; Exp-S: silane after Si-O treatment; Exp-A: adhesive after Si-O treatment; and Exp-SA: silane and adhesive after Si-O treatment. The posts were positioned in a mold to allow insertion of a dual-curing resin core, serially sectioned into beams, and subjected to microtensile bond strength (μTSB) testing. The three-point bending test and SEM/EDX analysis were used to assess the mechanical and surface properties of untreated GFPs that were etched with H₂O₂ or treated with Si-O. Surface treatments affected the μTSB only for the Exacto GFPs. The highest μTBS (MPa) was observed in Exp-S and Exp-SA groups, whereas H₂O₂ etching resulted in intermediate values. The mechanical properties were not affected by surface treatments. Exacto GFPs had significantly higher flexural strength (σf) and flexural modulus (Ef) than did the White Post DC GFPs, but the latter were significantly stiffer (S) than Exacto, regardless of the surface treatment tested. H₂O₂ promoted morphological changes in post surfaces. The experimental treatment promoted deposition of Si onto the post surface, improving bond strengths of Exacto posts. The proposed novel coating technique is a viable procedure for fiber post manufacturers to improve the μTSB of resin-based materials.

  6. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Luciana Mendonça da Silva

    2008-06-01

    Full Text Available This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP Plus - 3M/ESPE, using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10: G1- etching with 37% phosphoric acid gel (3M/ESPE + Adper Single Bond + #1 post (Reforpost - Angelus + four #1 accessory posts (Reforpin - Angelus + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05 between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1. The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  7. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts.

    Science.gov (United States)

    da Silva, Luciana Mendonça; Andrade, Andréa Mello de; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37 degrees C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 +/- 7.123; G2- 37.752 +/-13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  8. Clinical evaluation of carbon fiber reinforced carbon endodontic post, glass fiber reinforced post with cast post and core: A one year comparative clinical study.

    Science.gov (United States)

    Preethi, Ga; Kala, M

    2008-10-01

    Restoring endodontically treated teeth is one of the major treatments provided by the dental practitioner. Selection and proper use of restorative materials continues to be a source of frustration for many clinicians. There is controversy surrounding the most suitable choice of restorative material and the placement method that will result in the highest probability of successful treatment. This clinical study compares two different varieties of fiber posts and one cast post and core in terms of mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology requiring crown removal over the period of 12months as evaluated by clinical and radiographical examination. 30 root canal treated, single rooted maxillary anterior teeth of 25 patients in the age range of 18-60 years where a post retained crown was indicated were selected for the study between January 2007 and August 2007; and prepared in a standard clinical manner. It was divided into 3 groups of 10 teeth in each group. After post space preparation, the Carbon fiber and Glass fiber reinforced posts were cemented with Scotch bond multipurpose plus bonding agent and RelyX adhesive resin cement in the first and second groups respectively. The Cast post and cores were cemented with Zinc Phosphate cement in the third group. Following post- cementation, the preparation was further refined and a rubber base impression was taken for metal-ceramic crowns which was cemented with Zinc Phosphate cement. A baseline periapical radiograph was taken once each crown was cemented. All patients were evaluated after one week (baseline), 3 months, 6 months and one year for following characteristics mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology. Results after 12 months

  9. Pengaruh thermocycling dan Penambahan E- Glass Fiber terhadap Penyerapan Air dan Stabilitas Warna Bahan Basis Gigitiruan Nilon Termoplastik

    OpenAIRE

    Ariyani

    2016-01-01

    The utilization of nylon thermoplastic as denture base has developed at the present time, however, beside the superiority in esthetic aspect, nylon thermoplastic denture base material also has susceptibility which is high water absorption and low color stability. High water absorption is one of extrinsic factor that affect color stability of nylon thermoplastic denture base material. One of the methods to reduce water absorption is by addition of E-glass fiber. Another factor that affect wate...

  10. Development of a Fire-Resistant Anti-Sweat Submarine Hull Insulation Based on Fiber Glass Materials.

    Science.gov (United States)

    1983-09-01

    the Armaflex foam, control sample showing only a small resistance (12.9) to a moderate bending. Moderate bending would be a one inch center...a minor amount on the order of one or two percent. By comparison, the compression set of the 3 pcf Armaflex II *i control was 53 percent. Smoke...The Armaflex II samples gave a reading of 203. The test does not seem to be able to discriminate between binder levels in the fiber glass. However

  11. Studi Pengaruh Orientasi Serat Fiber Glass Searah dan Dua Arah Single Layer terhadap Kekuatan Tarik Bahan Komposit Polypropylene

    OpenAIRE

    Munasir Munasir

    2011-01-01

    Telah dilakukan fabrikasi dan uji kekuatan tarik bahan komposit Polypropylene (matrik) dengan Fiber Glass (sebagai penguat/filler) dengan perbandingan 95% dan 5% (matrix: filler), dengan filler tersusun secara singledirectional dan bidirectional dengan single layer. Massa keseluruhan dari sampel adalah 4 gram. Dari sampel yang sudah dibuat dilakukan uji kompaktibilitas untuk menetukan kekompakan ikatan antar muka antara matrik dan fillernya, dan juga dilakukan uji optimasi pemanasan untuk men...

  12. Fracture resistance of weakened human premolar roots after use of a glass fiber post together with accessory posts

    Directory of Open Access Journals (Sweden)

    Clarissa Estefani SEGATO

    Full Text Available OBJECTIVE: To evaluate the fracture strength of human premolar teeth with wide root canals, restored with glass fiber posts and resin cement, together with different numbers of accessory posts.MATERIAL AND METHOD: Thirty-six premolars received standardized preparations that simulated weakened roots, and were divided into three groups (n=12: G0 - glass fiber post (Reforpost/Angelus cementation with dual cure resin cement (Rely X ARC/3M ESPE; G1 - glass fiber post cementation and one accessory post (Reforpin/Angelus, with dual cure resin cement; G2 - glass fiber post cementation and two accessory posts, with dual cure resin cement. Resin composite cores were placed in each tooth. A metal coping was placed in a standardized position on the cores to perform the compressive tests using a test machine. Testing was performed applying a force parallel to the long axis of the teeth at a speed of 0.5 mm/min. Fracture mode was analyzed under a stereoscopic loupe, classified by scores.RESULT: the Analysis of Variance (ANOVA was applied, and there was no statistical difference in the mean values of fracture strength among the groups (in kgf: G0 = 91.1 ± 56.9; G1 = 104.7 ± 66.6; G2 = 106.1 ± 51.9. Greater frequency of fracture or cracks was observed in the cervical one-third of the root in the teeth without cemented accessory posts, but no statistical difference was observed among the fracture modes.CONCLUSION: The number of accessory posts cemented into debilitated roots had no influence on either fracture strength or type of fracture of pre-molar roots.

  13. Influence of ultrasound and irrigant solutions on the bond strength of glass fiber posts to root canal dentine

    OpenAIRE

    Lacerda, Ana Júlia Farias; FOSJC/UNESP; Gullo, Marina Augusto; FOSJC/UNESP; Xavier, Ana Claudia Carvalho; FOSJC/UNESP; Pucci, César Rogério; FOSJC/UNESP; Carvalho, Cláudio Antonio Talge; FOSJC/UNESP; Huhtala, Maria Filomena Rocha Lima; FOSJC/UNESP

    2013-01-01

    Objective: Assessment of the influence of theultrasound and irrigant solutions on the bondstrength (BS) of glass fiber posts. Material andMethods: Sixty-six roots of bovine teeth standardizedat 16 mm were used. The roots were submitted to abiomechanical preparation up to size #80 Kerr file,with irrigation of 5ml of saline solution at everyfile change and then filled. The canals underwentpartial desobturation and were divided into 6 groupsaccording to the irrigant solution and the use ofultras...

  14. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. glasses

    Indian Academy of Sciences (India)

    several applications. Some of the possible applications are optical amplifiers in telecommunication,7 phosphorescence materials and electrochemical batteries.8 Rare earth metal ions when added to borate act as network modifiers and change the properties of glasses .... where R is the universal gas constant. 3.3 Electrical ...

  16. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  17. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  18. Fracture resistance of endodontically treated teeth restored with glass fiber reinforced posts and cast gold post and cores cemented with three cements.

    Science.gov (United States)

    Torres-Sánchez, Carlos; Montoya-Salazar, Vanessa; Córdoba, Paola; Vélez, Claudia; Guzmán-Duran, Andrés; Gutierrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2013-08-01

    Dental fractures can occur in endodontically treated teeth restored with glass fiber reinforced posts and cast gold posts. The objective of this study was to record the fracture strength of endodontically treated teeth restored with glass fiber reinforced or cast gold post and cores cemented with 3 cements. Forty-two single-rooted premolars with standardized weakened roots were endodontically treated and allocated to 6 experimental groups (n=7) defined by the 2 factors investigated: post system and cement. Three groups were restored with glass fiber posts and resin-modified glass ionomer cement, dual-polymerizing resin cement, or chemically active autopolymerizing resin cement. The other 3 groups were restored with cast gold post and cores and the same 3 cements. The cores of the glass fiber post groups were fabricated with composite resin core material. Metal crowns were cemented on the cores in the 6 groups. The entire system was subjected to continuous compression in a universal testing machine, and fracture limit and location (cervical third, middle third, or apical third) were noted. Two-way ANOVA and the Scheffé test were used to analyze the data and compare the groups (α=.05). Two-way ANOVA showed significant differences in the post type (Ppost and cement was the glass fiber post with resin-modified glass ionomer cement, followed by the cast gold post and core with resin-modified glass ionomer cement. The use of a glass fiber reinforced post and resin-modified glass ionomer cement increased the fracture resistance of endodontically treated teeth. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Double-Sided Terahertz Imaging of Multilayered Glass Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Przemyslaw Lopato

    2017-06-01

    Full Text Available Polymer matrix composites (PMC play important roles in modern industry. Increasing the number of such structures in aerospace, construction, and automotive applications enforces continuous monitoring of their condition. Nondestructive inspection of layered composite materials is much more complicated process than evaluation of homogenous, (mostly metallic structures. Several nondestructive methods are utilized in this case (ultrasonics, shearography, tap testing, acoustic emission, digital radiography, infrared imaging but none of them gives full description of evaluated structures. Thus, further development of NDT techniques should be studied. A pulsed terahertz method seems to be a good candidate for layered PMC inspection. It is based on picosecond electromagnetic pulses interacting with the evaluated structure. Differences of dielectric parameters enables detection of a particular layer in a layered material. In the case of multilayered structures, only layers close to surface can be detected. The response of deeper ones is averaged because of multiple reflections. In this paper a novel inspection procedure with a data processing algorithm is introduced. It is based on a double-sided measurement, acquired signal deconvolution, and data combining. In order to verify the application of the algorithm stress-subjected glass fiber-reinforced polymer (GFRP was evaluated. The obtained results enabled detection and detailed analysis of delaminations introduced by stress treatment and proved the applicability of the proposed algorithm.

  20. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  1. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    Directory of Open Access Journals (Sweden)

    Duxin Li

    2013-01-01

    Full Text Available The effects of polytetrafluoroethylene (PTFE, graphite, ultrahigh molecular weight polyethylene (UHMWPE, and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  2. Glass fiber reinforced plastics within the fringe and flexure tracker of LINC-NIRVANA

    Science.gov (United States)

    Smajic, Semir; Eckart, A.; Horrobin, M.; Lindhorst, B.; Pott, J.-U.; Rauch, C.; Rost, S.; Straubmeier, C.; Tremou, E.; Wank, I.; Zuther, J.

    2012-07-01

    The Fringe and Flexure Tracking System (FFTS) is meant to monitor and correct atmospheric piston varia­ tion and instrumental vibrations and flexure during near-infrared interferometric image acquisition of LING­ NIRVANA. In close work with the adaptive optics system the FFTS enables homothetic imaging for the Large Binocular Telescope. One of the main problems we had to face is the connection between the cryogenic upper part of the instrument, e.g. detector head, and the lower ambient temperature part. In this ambient temperature part the moving stages are situated that move the detector head in the given field of view (FOV). We show how we solved this problem using the versatile material glass fiber reinforced plastics (GFRP's) and report in what way this material can be worked. We discuss in detail the exquisite characteristics of this material which we use to combine the cryogenic and ambient environments to a fully working system. The main characteristics that we focus on are the low temperature conduction and the tensile strength of the GFRP's. The low temperature conduction is needed to allow for a low heat-exchange between the cryogenic and ambient part whereas the tensile strength is needed to support heavy structures like the baffle motor and to allow for a minimum of flexure for the detector head. Additionally, we discuss the way we attached the GFRP to the remaining parts of the FFTS using a two component encapsulant.

  3. Response of fiber Bragg gratings bonded on a glass/epoxy laminate subjected to static loadings

    KAUST Repository

    Mulle, Matthieu

    2015-04-22

    Fiber Bragg gratings (FBG) may be used to monitor strain over the surface of a structure as an alternative technology to conventional strain gauges. However, FBG bonding techniques have still not been established to yield satisfactory surface measurements. Here, two adhesives were investigated, one with low viscosity and the other with high viscosity for bonding FBGs on glass/epoxy sandwich skins. First, instrumented elementary specimens were tested under tension. FBG strain results were analyzed together with digital image correlation (DIC) measurements. The influence of the bonding layer on the measured strain and on the integrity of the sensor was investigated by considering different regions of interest. Next, an instrumented structural sandwich beam was tested under four-point bending. FBG rosettes were compared to conventional strain gauge rosettes. The high viscosity adhesive demonstrated behaviors that affected FBG accuracy. Brittleness of the bonding layer and poor interface adhesion were observed using DIC and X-ray tomography. By contrast, the low viscosity adhesive demonstrated satisfactory results. The FBG strain measurements appeared to be consistent with those of DIC. The accuracy is also adequate as the FBGs and the conventional strain gauges had similar results in three directions, under tension and under compression.

  4. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  5. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2016-11-01

    Full Text Available In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF resins, which were used to fabricate glass fiber (GF reinforced BPF resin (GF/BPF composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR spectra and dynamic thermomechanical analysis (DMA. Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW and scanning electron microscopy (SEM. It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%.

  6. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  7. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  8. Natural Weathering and Sea Water Effects on the Durability of Glass Fiber Reinforced Vinylester: Fractographic Analysis

    Science.gov (United States)

    Merah, Nesar; Nizamuddin, Seyed; Khan, Zafarullah; Al-Sulaiman, Faleh; Mehdi, Moeid

    2010-10-01

    This paper presents a study of the effects of harsh outdoor weather and warm sea water on the tensile behavior of Glass-Fiber Reinforced Vinylester (GFRV) pipe materials destined for sea water handling and transportation. The effect of Dhahran’s outdoor weather for exposure periods ranging from 3 to 36 months revealed an improvement in tensile strength when compared with the as received GFRV sample. A significant increasing trend of tensile strength from 3 to 12 months was noted. This is attributed mainly to the post curing effects resulting in higher cross linking density. After 12 months of exposure the tensile strength showed a decreasing trend, but remaining still higher than the average tensile strength of as received (baseline) GFRV sample. Similar results of enhanced tensile strength were noted after immersion of GFRV pipes in warm Gulf sea water for 12 months. Fractographic analysis was performed on the tensile tested GFRV samples using optical microscope followed by scanning electron microscope (SEM). The characterization of the controlling failure mechanisms involved from fracture initiation to fracture propagation through the gage section of the specimen were predicted and were justified by correlating the optical and SEM pictures.

  9. Tensile strength of glass fiber posts submitted to different surface treatments.

    Science.gov (United States)

    Faria, Maria Isabel A; Gomes, Érica Alves; Messias, Danielle Cristine; Silva Filho, João Manoel; Souza Filho, Celso Bernardo; Paulino, Silvana Maria

    2013-01-01

    The aim of this in vitro study was to evaluate the tensile strength of glass fiber posts submitted to different surface treatments. Forty-eight maxillary canines had their crowns sectioned and root canals endodontically treated. The roots were embedded in acrylic resin and distributed into 3 groups according to the surface treatment: Group I: the posts were treated with silane agent for 30 s and adhesive; Group II: the posts were cleaned with alcohol before treatment with silane agent and adhesive; Group III: the posts were submitted to conditioning with 37% phosphoric acid for 30 s before treatment with silane agent and adhesive. Each group was divided into 2 subgroups for adhesive polymerization or not before insertion into the canal: A - adhesive was not light cured and B - adhesive was light cured. All posts were cemented with Panavia F and the samples were subjected to tensile strength test in a universal testing machine at crosshead speed of 1 mm/min. Data were submitted to one-way ANOVA and Tukey's test at 5% significance level. There was statistically significant difference (p0.05). It was concluded that the products used for cleaning the posts influenced the retention regardless of adhesive light curing.

  10. Study on novel and promising NH3-SCR catalysts on glass fiber cloth for industrial applications

    Science.gov (United States)

    Xie, Junlin; Li, Fengxiang; Hu, Hua; Qi, Kai; He, Feng; Fang, De

    2017-05-01

    MnO x , Mn/TiO2 and Fe-Mn/TiO2 catalysts were prepared by precipitation-impregnation method. The MnO x catalyst shows the highest activity for the reduction of NO with NH3 at the temperature range of 80 °C to 140 °C, and achieves more than 98% of NO conversion at 140 °C. The MnO x catalyst loaded on glass fiber cloth (GFC) was prepared by impregnation method, and the effects of preparation conditions were studied. It turns out that the catalyst particle size, loading capacity and catalyst varieties make a great difference to catalytic performance. In addition, the catalyst with aluminum sol as a binder has the higher catalytic activity but poor ability of anti-sulfur and anti-water poisoning, compared with the catalyst using silica sol binder. Further, MnO x , Mn/TiO2 and Fe-Mn/TiO2 powders were loaded onto GFC using XRD, HRTEM, TGA, SEM, BET, H2-TPR and NH3-TPD to systematically characterize the various physico-chemical properties and denitrition activity. The results indicate that the changes of active components, specific surface area, microstructure, reducibility and suface acidity of the three kinds of catalysts lead to different catalytic activities.

  11. The Effect of Thermooxidative Aging on the Durability of Glass Fiber-Reinforced Epoxy

    Directory of Open Access Journals (Sweden)

    Amin Khajeh

    2015-01-01

    Full Text Available Thin-skinned organic matrix composites within aeronautical structures are subjected to thermooxidative aging during their service life, leading to reductions in their durability. In this paper, a durability evaluation of fiberglass epoxy prepreg is performed on the original composite thickness before and after 800 h isothermal aging at 82°C. The characterization of both aged and unaged composites comprised tensile tests, DMA, FTIR, weight loss measurements, SEM, and DSC. The tensile strength and modulus of the composites increased after being exposed to pronounced aging conditions, whereas a decrease was observed in the toughness. DMA results revealed that the glass transition temperature and rubbery state modulus increased as a result of the thermooxidative aging. FTIR spectroscopy demonstrated the formation of carbonyl compounds due to oxidation of the chemical structure of the resin. SEM observations indicated the existence of minor superficial cracking and poor fiber-matrix adhesion after aging. In addition, a minor mass change was observed from mass loss monitoring methods. The overall findings suggest that postcuring and physical aging enhanced the brittleness of the resin, leading to a significant decline in the useful structural life of the thin-skinned composite.

  12. Randomized controlled clinical pilot trial of titanium vs. glass fiber prefabricated posts: preliminary results after up to 3 years.

    Science.gov (United States)

    Naumann, Michael; Sterzenbac, Guido; Alexandra, Franke; Dietrich, Thomas

    2007-01-01

    This randomized parallel-group clinical pilot study aimed to compare the clinical outcome of prefabricated rigid titanium to glass fiber endodontic posts when luted with self-adhesive universal resin cement. Ninety-eight patients in need of postendodontic restoration were assessed for eligibility. Ninety-one patients met the selection criteria and were randomized and allocated to 2 intervention groups. Forty-five participants were treated using a titanium post and 46 participants received a glass fiber post, each in combination with composite core buildups for postendodontic restoration. All posts had a diameter of 1.4 mm and a length of 13 mm and were cemented 8 mm within the root canal with self-adhesive universal resin cement. A circumferential ferrule of 2 mm was always provided. Surgical crown lengthening was necessary in 13 cases. Patients were observed in intervals of 3, 6, 12, 24, and 36 months after post placement. After 24 to 36 months (mean +/- SD: 27.9 +/- 5.6) of observation following post placement, 1 tooth was extracted because of changes of the prosthetic treatment plan. No failures were observed among the 88 patients with follow-up data. Both titanium and glass fiber reinforced composite posts result in successful treatment outcomes after 2 years. The material combination used seems to be appropriate in the short term for cementing endodontic posts, irrespective of the post material.

  13. Study of the strength and erosive behavior of CaCO3/glass fiber reinforced polyester composite

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available In this study, the strength and erosive characteristics of CaCO3 filled unsaturated polyester/glass fiber (UPR/GFR composite are evaluated. Samples of UPR with 40, 50 and 60 wt% content of CaCO3 and different CaCO3 particle sizes of 1, 2, 3, 5 and 10 micron were prepared and tested under tensile loading, indentation and erosion conditions. The tensile strength, hardness and erosion wear rate of unsaturated polyester/glass fiber (UPR composite/CaCO3 composite were obtained and evaluated. The results showed that the higher is the percentage of CaCO3 in the composite and the smaller is the CaCO3 particle size, the higher is the strength and the erosive resistance of the glass fiber reinforced/unsaturated polyester composite (UPR-GFR. Furthermore, the highest erosion wear rate is at 90° impingement angle. Finally the results show that the erosive wear of CaCO3 content UPR/GFR composite in a brittle manner.

  14. Adhesion between glass fiber posts and resin cement: evaluation of bond strength after various pre-treatments.

    Science.gov (United States)

    Sipahi, Cumhur; Piskin, Bulent; Akin, Gulsah E; Bektas, Ozden Ozel; Akin, Hakan

    2014-10-01

    To evaluate surface roughness and bond strength of glass fiber posts to a resin cement after various surface treatments. Sixty individually formed glass fiber posts with a diameter of 1.5 mm and a length of 20 mm were used for this study. They were randomly assigned to six groups of pre-treatment (n = 10/group): Group C, untreated (control); Group SB, sandblasted; Group SC, silica coated; Group HF, hydrofluoric acid-etched; Group N, Nd:YAG laser irradiated; Group E, Er:YAG laser irradiated. Surface roughness of the posts was measured before and after pre-treatment. The posts were then bonded to resin cement and tensile bond strengths were determined in a universal testing machine. For statistical analysis, two-way ANOVA and post-hoc comparison tests (α = 0.05) were performed. The highest bond strength value was observed in group HF, followed by group SC. There was a statistically significant difference in bond strength between group C and groups HF, SC and E (p Posts of group SB and group N showed the highest surface roughness. The findings of the present study reveal that hydrofluoric acid-etching, silica coating and Er:YAG laser irradiation provided a significant increase in bond strength between glass fiber posts and resin cement.

  15. Miscible blends of biobased poly(lactide) with poly(methyl methacrylate): Effects of chopped glass fiber incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Dylan S. [Chemical and Biological Engineering Department, Colorado School of Mines, Golden Colorado 80401; Lowe, Corinne [Chemical and Biological Engineering Department, Colorado School of Mines, Golden Colorado 80401; Swan, Dana [Arkema, King of Prussia Pennsylvania; Barsotti, Robert [Arkema, King of Prussia Pennsylvania; Zhang, Mingfu [Johns Manville, Littleton Colorado; Gleich, Klaus [Johns Manville, Littleton Colorado; Berry, Derek [National Renewable Energy Laboratory, Golden Colorado; Snowberg, David [National Renewable Energy Laboratory, Golden Colorado; Dorgan, John R. [Chemical and Biological Engineering Department, Colorado School of Mines, Golden Colorado 80401

    2017-02-22

    Poly(lactide) (PLA) and poly(methyl methacrylate) (PMMA) are melt compounded with chopped glass fiber using laboratory scale twin-screw extrusion. Physical properties are examined using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile testing, impact testing, X-ray computed tomography (CT) scanning, and field emission scanning electron microscopy (FE-SEM). Molecular weight is determined using gel permeation chromatography (GPC). Miscibility of the blends is implied by the presence of a single glass transition temperature and homogeneous morphology. PLA/PMMA blends tend to show positive deviations from a simple linear mixing rule in their mechanical properties (e.g., tensile toughness, modulus, and stress at break). The addition of 40 wt % glass fiber to the system dramatically increases physical properties. Across all blend compositions, the tensile modulus increases from roughly 3 GPa to roughly 10 GPa. Estimated heat distortion temperatures (HDTs) are also greatly enhanced; the pure PLA sample HDT increases from 75 degrees C to 135 degrees C. Fiber filled polymer blends represent a sustainable class of earth abundant materials which should prove useful across a range of applications.

  16. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} glass system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianan, E-mail: lja@qlu.edu.cn; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-15

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained. - Highlights: • Magnetite nano-crystals are formed spontaneously in the investigated glass systems. • The crystallization behavior of the glasses with the alumina content is examined. • Ferromagnetic glass fibers containing magnetite nano-crystals are obtained.

  17. Effect of cement type and water storage time on the push-out bond strength of a glass fiber post.

    Science.gov (United States)

    Reis, Kátia Rodrigues; Spyrides, George Miguel; Oliveira, Jonas Alves de; Jnoub, Alexandre Abrão; Dias, Kátia Regina Hostilio Cervantes; Bonfantes, Gerson

    2011-01-01

    This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers' instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (pfiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.

  18. Carbon nanotube woven textile photodetector

    Science.gov (United States)

    Zubair, Ahmed; Wang, Xuan; Mirri, Francesca; Tsentalovich, Dmitri E.; Fujimura, Naoki; Suzuki, Daichi; Soundarapandian, Karuppasamy P.; Kawano, Yukio; Pasquali, Matteo; Kono, Junichiro

    2018-01-01

    The increasing interest in mobile and wearable technology demands the enhancement of functionality of clothing through incorporation of sophisticated architectures of multifunctional materials. Flexible electronic and photonic devices based on organic materials have made impressive progress over the past decade, but higher performance, simpler fabrication, and most importantly, compatibility with woven technology are desired. Here we report on the development of a weaved, substrateless, and polarization-sensitive photodetector based on doping-engineered fibers of highly aligned carbon nanotubes. This room-temperature-operating, self-powered detector responds to radiation in an ultrabroad spectral range, from the ultraviolet to the terahertz, through the photothermoelectric effect, with a low noise-equivalent power (a few nW/Hz 1 /2) throughout the range and with a Z T -factor value that is twice as large as that of previously reported carbon nanotube-based photothermoelectric photodetectors. Particularly, we fabricated a ˜1 -m-long device consisting of tens of p+-p- junctions and weaved it into a shirt. This device demonstrated a collective photoresponse of the series-connected junctions under global illumination. The performance of the device did not show any sign of deterioration through 200 bending tests with a bending radius smaller than 100 μ m as well as standard washing and ironing cycles. This unconventional photodetector will find applications in wearable technology that require detection of electromagnetic radiation.

  19. Fracture strength of endodontically treated maxillary premolars supported by a horizontal glass fiber post: an in vitro study.

    Science.gov (United States)

    Karzoun, Wassim; Abdulkarim, Amid; Samran, Abdulaziz; Kern, Matthias

    2015-06-01

    The purpose of this study was to evaluate the effect of a horizontal glass fiber post on the fracture strength of endodontically treated maxillary premolars with mesioocclusaldistal (MOD) cavities. Sixty extracted intact upper premolars were collected, treated endodontically (except for the control group), and divided into 5 test groups (n = 12) depending on the restoration type: G1 (control group, untreated teeth), G2 (MOD preparation without restoration), G3 (MOD preparation with resin composite restoration), G4 (MOD preparation with resin composite restoration and a horizontal fiber post inserted between buccal and palatal walls), and G5 (MOD preparation with a horizontal fiber post only). The specimens were stored in normal saline at 37°C for 2 months. Then specimens were quasi-statically loaded in a universal testing machine until fracture occurred. Failure loads were then analyzed with one-way analysis of variance, followed by multiple comparisons by using Tukey honestly significant difference test (α = .05). The mode of failure was determined by visual inspection. Mean (standard deviation) failure loads for groups ranged from 411.8 N (±103.9) to 994.5 N (±147.3). One-way analysis of variance showed significant differences between fracture resistances of groups (P glass fiber post in a MOD cavity increased significantly the fracture resistance of the endodontically treated upper premolars. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Esmaeel; Azami, Mahmoud [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kajbafzadeh, Abdol-Mohammad [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Department of Pediatric Urology, Children' s Hospital Medical Center, Tehran, Iran (IRI) (Iran, Islamic Republic of); Moztarzadeh, Fatollah [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shamousi, Atefeh; Karimi, Roya [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center (BASIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  1. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.

    Science.gov (United States)

    Dyer, Scott R; Lassila, Lippo V J; Jokinen, Mikko; Vallittu, Pekka K

    2005-09-01

    Many current fabrication protocols for dental fiber-reinforced composites use hand lay-up techniques and technician design input. Little information exists regarding how the manipulation of the cross-sectional design of a prosthesis might affect the modulus of elasticity and toughness. The aim of this study was to determine the effect of simple and complex cross-sectional designs on the modulus of elasticity and toughness of fiber-reinforced composite used for dental prostheses. Two particulate composites (BelleGlass HP and Targis) were reinforced with ultra-high-molecular-weight polyethylene fiber ribbon (Connect), woven E-glass fibers (Vectris Frame), or unidirectional R-glass fibers (Vectris Pontic). A range of fiber positions, orientations, or geometries were incorporated into the rhombic specimens (2 x 2 x 25 mm(3)) to achieve simple and complex experimental cross-sectional designs. The control specimen did not contain fiber reinforcement. Specimens (n=6) were stored 1 week in distilled water at 37 degrees C prior to 3-point load testing to determine the modulus of elasticity (GPa) and toughness (MPa). The data within each main fiber group were subjected to 1-way analysis of variance and a Tukey post hoc test (alpha=.05). Cross-sections of randomly selected test specimens (n=2) were made for scanning electron microscope (SEM) analysis of the fiber distribution. The mean modulus of elasticity varied from 8.7 +/- 2.0 GPa (Targis control) to 21.6 +/- 1.4 GPa (2 unidirectional glass fiber reinforcements, 1 each at the tension side and the compression side). Mean toughness varied from 0.07 +/- 0.02 MPa (unidirectional glass fiber positioned at the compression side) as the lowest mean, to 4.53 +/- 0.89 MPa (unidirectional glass fiber positioned at the tension side) as the highest. Significant differences were identified between specimen groups in each main category (all groups Pmodulus of elasticity of the woven E-glass groups, where P=.003). SEM micrographs showed

  2. Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters.

    Science.gov (United States)

    Wandscher, Vinícius Felipe; Bergoli, César Dalmolin; de Oliveira, Ariele Freitas; Kaizer, Osvaldo Bazzan; Souto Borges, Alexandre Luiz; Limberguer, Inácio da Fontoura; Valandro, Luiz Felipe

    2015-03-01

    This study evaluated the shear stress presented in glass fiber posts with parallel fiber (0°) and different coronal diameters under fatigue, fracture resistance and FEA. 160 glass-fiber posts (N=160) with eight different coronal diameters were used (DT=double tapered, number of the post=coronal diameter and W=Wider - fiber post with coronal diameter wider than the conventional): DT1.4; DT1.8W; DT1.6; DT2W; DT1.8; DT2.2W; DT2; DT2.2. Eighty posts were submitted to mechanical cycling (3×10(6) cycles; inclination: 45°; load: 50N; frequency: 4Hz; temperature: 37°C) to assess the surviving under intermittent loading and other eighty posts were submitted to fracture resistance testing (resistance [N] and shear-stress [MPa] values were obtained). The eight posts types were 3D modeled (Rhinoceros 4.0) and the shear-stress (MPa) evaluated using FEA (Ansys 13.0). One-way ANOVA showed statistically differences to fracture resistance (DT2.2W and DT2.2 showed higher values) and shear stress values (DT1.4 showed lower values). Only the DT1.4 fiber posts failed after mechanical cycling. FEA showed similar values of shear stress between the groups and these values were similar to those obtained by shear stress testing. The failure analysis showed that 95% of specimens failed by shear. Posts with parallel fiber (0°) may suffer fractures when an oblique shear load is applied on the structure; except the thinner group, greater coronal diameters promoted the same shear stresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Role of hydrogen loading and glass composition on the defects generated by the femtosecond laser writing process of fiber Bragg gratings

    NARCIS (Netherlands)

    Troy, N.; Smelser, C.W.; Krol, D.M.|info:eu-repo/dai/nl/068370881

    2012-01-01

    The creation of fiber Bragg gratings (FBGs) in optical fibers by laser irradiation causes the formation of defects in the modified glass. We have used confocal fluorescence spectroscopy to identify the location and types of defects formed after writing FBGs with the femtosecond laser phase mask

  4. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  5. Influence of instrumentation techniques and irrigating solutions on bond strength of glass fiber posts to root dentin.

    Science.gov (United States)

    Marques, Eduardo Fernandes; Bueno, Carlos Eduardo da Silveira; Veloso, Heloisa Helena Pinho; Almeida, Gustavo; Pinheiro, Sergio Luiz

    2014-01-01

    This study sought to evaluate how instrumentation techniques and irrigating solutions affected the bond strength of glass fiber posts. For this study, 80 human maxillary central incisors were selected. Endodontic access was obtained, root canal length was measured, and the coronal third was prepared using Gates-Glidden drills. The specimens were embedded in acrylic resin and randomly assigned to 8 groups (n = 10): manual instrumentation only (Group 1), rotary instrumentation only (Group 2), irrigation with 2.5% sodium hypochlorite (NaOCl) (Group 3), irrigation with 2% chlorhexidine (CHX) (Group 4), manual instrumentation and irrigation with 2.5% NaOCl (Group 5), manual instrumentation and irrigation with 2% CHX (Group 6), rotary instrumentation and irrigation with 2.5% NaOCl (Group 7), and rotary instrumentation and irrigation with 2% CHX (Group 8). Specimens in Groups 5-8 also received a 1 minute final rinse with ethylenediaminetetraacetic acid. Canals were filled and the specimens stored for 30 days in distilled water. The restoration material was removed down to the apical 4 mm of the root canal. The glass fiber posts were luted with resin cement and stored for 24 hours at 37°C. Specimens were subjected to a tensile strength test at a constant speed of 1.0 mm/minute and a load of 2,000 kgf. The results were analyzed by analysis of variance and Tukey's test. Irrigation with 2.5% NaOCl reduced the bond strength of fiber posts significantly (P 0.05). It was concluded that irrigation with 2.5% NaOCl has a negative effect on micromechanical retention of glass fiber posts, whether manual or rotary instrumentation is used.

  6. Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser

    Science.gov (United States)

    Peng, Shengxi; Wu, Libo; Wang, Bo; Yang, Fengjing; Qi, Yawei; Zhou, Yaxun

    2015-03-01

    New Ho3+/Yb3+ codoped tellurite glasses (TeO2-Bi2O3-ZnO-Na2O) prepared by melt-quenching technique were investigated to realize visible-band upconversion emissions applied for compact fiber lasers. The absorption spectra, upconversion emission spectra, differential scanning calorimetry (DSC) curves, X-ray diffraction (XRD) and Raman spectra were measured to characterize the spectroscopic properties of Ho3+, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the intense green (∼543 nm) and red (∼657 nm) upconversion emissions corresponding to 5F4(5S2) → 5I8 and 5F5 → 5I8 transitions of Ho3+ respectively are simultaneously observed. The power dependence study of upconversion intensities on excited pump power revealed that the Ho3+ population at 5F4(5S2) and 5F5 levels was originated from two-photon absorption process based on the energy transfer from Yb3+ to Ho3+. The energy transfer mechanism from Yb3+ to Ho3+ was investigated and relevant micro-parameters (energy transfer coefficient and critical radius) and phonon contribution ratio were presented. With the increase of Yb3+ doped concentration, both the green and red upconversion intensities enhanced greatly, meanwhile the thermal stability of glass hosts, characterized by the three characteristic temperatures, also got a slight improvement. Furthermore, the glass structure was briefly analyzed with the calculated Judd-Ofelt intensity parameters, the measured Raman spectra and XRD curves. The present results indicate that the new synthesized Ho3+/Yb3+ codoped tellurite glass with intense green and red upconversion emissions is a promising medium applied for the visible-band fiber lasers.

  7. 10-year survival evaluation for glass-fiber-supported postendodontic restoration: a prospective observational clinical study.

    Science.gov (United States)

    Naumann, Michael; Koelpin, Manja; Beuer, Florian; Meyer-Lueckel, Hendrik

    2012-04-01

    Glass-fiber-reinforced endodontic posts (GFRPs), in combination with composite resin core materials, are commonly used to build up damaged endodontically treated teeth. However, long-term clinical data are scarce. Thus, the aim of this investigation was to evaluate the survival of 3 different GFRP systems, taking into account several other relevant factors. One-hundred forty-nine GFRPs in 122 patients were followed for up to 120 months. GFRPs were adhesively luted using the etch-and-rinse technique. The core was built with a chemically curing composite resin and restored according to the specific prosthetic treatment plan. Cox proportional hazards models were used to evaluate the association between clinical variables and the time until failure. Within 10 years, 55 failures could be observed (annual failure rate = 4.6%) with the most frequent ones being post fracture, loss of post retention (both n = 17), endodontic problems (n = 7), and those resulting in tooth extraction (n = 10). Sixty posts could be followed up for 105 to 120 months (34 posts lost to follow-up, [mean (standard deviation) survival time: 74 (43) months]). In crude analyses, only the tooth type in favor of posterior teeth compared with anterior teeth and the number of remaining cavity walls (in favor of ≥ 1 compared with no wall) were significantly associated with the failure rate. Cox regression analysis revealed a significant hazard ratio of 2.0 (95% confidence interval, 1.1-3.5; P = .021) for tooth type in favor of posterior teeth. The relatively high annual failure rate of GFRPs highlights that the treatment decision should take into account the most relevant factors as tooth type and the number of remaining cavity walls. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Different scanning electron microscopic evaluation methods of cement interface homogeneity of adhesively luted glass fiber posts.

    Science.gov (United States)

    Watzke, Ronny; Frankenberger, Roland; Naumann, Michael

    2011-03-01

    To compare two methods used to examine the cement interface homogeneity of adhesively luted glass fiber posts (GFPs). GFPs were divided into four groups (n = 5 in each) and inserted into artificial root canals under standardized conditions: Group I = RelyX Unicem, application with application aid; Group II = RelyX Unicem; Group III = Panavia F 2.0; and Group IV = Variolink II. Posts in Groups II-IV were cemented without using an appliance. All specimens were sectioned at three levels (cervical, middle and apical) perpendicularly to the post's long axis and examined and photographed (n = 60) using scanning electron microscopy (SEM). Cement interface inhomogeneities were (A) measured by means of SEM software and (B) estimated using a graphics program with SEM images being divided into 72 equal circle segments to calculate a percentage value of inhomogeneities of the 360° circumference. Median values of inhomogeneities (A/B; %) within the cement interface for the cervical, middle and apical levels of analysis, respectively were 1.4/2.1, 2.2/4.2 and 1.9/2.1 for Group I; 21.0/20.1, 24.8/23.6 and 27.0/24.3 for Group II; 1.5/1.7, 5.5/6.3 and 19.4/20.8 for Group III; and 18.1/16.7, 16.1/15.3 and 27.2/25.7 for Group IV. The two methods correlated very well (0.994), with a value of one indicating a 100% correlation. Both evaluation methods were found to be equally appropriate for quantifying the cement interface homogeneity of SEM cross-sections of adhesively luted GFPs.

  9. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material.

    Science.gov (United States)

    Sharma, Ashish; Samadi, Firoza; Jaiswal, Jn; Saha, Sonali

    2014-01-01

    To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196.

  10. Effect of glass hybridization and staking sequence on mechanical ...

    Indian Academy of Sciences (India)

    In the present work, woven coir–glass hybrid polyester composites were developed and their mechanical properties were evaluated for different stacking sequences. Scanning electron micrographs of fractured surfaces were used for a qualitative evaluation of interfacial properties of woven coir–glass hybrid polyester ...

  11. Design of a Phase /Doppler Light-Scattering System for Measurement of Small-Diameter Glass Fibers During Fiberglass Manufacturing

    Science.gov (United States)

    Schaub, Scott A.; Naqwi, Amir A.; Harding, Foster L.

    1998-01-01

    We present fundamental studies examining the design of a phase /Doppler laser light-scattering system applicable to on-line measurements of small-diameter ( fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase /Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase -diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase /Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.

  12. In vitro performance of 13-93 bioactive glass fiber and trabecular scaffolds with MLO-A5 osteogenic cells.

    Science.gov (United States)

    Modglin, Vernon C; Brown, Roger F; Fu, Qiang; Rahaman, Mohamed N; Jung, Steven B; Day, Delbert E

    2012-10-01

    This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications. Copyright © 2012 Wiley Periodicals, Inc.

  13. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-03-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  14. The effect of glass fiber posts and ribbons on the fracture strength of teeth with flared root canals restored using composite resin post and cores.

    Science.gov (United States)

    Kubo, Mariko; Komada, Wataru; Otake, Shiho; Inagaki, Tasuku; Omori, Satoshi; Miura, Hiroyuki

    2017-08-23

    This study evaluated the fracture strength and mode of failure of structurally compromised teeth with flared root canals restored using composite resin with four different systems. Sixty endodontically treated bovine teeth were uniformly shaped to simulate human mandibular premolars with flared root canals. The roots were divided into four groups of 15 specimens each based on the type of restoration: composite resin core only (control), glass fiber post, cylindroid glass fiber ribbons, and glass fiber post and ribbons. All specimens were loaded until fracture occurred using a universal testing machine. Average fracture loads were compared with a one-way ANOVA and Tukey HSD test (α=.05). The modes of failure were observed and the Fisher exact test and Bonferroni correction were used for statistical analysis. The fiber post and ribbon group (1035.70N) and the fiber ribbon group (881.77N) showed significantly higher fracture strength than the controls (567.97N) (pfiber post and ribbon group also showed significantly higher fracture strength than the fiber post group (769.40N). Almost all specimens showed unrestorable root fractures (pfiber ribbons significantly increased the fracture strength of the composite resin post and cores in the case of the dentin within the thin root canal wall. Based on the results, this study recommends the combined use of glass fiber post and ribbons. Copyright © 2017. Published by Elsevier Ltd.

  15. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  16. [Clinical study on glass fiber-reinforced post applied in the restoration of residual crown and root of posterior teeth].

    Science.gov (United States)

    Tong, Qing-chun; Lv, Kai-ge; Zhang, Zhi-min; Shen, Jie

    2009-02-01

    The aim of this prospective randomized controlled trial is to evaluate the clinical effect of glass fiber-reinforced post core applied in the restoration of premolar or molar residual crown and root. 195 residual crown and root of posterior teeth from 100 patients, aged from 18 to 60 years, were included in the study. Among 195 teeth, 95 teeth in the experimental group were restored with glass fiber-reinforced post core, while the other 100 teeth in the control group were restored with metal cast post core. All the teeth were then restored with porcelain fused metal crown. The esthetical property, function, and survival rate of the prostheses were observed. The data was analyzed with SPSS13.0 software package for X(2) test. The prostheses were followed up in this clinical study for a period of up to 36 months. In the experimental group, there were a total of 90 teeth with excellent chewing function, no complaint of discomfort, no debounding, no gingivitis or periapical periodontitis. The success rate of the experimental group was 94.74%, while that of the control group was 85.00%. The difference of the success rate between two groups was statistically significant(PGlass fiber-reinforced post core can be used as an ideal restoration material for the premolar or molar residual crown and root.

  17. Influence of the Resin Cement Thickness on the Push-Out Bond Strength of Glass Fiber Posts.

    Science.gov (United States)

    Marcos, Regina Maria Helen-Cot; Kinder, Gustavo Ross; Alfredo, Edson; Quaranta, Tarcisio; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Gonzaga, Carla Castiglia

    2016-01-01

    The objective of the present study was to evaluate the influence of resin cement thickness on the bond strength of prefabricated and customized glass fiber posts after storage in distilled water. Thirty human uniradicular roots were treated endodontically. The roots were divided into 3 groups: THIN (thin cement layer) - post space preparation with #0.5 drill and cementation of #0.5 post; THICK (thick cement layer) - post space preparation with #1 drill and cementation of #0.5 post; and CUSTOM (customized cement layer) - post space preparation with #1 drill and cementation of a customized post (#0.5 glass fiber posts customized with resin composite). All posts were luted with self-adhesive resin cement. The push-out test was carried out after storage for 24 h and 90 days in distilled water at 37 °C. The data were analyzed with three-way ANOVA and Tukey's test (a=0.05). Bond strengths were significantly higher for CUSTOM (9.37 MPa), than for THIN (7.85 MPa) and THICK (7.07 MPa), which were statistically similar. Considering the thirds, the bond strength varied in the sequence: apical (7.13 MPa) fiber posts. The customized posts presented higher bond strength. Storage in water for 90 days affected negatively the values of bond strength, especially for thick cement layers in the apical third.

  18. Comparison of different dentin pretreatment protocols on the bond strength of glass fiber post using self-etching adhesive.

    Science.gov (United States)

    Martinho, Frederico C; Carvalho, Claudio Antonio Talge; Oliveira, Luciane D; de Lacerda, Ana Júlia Farias; Xavier, Ana Cláudia Carvalho; Augusto, Marina Gullo; Zanatta, Rayssa Ferreira; Pucci, Cesar Rogerio

    2015-01-01

    This study compared the influence of different irrigants with and without ultrasound or laser irradiation on the bond strength of glass fiber posts using a self-etching adhesive in a supplementary dentin pretreatment. Ninety bovine incisor roots were divided into 3 groups according to the irrigant tested: 2% chlorhexidine (CHX) (n = 30); 2.5% sodium hypochlorite (NaOCl) (n = 30), and saline solution (control) (n = 30). Each group was randomly divided into 3 subgroups according to the supplementary dentin pretreatment: ultrasound, Nd:YAG laser, and nonsupplemented (control). A self-etching adhesive system (Futurabond DC; VOCO GmbH, Cuxhaven, Germany) was used, and the glass fiber posts were cemented with dual-cure epoxy-based luting agent (Bifix QM, VOCO GmbH). All roots were sectioned transversely, and the push-out test was performed. Failure mode analysis was also evaluated. Bond strength decreased significantly after the use of 2.5% NaOCl in all root thirds (P .05). The supplementary dentin pretreatment using the Nd:YAG laser or ultrasound did not improve the bond strength values for both NaOCl and CHX (P > .05). Moreover, the apical third exhibited the lowest mean bond strength values (P fiber posts using a self-etching adhesive system, whereas CHX preserved it. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. The effect of proanthocyanidins and chlorhexidine on the bond strength of glass fiber posts to root dentin.

    Science.gov (United States)

    Alandia-Román, Carla Cecilia; Vincenti, Sergio Augusto Freitas; Silami, Francisca Daniele Jardilino; Silveira, Renata Espíndola; Pinto, Gustavo Col Dos Santos; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2017-01-01

    In this study, the influence of different irrigant solutions applied before cementation on the bond strength (BS) of glass fiber posts to root dentin was evaluated. Thirty endodontically treated maxillary canines of similar length were selected and divided into 3 groups (n = 10) according to the irrigant solution used before post cementation: 1% sodium hypochlorite (NaOCl; control), 2% chlorhexidine (CHX), or a 6.5% grape seed extract (GSE) cross-linking agent. After cementation of the posts, the roots were transversely sectioned to create 2 discs (2 mm) for each of the root thirds: coronal, middle, and apical. These discs were submitted to push-out tests (0.5 mm/min) to evaluate the BS between the glass fiber posts and the root dentin. Statistical analysis was performed by a 2-way analysis of variance and a Tukey test (P 0.05); however, the BS value diminished significantly in the apical third (P fiber posts to root dentin.

  20. Fracture resistance of tooth restored with four glass fiber post systems of varying surface geometries-An in vitro study.

    Science.gov (United States)

    Jayasenthil, Adhikesavan; Solomon-Sathish, Emmanuel; Venkatalakshmi-Aparna, Potluri; Balagopal, Sunderasan

    2016-02-01

    The purpose of this study was to relate the fracture resistance of endodontically treated teeth in relation to post geometry. Forty single rooted mandibular premolars were instrumented by step - back technique and obturated by lateral condensation. Forty teeth were randomly divided into four groups: Reforpost glass fiber X-ray®, RelyX®, Exacto conical® and Parapost Fiber Lux®. The post spaces were prepared using respective drills and luted. The core build up was done and metal crowns were luted. Fracture resistance was determined in universal testing machine. The statistical analysis was done using one way ANOVA and post hoc Tukey Kramer test. The teeth restored with Reforpost showed highest fracture resistance followed by Parapost and Exacto conical. The teeth restored with RelyX showed least fracture resistance. The teeth restored with Parapost had less unfavourable fracture followed by exacto conical. Parallel design had less number of catastrophic failure and had better fracture resistance. Fracture resistance, glass fiber post, post geometry, stress.