WorldWideScience

Sample records for worth actinide burner

  1. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  2. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  3. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  4. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  5. Neutronics design study on a minor actinide burner for transmuting spent fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs

  6. Comparison calculations for an accelerator-driven minor actinide burner

    International Nuclear Information System (INIS)

    2002-01-01

    International interest in accelerator-driven systems (ADS) has recently been increasing in view of the important role that these systems may play as efficient minor actinide and long-lived fission-product (LLFP) burners and/or energy producers with an enhanced safety potential. However, the current methods of analysis and nuclear data for minor actinide and LLFP burners are not as well established as those for conventionally fuelled reactor systems. Hence, in 1999, the OECD/NEA Nuclear Science Committee organised a benchmark exercise for an accelerator-driven minor actinide burner to check the performances of reactor codes and nuclear data for ADS with unconventional fuel and coolant. The benchmark model was a lead-bismuth-cooled subcritical system driven by a beam of 1 GeV protons. This report provides an analysis of the results supplied by seven participants from eight countries. The analysis reveals significant differences in important neutronic parameters, indicating a need for further investigation of the nuclear data, especially minor actinide data, as well as the calculation methods. This report will be of particular interest to reactor physicists and nuclear data evaluators developing nuclear systems for nuclear waste management. (authors)

  7. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  8. On the feasibility of a CANDU PHWR actinide burner

    International Nuclear Information System (INIS)

    Anton, V.

    1995-01-01

    In this work a review of the current solutions to burn the actinide i.e. the spallation method, LWR, FBR, Siemens proposal and inert matrix is presented. Finally, a proposal is made to use the CANDU PHWR for this purpose, taking into account the techniques envisaged for LWR and the prospect of the advanced fuel cycle in CANDU system. (Author) 5 Refs

  9. The TMSR as actinide burner and thorium breeder

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Allibert, M.; Ghetta, V.

    2007-01-01

    Molten Salt Reactors (MSRs) are one of the six systems retained by Generation IV as a candidate for the next generation of nuclear reactors. Molten Salt Reactor is a very attractive concept especially for the Thorium fuel cycle which allows nuclear energy production with a very low production of radio-toxic minor actinides. Studies have thus been done on the Molten Salt Breeder Reactor (MSBR) of Oak-Ridge to re-evaluate this concept. They have shown that the MSBR suffers from major drawbacks concerning for example safety and reprocessing, drawbacks incompatible with any industrial development. On the other hand, the advantages of the Thorium fuel cycle were too attractive not to look further into it. With these considerations, we have reassessed the whole concept to propose an innovative reactor called Thorium Molten Salt Reactor (TMSR). Many parametric studies of the TMSR have been carried out, correlating the core arrangement and composition, the reprocessing performances, and the salt composition. In particular, by changing the moderation ratio of the core the neutron spectrum can be modified and placed anywhere between a very thermalized neutron spectrum and a relatively fast spectrum. Even if the epithermal TMSR configurations have not been completely excluded by our calculations, our studies have shown that the reactor design where there is no graphite moderator inside the core appears to be the most promising in terms of safety coefficients, reprocessing requirements, and breeding and deployment capabilities. Larger fissile matter inventories are necessary in such a reactor configuration compared to the thermalized TMSR configurations, but the resulting deployment limitation could be solved by using transuranic elements as initial fissile load. This work is based on the coupling of a neutron transport code called MCNP with the materials evolution code REM. The former calculates the neutron flux and the reaction rates in all the cells while the latter solves

  10. Fusion-driven actinide burner design study. Second quarterly progress report

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides

  11. Fusion-driven actinide burner design study. Second quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides.

  12. Core Power Limits For A Lead-Bismuth Natural Circulation Actinide Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Kim, D.; Todreas, N. E.; Mujid S. Kazimi

    2002-04-01

    The Idaho National Engineering and Environmental Laboratory and Massachusetts Institute of Technology are investigating the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The design being considered here is a pool type reactor that burns actinides and utilizes natural circulation of the primary coolant, a conventional steam power conversion cycle, and a passive decay heat removal system. Thermal-hydraulic evaluations of the actinide burner reactor were performed to determine allowable core power ratings that maintain cladding temperatures below corrosion-established temperature limits during normal operation and following a loss-of-feedwater transient. An economic evaluation was performed to optimize various design parameters by minimizing capital cost. The transient power limit was initially much more restrictive than the steady-state limit. However, enhancements to the reactor vessel auxiliary cooling system for transient decay heat removal resulted in an increased power limit of 1040 MWt, which was close to the steady-state limit. An economic evaluation was performed to estimate the capital cost of the reactor and its sensitivity to the transient power limit. For the 1040 MWt power level, the capital cost estimate was 49 mills per kWhe based on 1999 dollars.

  13. Comparative Study of the Reactor Burner Efficiency for Transmutation of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko sq. 1, Obninsk, Kaluga region, 249020 (Russian Federation); Degtyarev, A.; Kalugin, A.; Ponomarev, L. [Russian Research Center ' Kurchatov Institute' , Kurchatov sq. 1, Moscow, 123182 (Russian Federation); Konev, V.; Seliverstov, V. [Institute of Theoretical and Experimental Physics, ul. B. Cheremushinskaya 25, Moscow, 117259 (Russian Federation)

    2009-06-15

    Transmutation of minor actinides (MA) in the closed nuclear fuel cycle (NFC) is a one of the most important problem for future nuclear energetic. There are several approaches for MA transmutation but there are no common criteria for the comparison of their efficiency. In paper [1] we turned out the attention to the importance of taking into account the duration of the closed NFC in addition to a usual criterion of the neutron economy. In accordance with these criteria the transmutation efficiency are compared of two fast reactors (sodium and lead cooled) and three types of ADS-burners: LBE-cooled reactors (fast neutron spectrum), molten-salt reactor (intermediate spectrum) and heavy water reactor (thermal spectrum). It is shown that the time of transmutation of loaded MA in the closed nuclear fuel cycle is more than 50 years. References: A. Gulevich, A. Kalugin, L. Ponomarev, V. Seliverstov, M. Seregin, 'Comparative Study of ADS for Minor Actinides Transmutation', Progress in Nuclear Energy, 50, March-August, p. 358, 2008. (authors)

  14. The cross section sensitivity of the minor actinides on a lead-bismuth cooled accelerator-driven burner system

    International Nuclear Information System (INIS)

    Gil, Choong-Sup; Kim, Jung-Do; Chang, Jonghwa

    2002-01-01

    In order to validate the detailed sensitivity of each minor actinide datum in ENDF/B-VI Release 6, JEF-2.2 and JENDL-3.2 on an accelerator-driven minor actinide burner benchmark system, a lead-bismuth cooled sub-critical system was analyzed. The impacts on the system by the ten minor actinides were compared. The k eff values and reaction rates were calculated by exchanging the data sets of each minor actinide from ENDF/B-VI.6 to JEF-2.2 or JENDL-3.2. At the equilibrium core, the k eff differences from ENDF/B-VI.6 by the ten minor actinides can cause more than 5,500 pcm for JEF-2.2 and 3,500 pcm for JENDL-3.2. The fission reaction rates of 242m Am and 243 Cm with ENDF/B-VI.6 show differences of more than 15% from those with JEF-2.2 and JENDL-3.2. 241 Am, 243 Am and 245 Cm in JEF-2.2 and americium isotope data and 245 Cm in JENDL-3.2 are sensitive to the fission spectrum. (author)

  15. A core performance study on an actinide recycling 'zero-sodium-void worth' core

    International Nuclear Information System (INIS)

    Kawashima, M.; Nakagawa, M.; Yamaoka, M.; Kasahara, F.

    1994-01-01

    A core performance study was made for an absorber-type parfait core (A-APC) as one of 'Zero-sodium-void-worth' core concepts. This evaluation study pursued different two aspects; one for transuranic (TRU) management strategy, and another for a loss-of-coolant anticipated transient behavior considering the unique core configuration. The results indicated that this core has a large flexibility for actinide recycling in terms of self-sufficiency and minor actinide burning. The result also showed that this core has kept a large mitigation potential for ULOF events as well as a simple flat core concept, reflecting detailed three dimensional core bowing behavior for the A-APC configuration. (author)

  16. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, M.R.; Schneider, E.A.; Recktenwald, G.; Cady, K.B. [The Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, 78712 (United States)

    2009-06-15

    would require an infinite fuel residence time. In previous work we have shown that the amount of fluence required to achieve a unit of burnup in yttrium stabilized ZrO{sub 2} based IMF with 85 w/o zirconium oxide and 15 w/o minor actinides (MA) and plutonium increases dramatically beyond 750 MWd/kgIHM (75% burnup). In this paper we discuss the repository implications for recycle of actinides in LWR's using this type of IMF and compare this to actinide recycle in a low conversion fast burner reactor. We perform the analysis over a finite horizon of 100 years, in which reprocessing of spent LWR fuel begins in 2020. Reference [1] C. Lombardi and A. Mazzola, Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel, Annals of Nuclear Energy. 23 (1996) 1117-1126. [2] U. Kasemeyer, J.M. Paratte, P. Grimm and R. Chawla, Comparison of pressurized water reactor core characteristics for 100% plutonium-containing loadings, Nuclear Technology. 122 (1998) 52-63. [3] G. Ledergerber, C. Degueldre, P. Heimgartner, M.A. Pouchon and U. Kasemeyer, Inert matrix fuel for the utilisation of plutonium, Progress in Nuclear Energy. 38 (2001) 301-308. [4] U. Kasemeyer, C. Hellwig, J. Lebenhaft and R. Chawla, Comparison of various partial light water reactor core loadings with inert matrix and mixed oxide fuel, Journal of Nuclear Materials. 319 (2003) 142-153. [5] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations of an inert matrix fuel using a two region, multi-group reactor physics model, in Proceedings of the physics of advanced fuel cycles, PHYSOR 2006, Vancouver, BC, 2006. [6] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations and spent fuel characteristics of ZRO{sub 2} based inert matrix fuels, Journal of Nuclear Materials. 361 (2007) 41-51. (authors)

  17. Study and choice of main characteristics of fast reactor - Effective minor actinide burner

    International Nuclear Information System (INIS)

    Krivitski, I.Yu.; Matveev, V.I.; Poplavski, V.M.

    1996-01-01

    This paper presents the principal design and performance data of advanced fast power reactor core for plutonium and actinides burning. Some information concerning the Russian programme of plutonium utilization are also presented. (author). 2 refs, 4 figs, 5 tabs

  18. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  19. Optimization of the deep-burner-modular helium reactor (DB-MHR) concept for actinide incineration

    International Nuclear Information System (INIS)

    Trakas, Ch.; Bruna, G.B.

    2005-01-01

    The paper summarizes studies performed on the General Atomics Deep-Burner Modular Helium Reactor (DB-MHR) concept-design carried out by Framatome ANP, Areva's joint subsidiary with Siemens. Feasibility and sensitivity studies as well as fuel-cycle studies with probabilistic methodology are presented. Emphasis is put on most attractive physical and computational aspects of the concept. Current investigations on design uncertainties, the future search for ways to improve the transmutation value in a double-stratum strategy, and the computational tools improvement are also presented. The Areva HTR, ANTARES, uses a similar prismatic core design. In that context, we revisited and optimized the Deep Burn concept. Typical values of transmutation ratio were established at 70%. Accounting for reactivity control needs estimated at 300 pcm, the cycle length can be estimated at 480 full-power days, giving an overall fuel irradiation time (6 fuel cycles) of about 10 calendar year, assuming as usual an average capacity factor of the plant of 80%. This study indicates a quite significant (96%) achievement for fissile material incineration. After a 500 year cooling-time, radiotoxicity (without fission products) is reduced by a factor 4

  20. A Thermodynamic Model for the Fuel of a Molten Salt Actinide Burner

    Energy Technology Data Exchange (ETDEWEB)

    Benes, Ondrej [Institute of Chemical Technology, Technicka 5, 16603 Prague (Czech Republic); European Commission - Joint Research Centre - Institute for Transuranium Elements, P.O. BOX 2340, 76125 Karlsruhe (Germany)

    2008-07-01

    In this study the importance of the thermodynamic description of a multi-component system when optimizing the fuel choice for a molten salt reactor is demonstrated. It is shown on the MF-PuF{sub 3} (M=Li,Na,K,Rb) system, one of the fuel alternatives, how properties such as vapour pressure or the solubility of the actinides in the alkali halide matrix can be obtained. Moreover it is shown that much bigger PuF{sub 3} solubility is achieved in the matrix containing only alkali halides than in a matrix that contains some concentrations of BeF{sub 2}. In order to obtain full thermodynamic description of the MF-PuF{sub 3} (M=Li,Na,K,Rb,Cs) system all the binary phase diagrams must be assessed. This is done according to the CALPHAD method including the critical review of all available data followed by an interactive optimization of the phase diagram to achieve the best possible agreement between the measurement and the calculation. A novel approach of obtaining the excess enthalpies of the (Rb,Cs)F solid solution by Ab initio has been used and the results are compared to the experimentally determined phase diagram measured in this study as well. For the measurement of the phase diagrams of the volatile fluoride salts special encapsulation technique has been developed. (authors)

  1. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  2. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  3. Thermal-Hydraulic Analyses of Transients in an Actinide-Burner Reactor Cooled by Forced Convection of Lead Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or lead–bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed.

  4. Track 5: safety in engineering, construction, operations, and maintenance. Reactor physics design, validation, and operating experience. 5. A Negative Reactivity Feedback Device for Actinide Burner Cores

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Hejzlar, P.

    2001-01-01

    per atmosphere increase in pressure. 4. This lifts the floats higher into the core above their equilibrium position at hot full power. 5. The increased neutron absorption produces a negative reactivity feedback. 6. The surrounding primary coolant keeps all boundaries at nearly constant temperature. The ex-core helium has very low energy absorption, plus good heat transfer, which helps maintain constant temperature and pressure. The neutron absorber floats are thin metal tubes that contain a rhenium slug, as a high-capture cross-section ballast, and an upper section of 10 B 4 C pellets. The tops and bottoms of the floats are rounded to guard against sticking inside the riser tubes. The top of the float is vented through a porous disk into the cool helium plenum to allow the helium produced in 10 B capture to escape. The absorber float is cooled by conduction through the LBE bath, and guide-tube wall, into the ambient LBE primary coolant. Whole-core Monte Carlo calculations for RFDs substituted for the central void tube in 20% of the streaming fuel assemblies proposed for actinide burner cores in Ref. 1 indicate a steady- state reactivity power feedback coefficient exceeding -1 c/% power, which is better than that of sodium-cooled integral fast reactor (IFR)-type cores (at approximately 20.5 c/%) and about half of that of oxide-fueled fast breeder reactors (FBRs). However, the RFD feedback is considerably slower following a step power increase: Preliminary estimates suggest a factor of 5 slower than the oxide fuel Doppler reactivity insertion rate. Nevertheless, this may be adequate since the reactors in question can be designed to have no obvious large, rapid reactivity insertion accidents to cope with. Much remains to be done to refine and optimize this concept. Among necessary evaluations are seismic response, the consequences of gas plenum failure, and reactivity insertion by the automatic RFD withdrawal following a power reduction, safety scram in particular

  5. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  6. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  7. A liquid-metal reactor for burning minor actinides of spent light water reactor fuel. 1: Neutronics design study

    International Nuclear Information System (INIS)

    Choi, H.; Downar, T.J.

    1999-01-01

    A liquid-metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors (LWRs). The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the Doppler constant, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200-MW(thermal) core is able to consume the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics

  8. Passive safety features of low sodium void worth metal fueled cores in a bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Wade, D.C.; Wigeland, R.A.; Kumaoka, Yoshio; Suzuki, Masao; Endo, Hiroshi; Nakagawa, Hiroshi

    1991-01-01

    A study has been performed on the passive safety features of low-sodium-void-worth metallic-fueled reactors with emphasis on using a bottom-supported reactor vessel design. The reactor core designs included self-sufficient types as well as actinide burners. The analyses covered the reactor response to the unprotected, i.e. unscrammed, transient overpower accident and the loss-of-flow accident. Results are given demonstrating the safety margins that were attained. 4 refs., 4 figs., 2 tabs

  9. Actinides integral measurements on FCA assemblies

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Okajima, Shigeaki

    1984-01-01

    Actinide integral measurements were performed on eight assemblies of FCA where neutron energy spectra were shifted systematically from soft to hard in order to evaluate and modify the nuclear cross section data of major actinides. Experimental values on actinide fission rates and sample reactivity worths are compared with the calculated values using JENDL-2 and ENDF/B-V (or IV) data sets. (author)

  10. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  11. Calculated investigation of actinide transmutation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Zhemkov, I.Yu.; Ishunina, O.V.; Yakovleva, I.V.

    2000-01-01

    One of the prospective actinide burner reactor type is the fast reactor with a 'hard' spectrum and small breeding factor, which is the BOR-60. The calculated investigations demonstrate that Loading up to 40% of minor-actinides to the BOR-60 reactor did not lead to the considerable change of neutron-physical characteristics. The performed calculations show that the BOR- 60 reactor possesses a high efficiency of the minor-actinide and plutonium bum-up (up to 37 kg/(TW · h)) hat is comparable with properties of the actinide burner-reactors under design. The BOR-60 reactor can provide a homogeneous minor-actinide Loading (minor-actinide addition to the standard fuel) to the core and heterogeneous Loading (as separate assemblies-targets with a high minor-actinide fraction) to the first rows of a radial blanket that allows the optimum usage of the reactor and its characteristics. (authors)

  12. Minor actinide burning in dedicated lead-bismuth cooled fast reactors

    International Nuclear Information System (INIS)

    Hejzlar, P.; Driscoll, M.J.; Kazimi, M.S.; Todreas, N.E.

    2001-01-01

    The destruction of minor actinides (MA) in dedicated burners is of contemporary interest in Europe and Japan because it requires the deployment of smaller number of special transmutation facilities. A major fraction of Pu from spent LWR fuel can be then burned in PWRs (or fast reactors) using dedicated fertile-free fuel assemblies. However, the design of MA burning fast spectrum cores poses significant challenges because of deterioration of key safety parameters, in particular of the coolant void coefficient. This study proposes the concept of an lead-bismuth eutectic (LBE)-cooled dedicated MA burner having metallic fuel (MA-Pu-Zr) and streaming assemblies to attain acceptable coolant void worth performance. It is shown that a large 1800 MWth fertile-free core containing 37 wt% TRU with very high fraction of MA(59 wt%) from LWR spent fuel can be burned in a first cycle for 700 EFPDs with a very small reactivity swing: less than β eff . Moreover, the reactivity void worth is negative for a fully voided core when all surrounding coolant is kept at reference density. However, the core reactivity increases as coolant density falls from the reference value of 10.25 to 6 g/cm 3 . Because its coolant density coefficient value is less than that of a sodium cooled IFR, the concept provides good potential for the achievement of self-regulation characteristics in unprotected events, provided that small negative fuel temperature feedback can be maintained. (authors)

  13. Actinide recycle potential in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management

  14. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  15. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  16. Photochemistry of the actinides

    International Nuclear Information System (INIS)

    Toth, L.M.; Bell, J.T.; Friedman, H.A.

    1979-01-01

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  17. Pulverized coal burner

    Science.gov (United States)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  18. Actinides-1981

    International Nuclear Information System (INIS)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  19. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  20. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  1. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  2. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  3. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  4. Actinide recycle

    Energy Technology Data Exchange (ETDEWEB)

    Till, C; Chang, Y [Argonne National Laboratory, Argonne, IL (United States)

    1990-07-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository.

  5. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  6. The actinides

    International Nuclear Information System (INIS)

    Bagnall, K.W.

    1987-01-01

    This chapter of coordination compound chemistry is devoted to the actinides and starts with a general survey. Most of the chapter relates to thorium and uranium but protactinium, neptunium and plutonium are included. There are sections on nitrogen, phosphorus, sulfur, selenium, tellurium and halogen ligands of the metals in their +3, +4, +5 and +6 oxidation states and of the transplutonium elements in their +2, +3, +4, and +5 oxidation states. (UK)

  7. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  8. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  9. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  11. Actinide separation by electrorefining

    International Nuclear Information System (INIS)

    Fusselman, S.P.; Gay, R.L.; Grantham, L.F.; Grimmett, D.L.; Roy, J.J.; Inoue, T.; Hijikata, T.; Krueger, C.L.; Storvick, T.S.; Takahashi, N.

    1995-01-01

    TRUMP-S is a pyrochemical process being developed for the recovery of actinides from PUREX wastes. This paper describes development of the electrochemical partitioning step for recovery of actinides in the TRUMP-S process. The objectives are to remove 99 % of each actinide from PUREX wastes, with a product that is > 90 % actinides. Laboratory tests indicate that > 99 % of actinides can be removed in the electrochemical partitioning step. A dynamic (not equilibrium) process model predicts that 90 wt % product actinide content can be achieved through 99 % actinide removal. Accuracy of model simulation results were confirmed in tests with rare earths. (authors)

  12. Physics studies of higher actinide consumption in an LMR

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described

  13. Physics studies of higher actinide consumption in an LMR

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs

  14. Preliminary design and neutronic analysis of a laser fusion driven actinide waste burning hybrid reactor

    International Nuclear Information System (INIS)

    Berwald, D.H.; Duderstadt, J.J.

    1979-01-01

    The laser fusion driven actinide waste burner (LDAB) system investigated uses partitioned fission power reactor generated actinide wastes dissolved in a molten tin alloy as feed material (or fuel). A novel fuel processing concept based on the high-temperature precipitation of ''actinide--nitrides'' from a liquid tin solution is proposed. This concept will allow for fission product removal to be performed entirely within the device at high burnup. No attempt has been made to optimize this system, but potential performance is impressive. The equilibrium LDAB design consumes 7.6 MT/y of actinide waste. This corresponds to the waste output from 136 light water reactors [1000 MW (electric)]. The mean life of an actinide atom in the LDAB is only 4.5 y; and actinides, once charged to the LDAB, might be reprocessed fewer times during irradiation than in previously proposed systems

  15. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  16. Actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO{sub 2}OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH{sup 2+} for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  17. Actinide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO 2 OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH 2+ for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  18. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2004-01-01

    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  19. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  20. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  1. Limitations of actinide recycle and waste disposal consequences

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Raedt, C. de

    1994-01-01

    The paper emphasizes the impact of Light Water Reactor - Mixed Oxides introduction on the subsequent actinide management and fate of reprocessed and depleted uranium. The spent fuel from LWR-MOX contains in principle 75% of the initially produced plutonium. This new source term has to be considered together with the minor actinides from the conventional reprocessing. Subsequent LWR-MOX reprocessing in the first step in a very long term Pu + minor actinides management. Recycling of Pu + minor actinides in fast reactors to significantly reduce the Pu and minor actinides inventory (e.g. a factor of 10) is a very slow process which requires the development and operation of a large park of actinide burner reactors during an extended period of time. The overall feasibility of the P and T option will greatly depend on the massive introduction during the next century of fast neutron reactors as a replacement to the present LWR generation of nuclear power plants. (authors). 11 refs., 6 tabs., 2 figs

  2. IEN project - Fluidized bed burner

    International Nuclear Information System (INIS)

    1985-08-01

    Due to difficulties inherent to the organic waste storage from laboratories and institutes which use radioactive materials for scientific researches, the Nuclear Facilities Division (DIN/CNEN); elaborated a project for constructing a fluidized burner, in laboratory scale, for burning the low level organic radioactive wastes. The burning system of organic wastes is described. (M.C.K.) [pt

  3. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  4. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  5. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  6. Southern Woods-Burners: A Descriptive Analysis

    Science.gov (United States)

    M.L. Doolittle; M.L. Lightsey

    1979-01-01

    About 40 percent of the South's nearly 60,000 wildfires yearly are set by woods-burners. A survey of 14 problem areas in four southern States found three distinct sets of woods-burners. Most active woods-burners are young, white males whose activities are supported by their peers. An older but less active group have probably retired from active participation but...

  7. Thermodynamic Properties of Actinides and Actinide Compounds

    Science.gov (United States)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  8. Research in actinide chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH - , CO 3 2- , PO 4 3- , humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  9. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Garnier, J.C.; Ikegami, T.

    1993-01-01

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  10. Burner for a wood burning furnace

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, H

    1981-12-10

    The burner according to the invention consists of a horizontal tube, whose front wall is penetrated by an intake pipe, which is surrounded by a pipe duct and several divided shells, which are arranged below the pipe duct. The front wall is also provided with air openings. The intake pipe is provided with a spiral and moves chopped wood into the burner.

  11. Premixed combustion on ceramic foam burners

    NARCIS (Netherlands)

    Bouma, P.H.; Goey, de L.P.H.

    1999-01-01

    Combustion of a lean premixed methane–air mixture stabilized on a ceramic foam burner has been studied. The stabilization of the flame in the radiant mode has been simulated using a one-dimensional numerical model for a burner stabilized flat-flame, taking into account the heat transfer between the

  12. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  13. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  14. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  15. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  16. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  17. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    Janca, J.; Tesar, C.

    1996-01-01

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  18. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  19. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  20. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  1. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  2. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  3. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Davis, Cliff B.

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  4. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Pavel Hejzlar; Cliff Davis

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  5. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  6. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  7. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  8. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  9. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  10. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  11. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho

    2009-01-01

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a

  12. Actinides, the narrowwest bands

    International Nuclear Information System (INIS)

    Smith, J.L.; Riseborough, P.S.

    1984-01-01

    A table of elements is shown that demonstrates the crossover from superconductivity to magnetism as well as regions of mixed valence. In particular, the actinides must eventually show 4f-electron like mixed valence, after the 5f-electrons become localized. There also seems to be an adiabatic continuation between heavy fermion and mixed valence behavior

  13. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  14. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  15. The neutronics design and analysis of a liquid metal reactor for burning minor actinides

    International Nuclear Information System (INIS)

    Choi, H.B.; Downar, T.J.

    1992-01-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors (LWR). The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the Doppler coefficient, and the sodium void worth. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 26 LWRs and still exhibit reasonable safety characteristics. Sensitivity analysis of the final core design indicates deficiencies in the minor actinide nuclear data can introduce large uncertainties in the prediction of the core safety performance parameters

  16. Wood pellets for stoker burner

    International Nuclear Information System (INIS)

    Nykaenen, S.

    2000-01-01

    The author of this article has had a stoker for several years. Wood chips and sod peat has been used as fuels in the stoker, either separately or mixed. Last winter there occurred problems with the sod peat due to poor quality. Wood pellets, delivered by Vapo Oy were tested in the stoker. The price of the pellets seemed to be a little high 400 FIM/500 kg large sack. If the sack is returned in good condition 50 FIM deposit will be repaid to the customer. However, Vapo Oy informed that the calorific value of wood pellets is three times higher than that of sod peat so it should not be more expensive than sod peat. When testing the wood pellets in the stoker, the silo of the stoker was filled with wood pellets. The adjustments were first left to position used for sod peat. However, after the fire had ignited well, the adjustments had to be decreased. The content of the silo was combusted totally. The combustion of the content of the 400 litter silo took 4 days and 22 hours. Respectively combustion of 400 l silo of good quality sod peat took 2 days. The water temperature with wood pellets remained at 80 deg C, while with sod peat it dropped to 70 deg C. The main disadvantage of peat with small loads is the unhomogenous composition of the peat. The results of this test showed that wood pellets will give better efficiency than peat, especially when using small burner heads. The utilization of them is easier, and the amount of ash formed in combustion is significantly smaller than with peat. Wood pellets are always homogenous and dry if you do not spoil it with unproper storage. Pellets do not require large storages, the storage volume needed being less than a half of the volume needed for sod peat. When using large sacks the amount needed can even be transported at the trunk of a passenger car. Depending on the area to be heated, a large sack is sufficient for heating for 2-3 weeks. Filling of stoker every 2-5 day is not an enormous task

  17. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  18. The new low-NO{sub x} burner

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masato [Joban Joint Power Corporation, Ltd., Nagasaki (Japan); Domoto, Kazuhiro; Tanaka, Ryuichiro [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Boiler Engineering Dept. Power Systems; Matsumoto, Keigo [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Combustion Lab.

    2013-11-01

    Burner design requires good ignitability, high burn-up rate and low NO{sub x} emissions. Mitsubishi Heavy Industries Ltd. (MHI) developed a low-NO{sub x} burner which meets the aforementioned requirements. It also needs less combustion air, the burner nozzle is subjected to less thermal stresses, and the potential of NO{sub x} corrosion is being reduced. (orig.)

  19. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  20. Comparable Worth Theory and Policy.

    Science.gov (United States)

    Wittig, Michele Andrisin; Lowe, Rosemary Hays

    1989-01-01

    Provides different perspectives on comparable worth issues. Covers the following topics: (1) competing explanations for the wage gap; (2) indirect approaches to wage equity; (3) the need for a direct approach to wage equity; (4) job evaluation; (5) application of comparable worth principles to compensation systems; and (6) strategies for adopting…

  1. Actinide recycling in reactors

    International Nuclear Information System (INIS)

    Kuesters, H.; Wiese, H.W.; Krieg, B.

    1995-01-01

    The objective is an assessment of the transmutation of long-lived actinides and fission products and the incineration of plutonium for reducing the risk potential of radioactive waste from reactors in comparison to direct waste disposal. The contribution gives an interim account on homogeneous and heterogeneous recycling of 'risk nuclides' in thermal and fast reactors. Important results: - A homogeneous 5 percent admixture of minor actinides (MA) from N4-PWRs to EFR fuel would allow a transmutation not only of the EFR MA, but in addition of the MA from 5 or 6 PWRs of equal power. However, the incineration is restricted by safety considerations. - LWR have only a very low MA incineration potential, due to their disadvantageous neutron capture/fission ratio. - In order to keep the Cm inventory at a low level, it is advantageous to concentrate the Am heterogeneously in particular fuel elements or rods. (orig./HP)

  2. Analytical chemistry of actinides

    International Nuclear Information System (INIS)

    Chollet, H.; Marty, P.

    2001-01-01

    Different characterization methods specifically applied to the actinides are presented in this review such as ICP/OES (inductively coupled plasma-optical emission spectrometry), ICP/MS (inductively coupled plasma spectroscopy-mass spectrometry), TIMS (thermal ionization-mass spectrometry) and GD/OES (flow discharge optical emission). Molecular absorption spectrometry and capillary electrophoresis are also available to complete the excellent range of analytical tools at our disposal. (authors)

  3. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  4. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    Durbin, P.W.

    1978-01-01

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  5. Case study for co and counter swirling domestic burners

    Directory of Open Access Journals (Sweden)

    Ashraf Kotb

    2018-03-01

    Full Text Available In this case study, the influence of equivalence ratio for co and counter-swirl domestic burners compared with non-swirl design on the thermal efficiency as well as CO emissions has been studied using liquefied petroleum gas (LPG. Also, the flame stability, and pot height, which is defined as the burner-to-pot distance (H, of the co and counter domestic burners were compared. The analysis of the results showed that, for both swirl burners co and counter one the thermal efficiency under all operation conditions tested is higher than the non-swirled burner (base burner. For example, the thermal efficiency increased by 8.8%, and 5.8% than base burner for co and counter swirl, respectively at Reynolds number equal 2000 and equivalence ratio 1. The co and counter swirl burners show lower CO emission than the base burner. The co swirl burner has wider operation range than counter swirl. With the increase of pot height, the thermal efficiency of all burners decreases because the flame and combustion gases are cooled due to mixing with ambient air. As a result, the heat transfer is decreased due to atmospheric loss, which decrease the thermal efficiency.

  6. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  7. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  8. Thermal neutron actinide data

    International Nuclear Information System (INIS)

    Tellier, H.

    1992-01-01

    During the 70's, the physicists involved in the cross section measurements for the low energy neutrons were almost exclusively interested in the resonance energy range. The thermal range was considered as sufficiently known. In the beginning of the 80's, reactor physicists had again to deal with the delicate problem of the power reactor temperature coefficient, essentially for the light water reactors. The measured value of the reactivity temperature coefficient does not agree with the computed one. The later is too negative. For obvious safety reasons, it is an important problem which must be solved. Several causes were suggested to explain this discrepancy. Among all these causes, the spectral shift in the thermal energy range seems to be very important. Sensibility calculations shown that this spectral shift is very sensitive to the shape of the neutron cross sections of the actinides for energies below one electron-volt. Consequently, reactor physicists require new and accurate measurements in the thermal and subthermal energy ranges. A part of these new measurement results were recently released and reviewed. The purpose of this study is to complete the preceding review with the new informations which are now available. In reactor physics the major actinides are the fertile nuclei, uranium 238, thorium 232 and plutonium 240 and the fissile nuclei, uranium 233, uranium 235 and plutonium 239. For the fertile nuclei the main datum is the capture cross section, for the fissile nuclei the data of interest are nu-bar, the fission and capture cross sections or a combination of these data such as η or α. In the following sections, we will review the neutron data of the major actinides for the energy below 1 eV

  9. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  10. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    The marine industry is changing with new demands concerning high energy efficiency, fuel flexibility and lower emissions of NOX and SOX. A collaboration between the company Alfa Laval and Technical University of Denmark has been established to support the development of the next generation...... of marine burners. The resulting auxiliary boilers shall be compact and able to operate with different fuel types, while reducing NOX emissions. The specific boiler object of this study uses a swirl stabilized liquid fuel burner, with a pressure swirl spill-return atomizer (Fig.1). The combustion chamber...... is enclosed in a water jacket used for water heating and evaporation, and a convective heat exchanger at the furnace outlet super-heats the steam. The purpose of the present study is to gather detailed knowledge about the influence of fuel spray conditions on marine utility boiler flames. The main goal...

  11. CFD optimization of a pellet burner

    Directory of Open Access Journals (Sweden)

    Westerlund Lars B.

    2012-01-01

    Full Text Available Increased capacity of computers has made CFD technology attractive for the design of different apparatuses. Optimization of a pellet burner using CFD was investigated in this paper. To make the design tool work fast, an approach with only mixing of gases was simulated. Other important phenomena such as chemical reactions were omitted in order to speed up the design process. The original design of the burner gave unsatisfactory performance. The optimized design achieved from simulation was validated and the results show a significant improvement. The power output increased and the emission of unburned species decreased but could be further reduced. The contact time between combustion gases and secondary air was probably too short. An increased contact time in high temperature conditions would possibly improve the design further.

  12. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  13. Recovery actinide values

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of di-hexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid. (author)

  14. Actinide AMS at DREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Khojasteh, Nasrin B.; Merchel, Silke; Rugel, Georg; Scharf, Andreas; Ziegenruecker, Rene [HZDR, Dresden (Germany); Pavetich, Stefan [HZDR, Dresden (Germany); ANU, Canberra (Australia)

    2016-07-01

    Radionuclides such as {sup 236}U and {sup 239}Pu were introduced into the environment by atmospheric nuclear weapon tests, reactor accidents (Chernobyl, Fukushima), releases from nuclear reprocessing facilities (Sellafield, La Hague), radioactive waste disposal, and accidents with nuclear devices (Palomares, Thule) [1]. Accelerator Mass Spectrometry (AMS) is the most sensitive method to measure these actinides. The DREsden AMS (DREAMS) facility is located at a 6 MV accelerator, which is shared with ion beam analytics and implantation users, preventing major modifications of the accelerator and magnetic analyzers. DREAMS was originally designed for {sup 10}Be, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I. To modify the system for actinide AMS, a Time-of-Flight (TOF) beamline at the high-energy side has been installed and performance tests are on-going. Ion beam and detector simulations are carried out to design a moveable ionization chamber. Especially, the detector window and anode dimensions have to be optimized. This ionization chamber will act as an energy detector of the system and its installation is planned as closely as possible to the stop detector of the TOF beamline for highest detection efficiency.

  15. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  16. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  17. Use of fast reactors for actinide transmutation. Proceedings of a specialists meeting held in Obninsk, Russian Federation, 22-24 September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    The management of radioactive waste is one of the key issues in today`s discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow `burning` of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs.

  18. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1976-06-01

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  19. Lanthanide/Actinide Opacities

    Science.gov (United States)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  20. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  1. What the Common Economic Arguments against Comparable Worth Are Worth.

    Science.gov (United States)

    Bergmann, Barbara R.

    1989-01-01

    Reviews economists' views about how the economy works, from which conclusions opposing comparable worth are drawn. Discusses factors that have been omitted from economists' views--social and psychological factors that affect behavior in the workplace, permit and encourage discrimination, and have an effect on the distribution of jobs and wages.…

  2. Projected benefits of actinide partitioning

    International Nuclear Information System (INIS)

    Braun, C.; Goldstein, M.

    1976-05-01

    Possible benefits that could accrue from actinide separation and transmutations are presented. The time frame for implementing these processes is discussed and the expected benefits are qualitatively described. These benefits are provisionally quantified in a sample computation

  3. Environmental research on actinide elements

    International Nuclear Information System (INIS)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  4. Method for adding additional isotopes to actinide-only burnup credit

    International Nuclear Information System (INIS)

    Lancaster, D.B.; Fuentes, E.; Kang, C.

    1998-01-01

    The Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages requires computer code validation to be performed against a benchmark set of chemical assays for isotopic concentration and against a benchmark set of critical experiments for package criticality. Both sets contain all the isotopes included in the methodology. The chemical assays used include the uranium and plutonium isotopes, while the critical experiments were composed of UO 2 or MOX rods, covering the isotopes in the actinide only approach. Since other isotopes are not included in the validation benchmark sets, it would be necessary to justify both the content and worth of any additional isotope for which burnup credit is to be taken (i.e., both the concentration and criticality effect of each particular isotope must be validated). A method is proposed here that can be used for any number of additional isotopes. As does the actinide-only burnup credit methodology, this method makes use of chemical assay data to establish the conservatism in the prediction of each isotope's concentration. Criticality validation is also performed using a benchmark set of UO 2 and MOX critical experiments, where the additional isotopes are validated using worth experiments to conservatively account for any uncertainty in their cross sections. The remaining requirements (analysis and modeling parameters, loading criteria generation, and physical implementation and controls) are performed exactly as described in the actinide-only burnup credit methodology. This report provides insight into each particular requirement in the new methodology

  5. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  6. The influence of burner material properties on the acoustical transfer function of radiant surface burners

    NARCIS (Netherlands)

    Schreel, K.R.A.M.; Tillaart, van den E.L.; Goey, de L.P.H.

    2005-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a largemodulation range. This can lead to noise problems which cannot be solved viatrial and error, but need accurate modelling. An acoustical analysis as part ofthe design phase can reduce the time-to-market considerably, but the

  7. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  8. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  9. EC-FP7 ARCAS: technical and economical comparison of Fast Reactors and Accelerator Driven Systems for transmutation of Minor Actinides

    International Nuclear Information System (INIS)

    Van den Eynde, G.; Romanello, V.; Heek, A. van; Martin-Fuertes, F.; Zimmerman, C.; Lewin, B.

    2015-01-01

    The ARCAS project aims to compare, on a technological and economical basis, Accelerator Driven Systems and Fast Reactors as Minor Actinide burners. It is split in five work packages: the reference scenario definition, the fast reactor system definition, the accelerator driven system definition, the fuel reprocessing and fabrication facilities definition and the economical comparison. This paper summarizes the status of the project and its five work packages. (author)

  10. The Economics of Comparable Worth.

    Science.gov (United States)

    Killingsworth, Mark R.

    This document concludes that the basic difficulty with comparable worth is that it is an ill-conceived solution to a serious problem and that alternative policies, such as equal employment opportunity legislation or application of antitrust laws, provide means of addressing employment discrimination that are both more effective and less likely to…

  11. Some parameters and conditions defining the efficiency of burners ...

    Indian Academy of Sciences (India)

    irradiation in special burners, namely, in the blankets of ADS. Various views ... Ecologic gain – ratio of the ecologic threat level of initial LLW to that of final. LLW. .... For all burner types, the general tendency is that the increase of consumption.

  12. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  13. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  14. Actinides and heavy fermions

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Ott, H.R.

    1987-01-01

    The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity

  15. Efficient industrial burner control of a flexible burner management system; Effiziente industrielle Brennertechnik durch Einsatz flexibler Feuerungsautomaten

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ulrich; Saenger, Peter [Siemens AG, Rastatt (Germany)

    2012-02-15

    Compactness and flexibility of a burner control system is a very important issue. With a few types a wide range in different industrial applications should be covered. This paper presents different applications of a new burner control system: heating of cooling lines in glass industry, steam generation and air heating for a pistachio roastery and in grain dryers. (orig.)

  16. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  17. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  18. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  19. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  20. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  1. To seek work and worth

    International Nuclear Information System (INIS)

    Im, Yong Gyu

    2010-07-01

    It describes the documentary which shows US writers effect and process to seek worth though the work related nuclear power for half a century such as international nuclear school start of use of nuclear energy industry, establishment of nuclear society, by becoming a member of a standing committee and introduction of KINS, KANS and NSSC. It also describes his personal history about family and work and a brief summary of his career.

  2. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  3. ALMR potential for actinide consumption

    International Nuclear Information System (INIS)

    Cockey, C.L.; Thompson, M.L.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  4. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  5. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  6. Extraction chromatogrpahy of actinides, ch. 7

    International Nuclear Information System (INIS)

    Mueller, W.

    1975-01-01

    This review on extraction chromatography of actinides emphasizes the important usage of neutral (Tributylphosphate), basic (substituted ammonium salts), and acidic (HDEHP) extractants, and their application to separations of actinides in the di-to hexavalent oxidation state. Furthermore, the actinide extraction by ketones, ethers, alcohols and β-diketones is discussed

  7. Moessbauer effect studies with actinides

    International Nuclear Information System (INIS)

    Stone, J.A.

    1966-01-01

    Moessbauer resonance studies in the actinide elements offer a new technique for measuring solid-state properties to a region of the periodic chart where such information is relatively sparse. It is well known that the actinides, the elements with atomic numbers from 90 to 103, form a transition series due to filling of the 5f electron shell, analogous to the rare-earth series in which the 4f shell is filled. Like the rare earths, the actinide metals and compounds are expected to exhibit a variety of interesting magnetic properties, but, unlike the rare earths, there have been few studies of the magnetic behaviour of actinides, and these properties are largely unknown. The chemical properties of the actinides have been studied somewhat more extensively, and, in contrast to the rare earths, form a multiplicity of stable valence states, especially in the lighter members of the series. It is just these properties, magnetic and chemical, for which the Moessbauer effect is a valuable probe, sensitive to the magnetic and electric environment of an atom. The rare-earth series has been a particularly fruitful region in terms of the number of elements which have been shown to exhibit the Moessbauer effect, and for this reason the exploitation of the Moessbauer effect to yield new solid-state and chemical information on the rare earths is a highly active field of research today. There is every reason to believe that the actinides can be similarly studied by the Moessbauer effect. 43 refs, 6 figs, 4 tabs

  8. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  9. AGA answers complaints on burner tip prices

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the American Gas Association has rebutted complaints that natural gas prices have dropped at the wellhead but not at the burner tip. AGA Pres. Mike Baly the an association study of the issue found that all classes of customers paid less for gas in 1991 than they did in 1984, when gas prices were at their peak. He the, the study also shows that 100% of the wellhead price decline has been passed through to natural gas consumers in the form of lower retail prices. Baly the the average cost of gas delivered to all customers classes fell by $1.12/Mcf from 1984 to 1991, which exceeds the $1.10/Mcf decline in average wellhead prices during the same period

  10. Preliminary considerations concerning actinide solubilities

    International Nuclear Information System (INIS)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented

  11. Orbital effects in actinide systems

    International Nuclear Information System (INIS)

    Lander, G.H.

    1983-01-01

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  12. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  13. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.

    2015-01-01

    Minor actinides transmutation is one of the 3 main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a) homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of 'polluting' the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b) heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a 'perturbation' approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time. Estimators of interest that have been

  14. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  15. Feasibility of reactivity worth measurements by perturbation method with Caliban and Silene experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, Pierre; Authier, Nicolas [Commissariat a l' Energie Atomique, Centre d' Etudes de Valduc, 21120 Is-Sur-Tille (France)

    2008-07-01

    Reactivity worth measurements of material samples put in the central cavities of nuclear reactors allow to test cross section nuclear databases or to extract information about the critical masses of fissile elements. Such experiments have already been completed on the Caliban and Silene experimental reactors operated by the Criticality and Neutronics Research Laboratory of Valduc (CEA, France) using the perturbation measurement technique. Calculations have been performed to prepare future experiments on new materials, such as light elements, structure materials, fission products or actinides. (authors)

  16. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  17. ENDF/B-V actinides

    International Nuclear Information System (INIS)

    Kocherov, N.; Lemmel, H.D.

    1981-01-01

    This document summarizes the contents of the actinides part of the ENDF/B-V nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available from the IAEA Nuclear Data Section. (author)

  18. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  19. Photochemical reactions of actinide ions

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi

    1995-01-01

    This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)

  20. Angular overlap model in actinides

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed

  1. Angular overlap model in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed.

  2. Development of strand burner for solid propellant burning rate studies

    International Nuclear Information System (INIS)

    Aziz, A; Mamat, R; Ali, W K Wan

    2013-01-01

    It is well-known that a strand burner is an apparatus that provides burning rate measurements of a solid propellant at an elevated pressure in order to obtain the burning characteristics of a propellant. This paper describes the facilities developed by author that was used in his studies. The burning rate characteristics of solid propellant have be evaluated over five different chamber pressures ranging from 1 atm to 31 atm using a strand burner. The strand burner has a mounting stand that allows the propellant strand to be mounted vertically. The strand was ignited electrically using hot wire, and the burning time was recorded by electronic timer. Wire technique was used to measure the burning rate. Preliminary results from these techniques are presented. This study shows that the strand burner can be used on propellant strands to obtain accurate low pressure burning rate data

  3. Assessment of PWR plutonium burners for nuclear energy centers

    International Nuclear Information System (INIS)

    Frankel, A.J.; Shapiro, N.L.

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible

  4. Calculation code of heterogeneity effects for analysis of small sample reactivity worth

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Mukaiyama, Takehiko; Maeda, Akio.

    1988-03-01

    The discrepancy between experimental and calculated central reactivity worths has been one of the most significant interests for the analysis of fast reactor critical experiment. Two effects have been pointed out so as to be taken into account in the calculation as the possible cause of the discrepancy; one is the local heterogeneity effect which is associated with the measurement geometry, the other is the heterogeneity effect on the distribution of the intracell adjoint flux. In order to evaluate these effects in the analysis of FCA actinide sample reactivity worth the calculation code based on the collision probability method was developed. The code can handle the sample size effect which is one of the local heterogeneity effects and also the intracell adjoint heterogeneity effect. (author)

  5. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  6. Transmutation of minor actinides in a Candu thorium borner

    International Nuclear Information System (INIS)

    Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Yildiz, K.; Sahin, N.; Altinok, T.; Alkan, M.

    2007-01-01

    latter is used for denaturized the new 2 33U fuel with 2 38U. The temporal variation of the criticality k ∞ and the burn-up values of the reactor have been calculated by full power operation for a period of 20 years. The criticality starts by k ∞ = ∼ 1.48 for both fuel compositions. A sharp decrease of the criticality has been observed in the first year as a consequence of rapid plutonium burnout. The criticality becomes quasi constant after the 2nd year and remains above k ∞ > 1.06 for ∼ 20 years. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Nuclear waste actinides can also be used as a booster fissile fuel material in form of mixed fuel with thorium in a CANDU reactor in order to assure the initial criticality at startup. In the third phase, two different fuel compositions have been found useful to provide sufficient reactor criticality over a long operation period: 1) 95% thoria (ThO 2 ) + 5% minor actinides MAO 2 and 2) 95% ThO 2 + 5% MAO 2 + 5% UO 2 . The latter allows a higher degree of nuclear safeguarding thorough denaturing the new 2 33U fuel with 2 38U. The temporal variation of the criticality k ∞ and the burn-up values of the reactor have been calculated by full power operation for a period of 10 years. The criticality starts by k ∞ > 1.3 for both fuel compositions. A sharp decrease of the criticality has been observed in the first year as a consequence of rapid plutonium burnout in the actinide fuel. The criticality becomes quasi constant after the 2nd year and remains close to k ∞ =∼1.06 for ∼ 10 years. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Finally, in the fourth phase, a CANDU reactor fueled with a mixed fuel made of thoria (ThO 2 ) and the totality of nuclear waste actinides has been investigated. The mixed fuel composition has been varied in radial direction to achieve a uniform power distribution and fuel burn up in the fuel bundle. The

  7. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  8. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  9. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  10. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  11. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  12. Analytical evaluation of actinide sensitivities

    International Nuclear Information System (INIS)

    Sola, A.

    1977-01-01

    The analytical evaluation of the sensitivities of actinides to various parameters such as cross sections, decay constants, flux and time is presented. The formulae are applied to isotopes of the Uranium, Neptunium, Plutonium and Americium series. The agreement between analytically obtained and computer evaluated sensitivities being always good, it is throught that the formulation includes all the important parameters entering in the evaluation of sensitivities. A study of the published data is made

  13. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  14. Low void effect (CFV) core concept flexibility: from self-breeder to burner core - 15091

    International Nuclear Information System (INIS)

    Buiron, L.; Dujcikova, L.

    2015-01-01

    In the frame of the French strategy on sustainable nuclear energy, several scenarios consider fuel cycle transition toward a plutonium multi-recycling strategy in sodium cooled fast reactor (SFR). Basically, most of these scenarios consider the deployment of a 60 GWe SFR fleet in 2 steps to renew the French PWR fleet. As scenarios do investigate long term deployment configurations, some of them require tools for nuclear phase-out studies. Instead of designing new reactors, the adopted strategy does focus on adaptation of existing ones into burner configurations. This is what was done in the frame of the EFR project at the end of the 90's using the CAPRA approach (French acronym for Enhance Plutonium Consumption in Fast Reactor). The EFR burner configuration was obtained by inserting neutronic penalties inside the core (absorber material and/or diluent subassembly). Starting from the preliminary industrial image of a SFR 3600 MWth core based on Low Sodium Void concept (CFV in French), a 'CAPRA-like' approach has been studied. As the CFV self-breeding is ensured by fertile blankets, a first modification consisted in the substitution of the corresponding depleted uranium by 'inert' or absorber material leading to a 'natural burner' core with only small impacts on flux distribution. The next step forward CAPRA configuration was the substitution of 1/3 of the fuel pins by 'dummy' pins (MgO pellets). The small spectrum shift due to MgO material insertion leads to an increase Doppler constant which exceeds the value of the reference case. As the core sodium void worth value is conserved, the CFV CAPRA core 'safety' potential is quite similar to the one of the reference core. Fuel thermo-mechanical requirements are met by both nominal core power and fuel time residence reduction. However, these reduction factors are lower than those obtained for EFR core. The management of the enhanced reactivity swing is discussed

  15. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  16. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  17. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    Eskilsson, David; Roennbaeck, Marie; Samuelsson, Jessica; Tullin, Claes

    2004-01-01

    There is a trade-off between the emissions of nitrogen oxides (NO x ) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NO x emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NO x emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NO x emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NO x emission from today's pellet burners

  18. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    Martinez, Camilo; Cardona, Mario; Arrieta, Andres Amell

    2001-01-01

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  19. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Makmool, U.; Jugjai, S.; Tia, S.; Vallikul, P.; Fungtammasan, B.

    2007-01-01

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  20. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-01-01

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k eff of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data

  1. Slurry burner for mixture of carbonaceous material and water

    Science.gov (United States)

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  2. Dependence of flame length on cross sections of burners

    Energy Technology Data Exchange (ETDEWEB)

    Hackeschmidt, M.

    1983-06-01

    This article analyzes the relation between the shape of burner muzzle and the resulting flame jet in a combustion chamber. Geometrical shapes of burner muzzles, either square, circular or triangular are compared as well as proportions of flame dimensions. A formula for calculating flame lengths is derived, for which the mathematical value 'contact profile radius' for burner muzzle shape is introduced. The formula for calculating flame lengths allows a partial replacement of the empirical flame mixing factor according to N.Q. Toai, 1981. The geometrical analysis does not include thermodynamic and reaction kinetic studies, which may be necessary for evaluating heterogenous (coal dust) combustion flames with longer burning time. (12 refs.)

  3. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  4. Developement of porous media burner operating on waste vegetable oil

    International Nuclear Information System (INIS)

    Lapirattanakun, Arwut; Charoensuk, Jarruwat

    2017-01-01

    Highlights: • Steam was successfully applied to promote combustion of WVO. • A specially designed porous domain was an essential element for stable combustion of WVO. • The performance of WVO burner was in the range of cooking stove. • Nozzle clog up in domestic WVO burner can be avoided when replacing it with a steam-assisted nozzle. - Abstract: A newly designed cooking stove using Wasted Vegetable Oil (WVO) as fuel was introduced. Porous media, containing 2 cm diameter of spherical ceramic balls, was used as a flame stabilizer. Steam was successfully applied in a burner at this scale to atomize WVO droplet and entrain air into the combustion zone as well as to reduce soot and CO emission. DIN EN 203-1 testing standard was adopted and the experiment was conducted at various firing rate with the water flow rate at 0.16, 0.20 and 0.22 kg/min. Temperature, emissions, visible flame length, thermal efficiency as well as combustion efficiency were evaluated. Under the current WVOB design, it was suitable to operate the burner at the range of nominal firing rate between 325 and 548 kW/m"2 with water flow rate of 0.16 kg/min, at burner height to diameter ratio of 0.75, giving CO and NO_x emissions up to 171 and 40 ppm, respectively (at 6% O_2). Thermal efficiency was at around 28% where the combustion efficiency was approximately at 99.5%. The performance of WVO burner could be improved further if increasing the H/D ratio to 1.5, yielding thermal efficiency up to 42%.

  5. Incineration of ion exchange resins using concentric burners

    International Nuclear Information System (INIS)

    Fukasawa, T.; Chino, K.; Kawamura, F.; Kuriyama, O.; Yusa, H.

    1985-01-01

    A new incineration method, using concentric burners, is studied to reduce the volume of spent ion exchange resins generated from nuclear power plants. Resins are ejected into the center of a propane-oxygen flame and burned within it. The flame length is theoretically evaluated by the diffusion-dominant model. By reforming the burner shape, flame length can be reduced by one-half. The decomposition ratio decreases with larger resin diameters due to the loss of unburned resin from the flame. A flame guide tube is adapted to increase resin holding time in the flame, which improves the decomposition ratio to over 98 wt%

  6. BURNER RIG TESTING OF A500 C/SiC

    Science.gov (United States)

    2018-03-17

    AFRL-RX-WP-TR-2018-0071 BURNER RIG TESTING OF A500® C /SiC Larry P. Zawada Universal Technology Corporation Jennifer Pierce UDRI...TITLE AND SUBTITLE BURNER RIG TESTING OF A500® C /SiC 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...test program characterized the durability behavior of A500® C /SiC ceramic matrix composite material at room and elevated temperature. Specimens were

  7. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  8. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  9. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  10. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  11. Minor Actinides Recycling in PWRs

    International Nuclear Information System (INIS)

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-01-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  12. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  13. PIE analysis for minor actinide

    International Nuclear Information System (INIS)

    Suyama, Kenya

    2005-01-01

    Minor actinide (MA) is generated in nuclear fuel during the operation of power reactor. For fuel design, reactivity decrease due to it should be considered. Out of reactors, MA plays key role to define the property of spent fuel (SF) such as α-radioactivity, neutron emission rate, and criticality of SF. In order to evaluate the calculation codes and libraries for predicting the amount of MA, comparison between calculation results and experimentally obtained data has been conducted. In this report, we will present the status of PIE data of MA taken by post irradiation examinations (PIE) and several calculation results. (author)

  14. The acoustic response of burner-stabilised flat flames : a two-dimensional numerical analysis

    NARCIS (Netherlands)

    Rook, R.; Goey, de L.P.H.

    2003-01-01

    The response of burner-stabilized flat flames to acoustic perturbations is studied numerically. So far, one-dimensional models have been used to study this system. However, in most practical surface burners, the scale of the perforations in the burner plate is of the order of the flame thickness.

  15. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    Science.gov (United States)

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  16. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  17. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  18. What are the forests worth?

    Science.gov (United States)

    Fellows, L

    1992-05-30

    The Earth is a finite environment, thus growth cannot occur indefinitely. Eventually we will run out of space, resources, or anything else that is also finite. Once this fact is recognized, it becomes clear that we must develop in a sustainable way so that we can endure into the future. Overpopulation, vegetation destruction, and pollution are all serious threats to our finite environment. Traditionally, change has been to expensive and politically destabilizing. However, extensive changes in our modes of living must be made so that they become sustainable. In both developed and developing countries, consumptive growth must be replaced with sustainable development. Many developing countries are currently selling their natural resources to the developed countries. When they run out of resources, they will be truly poor. All governments must recognize the value of forests. It is estimated that in terms of medical uses for forest products alone, they will be worth US$11-12 billion (1990 dollars) by 2050. This constitutes a large portion of developing countries economies. Also, 80% of the population of developing countries rely on natural, traditional medicines made from forest products. Even in the US 25% of prescription drugs are based on phytochemicals. Now the drug companies are actively pursuing these resources for their products. It is estimated that 95% of the world species have not been assayed for their chemical value. Technology and money are not the obstacles to sustainable development and forest conservation. It is will and attitude that must be radically changed in order to protect the forests for the ecological and economic value.

  19. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  20. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  1. 40 CFR 266.102 - Permit standards for burners.

    Science.gov (United States)

    2010-07-01

    ... or industrial furnace downstream of the combustion zone and prior to release of stack gases to the... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces...

  2. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central

  3. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Th.H.

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbu- lence? To that end an active grid is constructed that consists of two perforated disks of which one is rotat- ing, creating a system of pulsating jets, which in the end can be used as a central

  4. 300 MWe Burner Core Design with two Enrichment Zoning

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il

    2008-01-01

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has been also performed. In the early stage of the development of a fast reactor, the main purpose is an economical use of a uranium resource but nowadays in addition to the maximum utilization of a uranium resource, the burning of a high level radioactive waste is taken as an additional interest for the harmony of the environment. In way of constructing the commercial size reactor which has the power level ranging from 800 MWe to 1600 MWe, the demonstration reactor which has the power level ranging from 200 MWe to 600 MWe was usually constructed for the midterm stage to commercial size reactor. In this paper, a 300 MWe burner core design was performed with purpose of demonstration reactor for KALIMER-600 burner of 600 MWe. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in design of KALIMER-600 burner, the 2 enrichment zoning approach was adapted

  5. Regulator of Dust and Coal Burner of Power Boilers

    Directory of Open Access Journals (Sweden)

    W. Wujcik

    2004-01-01

    Full Text Available The papers considers problems concerning introduction of neutron regulator into engineering practice. The regulator makes it possible to regulate CO, N0^ and O2 values with the purpose to optimize ejections into environment. The paper contains scheme of automation control of cyclone dust and coal burner with the help of a neutron regulator.

  6. Effect of cycled combustion ageing on a cordierite burner plate

    International Nuclear Information System (INIS)

    Garcia, Eugenio; Gancedo, J. Ramon; Gracia, Mercedes

    2010-01-01

    A combination of 57 Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe 2+ and Fe 3+ ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for ≅40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe 3+ ions existing in the cordierite lattice were reduced to Fe 2+ , and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: →Depth profile analyses used as a probe to understand changes in refractory structure. →All changes take place in the uppermost surface of the burner, close to the flame. →Reduction to Fe 2+ of substitutional Fe 3+ ions and partial cordierite decomposition. →Heating-cooling cycling induces a sintering of the existing iron oxide particles. →Chemical changes can explain the alterations observed in the material microstructure.

  7. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    Science.gov (United States)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due

  8. Criteria for achieving actinide reduction goals

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1996-01-01

    In order to discuss various criteria for achieving actinide reduction goals, the goals for actinide reduction must be defined themselves. In this context the term actinides is interpreted to mean plutonium and the so called ''minor actinides'' neptunium, americium and curium, but also protactinium. Some possible goals and the reasons behind these will be presented. On the basis of the suggested goals it is possible to analyze various types of devices for production of nuclear energy from uranium or thorium, such as thermal or fast reactors and accelerator driven system, with their associated fuel cycles with regard to their ability to reach the actinide reduction goals. The relation between necessary single cycle burn-up values, fuel cycle processing losses and losses to waste will be defined and discussed. Finally, an attempt is made to arrange the possible systems on order of performance with regard to their potential to reduce the actinide inventory and the actinide losses to wastes. (author). 3 refs, 3 figs, 2 tabs

  9. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  10. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  11. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  12. Neutron nuclear data evaluation for actinide nucleic

    International Nuclear Information System (INIS)

    Chen Guochang; Yu Baosheng; Duan Junfeng; Ge Zhigang; Cao Wentian; Tang Guoyou; Shi Zhaomin; Zou Yubin

    2010-01-01

    The nuclear data with high accuracy for minor actinides are playing an important role in nuclear technology applications, including reactor design and operation, fuel cycle concepts, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Through describe the class of nuclear data and nuclear date library, and introduce the procedure of neutron nuclear data evaluation. 234 U(n, f) and 237 Np(n, 2n) reaction experimental data evaluation was evaluated. The fission nuclear data are updated and improved. (authors)

  13. Actinide chemistry in the far field

    International Nuclear Information System (INIS)

    Livens, F.R.; Morris, K.; Parkman, R.; Moyes, L.

    1996-01-01

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  14. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  15. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  16. Management of actinide waste inventories in nuclear phase-out scenarios

    International Nuclear Information System (INIS)

    Cometto, M.; Wydler, P.; Chawla, R.

    2008-01-01

    The improvement of the 'radiological cleanliness' of nuclear energy is a primary goal in the development of advanced reactors and fuel cycles. The multiple recycling of actinides in advanced nuclear systems with fast neutron spectra represents a key option for reducing the potential hazard from high-level waste, especially when the fuel cycle is fully closed. Such strategies, however, involve large inventories of radiotoxic, transuranic (TRU) nuclides in the nuclear park, both in-pile and out-of-pile. The management of these inventories with the help of actinide burners is likely to become an important issue, if nuclear energy systems are eventually phased out, i.e. replaced by other types of energy systems. The present paper compares phase-out scenarios for two transmutation strategies involving fast reactors (FRs) and accelerator-driven systems (ADSs), respectively, operating in symbiosis with conventional light water reactors (LWRs). Particular objectives are to evaluate and compare the TRU reduction performance of the systems as a function of the phase-out time and to determine the appropriate phase-out length for different phase-out criteria. In this connection, an interesting aspect concerns the continuous optimisation of the fuel cycle to counterbalance the reactivity decrease due to the depletion of the fissile isotopes in the fuel. It will be shown that both FRs and ADSs can achieve the goal, provided that the phase-out operation can be continued for about a hundred years

  17. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  18. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1984-01-01

    A new process for recovery of plutonium and americium from pyrochemical waste has been demonstrated. It is based on chloride solution anion exchange at low acidity, which eliminates corrosive HCl fumes. Developmental experiments of the process flowsheet concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 = from high chloride-low acid solution. Americium and other metals are washed from the ion exchange column with 1N HNO 3 -4.8M NaCl. The plutonium is recovered, after elution, via hydroxide precipitation, while the americium is recovered via NaHCO 3 precipitation. All filtrates from the process are discardable as low-level contaminated waste. Production-scale experiments are now in progress for MSE residues. Flow sheets for actinide recovery from electrorefining and direct oxide reduction residues are presented and discussed

  19. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1985-05-01

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 2- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO 3 -4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO 3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  20. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Rittmann, B.E.; Reed, D.T.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  1. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  2. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  3. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  4. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  5. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  6. Research for actinides extractants from various wastes

    International Nuclear Information System (INIS)

    Musikas, C.; Cuillerdier, C.; Condamines, N.

    1990-01-01

    This paper is an overview of the actinides solvent extraction research undertaken in Fontenay-aux-Roses. Two kinds of extractants are investigated; those usable for the improvement of the nowadays nuclear fuels reprocessing and those necessary for advanced fuels cycles which include the minor actinides (Np, Am) recovery for a further elimination through nuclear reactions. In the first class the mono and diamides, alternative to the organophosphorus extractants, TBP and polyfunctional phosphonates, showed promising properties. The main results are discussed. For the future efficient extractants for trivalent actinides-lanthanides group separations are suitable. The point about the actinides (III) - lanthanides (III) group separation chemistry and the development of some of these extractants are given

  7. Actinide isotopes in the marine environment

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1986-01-01

    Studies of actinide isotopes in the environment are important not only from the viewpoint of their radiological effects on human life, but also from the fact that they act as excellent biochemical and geochemical tracers especially in the marine environment. For several of the actinide isotopes there is still a lack of basic data on concentration levels and further investigations on their chemical and physical speciation are required to understand their behaviour in the marine environment. The measured and estimated activity concentration levels of artificial actinides are at present in general a few orders of magnitude lower than those of the natural ones and their concentration factors in biota are relatively low, except in a few species of macroalgae and phytoplankton. The contribution from seafood to total ingestion of actinides by the world population is a few per cent and, therefore, the dose to man from these long-lived radionuclides caused by seafood ingestion is usually low. (orig.)

  8. Robust membrane systems for actinide separations

    International Nuclear Information System (INIS)

    Jarvinen, Gordon D.; McCleskey, T. Mark; Bluhm, Elizabeth A.; Abney, Kent D.; Ehler, Deborah S.; Bauer, Eve; Le, Quyen T.; Young, Jennifer S.; Ford, Doris K.; Pesiri, David R.; Dye, Robert C.; Robison, Thomas W.; Jorgensen, Betty S.; Redondo, Antonio; Pratt, Lawrence R.; Rempe, Susan L.

    2000-01-01

    Our objective in this project is to develop very stable thin membrane structures containing ionic recognition sites that facilitate the selective transport of target metal ions, especially the actinides

  9. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  10. Lattice effects in the light actinides

    International Nuclear Information System (INIS)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von; Richardson, J.W. Jr.

    1998-01-01

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated

  11. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  12. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  13. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  14. Proposal for experiments with actinide elements

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    An analytical study was conducted in which critical masses for some actinide isotopes were calculated with the Monte Carlo Neutron Photon (MCNP) Transport computer code. Different spherical computer models were used for even- and odd-neutron nuclides. Critical masses obtained are tabulated for Np-237, Pu-242, Am-241, Am-243, Pu-241, and Am-242m, together with indirect experimental data. Experimental data are needed for actinides with odd number of neutrons

  15. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  16. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    actinide oxides . The work described here is an attempt to characterize the quality of crystals using positron annihilation spectroscopy (PALS). The...Upadhyaya, R. V. Muraleedharan, B. D. Sharma and K. G. Prasad, " Positron lifetime studies on thorium oxide powders," Philosohical Magazine A, vol. 45... crystals . A strong foundation for actinide PALS studies was laid, but further work is required to build a more effective system. Positron Spectroscopy

  17. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  18. The removal of actinide metals from solution

    International Nuclear Information System (INIS)

    Hancock, R.D.; Howell, I.V.

    1980-01-01

    A process is specified for removing actinide metals (e.g. uranium) from solutions. The solution is contacted with a substrate comprising the product obtained by reacting an inorganic solid containing surface hydroxyl groups (e.g. silica gel) with a compound containing a silane grouping, a nitrogen-containing group (e.g. an amine) and other specified radicals. After treatment, the actinide metal is recovered from the substrate. (U.K.)

  19. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  20. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  1. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  2. Rapid determination of actinides in seawater samples

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Culligan, B.K.; Hutchison, J.B.; Utsey, R.C.; McAlister, D.R.

    2014-01-01

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1-2 weeks and provide chemical yields of ∼30-60 %. This new sample preparation method can be performed in 4-8 h with tracer yields of ∼85-95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort. (author)

  3. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    Gueorguieva, A.

    2001-01-01

    The main objective of this project is prediction and reduction of NOx and CO 2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO 2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  4. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  5. Passive safety design characteristics of the KALIMER-600 burner reactor

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Cho, Chung-Ho; Ha, Ki-Seok; Kim, Sang-Ji

    2009-01-01

    The Korea Atomic Energy Research Institute (KAERI) has recently studied several burner core designs for a transuranics (TRU) transmutation based on the breakeven core geometry of KALIMER-600. The KALIMER-600 is a net electrical rating of 600MWe, sodium-cooled, metallic-fueled, pool-type reactor. For the burner core concept selected for the present analysis, the smearing fractions of the fuel rods in three fuel zones are changed while maintaining the cladding outer diameter and cladding thickness. The resulting fuel slug smearing fractions of the inner, middle, and outer core zones are 36%, 40%, and 48%, respectively. The TRU conversion ratio is 0.57 and the TRU enrichment of the driver fuel is set to 30.0 w/o because of the current practical limitation of the U-TRU-10%Zr metal fuel database. The purpose of this paper is to evaluate the safety performance characteristics provided by the passive safety design features in the KALIMER-600 burner reactor by using a system-wide safety analysis code. The present scoping analysis focuses on an assessment of the enhanced safety design features that provide passive and self-regulating responses to transient conditions and an evaluation of the safety margin during unprotected overpower, unprotected loss of flow, and unprotected loss of heat sink events. The analysis results show that the KALIMER-600 burner reactor provides larger safety margins with respect to the sodium boiling, fuel rod integrity, and structural integrity. The overall inherent safety can be enhanced by accounting for the reactivity feedback mechanisms in the design process. (author)

  6. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  7. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  8. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  9. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600 0 C), lower fluid bed operating temperature (850 0 C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  10. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  11. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  12. Microjet burners for molecular-beam sources and combustion studies

    Science.gov (United States)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  13. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  14. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1995-01-01

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  15. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  16. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J H

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  17. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  18. Quantifying data worth toward reducing predictive uncertainty

    Science.gov (United States)

    Dausman, A.M.; Doherty, J.; Langevin, C.D.; Sukop, M.C.

    2010-01-01

    The present study demonstrates a methodology for optimization of environmental data acquisition. Based on the premise that the worth of data increases in proportion to its ability to reduce the uncertainty of key model predictions, the methodology can be used to compare the worth of different data types, gathered at different locations within study areas of arbitrary complexity. The method is applied to a hypothetical nonlinear, variable density numerical model of salt and heat transport. The relative utilities of temperature and concentration measurements at different locations within the model domain are assessed in terms of their ability to reduce the uncertainty associated with predictions of movement of the salt water interface in response to a decrease in fresh water recharge. In order to test the sensitivity of the method to nonlinear model behavior, analyses were repeated for multiple realizations of system properties. Rankings of observation worth were similar for all realizations, indicating robust performance of the methodology when employed in conjunction with a highly nonlinear model. The analysis showed that while concentration and temperature measurements can both aid in the prediction of interface movement, concentration measurements, especially when taken in proximity to the interface at locations where the interface is expected to move, are of greater worth than temperature measurements. Nevertheless, it was also demonstrated that pairs of temperature measurements, taken in strategic locations with respect to the interface, can also lead to more precise predictions of interface movement. Journal compilation ?? 2010 National Ground Water Association.

  19. Estimation of irradiated control rod worth

    International Nuclear Information System (INIS)

    Varvayanni, M.; Catsaros, N.; Antonopoulos-Domis, M.

    2009-01-01

    When depleted control rods are planned to be used in new core configurations, their worth has to be accurately predicted in order to deduce key design and safety parameters such as the available shutdown margin. In this work a methodology is suggested for the derivation of the distributed absorbing capacity of a depleted rod, useful in the case that the level of detail that is known about the irradiation history of the control rod does not allow an accurate calculation of the absorber's burnup. The suggested methodology is based on measurements of the rod's worth carried out in the former core configuration and on corresponding calculations based on the original (before first irradiation) absorber concentration. The methodology is formulated for the general case of the multi-group theory; it is successfully tested for the one-group approximation, for a depleted control rod of the Greek Research Reactor, containing five neutron absorbers. The computations reproduce satisfactorily the irradiated rod worth measurements, practically eliminating the discrepancy of the total rod worth, compared to the computations based on the nominal absorber densities.

  20. Ten Ideas Worth Stealing from New Zealand.

    Science.gov (United States)

    Jarchow, Elaine

    1992-01-01

    New Zealand educators have some ideas worth stealing, including morning tea-time, the lie-flat manifold duplicate book for recording classroom observation comments, school uniforms, collegial planning and grading of college assignments, good meeting etiquette, a whole-child orientation, portable primary architecture, group employment interviews…

  1. A Short Is Worth a Thousand Films!

    Science.gov (United States)

    Massi, Maria Palmira; Blázquez, Bettiana Andrea

    2012-01-01

    The importance of visual input in the contemporary ELT classroom is such that it is commonplace to use audiovisual elements provided by pictures, films, clips and the like. The power of images is unquestionable, and as the old saying goes, an image is worth a thousand words. Following this line of reasoning, the objective of this article is to…

  2. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  3. Nitrogen oxide suppression by using a new design of pulverized-coal burners

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Cameron, S.D.; Grekhov, L.L. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The results of testing a low-NO{sub x} swirl burner are presented. This burner was developed by Babcock Energy Ltd., for reducing nitrogen oxide emissions when burning Ekibastuz and Kuznetsk low-caking coals in power boilers. The tests conducted at a large plant of the BEL Technological Center showed that the new burner reduces NO{sub x} emissions by approximately two times. 6 refs., 6 figs., 1 tab.

  4. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  5. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  6. Characterization of combustion in a fabric singeing burner operating with varsol

    International Nuclear Information System (INIS)

    Quintana M, Juan C; Mendoza S, Cesar Camilo; Molina Alejandro

    2009-01-01

    The textile industry uses singeing burners to diminish the amount of pilling on surface fabrics. Some of these burners use Stoddard solvent which has high cost per unit of energy, high flammability and emits volatile organic compounds that pose an occupational safety hazard. This study characterized a singing burner operating with varsol performing measurements of temperature downstream the burner, air and fuel flows, and concentration of CO, CO 2 , O 2 and NO x . These measurements defined the most important characteristics of the Stoddard solvent flame that should be maintained to obtain a similar behavior in an eventual change to natural gas.

  7. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  8. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  9. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  10. Band structure studies of actinide systems

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1976-01-01

    The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems

  11. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  12. Strategies for minority actinides transmutation in fast reactors

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  13. The OSMOSE program for the qualification of integral cross sections of actinides: Preliminary results in a PWR-UOx spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Hudelot, J. P. [CEA Cadarache, DEN/DER, 13108 Saint Paul lez Durance (France); Klann, R. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Antony, M.; Bernard, D.; Fougeras, P. [CEA Cadarache, DEN/DER, 13108 Saint Paul lez Durance (France); Jorion, F.; Drin, N.; Donnet, L.; Leorier, C. [CEA VALRHO, DEN/DRCP, BP171, 30207 Bagnols-sur-Ceze Cedex (France); Zhong, Z. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-07-01

    The need for improved nuclear data for minor actinides has been stressed by various organizations throughout the world - especially for studies relating to plutonium management, waste incineration, transmutation of waste, and Pu burning in future nuclear concepts. Several international programs have indicated a strong desire to obtain accurate integral reaction rate data for improving the major and minor actinides cross sections. Data on major actinides (i.e. {sup 235}U, {sup 236}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu and {sup 241}Am) are reasonably well-known and available in the Evaluated Nuclear Data Files (JEFF, JENDL, ENDF-BX However information on the minor actinides (i.e. {sup 232}Th, {sup 233}U, {sup 237}Np, {sup 238}Pu, {sup 242}Am, {sup 243}Am, {sup 243}Cm, {sup 235}Cm, {sup 244}Cm, {sup 245}Cm, {sup 246}Cm and {sup 247}Cm) is less well-known and considered to be relatively poor in some cases, having to rely on model and extrapolation of few data points. In this framework, the ambitious OSMOSE program between the Commissariat a l'Energie Atomique (CEA), Electricite de France (EDF) and the U.S. Dept. of Energy (DOE) has been undertaken with the aim of measuring the integral absorption rate parameters of actinides in the MINERVE experimental facility located at the CEA Cadarache Research Center. The OSMOSE Program (Oscillation in Minerve of isotopes in 'Eupraxic' Spectra) includes a complete analytical program associated with the experimental measurement program and aims at understanding and resolving potential discrepancies between calculated and measured values. In the OSMOSE program, the reactivity worth of samples containing separated actinides are measured in different neutron spectra using an oscillation technique with an overall expected accuracy better than 3%. Reactivity effects of less than 10 pcm (0.0001 or approximately 1.5 cents) are measured and compared with calibrations to determine the differential

  14. 1981 Annual Status Report. Plutonium fuels and actinide programme

    International Nuclear Information System (INIS)

    1981-01-01

    In this 1981 report the work carried out by the European Institute for Transuranium elements is reviewed. Main topics are: operation limits of plutonium fuels: swelling of advanced fuels, oxide fuel transients, equation of state of nuclear materials; actinide cycle safety: formation of actinides (FACT), safe handling of plutonium fuel (SHAPE), aspects of the head-end processing of carbide fuel (RECARB); actinide research: crystal chemistry, solid state studies, applied actinide research

  15. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    Science.gov (United States)

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  16. Special actinide nuclides: Fuel or waste?

    International Nuclear Information System (INIS)

    Srinivasan, M.; Rao, K.S.; Dingankar, M.V.

    1989-01-01

    The special actinide nuclides such as Np, Cm, etc. which are produced as byproducts during the operation of fission reactors are presently looked upon as 'nuclear waste' and are proposed to be disposed of as part of high level waste in deep geological repositories. The potential hazard posed to future generations over periods of thousands of years by these long lived nuclides has been a persistent source of concern to critics of nuclear power. However, the authors have recently shown that each and every one of the special actinide nuclides is a better nuclear fuel than the isotopes of plutonium. This finding suggests that one does not have to resort to exotic neutron sources for transmuting/incinerating them as proposed by some researchers. Recovery of the special actinide elements from the waste stream and recycling them back into conventional fission reactors would eliminate one of the stigmas attached to nuclear energy

  17. Interaction of actinides with natural microporous materials

    International Nuclear Information System (INIS)

    Misaelides, P.; Godelirsas, A.

    1998-01-01

    The existing studies mainly concern the sorption of thorium, uranium, neptunium, plutonium and americium from aqueous media by clay minerals and zeolites as well as the determination of the corresponding chemical processes taking place at the mineral-water interface. The investigation techniques applied for this purpose include, except the conventional wet-chemical and radiochemical methods, advanced spectroscopic methods such as extended X-ray absorption fine structure spectroscopy (EXAFS), Rutherford Backscattered Spectroscopy (RBS), X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. These techniques significantly contribute to the characterization of the reacted mineral waters and to the explanation of the structural and compositional characteristics of the sorbed actinide species. Theoretical models regarding the aqueous chemistry and speciation of the actinides have also been developed aiming the elucidation of the complex actinide sorption mechanisms. This contribution will critically review of the existing literature, present recently obtained unpublished results and discuss the necessity of future work in the field. (authors)

  18. Actinide distribution in the human skeleton

    International Nuclear Information System (INIS)

    Kathren, R.L.; McInroy, J.F.; Swint, M.J.

    1985-05-01

    Radiochemical analysis of two half skeletons donated to the United States Transuranium Registry, one from an individual with an occupationally incurred deposition of 241 Am and the other with a deposition of 239 Pu, revealed an inverse linear relationship between the concentration of actinide in the bone ash and the fraction of ash. Two distinct relationships were noted, one for the cranium and the other for the remainder of the skeleton. The results suggest that the actinide content of the skeleton as a whole, Q, can be obtained with an uncertainty of +-50% from analysis of a single sample of any bone (except the cranium) by Q = [(830 C/sub sample/)/(0.61 - f/sub sample/)], in which C/sub sample/ refers to the actinide content per g of ash and f/sub sample/ the fraction of ash (i.e., ratio of dry to wet weight) in the sample. 5 figs., 3 tabs

  19. Neutron scattering studies of the actinides

    International Nuclear Information System (INIS)

    Lander, G.H.

    1979-01-01

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO 2 , for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  20. Monazite as a suitable actinide waste form

    Energy Technology Data Exchange (ETDEWEB)

    Schlenz, Hartmut; Heuser, Julia; Schmitz, Stephan; Bosbach, Dirk [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); Neumann, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); RWTH Aachen Univ. (Germany). Inst. for Crystallography

    2013-03-01

    The conditioning of radioactive waste from nuclear power plants and in some countries even of weapons plutonium is an important issue for science and society. Therefore the research on appropriate matrices for the immobilization of fission products and actinides is of great interest. Beyond the widely used borosilicate glasses, ceramics are promising materials for the conditioning of actinides like U, Np, Pu, Am, and Cm. Monazite-type ceramics with general composition LnPO{sub 4} (Ln = La to Gd) and solid solutions of monazite with cheralite or huttonite represent important materials in this field. Monazite appears to be a promising candidate material, especially because of its outstanding properties regarding radiation resistance and chemical durability. This article summarizes the most recent results concerning the characterization of monazite and respective solid solutions and the study of their chemical, thermal, physical and structural properties. The aim is to demonstrate the suitability of monazite as a secure and reliable waste form for actinides. (orig.)

  1. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  2. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-01

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  3. Research on Actinides in Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-15

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  4. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  5. Numerical simulations of a large scale oxy-coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group

    2013-07-01

    Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.

  6. Sequential analysis of selected actinides in urine

    International Nuclear Information System (INIS)

    Kramer, G.H.

    1980-07-01

    The monitoring of personnel by urinalysis for suspected contamination by actinides necessitated the development and implementation of an analytical scheme that will separate and identify alpha emitting radionuclides of these elements. The present work deals with Pu, Am, and Th. These elements are separated from an ashed urine sample by means of coprecipitation and ion exchange techniques. The final analysis is carried out by electroplating the actinides and counting in a α-spectrometer. Mean recoveries of these elements from urine are: Pu 64%, Am 74% and Th 69%. (auth)

  7. Aqueous actinide complexes: A thermochemical assessment

    International Nuclear Information System (INIS)

    Fuger, J.; Khodakovsky, I.L.; Medvedev, V.A.; Navratil, J.D.

    1979-01-01

    The scope and purpose of an assessment of the thermodynamic properties of the aqueous actinide complexes are presented. This work which, at present, is limited to inorganic ligands and three selected organic ligands (formate, acetate and oxalate), is part of an effort established by the International Atomic Energy Agency to assess the thermodynamic properties of the actinides and their compounds. The problems involved in this work are illustrated by discussing the present status of the assessment as related to a few complex species, (hydroxyl-, fluoride-, carbonate complexes). (orig.) [de

  8. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Bondietti, E.A.; Bogle, M.A.; Brantley, J.N.

    1979-01-01

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239 Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  9. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  10. Actinide phosphonate complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Nash, K.L.

    1993-01-01

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO 3 H 2 ) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  11. A worldwide perspective on actinide burning

    International Nuclear Information System (INIS)

    Burch, W.D.

    1991-01-01

    Worldwide interest has been evident over the past few years in reexamining the merits of recovering the actinides from spent light-water reactor (LWR) fuel and transmuting them in fast reactors to reduce hazards in geologic repositories. This paper will summarize some of the recent activities in this field. Several countries are embarked on programs of reprocessing and vitrification of present wastes, from which removal of the actinides is largely precluded. The United States is assessing the ideas related to the fast reactor program and the potential application to defense wastes. 18 refs., 2 figs

  12. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  13. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  14. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  15. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  16. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  17. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars

    1997-08-01

    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  18. Plutonium burning and minor actinides transmutation in fast reactors: first results obtained within the frame of the CAPRA programme

    International Nuclear Information System (INIS)

    Garnier, J.C.; Rouault, J.; Kiefhaber, E.; Sunderland, R.

    1994-01-01

    The CAPRA program gas been established by the CEA in early 1993 with the primary goal of investigating the feasibility of a fast reactor core optimised to burn plutonium. CAPRA is now being jointly pursued by the European Research and Development (R and D) organisations (CEA in France, AEA in the UK and KFK in Germany) and the design companies grouped under the European Fast Reactor Associates umbrella. The first phase of the CAPRA programme is planned to last until the end of 1994. Its goal is to deliver an overall assessment on the feasibility of fast reactor plutonium burner cores. This assessment will also include the minor actinides transmutation capability of such cores. The objective of this paper is to present the progress made so far. After an introduction to the basic physics boundary conditions of burner cores, a description of the studies performed and the main results are given. Then the efforts made towards the definition of an accompanying experimental Research and Development (R and D) program are summarised, followed by the conclusions and an outlook to the future work. (authors). 4 refs., 3 figs., 2 tabs

  19. Adjusted Money's Worth Ratios in Life Annuities

    OpenAIRE

    Jaime Casassus; Eduardo Walker

    2013-01-01

    The Money's Worth Ratio (MWR) measures an annuity's actuarial fairness. It is calculated as the discounted present value of expected future payments divided by its cost. We argue that from the perspective of annuitants, this measure may overestimate the value-for-money obtained, since it does not adjust for liquidity or risk factors. Measuring these factors is challenging, requiring detailed knowledge of assets, liabilities, and of the stochastic processes followed by them. Using a multi-fact...

  20. Interim results: fines recycle testing using the 4-inch diameter primary graphite burner

    International Nuclear Information System (INIS)

    Palmer, W.B.

    1975-05-01

    The results of twenty-two HTGR primary burner runs in which graphite fines were recycled pneumatically to the 4-inch diameter pilot-plant primary fluidized-bed burner are described. The result of the tests showed that zero fines accumulation can easily be achieved while operating at plant equivalent burn rates. (U.S.)

  1. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed; Mansour, Morkous S.; Memon, Nasir K.; Anjum, Dalaver H.; Chung, Suk-Ho

    2016-01-01

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide

  2. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  3. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  4. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    Walker, C.T.; Scheffler, K.; Riege, U.

    1978-11-01

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 23 0 C and 115 0 C. (orig.) [de

  5. Actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.

    1979-01-01

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  6. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  7. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  8. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  9. Effect of energetic electrons on combustion of premixed burner flame

    Science.gov (United States)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  10. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  11. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  12. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  13. ENDF/B-5 Actinides (Rev. 86)

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1986-05-01

    This document summarizes the contents of the Actinides part of the ENDF/B-5 nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available costfree from the IAEA Nuclear Data Section upon request. The present version of the library is the Revision of 1986. (author). Refs, figs and tabs

  14. Trends in actinide processing at Hanford

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  15. Report of the panel on inhaled actinides

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  16. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  17. Placental transfer of plutonium and other actinides

    International Nuclear Information System (INIS)

    Griessl, I.; Stieve, F.E.

    1988-10-01

    The report is based on an extensive literature search. All data available from studies on placental transfer of plutonium and other actinides in man and animals have been collected and analysed, and the report presents the significant results as well as unresolved questions and knowledge gaps which may serve as a waypost to future research work. (orig./MG) [de

  18. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  19. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  20. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat...

  1. ACTINET: a European Network for Actinide Sciences

    International Nuclear Information System (INIS)

    Bernard Boullis; Pascal Chaix

    2006-01-01

    Full text of publication follows: The research in Actinide sciences appear as a strategic issue for the future of nuclear systems. Sustainability issues are clearly in connection with the way actinide elements are managed (either addressing saving natural resource, or decreasing the radiotoxicity of the waste). The recent developments in the field of minor actinide P and T offer convincing indications of what could be possible options, possible future processes for the selective recovery of minor actinides. But they point out, too, some lacks in the basic understanding of key-issues (such as for instance the control An versus Ln selectivity, or solvation phenomena in organic phases). Such lacks could be real obstacles for an optimization of future processes, with new fuel compounds and facing new recycling strategies. This is why a large and sustainable work appears necessary, here in the field of basic actinide separative chemistry. And similar examples could be taken from other aspects of An science, for various applications (nuclear fuel or transmutation targets design, or migration issues,): future developments need a strong, enlarged, scientific basis. The Network ACTINET, established with the support of the European Commission, has the following objectives: - significantly improve the accessibility of the major actinide facilities to the European scientific community, and form a set of pooled facilities, as the corner-stone of a progressive integration process, - improve mobility between the member organisations, in particular between Academic Institutions and National Laboratories holding the pooled facilities, - merge part of the research programs conducted by the member institutions, and optimise the research programs and infrastructure policy via joint management procedures, - strengthen European excellence through a selection process of joint proposals, and reduce the fragmentation of the community by putting critical mass of resources and expertise on

  2. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Aspfors, Jonas; Larfeldt, Jenny

    1999-01-01

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm 3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/m n 3 and OGC to 125 mg/m n 3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/m n 3 at half load while the emission of CO increased to 800 mg/m n 3 . The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  3. European Europart integrated project on actinide partitioning

    International Nuclear Information System (INIS)

    Madic, C.; Hudson, M.J.

    2005-01-01

    This poster presents the objectives of EUROPART, a scientific integrated project between 24 European partners, mostly funded by the European Community within the FP6. EUROPART aims at developing chemical partitioning processes for the so-called minor actinides (MA) contained in nuclear wastes, i.e. from Am to Cf. In the case of dedicated spent fuels or targets, the actinides to be separated also include U, Pu and Np. The techniques considered for the separation of these radionuclides belong to the fields of hydrometallurgy and pyrometallurgy, as in the previous FP5 programs named PARTNEW and PYROREP. The two main axes of research within EUROPART will be: The partitioning of MA (from Am to Cf) from high burn-up UO x fuels and multi-recycled MOx fuels; the partitioning of the whole actinide family for recycling, as an option for advanced dedicated fuel cycles (and in connection with the studies to be performed in the EUROTRANS integrated project). In hydrometallurgy, the research is organised into five Work Packages (WP). Four WP are dedicated to the study of partitioning methods mainly based on the use of solvent extraction methods, one WP is dedicated to the development of actinide co-conversion methods for fuel or target preparation. The research in pyrometallurgy is organized into four WP, listed hereafter: development of actinide partitioning methods, study of the basic chemistry of trans-curium elements in molten salts, study of the conditioning of the wastes, some system studies. Moreover, a strong management team will be concerned not only with the technical and financial issues arising from EUROPART, but also with information, communication and benefits for Europe. Training and education of young researchers will also pertain to the project. EUROPART has also established collaboration with US DOE and Japanese CRIEPI. (authors)

  4. A new look at actinide recycle

    International Nuclear Information System (INIS)

    Burch, W.D.; Croff, A.G.; Rawlins, J.A.; Schulz, W.W.

    1991-01-01

    This paper will address the justification for reexamination of the value of recovering the minor actinides and certain fission products from spent light-water reactor fuels and describe some of the technical progress that has been made since the major studies of a decade ago. During this time, the US Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission have begun establishing detailed criteria and regulations for geologic repositories. An examination of the hazards of waste disposal relative to the EPA release standards reveals that removal of 99.9% of the actinides (Pu, Am, and Np) reduces these hazards quite close to the EPA standards after 300 years' decay of the strontium and cesium. It may be also useful to remove and separately manage and dispose of certain of the long-lived fission products, such as 99 Tc and 129 I. Much additional work is required to fully assess the appropriate target recoveries as the hazards and risks are more closely examined and as the standards are reworked and refined. The two decades before the projected start of the US repository may present a window of opportunity to introduce several better management practices that act to simplify the repository safety issues. From a technical standpoint, significant progress has been made on recovery of the actinides from aqueous wastes though use of the TRUEX process. Additional work is required to demonstrate the application of the process to spent LWR fuels, but it appears straightforward. In addition, work at the Argonne National Laboratory on the liquid-metal reactor metal fuel cycle shows the relative simplicity of recycle of the actinides in that fast reactor cycle. Much work remains to fully demonstrate that actinides from all secondary waste streams can be removed to the target levels from both the aqueous reprocessing of LWR fuel and the pyro processes for the metal-fueled fast reactor. 9 refs., 2 figs

  5. Synroc tailored waste forms for actinide immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Daniel J.; Vance, Eric R. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia). ANSTOsynroc, Inst. of Materials Engineering

    2017-07-01

    Since the end of the 1970s, Synroc at the Australian Nuclear Science and Technology Organisation (ANSTO) has evolved from a focus on titanate ceramics directed at PUREX waste to a platform waste treatment technology to fabricate tailored glass-ceramic and ceramic waste forms for different types of actinide, high- and intermediate level wastes. The particular emphasis for Synroc is on wastes which are problematic for glass matrices or existing vitrification process technologies. In particular, nuclear wastes containing actinides, notably plutonium, pose a unique set of requirements for a waste form, which Synroc ceramic and glass-ceramic waste forms can be tailored to meet. Key aspects to waste form design include maximising the waste loading, producing a chemically durable product, maintaining flexibility to accommodate waste variations, a proliferation resistance to prevent theft and diversion, and appropriate process technology to produce waste forms that meet requirements for actinide waste streams. Synroc waste forms incorporate the actinides within mineral phases, producing products which are much more durable in water than baseline borosilicate glasses. Further, Synroc waste forms can incorporate neutron absorbers and {sup 238}U which provide criticality control both during processing and whilst within the repository. Synroc waste forms offer proliferation resistance advantages over baseline borosilicate glasses as it is much more difficult to retrieve the actinide and they can reduce the radiation dose to workers compared to borosilicate glasses. Major research and development into Synroc at ANSTO over the past 40 years has included the development of waste forms for excess weapons plutonium immobilization in collaboration with the US and for impure plutonium residues in collaboration with the UK, as examples. With a waste loading of 40-50 wt.%, Synroc would also be considered a strong candidate as an engineered waste form for used nuclear fuel and highly

  6. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Pham Nhu Viet Ha; Min Jae Lee; Sunghwan Yun; Sang Ji Kim

    2015-01-01

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  7. Minor Actinide Transmutation Physics for Low Conversion Ratio Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Mehdi Asgari; Samuel E. Bays; Benoit Forget; Rodolfo Ferrer

    2007-01-01

    The effects of varying the reprocessing strategy used in the closed cycle of a Sodium Fast Reactor (SNF) prototype are presented in this paper. The isotopic vector from the aqueous separation of transuranic (TRU) elements in Light Water Reactor (LWR) spent nuclear fuel (SNF) is assumed to also vary according to the reprocessing strategy of the closed fuel cycle. The decay heat, gamma energy, and neutron emission of the fuel discharge at equilibrium are found to vary depending on the separation strategy. The SFR core used in this study corresponds to a burner configuration with a conversion ratio of ∼0.5 based on the Super-PRISM design. The reprocessing strategies stemming from the choice of either metal or oxide fuel for the SFR are found to have a large impact on the equilibrium discharge decay heat, gamma energy, and neutron emission. Specifically, metal fuel SFR with pyroprocessing of the discharge produces the largest amount of TRU consumption (166 kg per Effective Full Power Year or EFPY), but also the highest decay heat, gamma energy, and neutron emission. On the other hand, an oxide fuel SFR with PUREX reprocessing minimizes the decay heat and related parameters of interest to a minimum, even when compared to thermal Mixed Oxide (MOX) or Inert Matrix Fuel (IMF) on a per mass basis. On an assembly basis, however, the metal SFR discharge has a lower decay heat than an equivalent oxide SFR assembly for similar minor actinide consumptions (∼160 kg/EFPY.) Another disadvantage in the oxide PUREX reprocessing scenario is that there is no consumption of americium and curium, since PUREX reprocessing separates these minor actinides (MA) and requires them to be disposed of externally

  8. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.)

  9. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E H.P.; Gruppelaar, H; Franken, W M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  10. Correlated band magnetism of cerium and actinide materials

    International Nuclear Information System (INIS)

    Cooper, B.R.; Lin, Y.; Sheng, Q.G.

    1997-01-01

    We discuss (1) the effects to be expected by the introduction into the electronic structure of locally-based two-electron correlations between the f electrons and bonding electrons of p and d atomic origin centered off-site as well as f-f correlations, (2) the expected observable consequences of these two-electron correlations, and (3) how to perform electronic structure calculations including the two-electron correlations. We first review certain general features of the physics associated with capturing the dual energetically localized-delocalized nature of the f electron spectral density; and review model calculations involving a single on-site f electron and a single ligand p/d electron of off-site parentage which lead to the possibility of a narrow singlet and triplet (magnetic) band picture explaining heavy fermion phenomenology. We then show that the same singlet/magnetic state picture arises when we include two-electron f-l and f-f correlations for actinides, which have atomic f n configurations with n>1; and we describe a practical electronic structure scheme for real materials based on a sequence in which a conventional one-electron linearized combination of muffin-tin orbitals (LMTO) LDA+U calculation is followed by a calculation for the lattice with a helium like two-electron Hamiltonian at the f atom sites, i.e., two-electron atoms where initially for the core two electrons worth of charge are removed from the LMTO f-site atom. This procedure will reconstruct the LMTO bands to include two-electron texturing. copyright 1997 American Institute of Physics

  11. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  12. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  13. A small porous-plug burner for studies of combustion chemistry and soot formation

    Science.gov (United States)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  14. 29 CFR 4062.4 - Determinations of net worth and collective net worth.

    Science.gov (United States)

    2010-07-01

    ... financial condition, and business history. (6) The economic outlook for the person's industry and the market... do not produce income for the business being valued or are not used in the business. (c) Factors for... to sell, or offer to purchase or sell the business of the person made on or about the net worth...

  15. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    Science.gov (United States)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  16. Using influence diagrams for data worth analysis

    International Nuclear Information System (INIS)

    Sharif Heger, A.; White, Janis E.

    1997-01-01

    Decision-making under uncertainty describes most environmental remediation and waste management problems. Inherent limitations in knowledge concerning contaminants, environmental fate and transport, remedies, and risks force decision-makers to select a course of action based on uncertain and incomplete information. Because uncertainties can be reduced by collecting additional data., uncertainty and sensitivity analysis techniques have received considerable attention. When costs associated with reducing uncertainty are considered in a decision problem, the objective changes; rather than determine what data to collect to reduce overall uncertainty, the goal is to determine what data to collect to best differentiate between possible courses of action or decision alternatives. Environmental restoration and waste management requires cost-effective methods for characterization and monitoring, and these methods must also satisfy regulatory requirements. Characterization and monitoring activities imply that, sooner or later, a decision must be made about collecting new field data. Limited fiscal resources for data collection should be committed only to those data that have the most impact on the decision at lowest possible cost. Applying influence diagrams in combination with data worth analysis produces a method which not only satisfies these requirements but also gives rise to an intuitive representation of complex structures not possible in the more traditional decision tree representation. This paper demonstrates the use of influence diagrams in data worth analysis by applying to a monitor-and-treat problem often encountered in environmental decision problems

  17. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  18. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  19. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  20. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  1. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  2. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  3. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  4. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  5. A burner for the combustion of spent tall oil soap

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.M.; Wong, J.K.; Moffatt, B.; Belanger, G. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Soriano, D. [Brais Malouin and Associates, Montreal, PQ (Canada)

    2003-07-01

    Efficiency in industrial processes applies both to the form of energy involved and the many by-products resulting from the process. Tall oil soap (TOS) is a white frothy substance created during the pulping process. It contains chemicals that can be extracted for use in other industries. The processing of TOS results in a product called spent TOS. This study examined the incineration process to derive process heat from the calorific value in spent TOS. Brais Malouin and Associates (BMA) proposed that an atomizing nozzle should be used for use with this liquid in an incinerating burner. The efficiency of atomization of spent TOS with the BMA nozzle was determined by the Canada Centre for Mineral and Energy Technology (CANMET), which also characterized the combustion in a simulated boiler situation. The combustion tests were performed in the Pilot-Scale Research Boiler at the CANMET Energy Technology Centre (CETC). Pre-heating was done with a number 2 oil flame. Flame stability was determined by observing the flame through sight ports and by measuring the gas in the furnace. The experiments showed that spent TOS could successfully burn with a number 2 oil, in a proportion of 81 spent TOS to 19 oil mass ratio. As the amount of spent TOS was increased, the amount of sulphur dioxide, nitrogen oxide (NOx) and carbon monoxide decreased. The number 2 fuel oil was responsible for the sulphur dioxide in the exhaust. It is believed that the reduction in the carbon monoxide in the exhaust is attributable to the water-gas shift reaction. As the proportion of spent TOS increased, it was shown that the amount of NOx in the exhaust decreased rapidly. A bluish-green molten deposit formed in the furnace near the burner came from copper and manganese found in the ash of the spent TOS. 7 refs., 7 tabs., 16 figs.

  6. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  7. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  8. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  9. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  10. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Fantuzzi, M.; Ballarino, L.

    2008-01-01

    Environmental emissions constraints have led manufacturers to improve their low NO x recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO x emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O 2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  11. Analysis of control rod worth in experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Arii, Y.; Aoyama, T.; Okimoto, Y.; Yoshida, A.; Mizoo, N.

    1988-01-01

    In JOYO, the measurement of control rod worths have been carried out in the beginning of the each cycle, using both period method and neutron source multiplication method. In this paper, the calculational method of control rod worths in the design stage and the comparison with the design values and measured ones are shown. The reasons that the control rod worths change slightly in each cycle, are also investigated. (author). 13 figs, 12 tabs

  12. Reliability worth assessment of radial systems with distributed generation

    OpenAIRE

    Bellart Llavall, Francesc Xavier

    2010-01-01

    With recent advances in technology, utilities generation (DG) on the distribution systems. Reliability worth is very important in power system planning and operation. Having a DG ensures reli increase the reliability worth. This research project presents the study of a radial distribution system and the impact of placing DG in order to increase the reliability worth. where a DG have to be placed. The reliability improvement is measured by different reliability indices tha...

  13. On the solvation of actinide ions

    International Nuclear Information System (INIS)

    Hagberg, D.

    2007-01-01

    Complete text of publication follows: Simulation of the universal ions in water solution is a standardized tool commonly used today. The route to simulation of actinide ions is normally tough because the evaluation of the simulation parameters are normally not given empirically and standard Hartree-Fock calculations are not accurate enough. We use multiconfigurational quantum chemical calculations when deriving the parameters for actinide ion-water potential [1]. The parameters are then simulated using classical molecular dynamics. A case study of the Cm 3+ ion will be presented on the poster. Results from the simulations will be also be discussed, e.g. the radial distribution functions and the coordination number. [1] D. Hagberg, G. Karlstrom, B.O. Roos and L. Gagliardi The coordination of uranyl in water: a combined quantum chemical and molecular simulation study J. Am. Chem. Soc. 127, 14250-14256 (2005)

  14. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  15. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  16. Chemistry of the actinide elements. Second edition

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements

  17. The thermodynamic functions of gaseous actinide elements

    International Nuclear Information System (INIS)

    Rand, M.H.

    1979-01-01

    The actinide gases have large number of unobserved energy states - up to 3 x 10 6 for Pu(g) - which could contribute to the partition function and its derivatives, from which the thermal functions of these gases are calculated. Existing compilations have simply ignored these levels. By making reasonable assumptions as to the distribution of these energy states, their effect on the functions can be calculated. It is concluded that the existing compilations will be inadequate above approximately 2000K. The effect is particularly marked on the heat capacity. For example, when unobserved levels for Pu(g) are included, the heat capacity of Pu(g) reaches a maximum value of more than 12R at 3200K. Similar considerations will apply to the gaseous actinide ions. (orig.) [de

  18. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    1991-01-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  19. Seventeen-coordinate actinide helium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kaltsoyannis, Nikolas [School of Chemistry, The University of Manchester (United Kingdom)

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe{sub 17}{sup 3+}, ThHe{sub 17}{sup 4+}, and PaHe{sub 17}{sup 4+} are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe{sub n}{sup 3+} (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R{sup 2}>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Actinide uptake by transferrin and ferritin metalloproteins

    International Nuclear Information System (INIS)

    Den Auwer, C.; Llorens, I.; Moisy, Ph.; Vidaud, C.; Goudard, F.; Barbot, C.; Solari, P.L.; Funke, H.

    2005-01-01

    In order to better understand the mechanisms of actinide uptake by specific biomolecules, it is essential to explore the intramolecular interactions between the cation and the protein binding site. Although this has long been done for widely investigated transition metals, very few studies have been devoted to complexation mechanisms of actinides by active chelation sites of metalloproteins. In this field, X-ray absorption spectroscopy has been extensively used as a structural and electronic metal cation probe. The two examples that are presented here are related to two metalloproteins in charge of iron transport and storage in eukaryote cells: transferrin and ferritin. U(VI)O 2 2+ , Np(IV) and Pu(IV) have been selected because of their possible role as contaminant from the geosphere. (orig.)

  1. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  2. Actinides: from heavy fermions to plutonium metallurgy

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Hecker, S.S.

    1984-01-01

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe 13 and UPt 3 . Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  3. Actinide Source Term Program, position paper. Revision 1

    International Nuclear Information System (INIS)

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-01-01

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model

  4. Actinides reduction by recycling in a thermal reactor

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H.

    2014-10-01

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  5. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  6. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  7. Actinide burning in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  8. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1975-01-01

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  9. Attachment styles and contingencies of self-worth.

    Science.gov (United States)

    Park, Lora E; Crocker, Jennifer; Mickelson, Kristin D

    2004-10-01

    Previous research on attachment theory has focused on mean differences in level of self-esteem among people with different attachment styles. The present study examines the associations between attachment styles and different bases of self-esteem, or contingencies of self-worth, among a sample of 795 college students. Results showed that attachment security was related to basing self-worth on family support. Both the preoccupied attachment style and fearful attachment style were related to basing self-worth on physical attractiveness. The dismissing attachment style was related to basing self-worth less on others' approval, family support, and God's love.

  10. BWR Assembly Optimization for Minor Actinide Recycling

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Christenson, John M.; Renier, J.P.; Marcille, T.F.; Casal, J.

    2010-01-01

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  11. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  12. Value of burnup credit beyond actinides

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, Chi.

    1997-01-01

    DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs

  13. Study on remain actinides recovery in pyro reprocessing

    International Nuclear Information System (INIS)

    Suharto, Bambang

    1996-01-01

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  14. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    Yang Xuexian

    1990-08-01

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f 7n -orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  15. Preparation, properties, and some recent studies of the actinide metals

    International Nuclear Information System (INIS)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing μg to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs

  16. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  17. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  18. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  19. Biotransformation of uranium and other actinides in radioactive wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Microorganisms affect the solubility, bioavailability, and mobility of actinides in radioactive wastes. Under appropriate conditions, actinides are solubilized or stabilized by the direct enzymatic or indirect nonenzymatic actions of microorganisms. Biotransformation of various forms of uranium (ionic, inorganic, and organic complexes) by aerobic and anaerobic microorganisms has been extensively studied, whereas limited information is available on other important actinides (Th, Np, Pu, and Am). Fundamental information on the mechanisms of biotransformation of actinides by microbes under various environmental conditions will be useful in predicting the long-term performance of waste repositories and in developing strategies for waste management and remediation of contaminated sites. (orig.)

  20. Small-sample-worth perturbation methods

    International Nuclear Information System (INIS)

    1985-01-01

    It has been assumed that the perturbed region, R/sub p/, is large enough so that: (1) even without a great deal of biasing there is a substantial probability that an average source-neutron will enter it; and (2) once having entered, the neutron is likely to make several collisions in R/sub p/ during its lifetime. Unfortunately neither assumption is valid for the typical configurations one encounters in small-sample-worth experiments. In such experiments one measures the reactivity change which is induced when a very small void in a critical assembly is filled with a sample of some test-material. Only a minute fraction of the fission-source neutrons ever gets into the sample and, of those neutrons that do, most emerge uncollided. Monte Carlo small-sample perturbations computations are described

  1. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.; Mannaa, O.; Chung, Suk-Ho

    2015-01-01

    and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff

  2. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro; Isobe, Yusuke; Hayashi, Naoki; Yamashita, Hiroshi; Chung, Suk-Ho

    2015-01-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study

  3. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2016-01-01

    alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame

  4. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners

    International Nuclear Information System (INIS)

    Wei Xiaolin; Xu Tongmo; Hui Shien

    2004-01-01

    Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value N d , which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and NO x emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the N d value has significant influences on the distributions of temperature and char burnout. There exists an optimal N d value under which the carbon content in the char and the NO x emission is relatively low. The coal ignition and NO x emission in the utilized power station are improved after retrofitting the burners

  5. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  6. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  7. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  8. Mathematical model of stacked one-sided arrangement of the burners

    Directory of Open Access Journals (Sweden)

    Oraz J.A.

    2017-01-01

    Full Text Available Paper is aimed at computer simulation of the turbulent methane-air combustion in upgraded U-shaped boiler unit. To reduce the temperature in the flame and hence NOx release every burner output was reduced, but the number of the burners was increased. The subject of studying: complex of characteristics with space-time fields in the upgraded steam boiler E-370 with natural circulation. The flare structure, temperature and concentrations were determined computationally.

  9. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation

    OpenAIRE

    Valera Medina, Agustin; Marsh, Richard; Runyon, Jon; Pugh, Daniel; Beasley, Paul; Hughes, Timothy Richard; Bowen, Philip John

    2017-01-01

    Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were...

  10. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  11. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  12. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  13. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38{sup th} JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment.

  14. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  15. Design evaluation of the 20-cm (8-inch) secondary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  16. Design evaluation of the 40-cm (16-inch) primary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-06-01

    An evaluation is given of the design of the existing 40-cm (16-in.) engineering-scale primary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) primary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype primary burner system. One concept utilizes the existing burner heating and cooling sub-systems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes direct contact hot gas heating and internal gas cooling of the burner, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  17. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  18. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  19. 42 CFR 422.382 - Minimum net worth amount.

    Science.gov (United States)

    2010-10-01

    ... that CMS considers appropriate to reduce, control or eliminate start-up administrative costs. (b) After... section. (c) Calculation of the minimum net worth amount—(1) Cash requirement. (i) At the time of application, the organization must maintain at least $750,000 of the minimum net worth amount in cash or cash...

  20. 19 CFR 212.11 - Net worth exhibit.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Net worth exhibit. 212.11 Section 212.11 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT Information Required From Applicants § 212.11 Net worth exhibit...

  1. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  2. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction ...

  3. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.

    1980-01-01

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  4. Research needs in metabolism and dosimetry of the actinides

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1978-01-01

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  5. ACTINET - EU network of excellence for actinide sciences

    International Nuclear Information System (INIS)

    Gompper, K.

    2006-01-01

    ACTINET, the Network of Excellence for Actinide Sciences within the 6th EU Framework Program, was launched in March 2004 for an initial period of four years. A number of tools are available in ACTINET to serve the purposes of the project, i.e. stimulate and coordinate actinide research in Europe, promote integration, train young scientists and, in this way, ensure and enhance European competence. The large European actinide laboratories with their unique experimental and analytical equipment are available to scientists from Europe as so-called 'pool facilities' within the framework of joint research projects. Setting up a 'theoretical user lab' has turned out to be a promising way of exploiting the synergies of theory and experiment in various fields of actinide science. Joint research projects are supported within the network, working with actinides being made possible in the pool facilities. Training and instruction are ensured by seminars, workshops, and schools organized annually. In familiarizing young scientists with actinide work, ACTINET exercises training functions and contributes to ensuring and enhancing European competence in the field on the medium and long term. Even after only half of its term, ACTINET is developing into a live network, thus decisively contributing towards promoting, coordinating and integrating European actinide research. As actinides play a key role in the use of nuclear power, this benefits European industries, research centers, operators of nuclear power plants and nuclear facilities as well as licensing and regulatory authorities. (orig.)

  6. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  7. Actinide extractants for the nuclear industry of the future

    International Nuclear Information System (INIS)

    Musikas, C.; Morisseau, J.C.; Hoel, P.; Guillaume, B.

    1987-06-01

    Non organo-phosphorus extractants properties regarding the extractions of actinides in nuclear fuels reprocessing are presented. N,N-dialkylamides are proposed as alternatives to TBP.N,N'-tetraalkylamides or pentaalkyl propane diamides properties are reported. They show that those bidentate extractants are alternatives to bidentate organophosphorus extractants for actinides (III) extraction from concentrated nitric acid. 11 figs, 15 refs

  8. Separations chemistry for actinide elements: Recent developments and historical perspective

    International Nuclear Information System (INIS)

    Nash, K.L.; Choppin, G.R.

    1997-01-01

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand how the wastes were generated. Most of the key separations techniques central to actinide production were developed in the 40's and 50's for the identification and production of actinide elements. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are currently of primary concern. To respond to the modern world of actinide separations, new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large-scale waste treatment procedures. In this report, the history of actinide separations, both the basic science and production aspects, is examined and evaluated in terms of contemporary priorities

  9. Potential carcinogenic effects of actinides in the environment

    International Nuclear Information System (INIS)

    Harley, N.H.; Pasternack, B.S.

    1979-01-01

    Inhalation of alpha emitting actinides delivers a dose to critical cancer sites in the human body. These sites are the bronchial epithelium and cells near bone surfaces. Inhalation of the naturally occurring actinides uranium and thorium in resuspended soil in the air results in a continuous exposure for the global population of about 0.1 fCi/m 3 for each of these actinides. The highest dose is from the natural actinide 230 Th. Over 50 yr, the dose to bronchial epithelium is 0.05 mrad and to bone surfaces 0.4 mrad. In the case of accidental environmental contamination (e.g. near a nuclear fuel reprocessing plant) the man-made actinides plutonium, americium and curium could deliver about the same alpha dose to these sites if the soil is contaminated to the same level as the natural actinides (approximately 1 pCi/g). Two nuclear accidents have already produced contamination of about this level. Exposures in this case, however, are to small local populations compared with global exposure for the natural actinides. Significant enhancement of the natural radioactive actinide pollution by combustion of all types of fossil fuel is suspected but not enough data are available to estimate total population doses. (author)

  10. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  11. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  12. Thermodynamic analysis of light-actinide elements

    International Nuclear Information System (INIS)

    Brosh, Eli; Makov, Guy; Shneck, Roni Z.

    2005-01-01

    The thermophysical properties of the alpha phases of the light actinide elements Th, U, Np and Pu were analysed. For each of the analysed elements, the Gibbs free-energy was modelled by an explicit function of temperature T and pressure P over the whole relevant T-P range, in a manner compatible with the CALPHAD (Calculation of Alloy Phase Diagrams) method. Several adjustable model-parameters were fitted to available experimental results. The model is based on a new semi-empirical equation of state, which interpolates with Thomas-Fermi type models for the volume and with the Dulong-Petit value for the heat capacity, at extreme pressures

  13. Determination of actinides using ICP-SFMS

    International Nuclear Information System (INIS)

    Nygren, Ulrika

    2006-01-01

    Interest in the determination of the actinides using ICP-MS has steadily increased with the development of systems capable of more sensitive and precise measurements. However, the analysis of less abundant actinides such as Pu and Am is not straightforward due to the need for chemical separation of these elements prior to determination. In many applications of mass-spectrometric actinide analysis, isotope ratio measurements are important, either for the analysis of the isotopic composition of, e.g., U or Pu in the sample, or for quantitative determinations using isotope dilution mass spectrometry. In order to achieve high precision and accuracy in an isotope ratio measurement, corrections for instrumentally induced systematic errors, e.g., due to dead-time and mass bias, need to be considered. In this thesis, different aspects of actinide analysis using ICP-SFMS have been addressed. In Papers I and III, separation procedures based on solid phase extraction for Pu, Am and U were developed and evaluated with respect to chemical yield and separation from elements causing spectral interferences. Applications of the analytical procedures developed comprised measurement of the 240 Pu/ 2 3 9Pu ratio in environmental reference materials, and age determination of Pu based on the 241 Pu/ 241 Am and 240 Pu/ 236 U ratios. In the application of different separation procedures for Pu, previously unidentified spectral interferences were discovered. In Paper II, these interferences were identified as lanthanide phosphate ions and the composition and formation of these species with respect to different instrumental parameters were further examined. Due to the importance of precise and accurate isotope ratio determination, a thorough investigation of the instrumental dead time of an ICP-SFMS system was performed. The dead time was evaluated via both isotope ratio and electronic measurements of the output from the detector amplifier. It was found that the overall uncertainty in ratio

  14. Photofissility of actinide nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Tavares, O.A.P.; Duarte, S.B.; Oliveira, E.C. de; Arruda-Neto, J.D.T.; Pina, S.R. de; Likhachev, V.P.; Mesa, J.; Goncalves, M.

    2001-08-01

    We analyze the recent experimental data on photofissility for 237 Np, 238 U, and 232 Th at incident photon energies above 200 MeV. For this analysis, we developed a Monte carlo algorithm for the nuclear evaporation process in photonuclear reactions. This code is used in association with the multi-collisional model for the photon-induced intranuclear cascade process. Our results show a good quantitative and qualitative agreement with the experimental data. It is shown that the emission of protons and alpha particles at the evaporation stage is an important component for the non-saturation of the actinides photofissility up to, at least, 1GeV. (author)

  15. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  16. Electronic structure of the light actinides

    International Nuclear Information System (INIS)

    Dunlap, B.D.

    1976-01-01

    In the last few years, considerable advances have been made in our understanding of the properties of the light actinides. Although these are 5f transition elements formally equivalent to the lanthanide (4f) elements, these materials show a much more varied behavior due to the larger spatial extent and ionizability of the 5f electrons. A review is given of some areas of current interest, especially where hyperfine measurements have played an active role. These include studies of a variety of magnetic phenomena, systematics of isomer shift measurements, and studies of paramagnetic relaxation

  17. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  18. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  19. Compilation of actinide neutron nuclear data

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish nuclear data committee has compiled a selected set of neutron cross section data for the 16 most important actinide isotopes. The aim of the report is to present available data in a comprehensible way to allow a comparison between different evaluated libraries and to judge about the reliability of these libraries from the experimental data. The data are given in graphical form below about 1 ev and above about 10 keV shile the 2200 m/s cross sections and resonance integrals are given in numerical form. (G.B.)

  20. Thermodynamics of carbothermic synthesis of actinide mononitrides

    International Nuclear Information System (INIS)

    Ogawa, T.; Shirasu, Y.; Minato, K.; Serizawa, H.

    1997-01-01

    Carbothermic synthesis will be further applied to the fabrication of nitride fuels containing minor actinides (MA) such as neptunium, americium and curium. A thorough understanding of the carbothermic synthesis of UN will be beneficial in the development of the MA-containing fuels. Thermodynamic analysis was carried out for conditions of practical interest in order to better understand the recent fabrication experiences. Two types of solution phases, oxynitride and carbonitride phases, were taken into account. The Pu-N-O ternary isotherm was assessed for the modelling of M(C, N, O). With the understanding of the UN synthesis, the fabrication problems of Am-containing nitrides are discussed. (orig.)

  1. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  2. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve

  3. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Edelstein, N.M.

    1998-01-01

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  4. Actinide recovery from waste and low-grade sources

    International Nuclear Information System (INIS)

    Navratil, J.D.; Schulz, W.W.

    1982-01-01

    Actinide and nuclear fuel cycle operations generate a variety of process waste streams. New methods are needed to remove and recover actinides. More interest is also being expressed in recovering uranium from oceans, phosphoric acid, and other low grade sources. To meet the need for an up-to-date status report in the area of actinide recovery from waste and low grade sources, these papers were brought together. The papers provide an authoritative, in-depth coverage of an important area of nuclear and industrial and engineering chemistry which cover the following topics: uranium recovery from oceans and phosphoric acid; recovery of actinides from solids and liquid wastes; plutonium scrap recovery technology; and other new developments in actinide recovery processes

  5. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  6. Preliminary Results on the Effects of Distributed Aluminum Combustion Upon Acoustic Growth Rates in a Rijke Burner

    OpenAIRE

    Newbold, Brian R.

    1998-01-01

    Distributed particle combustion in solid propellant rocket motors may be a significant cause of acoustic combustion instability. A Rijke burner has been developed as a tool to investigate the phenomenon. Previous improvements and characterization of the upright burner lead to the addition of a particle injection flame. The injector flame increases the burner's acoustic driving by about 10% which is proportional to the injector's additional 2 g/min of gas. Frequency remained fairly constant fo...

  7. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  8. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  9. The radiological impact of actinides discharged to the Irish Sea

    International Nuclear Information System (INIS)

    Hunt, G.J.; Smith, B.D.

    1999-01-01

    This paper describes the radiological effects of releases of actinides to the Irish Sea from Sellafield, the major source. Exposure pathways to man since the commencement of discharges in 1952 are reviewed; the importance of actinides began to increase with increased discharges in the 1970s. With the demise of the porphyra/laverbread pathway due to transport difficulties, the pathway due to fish and shellfish consumption became critical, particularly for actinides through molluscan shellfish. A reassessment on the current basis of effective dose shows that peak exposures to the critical group of about 2 mSv yr -1 were received in the mid-1970s, about 30% of which was due to actinides. Effective doses have since reduced but the relative importance of actinides is greater, due to the interplay of discharges of radionuclides from Sellafield and their behaviour in the environment. Additive doses through sea food due to releases of natural radionuclides from the Marchon phosphate plant at Whitehaven are also considered, although the actinide component from this source has been small. Exposures due to actinides from Sellafield via other pathways are shown to be much lower than those involving sea food. Collective doses are also considered; these peaked at about 300 man-Sv to the European population (including the UK) in 1979, with only a few percent due to actinides. As in the case of critical group doses, the relative importance of actinides has increased in recent years within the decreasing total collective dose. For both critical group and collective doses, therefore, the actinide component needs to be kept under review. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Something worth remembering: visual discrimination in sharks.

    Science.gov (United States)

    Fuss, Theodora; Schluessel, Vera

    2015-03-01

    This study investigated memory retention capabilities of juvenile gray bamboo sharks (Chiloscyllium griseum) using two-alternative forced-choice experiments. The sharks had previously been trained in a range of visual discrimination tasks, such as distinguishing between squares, triangles and lines, and their corresponding optical illusions (i.e., the Kanizsa figures or Müller-Lyer illusions), and in the present study, we tested them for memory retention. Despite the absence of reinforcement, sharks remembered the learned information for a period of up to 50 weeks, after which testing was terminated. In fish, as in other vertebrates, memory windows vary in duration depending on species and task; while it may seem beneficial to retain some information for a long time or even indefinitely, other information may be forgotten more easily to retain flexibility and save energy. The results of this study indicate that sharks are capable of long-term memory within the framework of selected cognitive skills. These could aid sharks in activities such as food retrieval, predator avoidance, mate choice or habitat selection and therefore be worth being remembered for extended periods of time. As in other cognitive tasks, intraspecific differences reflected the behavioral breadth of the species.

  11. The Philosophical Worth of Liberal Peacebuilding

    Directory of Open Access Journals (Sweden)

    Muhammad Waffaa Kharisma

    2017-05-01

    Full Text Available The concept of Liberal Peacebuilding is often associated with the failure of pushing liberalisation in war-torn failed states: the practice of liberal peacebuilding as a liberal project instead of a peacebuilding effort. The essay starts with breaking down the basic premises of a liberal peacebuilding and its ideological drive. Then, it identifies and evaluates the critics and alternatives to liberal peacebuilding. The essay sees that the implementation of fixed standard peacebuilding packages in vastly different scenarios and countries is the consequence of practicing liberal peacebuilding as a liberal project. This essay argues that liberal peacebuilding is worth saving if it recognises itself as an unfinished project, and instead advocates peacebuilding efforts that are more concentrated as a (and in showing technical solution rather than an ideological impulse. As such, the essay proposes the prioritisation of maintaining stability in a post-conflict state, through concentrating on ensuring the specific case-per-case technical solutions, often which is attributed to institutional foundation to ensure the deliveries of collective aims and interests of local society.

  12. Simulation error propagation for a dynamic rod worth measurement technique

    International Nuclear Information System (INIS)

    Kastanya, D.F.; Turinsky, P.J.

    1996-01-01

    KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth

  13. Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Béla Kosztin

    2013-03-01

    Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.

  14. The effect of orifice plate insertion on low NOx radial swirl burner performances (simulated variable area burner)

    International Nuclear Information System (INIS)

    Mohammad Nazri Mohd Jaafar

    2000-01-01

    The effect of inserting an outlet orifice plate of different sizes at the exit plane of the swirler outlet were studied for small radial swirler with fixed curves vanes. Tests were carried out using two different sizes flame tubes of 76 mm and 140 mm inside diameter, respectively and 330 mm in length. The system was fuelled via eight vane passage fuel nozzles of 3.5 mm diameter hole. This type of fuel injection helps in mixing the fuel and air better prior to ignition. Tests were carried out at 20 mm W.G. pressure loss which is representative of gas burners for domestic central heating system operating conditions. Tests were also carried out at 400 K preheated inlet air temperature and using only natural gas as fuel. The aim of the insertion of orifice plate was to create the swirler pressure loss at the swirler outlet phase so that the swirler outlet shear layer turbulence was maximize to assist with fuel/air mixing. For the present work, the smallest orifice plate exhibited a very low NO x emissions even at 0.7 equivalence ratio were NO x is well below 10 ppm corrected at 0% oxygen at dry basis. Other emissions such as carbon monoxide and unburned hydrocarbon were below 10 ppm and 100 ppm, respectively, over a wide range of operating equivalence ratios. The implies that good combustion was achieved using the smallest orifice plate. (Author)

  15. Recycle of LWR actinides to an IFR

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    Large quantities of actinide elements are present in irradiated light water reactor fuel that is stored throughout the world. Because of the high fission to capture ratio for the transuranium (TRU) elements with the high energy neutrons in metal-fueled integral fast reactors (IFR), that reactor can consume these elements effectively. The stored fuel may represent valuable resource for the expanding application of fast power reactors. In addition, the removal of TRU elements from spent LWR fuel has the potential for increasing the capacity of high level waste facilities by reducing the heat load and may increase the margin of safety in meeting licensing requirement. Argonne National Laboratory is developing a pyrochemical process, which is compatible with the IFR fuel cycle for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. Two pyrochemical processes, that is, salt transport process and blanket processing study, are discussed in this paper. Also the experimental studies are reported. (K.I.)

  16. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than 233 U, 235 U, and 239 Pu that have an odd number of neutrons in the nucleus: S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River. The subcritical limits are 201 g for 241 Pu, 13 g for 242 /sup m/Am, 90 g for 243 Cm, 30 g for 245 Cm, 900 g for 247 Cm, 10 g for 249 Cf, and 5 g for 251 Cf. Association of 241 Pu with an equal mass of 240 Pu increases the 241 Pu limit to a value greater than that for pure 239 Pu. Association of 242 /sup m/Am with 241 Am increases the limit for the mixture to that for dry, theoretical density AmO 2 at isotopic concentrations of 242 /sup m/Am less than approx. 6%. Association of 245 Cm with 244 Cm increases the limit according to the formula 30 + 0.3 244 Cm/ 245 Cm up to the limit for dry CmO 2 . A limiting mass of 8.15 kg for plutonium containing at least 67% 238 Pu as oxide was calculated that applies (provided 240 Pu exceeds 241 Pu) with no limit on moderation. 1 figure, 5 tables

  17. The dose from actinides in the environment

    International Nuclear Information System (INIS)

    Harley, Naomi H.; Pasternack, Bernard S.

    1978-01-01

    We attempt to evaluate the health effects on local populations from the nuclear power industry. The nuclides which are thought to be most hazardous are the long-lived, alpha-emitting isotopes of plutonium, americium and curium. These long-lived alpha emitters will almost certainly be dispersed in the environment during fuel reprocessing. Their effect is local, not global and at worst a single community could be affected. The most important pathway for exposure to the actinides is through inhalation following resuspension of contaminated soil particles. The most important alpha dose estimates are to cells in bronchial epithelium and cells on bone surfaces. These alpha dose estimates are calculated for a dispersal which contaminates soil with 1 pCi/g of each of the nuclides Pu 238,239 , Am 241 , Cm 242,244 . These bronchial and bone cell dose estimates are compared with those from the naturally occurring actinide 232 Th (and daughters) which are normally found in soil at a level of about 1 pCi/g. (author)

  18. Consistent biokinetic models for the actinide elements

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2001-01-01

    The biokinetic models for Th, Np, Pu, Am and Cm currently recommended by the International Commission on Radiological Protection (ICRP) were developed within a generic framework that depicts gradual burial of skeletal activity in bone volume, depicts recycling of activity released to blood and links excretion to retention and translocation of activity. For other actinide elements such as Ac, Pa, Bk, Cf and Es, the ICRP still uses simplistic retention models that assign all skeletal activity to bone surface and depicts one-directional flow of activity from blood to long-term depositories to excreta. This mixture of updated and older models in ICRP documents has led to inconsistencies in dose estimates and interpretation of bioassay for radionuclides with reasonably similar biokinetics. This paper proposes new biokinetic models for Ac, Pa, Bk, Cf and Es that are consistent with the updated models for Th, Np, Pu, Am and Cm. The proposed models are developed within the ICRP's generic model framework for bone-surface-seeking radionuclides, and an effort has been made to develop parameter values that are consistent with results of comparative biokinetic data on the different actinide elements. (author)

  19. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  20. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  1. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  2. Parametric Study of High-Efficiency and Low-Emission Gas Burners

    Directory of Open Access Journals (Sweden)

    Shuhn-Shyurng Hou

    2013-01-01

    Full Text Available The objective of this study is to investigate the influence of three significant parameters, namely, swirl flow, loading height, and semi-confined combustion flame, on thermal efficiency and CO emissions of a swirl flow gas burner. We focus particularly on the effects of swirl angle and inclination angle on the performance of the swirl flow burner. The results showed that the swirl flow burner yields higher thermal efficiency and emits lower CO concentration than those of the conventional radial flow burner. A greater swirl angle results in higher thermal efficiency and CO emission. With increasing loading height, the thermal efficiency increases but the CO emission decreases. For a lower loading height (2 or 3 cm, the highest efficiency occurs at the inclination angle 15°. On the other hand, at a higher loading height, 4 cm, thermal efficiency increases with the inclination angle. Moreover, the addition of a shield can achieve a great increase in thermal efficiency, about 4-5%, and a decrease in CO emissions for the same burner (swirl flow or radial flow.

  3. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  4. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  5. Local heterogeneity effects on small-sample worths

    International Nuclear Information System (INIS)

    Schaefer, R.W.

    1986-01-01

    One of the parameters usually measured in a fast reactor critical assembly is the reactivity associated with inserting a small sample of a material into the core (sample worth). Local heterogeneities introduced by the worth measurement techniques can have a significant effect on the sample worth. Unfortunately, the capability is lacking to model some of the heterogeneity effects associated with the experimental technique traditionally used at ANL (the radial tube technique). It has been suggested that these effects could account for a large portion of what remains of the longstanding central worth discrepancy. The purpose of this paper is to describe a large body of experimental data - most of which has never been reported - that shows the effect of radial tube-related local heterogeneities

  6. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  7. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  8. Process for denitrating waste solutions containing nitrates and actinides with simultaneous separation of the actinides

    International Nuclear Information System (INIS)

    Gompper, K.

    1986-01-01

    The invention is intended to reduce the acid and nitrate content of nitrate waste solutions, to reduce the total salt content of the waste solution, to remove the actinides contained in it by precipitation, without any danger of violent reactions or an increase in the volume of the waste solution. The invention achieves this by mixing the waste solution with diethyl oxalate at room temperature and heating the mixture to at least 80 0 C. (orig./PW) [de

  9. General survey of applications which require actinide nuclear data

    International Nuclear Information System (INIS)

    Raman, S.

    1976-01-01

    This review paper discusses the actinide waste problem, the buildup of toxic isotopes in the fuel, the neutron activity associated with irradiated fuel, the 252 Cf buildup problem, and the production of radioisotope power sources as broad areas that require actinide cross-section data. Decay data enter into the area of radiological safety and health physics. This paper also discusses a few cross-section measurements in progress at the Oak Ridge Electron Linear Accelerator. The availability of actinide samples through the Transuranium Program at Oak Ridge is discussed in considerable detail. The present data status with respect to the various applications is reviewed along with recommendations for improving the data base

  10. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  11. Minor Actinide Laboratory at JRC-ITU: Fuel fabrication facility

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The Minor Actinide Laboratory (MA-lab) of the Institute for Transuranium Elements is a unique facility for the fabrication of fuels and targets containing minor actinides (MA). It is of key importance for research on Partitioning and Transmutation in Europe, as it is one of the only dedicated facilities for the fabrication of MA containing materials, either for property measurements or for the production of test pins for irradiation experiments. In this paper a detailed description of the MA-Lab facility and the fabrication processes developed to fabricate fuels and samples containing high content of minor actinides is given. In addition, experience gained and improvements are also outlined. (authors)

  12. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    1997-06-01

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  13. Report of the panel on practical problems in actinide biology

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Practical problems are classified as the need to make operational decisions, the need for regulatory assessment either of individual facilities or of generic actions, and the overt appearance of radiobiological effects in man or radioactivity in man or the environment. Topics discussed are as follows: simulated reactor accident; long term effects of low doses; effects of repeated exposures to actinides; inhaled uranium mine air contaminants; metabolism and dosimetry; environmental equilibrium models; patterns of alpha dosimetry; internal dose calculations; interfaces between actinide biology and environmental studies; removal of actinides deposited in the body; and research needs related to uranium isotopes

  14. Critical masses for the even-neutron-numbered transuranium actinides

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1981-01-01

    As part of a standards effort of the American Nuclear Society to establish subcritical mass limits for the transuranium actinides, critical masses were calculated for seven actinides, critical masses were calculated for seven actinide elements in bare, water-reflected, and steel-reflected metal systems. For the nuclides /sup 242/Pu and /sup 241/Am, values obtained with ENDF/B-V cross-section data were in much better agreement with values inferred from experimental measurement than were initial values calculated with ENDF/B-IV data. A brief description of the analytical methods employed is followed by a presentation of the results. 10 refs

  15. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  16. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  17. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  18. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  19. Workshop on environmental research for actinide elements

    International Nuclear Information System (INIS)

    Watters, R.L.

    1981-09-01

    The discussions in this fifth workshop were directed to the advances which have been made in the environmental chemistry of plutonium and to the feasibility and worth of developing environmental transport models which might serve as predictive tools for long term behavior and as guides for future research needs. Two plutonium models of the soil/plant pathway were presented for critique and as examples of possible approaches. Reports of the following four panels are presented in this proceedings: model development; marine; terrestrial and freshwater/groundwater

  20. Effect of fuel volatility on performance of tail-pipe burner

    Science.gov (United States)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  1. Fission properties of very heavy actinides

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1979-01-01

    The existing data on neutron-emission, kinetic-energy and mass distributions, and half-lives for spontaneous fission of the heavy actinides are reviewed. A comparison of the data for the Fm isotopes with heavier and lighter nuclides suggests that the properties of the heavy Fm isotopes may be unique and can qualitatively be explained on the basis of fragment shell effects, i.e., symmetric fission results in two fragments with configurations close to the doubly magic 132 Sn nucleus. The effect of excitation energy and the use of systematics and theoretical predictions of fission properties and half-lives in the identification of new heavy element isotopes is discussed. 54 references

  2. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Bondietti, E.A.

    1978-01-01

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  3. Determination of actinides by alpha spectrometric methods

    International Nuclear Information System (INIS)

    Galanda, D.

    2011-01-01

    The submitted thesis in its first part concern with content determination of plutonium, americium, uranium, thorium radionuclides, like the most significant representatives of actinides in environmental patterns, where by the primary consideration is a focusing on content of these actinides in samples of superior mycotic organisms - mushrooms. Following the published studies the mushrooms were monitored as organisms that could verify most of attributes putted on bioindicators in term of observation of substantial radionuclides in living environment. There were analyzed two groups of samples that came from two chosen locations, one of them is situated in Eastern Slovakia and the second one in West Slovakia. Except for mushrooms samples the examined radionuclides volumes were determined even in specimens of soil sub-base and some plants from chosen localities. The liquid - liquid extraction methods were used for determination of mass activities of actinides in samples for radiochemical separation of monitored radionuclides. The obtained results of plutonium and americium mass activities determination's lead us to carry out experiments that proved abilities of superior mycotic organisms to absorb and accumulate alpha radionuclides in their textures. We choose the oyster mushroom (Pleurotus ostreatus) species as an experimental object. Sporocarps of this mushroom were cultivated on substratum which is commercially exploited to cultivate it whereby this substratum was purposely contaminated by known activities of 239 Pu and 241 Am. We prepared five autonomous samples together. The values of mass activities of 239 Pu and 241 Am obtained by following analysis of prepared samples showed the ability of mushrooms to absorb observed actinides in their texture structures. On the basis of obtained mass activities it was possible to evaluate and numerically determine a transmitting factor's attributes of monitored radionuclides in sporocarps and in sub-base. Accordingly we

  4. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  5. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimized for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10

  6. Role of actinide behavior in waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    For purposes of assessing the safety of repositories of radioactive wastes placed in geologic isolation, actinide behavior in the environment has been interpreted in terms of five steps of prediction: analysis of repository stability; geosphere transport; the geosphere-biosphere interface; biosphere transport; and biosphere consequences. Each step in the analysis requires models of nuclide behavior and data on the physical and chemical properties of the radioactivity. The scope of information required in order to make reliable safety assessments has been outlined. All steps in the assessment process are coupled; reliable models and data are therefore needed for each step. The prediction phase of safety assessment is also coupled to activities concerned with waste treatment, selection of the final form of the waste, and selection of repository sites and designs. Results of the predictions can impact these activities

  7. Light element thermodynamics related to actinide separations

    International Nuclear Information System (INIS)

    Johnson, I.; Johnson, C.E.

    1997-01-01

    The accumulation of waste from the last five decades of nuclear reactor development has resulted in large quantities of materials of very diverse chemical composition. An electrometallurgical (EM) method is being developed to separate the components of the waste into several unique streams suitable for permanent disposal and an actinide stream suitable for retrievable storage. The principal types of nuclear wastes are spent oxide or metallic fuel. Since the EM module requires a metallic feed, and oxygen interferes with its operation, the oxide fuel has to be reduced prior to EM treatment. Further, the wastes contain, in addition to oxygen, other light elements (first- and second-row elements) that may also interfere with the operation of the EM module. The extent that these light elements interfere with the operation of the EM module has been determined by chemical thermodynamic calculations. (orig.)

  8. Radiochemical studies of neutron deficient actinide isotopes

    International Nuclear Information System (INIS)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242 Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z 1 + Z 2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228 Pu, 230 Pu, 232 Cm, or 238 Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes

  9. Archetypes for actinide-specific chelating agents

    International Nuclear Information System (INIS)

    Smith, W.L.

    1980-01-01

    The complexes of uranium and thorium with monomeric hydroxamic acids can serve as archetypes for an optimized macrochelate designed for tetravalent actinides. The eight-coordinate complexes, Th(i-PrN(O)C(O)R) 4 , where R = tert-butyl or R = neopentyl, have been synthesized and their structures have been determined by x-ray diffraction. The bulky alkyl substituents impart remarkable volatility and hydrocarbon solubility to these complexes, and the steric interactions of these substituents largely determine the structures. When R = tert-butyl, the substituents occupy the corners of a tetrahedron and force the complex into a distorted cubic geometry with crystallographic S 4 symmetry. Insertion of a methylene group between the carbonyl carbon and the tert-butyl group relaxes the steric requirements, and the coordination polyhedron of the neopentyl derivative is close to the mmmm isomer of the trigonal-faced dodecahedron. Uranium tetrachloride was quantitatively oxidized via an oxygen transfer reaction with two equivalents of N-phenylbenzohydroxamic acid anion (PBHA) in tetrahydrofuran (THF) to form UO 2 Cl(PBHA)(THF) 2 and benzanilide. The structure of the uranyl complex has been determined from x-ray diffraction data; the linear uranyl ion is surrounded by a planar pentagonal array composed of two hydroxamate oxygen atoms, a chloride ion and two THF oxygens, such that the chloride ion is opposite the hydroxamate group. That the THF and phenyl rings are twisted from this equatorial plane limits the molecular geometry to that of the C 1 point group. Some aspects of the chemistry of hydroxamic acids and of their incorporation into molecules that may serve as precursors of tetravalent actinide specific sequestering agents have also been investigated

  10. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  11. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  12. Studies of actinides in a superanoxic fjord

    Energy Technology Data Exchange (ETDEWEB)

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as `dissolved` Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H{sub 2}S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ({sup 232}Th and {sup 230}Th) continues to increase. The flux of {sup 232}Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m{sup 2}/y. 208 refs.

  13. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  14. Studies of actinides in a superanoxic fjord

    International Nuclear Information System (INIS)

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as 'dissolved' Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H 2 S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ( 232 Th and 230 Th) continues to increase. The flux of 232 Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m 2 /y. 208 refs

  15. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  16. Analyses of the performance of the ASTRID-like TRU burners in regional scenario studies - 5136

    International Nuclear Information System (INIS)

    Vezzoni, B.; Gabrielli, F.; Rineiski, A.

    2015-01-01

    In the past, large Sodium Fast Reactors systems (earlier CAPRA/CADRA, later ESFR and ESFR-like systems) and Accelerator Driven Systems (ADS-EFIT) were considered and extensively studied in Europe for managing MAs/Pu within regional or national scenario studies. After the ASTRID system was proposed in France, ASTRID-like burners could be considered as further options to be investigated. Low conversion ratio (CR) ASTRID-like burner cores (1200 MWth) have been considered at KIT by introducing few modifications with respect to the original French ASTRID design. These modifications allow keeping almost unchanged the main characteristics of the system (e.g. thermal power) and avoiding a strong deterioration of safety parameters (such as sodium void effect) after introduction of large amounts of Pu (more than 20%) and MAs (2-12%) in the fuel. These cores have already been studied at KIT for phase-out scenarios. A constant energy production case, relevant for a European or another regional scenario is considered in the paper. Cases with different shares (from 10 to 30%) of ASTRID-like burners in the nuclear energy fleet are compared. The results show that the ASTRID-like burners allow the use of all TRUs compositions foreseen in the fuel cycle with a proper choice of the MAs to Pu ratios and of the U/TRUs fractions either in phasing-out and on-going nuclear energy utilization conditions. The results show that a mixed fleet composed of 11% burners and 89% ESFR is able to stabilize the MAs in the cycle. The same stabilization is obtained with a fleet composed by 33% burner in combination with LWRs only

  17. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  18. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  19. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, A. [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, J.G.; Bonnet, U. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2007-09-15

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub x}. (orig.)

  20. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  1. The OSMOSE Experimental Program for the qualification of integral cross sections of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Muriel; Hudelot, Jean-Pascal [CEA, Centre de Cadarache, F-13108 Saint Paul lez Durance (France); Klann, Raymond [Nuclear Engineering Division, Argonne. National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4814 (United States)

    2006-07-01

    at understanding and resolving potential discrepancies between calculated and measured values. The OSMOSE program began in 2005 and will continue until 2010. The reactivity worth of samples having been fabricated in CEA Marcoule from 2001 to 2005, and containing separated actinides ({sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm and {sup 245}Cm), will be measured by an oscillation technique with an overall expected accuracy better than 3%. The measurements will cover a wide range of neutron spectra: over-moderated thermal spectrum, PWR UOx standard spectrum, PWR 100% MOX spectrum and epithermal HCLWR type spectrum. The paper has the following structure: I. Introduction; II. Main goals and major stakes; III. Experimental conditions; 1. The MINERVE facility; 2. The experimental lattices; 3. The oscillation technique of measurement; 4. Calibration curves for samples measurement; 5. OSMOSE samples; IV. Conclusion. To summarize, this paper has described the OSMOSE experimental program that will be performed between 2005 and 2010 in the MINERVE facility of CEA Cadarache. It covers the majority of the actinides that concern in the reactor physics and the fuel cycle, from {sup 232}Th up to {sup 245}Cm and is therefore highly valuable for every domain of neutron study. Indeed it will allow to determine by an oscillation technique the reactivity of samples containing the separated studied actinides with an accuracy that takes into account the uncertainties on the experiments, on the calculations and on the material balance of the samples. As a consequence, the OSMOSE program will involve an improvement - at least by a factor 2 - on the main nuclear data (integral resonance, capture cross section, reproduction factor) of the studied actinides, and on a large range of neutron spectra (thermal and epithermal). A single and accurate

  2. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  3. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  4. Development, study and use of GN type high-speed burners

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, R A; Yerinov, A Y

    1981-01-01

    The design of a tunnel high speed gas burner for thermal, tunnel, and annealing furnaces is described. The use of GN type burners and heat treating processes and annealing of articles allows one to attain high uniformity of heating, to reduce fuel consumption, and to simplify the lining. A high degree of (+ or - f/sup 0/C) heating uniformity and significant (up to 30%) fuel saving was obtained in a heat treatment furnace with a roll-out hearth at the Uralkhimmash plant.

  5. The effect of heat transfer on acoustics in burner stabilized flat flames

    OpenAIRE

    Schreel, K.R.A.M.; Tillaart, van den, E.L.; Janssen, R.W.M.; Goey, de, L.P.H.; Vovelle, C.; Lucka, K.

    2003-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a large modulation range. This can lead to noise problems which cannot be solved via trial and error, but need accurate modelling. An acoustic analysis as part of the design phase can reduce the time-to-market considerably, but the acoustic response of the flame is an unknown and complex key-factor. In this study, the influence of the heat transfer between the gas and the burner on the acoustic transfer coefficient is studied...

  6. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  7. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  8. Significant others and contingencies of self-worth: activation and consequences of relationship-specific contingencies of self-worth.

    Science.gov (United States)

    Horberg, E J; Chen, Serena

    2010-01-01

    Three studies tested the activation and consequences of contingencies of self-worth associated with specific significant others, that is, relationship-specific contingencies of self-worth. The results showed that activating the mental representation of a significant other with whom one strongly desires closeness led participants to stake their self-esteem in domains in which the significant other wanted them to excel. This was shown in terms of self-reported contingencies of self-worth (Study 1), in terms of self-worth after receiving feedback on a successful or unsatisfactory performance in a relationship-specific contingency domain (Study 2), and in terms of feelings of reduced self-worth after thinking about a failure in a relationship-specific contingency domain (Study 3). Across studies, a variety of contingency domains were examined. Furthermore, Study 3 showed that failing in an activated relationship-specific contingency domain had negative implications for current feelings of closeness and acceptance in the significant-other relationship. Overall, the findings suggest that people's contingencies of self-worth depend on the social situation and that performance in relationship-specific contingency domains can influence people's perceptions of their relationships.

  9. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  10. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  11. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  12. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  13. Use of fast-spectrum reactors for actinide burning

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1991-01-01

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  14. Thermochemical and thermophysical properties of minor actinide compounds

    International Nuclear Information System (INIS)

    Minato, Kazuo; Takano, Masahide; Otobe, Haruyoshi; Nishi, Tsuyoshi; Akabori, Mitsuo; Arai, Yasuo

    2009-01-01

    Burning or transmutation of minor actinides (MA: Np, Am, Cm) that are classified as the high-level radioactive waste in the current nuclear fuel cycle is an option for the advanced nuclear fuel cycle. Although the thermochemical and thermophysical properties of minor actinide compounds are essential for the design of MA-bearing fuels and analysis of their behavior, the experimental data on minor actinide compounds are limited. To support the research and development of the MA-bearing fuels, the property measurements were carried out on minor actinide nitrides and oxides. The lattice parameters and their thermal expansions were measured by high-temperature X-ray diffractometry. The specific heat capacities were measured by drop calorimetry and the thermal diffusivities by laser-flash method. The thermal conductivities were determined by the specific heat capacities, thermal diffusivities and densities. The oxygen potentials were measured by electromotive force method.

  15. Formation of actinides in irradiated HTGR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos, A. M.

    1976-03-15

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for an actinide isolation were tested with highly irradiated ThO/sub 2/. Separation and decontamination factors are presented. Build-up of /sup 232/U was discussed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal under consideration of the reprocessing technology which is available presently.

  16. Actinide removal from aqueous solution with activated magnetite

    International Nuclear Information System (INIS)

    Kochen, R.L.; Thomas, R.L.

    1987-01-01

    An actinide aqueous waste treatment process using activated magnetite has been developed at Rocky Flats. The use and effectiveness of various magnetites in lowering actinide concentrations in aqueous solution are described. Experiments indicate that magnetite particle size and pretreatment (activation of the magnetite surface with hydroxyl ions greatly influence the effective use of magnetite as an actinide adsorbent. With respect to actinide removal, Ba(OH) 2 -activated magnetite was more effective over a broader pH range than was NaOH-activated magnetite. About 50% less Ba(OH) 2 -activated magnetite was required to lower plutonium concentration from 10 -4 to 10 -8 g/l. 7 refs., 8 tabs

  17. What fits best minor actinides as a die material?

    International Nuclear Information System (INIS)

    Hinfray, J.

    2003-01-01

    Zirconolite might be the die material used to confine actinides definitively. Cea's teams have been investigating the ability of zirconolite to trap actinide atoms in its own crystal structure. These studies have been performed with 239 Pu that presents the same ability to set chemical links with the constituents of the die as 3 minor actinides do. Crystal materials like zirconolite are more sensitive to self irradiation than glass. The next step of the characterization of zirconolite is to evaluate its capacity to sustain self alpha irradiation. In order to do so, 238 Pu is used since its relatively short period (T = 87 years) allows an acceleration of the process : damages cumulated in the die material in 2 years will be equivalent to those produced by minor actinides for millions years. The results will be known in 2004. (A.C.)

  18. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant Unit...

  19. Leaching of actinides from nuclear waste glass: French experience

    International Nuclear Information System (INIS)

    Vernaz, E.Y.; Godon, N.

    1991-01-01

    The activity concentration versus time of a typical LWR glass shows that after 300 years most of the activity is attributable to three actinides (Np, Pu and Am) and to 99 Tc. This activity decreases slowly, and some 50.000 years are necessary before the activity concentration drops to the level of the richest natural ores. This paper reviews the current state of knowledge concerning the kinetics of actinide release from glass subjected to aqueous leaching

  20. Chemical factors controlling actinide sorption in the environment

    International Nuclear Information System (INIS)

    Beall, G.W.; Allard, B.

    1979-01-01

    The solid geologic media and the aqueous phase are of equal importance for the retention of actinides in the environment. The composition of the water is largely determined by the mineralogical composition of the rock that it is in equilibrium with. The chemical form of the actinides and their sorption, are highly dependent on the composition of the water with respect to pH, redox potential, and concentration of anions like carbonate, phosphate, fluoride, and organic acids