WorldWideScience

Sample records for working memory dynamics

  1. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  2. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    Science.gov (United States)

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional

  3. Dynamic visual noise interferes with storage in visual working memory.

    Science.gov (United States)

    Dean, Graham M; Dewhurst, Stephen A; Whittaker, Annalise

    2008-01-01

    Several studies have demonstrated that dynamic visual noise (DVN) does not interfere with memory for random matrices. This has led to suggestions that (a) visual working memory is distinct from imagery, and (b) visual working memory is not a gateway between sensory input and long-term storage. A comparison of the interference effects of DVN with memory for matrices and colored textures shows that DVN can interfere with visual working memory, probably at a level of visual detail not easily supported by long-term memory structures or the recoding of the visual pattern elements. The results support a gateway model of visuospatial working memory and raise questions about the most appropriate ways to measure and model the different levels of representation of information that can be held in visual working memory.

  4. Dynamic Search and Working Memory in Social Recall

    Science.gov (United States)

    Hills, Thomas T.; Pachur, Thorsten

    2012-01-01

    What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to…

  5. Working memory capacity as a dynamic process

    Directory of Open Access Journals (Sweden)

    Vanessa R Simmering

    2013-01-01

    Full Text Available A well-known characteristic of working memory is its limited capacity. The source of such limitations, however, is a continued point of debate. Developmental research is positioned to address this debate by jointly identifying the source(s of limitations and the mechanism(s underlying capacity increases. Here we provide a cross-domain survey of studies and theories of working memory capacity development, which reveals a complex picture: dozens of studies from 50 papers show nearly universal increases in capacity estimates with age, but marked variation across studies, tasks, and domains. We argue that the full pattern of performance cannot be captured through traditional approaches emphasizing single causes, or even multiple separable causes, underlying capacity development. Rather, we consider working memory capacity as a dynamic process that emerges from a unified cognitive system flexibly adapting to the context and demands of each task. We conclude by enumerating specific challenges for researchers and theorists that will need to be met in order to move our understanding forward.

  6. Dynamic interactions between visual working memory and saccade target selection

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  7. Dynamic interactions between visual working memory and saccade target selection.

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-09-16

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. © 2014 ARVO.

  8. Working-Memory Load and Temporal Myopia in Dynamic Decision Making

    Science.gov (United States)

    Worthy, Darrell A.; Otto, A. Ross; Maddox, W. Todd

    2012-01-01

    We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward…

  9. I. WORKING MEMORY CAPACITY IN CONTEXT: MODELING DYNAMIC PROCESSES OF BEHAVIOR, MEMORY, AND DEVELOPMENT.

    Science.gov (United States)

    Simmering, Vanessa R

    2016-09-01

    Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real

  10. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    Science.gov (United States)

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE

  11. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    Science.gov (United States)

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear

  12. Temporal dynamics of visual working memory.

    Science.gov (United States)

    Sobczak-Edmans, M; Ng, T H B; Chan, Y C; Chew, E; Chuang, K H; Chen, S H A

    2016-01-01

    The involvement of the human cerebellum in working memory has been well established in the last decade. However, the cerebro-cerebellar network for visual working memory is not as well defined. Our previous fMRI study showed superior and inferior cerebellar activations during a block design visual working memory task, but specific cerebellar contributions to cognitive processes in encoding, maintenance and retrieval have not yet been established. The current study examined cerebellar contributions to each of the components of visual working memory and presence of cerebellar hemispheric laterality was investigated. 40 young adults performed a Sternberg visual working memory task during fMRI scanning using a parametric paradigm. The contrast between high and low memory load during each phase was examined. We found that the most prominent activation was observed in vermal lobule VIIIb and bilateral lobule VI during encoding. Using a quantitative laterality index, we found that left-lateralized activation of lobule VIIIa was present in the encoding phase. In the maintenance phase, there was bilateral lobule VI and right-lateralized lobule VIIb activity. Changes in activation in right lobule VIIIa were present during the retrieval phase. The current results provide evidence that superior and inferior cerebellum contributes to visual working memory, with a tendency for left-lateralized activations in the inferior cerebellum during encoding and right-lateralized lobule VIIb activations during maintenance. The results of the study are in agreement with Baddeley's multi-component working memory model, but also suggest that stored visual representations are additionally supported by maintenance mechanisms that may employ verbal coding. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period.

    Directory of Open Access Journals (Sweden)

    Melissa Reneaux

    Full Text Available The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.

  14. Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period.

    Science.gov (United States)

    Reneaux, Melissa; Gupta, Rahul; Karmeshu

    2015-01-01

    The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.

  15. Male veterans with PTSD exhibit aberrant neural dynamics during working memory processing: an MEG study.

    Science.gov (United States)

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-06-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder.

  16. Visuo-spatial processing in a dynamic and a static working memory paradigm in schizophrenia

    DEFF Research Database (Denmark)

    Cocchi, Luca; Schenk, Françoise; Volken, Henri

    2007-01-01

    patients with schizophrenia and matched controls in a new working memory paradigm involving dynamic (the Ball Flight Task - BFT) or static (the Static Pattern Task - SPT) visual stimuli. In the BFT, the responses of the patients were apparently based on the retention of the last set of segments...... that visuo-spatial working memory can simply be dissociated into visual and spatial sub-components....

  17. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    Science.gov (United States)

    Stevenson, Claire E.; Bergwerff, Catharina E.; Heiser, Willem J.; Resing, Wilma C. M.

    2014-01-01

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working memory and dynamic measures of analogical…

  18. The dynamics of access to groups in working memory.

    Science.gov (United States)

    Farrell, Simon; Lelièvre, Anna

    2012-11-01

    The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the temporal pattern at input merely suggesting a basis for the pattern of output buffering. Three experiments are presented here that disentangle input structure from output buffering in serial recall. In Experiment 1, participants were asked to recall a subset of visually presented digits from a temporally grouped list in their original order, where either within-group position or group position was kept constant. In Experiment 2, participants performed more standard serial recall of spoken digits, and input and output position were dissociated by asking participants to initiate recall from a post-cued position in the list. In Experiment 3, participants were asked to serially recall temporally grouped lists of visually presented digits where the grouping structure was unpredictable, under either articulatory suppression or silent conditions. The 3 experiments point to a tight linkage between implied memorial structures (i.e., the pattern of grouping at encoding) and the output structure implied by retrieval times and call into question a purely motoric account of the dynamics of recall.

  19. Dynamic shifts of limited working memory resources in human vision.

    Science.gov (United States)

    Bays, Paul M; Husain, Masud

    2008-08-08

    Our ability to remember what we have seen is very limited. Most current views characterize this limit as a fixed number of items-only four objects-that can be held in visual working memory. We show that visual memory capacity is not fixed by the number of objects, but rather is a limited resource that is shared out dynamically between all items in the visual scene. This resource can be shifted flexibly between objects, with allocation biased by selective attention and toward targets of upcoming eye movements. The proportion of resources allocated to each item determines the precision with which it is remembered, a relation that we show is governed by a simple power law, allowing quantitative estimates of resource distribution in a scene.

  20. Dynamic working memory performance in individuals with single-domain amnestic mild cognitive impairment.

    Science.gov (United States)

    Guild, Emma B; Vasquez, Brandon P; Maione, Andrea M; Mah, Linda; Ween, Jon; Anderson, Nicole D

    2014-01-01

    Previous studies have observed poorer working memory performance in individuals with amnestic mild cognitive impairment than in healthy older adults. It is unclear, however, whether these difficulties are true only of the multiple-domain clinical subtype in whom poorer executive functioning is common. The current study examined working memory, as measured by the self-ordered pointing task (SOPT) and an n-back task, in healthy older adults and adults with single-domain amnestic mild cognitive impairment (aMCI). Individuals with single-domain aMCI committed more errors and required longer to develop an organizational strategy on the SOPT. The single-domain aMCI group did not differ from healthy older adults on the 1-back or 2-back, but had poorer discrimination on the 3-back task. This is, to our knowledge, the first characterization of dynamic working memory performance in a single-domain aMCI group. These results lend support for the idea that clinical amnestic MCI subtypes may reflect different stages on a continuum of progression to dementia and question whether standardized measures of working memory (span tasks) are sensitive enough to capture subtle changes in performance.

  1. Dynamical Systems Analysis Applied to Working Memory Data

    Directory of Open Access Journals (Sweden)

    Fidan eGasimova

    2014-07-01

    Full Text Available In the present paper we investigate weekly fluctuations in the working memory capacity (WMC assessed over a period of two years. We use dynamical system analysis, specifically a second order linear differential equation, to model weekly variability in WMC in a sample of 112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with missing data. The results show a significant negative frequency parameter in the data, indicating a cyclical pattern in weekly memory updating performance across time. We use a multilevel modeling approach to capture individual differences in model parameters and find that a higher initial performance level and a slower improvement at the MU task is associated with a slower frequency of oscillation. Additionally, we conduct a simulation study examining the analysis procedure’s performance using different numbers of B-spline knots and values of time delay embedding dimensions. Results show that the number of knots in the B-spline imputation influence accuracy more than the number of embedding dimensions.

  2. The default mode network and the working memory network are not anti-correlated during all phases of a working memory task.

    Science.gov (United States)

    Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco

    2015-01-01

    The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.

  3. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Directory of Open Access Journals (Sweden)

    Laura Dempere-Marco

    Full Text Available The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1 the presence of a visually salient item reduces the number of items that can be held in working memory, and 2 visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC in contrast to the maximal upper capacity limit only reached under ideal conditions.

  4. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.

  5. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608

  6. Working memory load improves early stages of independent visual processing

    OpenAIRE

    Cocchi, Luca; Toepel, Ulrike; De Lucia, Marzia; Martuzzi, Roberto; Wood, Stephen J.; Carter, Olivia; Murray, Micah M.

    2010-01-01

    Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipula...

  7. Dynamic Testing, Working Memory, and Reading Comprehension Growth in Children with Reading Disabilities

    Science.gov (United States)

    Swanson, H. Lee

    2011-01-01

    This longitudinal study assessed (a) whether performance changes in working memory (WM) as a function of dynamic testing were related to growth in reading comprehension and (b) whether WM performance among subgroups of children with reading disabilities (RD; children with RD only, children with both reading and arithmetic deficits, and low verbal…

  8. Working Memory and Reasoning Benefit from Different Modes of Large-scale Brain Dynamics in Healthy Older Adults.

    Science.gov (United States)

    Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin

    2018-07-01

    Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.

  9. Working Memory Capacity as a Dynamic Process

    Science.gov (United States)

    Simmering, Vanessa R.; Perone, Sammy

    2013-01-01

    A well-known characteristic of working memory (WM) is its limited capacity. The source of such limitations, however, is a continued point of debate. Developmental research is positioned to address this debate by jointly identifying the source(s) of limitations and the mechanism(s) underlying capacity increases. Here we provide a cross-domain survey of studies and theories of WM capacity development, which reveals a complex picture: dozens of studies from 50 papers show nearly universal increases in capacity estimates with age, but marked variation across studies, tasks, and domains. We argue that the full pattern of performance cannot be captured through traditional approaches emphasizing single causes, or even multiple separable causes, underlying capacity development. Rather, we consider WM capacity as a dynamic process that emerges from a unified cognitive system flexibly adapting to the context and demands of each task. We conclude by enumerating specific challenges for researchers and theorists that will need to be met in order to move our understanding forward. PMID:23335902

  10. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    NARCIS (Netherlands)

    Stevenson, C.E.; Bergwerff, C.E.; Heiser, W.J.; Resing, W.C.M.

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working

  11. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    NARCIS (Netherlands)

    Stevenson, C.; Bergwerff, C.E.; Heiser, W.J.; Resing, W. C. M.

    2014-01-01

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working

  12. What works in auditory working memory? A neural oscillations perspective.

    Science.gov (United States)

    Wilsch, Anna; Obleser, Jonas

    2016-06-01

    Working memory is a limited resource: brains can only maintain small amounts of sensory input (memory load) over a brief period of time (memory decay). The dynamics of slow neural oscillations as recorded using magneto- and electroencephalography (M/EEG) provide a window into the neural mechanics of these limitations. Especially oscillations in the alpha range (8-13Hz) are a sensitive marker for memory load. Moreover, according to current models, the resultant working memory load is determined by the relative noise in the neural representation of maintained information. The auditory domain allows memory researchers to apply and test the concept of noise quite literally: Employing degraded stimulus acoustics increases memory load and, at the same time, allows assessing the cognitive resources required to process speech in noise in an ecologically valid and clinically relevant way. The present review first summarizes recent findings on neural oscillations, especially alpha power, and how they reflect memory load and memory decay in auditory working memory. The focus is specifically on memory load resulting from acoustic degradation. These findings are then contrasted with contextual factors that benefit neural as well as behavioral markers of memory performance, by reducing representational noise. We end on discussing the functional role of alpha power in auditory working memory and suggest extensions of the current methodological toolkit. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  13. Visuo-spatial processing in a dynamic and a static working memory paradigm in schizophrenia

    DEFF Research Database (Denmark)

    Cocchi, Luca; Schenk, Françoise; Volken, Henri

    2007-01-01

    patients with schizophrenia and matched controls in a new working memory paradigm involving dynamic (the Ball Flight Task - BFT) or static (the Static Pattern Task - SPT) visual stimuli. In the BFT, the responses of the patients were apparently based on the retention of the last set of segments...... that visuo-spatial working memory can simply be dissociated into visual and spatial sub-components....... of the perceived trajectory, whereas control subjects relied on a more global strategy. We assume that the patients' performances are the result of a reduced capacity in chunking visual information since they relied mainly on the retention of the last set of segments. This assumption is confirmed by the poor...

  14. Working memory and intelligibility of hearing-aid processed speech

    Directory of Open Access Journals (Sweden)

    Pamela eSouza

    2015-05-01

    Full Text Available Previous work suggested that individuals with low working memory capacity may be at a disadvantage in adverse listening environments, including situations with background noise or substantial modification of the acoustic signal. This study explored the relationship between patient factors (including working memory capacity and intelligibility and quality of modified speech for older individuals with sensorineural hearing loss. The modification was created using a combination of hearing aid processing (wide-dynamic range compression and frequency compression applied to sentences in multitalker babble. The extent of signal modification was quantified via an envelope fidelity index. We also explored the contribution of components of working memory by including measures of processing speed and executive function. We hypothesized that listeners with low working memory capacity would perform more poorly than those with high working memory capacity across all situations, and would also be differentially affected by high amounts of signal modification. Results showed a significant effect of working memory capacity for speech intelligibility, and an interaction between working memory, amount of hearing loss and signal modification. Signal modification was the major predictor of quality ratings. These data add to the literature on hearing-aid processing and working memory by suggesting that the working memory-intelligibility effects may be related to aggregate signal fidelity, rather than on the specific signal manipulation. They also suggest that for individuals with low working memory capacity, sensorineural loss may be most appropriately addressed with wide-dynamic range compression and/or frequency compression parameters that maintain the fidelity of the signal envelope.

  15. The Dynamics of Memory: Context-Dependent Updating

    Science.gov (United States)

    Hupbach, Almut; Hardt, Oliver; Gomez, Rebecca; Nadel, Lynn

    2008-01-01

    Understanding the dynamics of memory change is one of the current challenges facing cognitive neuroscience. Recent animal work on memory reconsolidation shows that memories can be altered long after acquisition. When reactivated, memories can be modified and require a restabilization (reconsolidation) process. We recently extended this finding to…

  16. Data fusion using dynamic associative memory

    Science.gov (United States)

    Lo, Titus K. Y.; Leung, Henry; Chan, Keith C. C.

    1997-07-01

    An associative memory, unlike an addressed memory used in conventional computers, is content addressable. That is, storing and retrieving information are not based on the location of the memory cell but on the content of the information. There are a number of approaches to implement an associative memory, one of which is to use a neural dynamical system where objects being memorized or recognized correspond to its basic attractors. The work presented in this paper is the investigation of applying a particular type of neural dynamical associative memory, namely the projection network, to pattern recognition and data fusion. Three types of attractors, which are fixed-point, limit- cycle, and chaotic, have been studied, evaluated and compared.

  17. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  18. Working memory capacity and controlled serial memory search.

    Science.gov (United States)

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Directional hippocampal-prefrontal interactions during working memory.

    Science.gov (United States)

    Liu, Tiaotiao; Bai, Wenwen; Xia, Mi; Tian, Xin

    2018-02-15

    Working memory refers to a system that is essential for performing complex cognitive tasks such as reasoning, comprehension and learning. Evidence shows that hippocampus (HPC) and prefrontal cortex (PFC) play important roles in working memory. The HPC-PFC interaction via theta-band oscillatory synchronization is critical for successful execution of working memory. However, whether one brain region is leading or lagging relative to another is still unclear. Therefore, in the present study, we simultaneously recorded local field potentials (LFPs) from rat ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) and while the rats performed a Y-maze working memory task. We then applied instantaneous amplitudes cross-correlation method to calculate the time lag between PFC and vHPC to explore the functional dynamics of the HPC-PFC interaction. Our results showed a strong lead from vHPC to mPFC preceded an animal's correct choice during the working memory task. These findings suggest the vHPC-leading interaction contributes to the successful execution of working memory. Copyright © 2017. Published by Elsevier B.V.

  20. Measuring dynamic process of working memory training with functional brain networks

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-12-01

    Full Text Available In this paper, we proposed the functional brain networks and graphic theory method to measure the effect of working memory training on the neural activities. 12 subjects were recruited in this study, and they did the same working memory task before they had been trained and after training. We architected functional brain networks based on EEG coherence and calculated properties of brain networks to measure the neural co-activities and the working memory level of subjects. As the result, the internal connections in frontal region decreased after working memory training, but the connection between frontal region and top region increased. And the more small-world feature was observed after training. The features observed above were in alpha (8-13 Hz and beta (13-30 Hz bands. The functional brain networks based on EEG coherence proposed in this paper can be used as the indicator of working memory level.

  1. Neural basis for dynamic updating of object representation in visual working memory.

    Science.gov (United States)

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Different developmental trajectories across feature types support a dynamic field model of visual working memory development.

    Science.gov (United States)

    Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin

    2015-05-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.

  3. How Human Memory and Working Memory Work in Second Language Acquisition

    OpenAIRE

    小那覇, 洋子; Onaha, Hiroko

    2014-01-01

    We often draw an analogy between human memory and computers. Information around us is taken into our memory storage first, and then we use the information in storage whatever we need it in our daily life. Linguistic information is also in storage and we process our thoughts based on the memory that is stored. Memory storage consists of multiple memory systems; one of which is called working memory that includes short-term memory. Working memory is the central system that underpins the process...

  4. On the Law Relating Processing to Storage in Working Memory

    Science.gov (United States)

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valerie

    2011-01-01

    "Working memory" is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of…

  5. Working Memory and Hearing Aid Processing: Literature Findings, Future Directions, and Clinical Applications.

    Science.gov (United States)

    Souza, Pamela; Arehart, Kathryn; Neher, Tobias

    2015-01-01

    Working memory-the ability to process and store information-has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This "mismatch" is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how) working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with "low alteration" processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges) in translating information on individual working memory into clinical treatment, including clinically feasible measures of working memory.

  6. Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search.

    Science.gov (United States)

    de Vries, Ingmar E J; van Driel, Joram; Olivers, Christian N L

    2017-02-08

    working memory. However, working memory not only serves current goals, but also future goals, with differential impact upon visual selection. Little is known about how the brain differentiates between current and future goals. Here we show, for the first time, that modulations of brain oscillations in the EEG α frequency band in posterior cortex can dissociate current from future search goals in working memory. Moreover, the dynamics of these oscillations uncover how we flexibly switch focus between memory representations. Together, we reveal how the brain assigns priority for selection. Copyright © 2017 de Vries et al.

  7. Working memory and intelligibility of hearing-aid processed speech

    Science.gov (United States)

    Souza, Pamela E.; Arehart, Kathryn H.; Shen, Jing; Anderson, Melinda; Kates, James M.

    2015-01-01

    Previous work suggested that individuals with low working memory capacity may be at a disadvantage in adverse listening environments, including situations with background noise or substantial modification of the acoustic signal. This study explored the relationship between patient factors (including working memory capacity) and intelligibility and quality of modified speech for older individuals with sensorineural hearing loss. The modification was created using a combination of hearing aid processing [wide-dynamic range compression (WDRC) and frequency compression (FC)] applied to sentences in multitalker babble. The extent of signal modification was quantified via an envelope fidelity index. We also explored the contribution of components of working memory by including measures of processing speed and executive function. We hypothesized that listeners with low working memory capacity would perform more poorly than those with high working memory capacity across all situations, and would also be differentially affected by high amounts of signal modification. Results showed a significant effect of working memory capacity for speech intelligibility, and an interaction between working memory, amount of hearing loss and signal modification. Signal modification was the major predictor of quality ratings. These data add to the literature on hearing-aid processing and working memory by suggesting that the working memory-intelligibility effects may be related to aggregate signal fidelity, rather than to the specific signal manipulation. They also suggest that for individuals with low working memory capacity, sensorineural loss may be most appropriately addressed with WDRC and/or FC parameters that maintain the fidelity of the signal envelope. PMID:25999874

  8. Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory

    Science.gov (United States)

    Reinhart, Paul N.; Souza, Pamela E.

    2016-01-01

    Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…

  9. Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits

    Directory of Open Access Journals (Sweden)

    Maria eEngstrom

    2013-04-01

    Full Text Available Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network (involving the anterior insular cortex and the anterior cingulate cortex might be of particular importance to working memory tasks that require complex, effortful processing. Method: Healthy participants (n=26 and participants suffering from working memory problems related to the Kleine-Levin syndrome (a specific form of periodic idiopathic hypersomnia; n=18 participated in the study. Participants were further divided into a high and low capacity group, according to performance on a working memory task (listening span. In a functional Magnetic Resonance Imaging (fMRI study, participants were administered the reading span complex working memory task tapping cognitive effort. Principal findings: The fMRI-derived blood oxygen level dependent (BOLD signal was modulated by 1 effort in both the central executive and the salience network and 2 capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. Conclusion: The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive network so that high-capacity participants evidence a lower signal and possibly hence a larger

  10. Working memory cells' behavior may be explained by cross-regional networks with synaptic facilitation.

    Directory of Open Access Journals (Sweden)

    Sergio Verduzco-Flores

    2009-08-01

    Full Text Available Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1 persistent fixed-frequency elevated rates above baseline, 2 elevated rates that decay throughout the tasks memory period, 3 rates that accelerate throughout the delay, and 4 patterns of inhibited firing (below baseline analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex.

  11. Working memory training may increase working memory capacity but not fluid intelligence.

    Science.gov (United States)

    Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W

    2013-12-01

    Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.

  12. The impact of auditory working memory training on the fronto-parietal working memory network

    OpenAIRE

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory ...

  13. Working memory and hearing aid processing: Literature findings, future directions, and clinical applications

    Directory of Open Access Journals (Sweden)

    Pamela eSouza

    2015-12-01

    Full Text Available Working memory—the ability to process and store information—has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This mismatch is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with low alteration processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges in translating information on individual working memory into clinical treatment, including clinically-feasible measures of working memory.

  14. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  15. Concept of dynamic memory in economics

    Science.gov (United States)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2018-02-01

    In this paper we discuss a concept of dynamic memory and an application of fractional calculus to describe the dynamic memory. The concept of memory is considered from the standpoint of economic models in the framework of continuous time approach based on fractional calculus. We also describe some general restrictions that can be imposed on the structure and properties of dynamic memory. These restrictions include the following three principles: (a) the principle of fading memory; (b) the principle of memory homogeneity on time (the principle of non-aging memory); (c) the principle of memory reversibility (the principle of memory recovery). Examples of different memory functions are suggested by using the fractional calculus. To illustrate an application of the concept of dynamic memory in economics we consider a generalization of the Harrod-Domar model, where the power-law memory is taken into account.

  16. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.

    Science.gov (United States)

    Deiber, Marie-Pierre; Missonnier, Pascal; Bertrand, Olivier; Gold, Gabriel; Fazio-Costa, Lara; Ibañez, Vicente; Giannakopoulos, Panteleimon

    2007-01-01

    Working memory involves the short-term storage and manipulation of information necessary for cognitive performance, including comprehension, learning, reasoning and planning. Although electroencephalogram (EEG) rhythms are modulated during working memory, the temporal relationship of EEG oscillations with the eliciting event has not been well studied. In particular, the dynamics of the neural network supporting memory processes may be best captured in induced oscillations, characterized by a loose temporal link with the stimulus. In order to differentiate induced from evoked functional processes, the present study proposes a time-frequency analysis of the 3 to 30 Hz EEG oscillatory activity in a verbal n-back working memory paradigm. Control tasks were designed to identify oscillatory activity related to stimulus presentation (passive task) and focused attention to the stimulus (detection task). Evoked theta activity (4-8 Hz) phase-locked to the visual stimulus was evidenced in the parieto-occipital region for all tasks. In parallel, induced theta activity was recorded in the frontal region for detection and n-back memory tasks, but not for the passive task, suggesting its dependency on focused attention to the stimulus. Sustained induced oscillatory activity was identified in relation to working memory in the theta and beta (15-25 Hz) frequency bands, larger for the highest memory load. Its late occurrence limited to nonmatched items suggests that it could be related to item retention and active maintenance for further task requirements. Induced theta and beta activities displayed respectively a frontal and parietal topographical distribution, providing further functional information on the fronto-posterior network supporting working memory.

  17. The Dynamic Multiprocess Framework: Evidence from Prospective Memory with Contextual Variability

    OpenAIRE

    Scullin, Michael K.; McDaniel, Mark A.; Shelton, Jill Talley

    2013-01-01

    The ability to remember to execute delayed intentions is referred to as prospective memory. Previous theoretical and empirical work has focused on isolating whether a particular prospective memory task is supported either by effortful monitoring processes or by cue-driven spontaneous processes. In the present work, we advance the Dynamic Multiprocess Framework, which contends that both monitoring and spontaneous retrieval may be utilized dynamically to support prospective remembering. To capt...

  18. Detailed sensory memory, sloppy working memory

    Directory of Open Access Journals (Sweden)

    Ilja G Sligte

    2010-10-01

    Full Text Available Visual short-term memory (VSTM enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the pre-change object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the pre-change object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88 percent of the iconic memory trials, on 71 percent of the fragile VSTM trials and merely on 53 percent of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  19. Detailed sensory memory, sloppy working memory.

    Science.gov (United States)

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  20. Is working memory still working?

    Science.gov (United States)

    Baddeley, A D

    2001-11-01

    The current state of A. D. Baddeley and G. J. Hitch's (1974) multicomponent working memory model is reviewed. The phonological and visuospatial subsystems have been extensively investigated, leading both to challenges over interpretation of individual phenomena and to more detailed attempts to model the processes underlying the subsystems. Analysis of the controlling central executive has proved more challenging, leading to a proposed clarification in which the executive is assumed to be a limited capacity attentional system, aided by a newly postulated fourth system, the episodic buffer. Current interest focuses most strongly on the link between working memory and long-term memory and on the processes allowing the integration of information from the component subsystems. The model has proved valuable in accounting for data from a wide range of participant groups under a rich array of task conditions. Working memory does still appear to be working.

  1. The Dynamic Multiprocess Framework: Evidence from Prospective Memory with Contextual Variability

    Science.gov (United States)

    Scullin, Michael K.; McDaniel, Mark A.; Shelton, Jill Talley

    2013-01-01

    The ability to remember to execute delayed intentions is referred to as prospective memory. Previous theoretical and empirical work has focused on isolating whether a particular prospective memory task is supported either by effortful monitoring processes or by cue-driven spontaneous processes. In the present work, we advance the Dynamic Multiprocess Framework, which contends that both monitoring and spontaneous retrieval may be utilized dynamically to support prospective remembering. To capture the dynamic interplay between monitoring and spontaneous retrieval we had participants perform many ongoing tasks and told them that their prospective memory cue may occur in any context. Following either a 20-min or a 12-hr retention interval, the prospective memory cues were presented infrequently across three separate ongoing tasks. The monitoring patterns (measured as ongoing task cost relative to a between-subjects control condition) were consistent and robust across the three contexts. There was no evidence for monitoring prior to the initial prospective memory cue; however, individuals who successfully spontaneously retrieved the prospective memory intention, thereby realizing that prospective memory cues could be expected within that context, subsequently monitored. These data support the Dynamic Multiprocess Framework, which contends that individuals will engage monitoring when prospective memory cues are expected, disengage monitoring when cues are not expected, and that when monitoring is disengaged, a probabilistic spontaneous retrieval mechanism can support prospective remembering. PMID:23916951

  2. On the law relating processing to storage in working memory.

    Science.gov (United States)

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valérie

    2011-04-01

    Working memory is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of their interaction proposed by the most popular A. D. Baddeley and G. Hitch's (1974) multiple-component model is contradicted by facts, leaving unresolved one of the main issues of cognitive functioning. In this article, the author derive from the time-based resource-sharing model of working memory a mathematical function relating the cognitive load involved by concurrent processing to the amount of information that can be simultaneously maintained active in working memory. A meta-analysis from several experiments testing the effects of processing on storage corroborates the parameters of the predicted function, suggesting that it properly reflects the law relating the 2 functions of working memory. 2011 APA, all rights reserved

  3. WORKING MEMORY IMPAIRMENT AS AN ENDOPHENOTYPIC MARKER OF A SCHIZOPHRENIA DIATHESIS.

    Science.gov (United States)

    Park, Sohee; Gooding, Diane C

    2014-09-01

    This chapter focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a review of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation), in terms of which aspects are likely to be the best candidates for endophenotypes. We consider the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this chapter, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia.

  4. Working memory impairment as an endophenotypic marker of a schizophrenia diathesis

    Directory of Open Access Journals (Sweden)

    Sohee Park

    2014-09-01

    Full Text Available This review focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a consideration of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation, in terms of which aspects are likely to be the best candidates for endophenotypes. We examine the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this review, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia.

  5. Short-term facilitation may stabilize parametric working memory trace

    Directory of Open Access Journals (Sweden)

    Vladimir eItskov

    2011-10-01

    Full Text Available Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory, but require fine-tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefore drifts in the absence of the stabilizing stimulus. We derive an analytical expression for the drift dynamics and conclude that the network cannot function as working memory for a period of several seconds, a typical delay time in monkey memory experiments. We propose that short-term synaptic facilitation in recurrent connections significantly improves the robustness of the model by slowing down the drift of activity bump. Extending the calculation of the drift velocity to network with synaptic facilitation, we conclude that facilitation can slow down the drift by a large factor, rendering the network suitable as a model of working memory.

  6. Visual Working Memory Storage Recruits Sensory Processing Areas

    NARCIS (Netherlands)

    Gayet, Surya; Paffen, Chris L E; Van der Stigchel, Stefan

    Human visual processing is subject to a dynamic influx of visual information. Visual working memory (VWM) allows for maintaining relevant visual information available for subsequent behavior. According to the dominating view, VWM recruits sensory processing areas to maintain this visual information

  7. Visual working memory storage recruits sensory processing areas

    NARCIS (Netherlands)

    Gayet, S.; Paffen, C.L.E.; Stigchel, S. van der

    2018-01-01

    Human visual processing is subject to a dynamic influx of visual information. Visual working memory (VWM) allows for maintaining relevant visual information available for subsequent behavior. According to the dominating view, VWM recruits sensory processing areas to maintain this visual information

  8. The contributions of handedness and working memory to episodic memory.

    Science.gov (United States)

    Sahu, Aparna; Christman, Stephen D; Propper, Ruth E

    2016-11-01

    Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.

  9. Alternating Dynamics of Segregation and Integration in Human EEG Functional Networks During Working-memory Task.

    Science.gov (United States)

    Zippo, Antonio G; Della Rosa, Pasquale A; Castiglioni, Isabella; Biella, Gabriele E M

    2018-02-10

    Brain functional networks show high variability in short time windows but mechanisms governing these transient dynamics remain unknown. In this work, we studied the temporal evolution of functional brain networks involved in a working memory (WM) task while recording high-density electroencephalography (EEG) in human normal subjects. We found that functional brain networks showed an initial phase characterized by an increase of the functional segregation index followed by a second phase where the functional segregation faded after the prevailing the functional integration. Notably, wrong trials were associated with different or disrupted sequences of the segregation-integration profiles and measures of network centrality and modularity were able to identify crucial aspects of the oscillatory network dynamics. Additionally, computational investigations further supported the experimental results. The brain functional organization may respond to the information processing demand of a WM task following a 2-step atomic scheme wherein segregation and integration alternately dominate the functional configurations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    Science.gov (United States)

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  11. Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.

    Directory of Open Access Journals (Sweden)

    J Elizabeth Richey

    Full Text Available Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data, but less work has tested this relationship through experimental manipulation. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants' performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks. Participants' improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning.

  12. Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.

    Science.gov (United States)

    Richey, J Elizabeth; Phillips, Jeffrey S; Schunn, Christian D; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data, but less work has tested this relationship through experimental manipulation. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants' performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks. Participants' improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning.

  13. Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains

    Science.gov (United States)

    Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356

  14. Detailed sensory memory, sloppy working memory

    NARCIS (Netherlands)

    Sligte, I.G.; Vandenbroucke, A.R.E.; Scholte, H.S.; Lamme, V.A.F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity

  15. Neurocognitive architecture of working memory

    Science.gov (United States)

    Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars

    2015-01-01

    The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571

  16. Memory systems interaction in the pigeon: working and reference memory.

    Science.gov (United States)

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. The impact of auditory working memory training on the fronto-parietal working memory network.

    Science.gov (United States)

    Schneiders, Julia A; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.

  18. The impact of auditory working memory training on the fronto-parietal working memory network

    Science.gov (United States)

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously. PMID:22701418

  19. Working-memory consolidation : Insights from studies on attention and working memory

    NARCIS (Netherlands)

    Ricker, Timothy; Nieuwenstein, Mark; Bayliss, Donna; Barrouillet, Pierre

    2018-01-01

    Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: Consolidation, refreshing and removal. Here we discuss in

  20. Working Memory in the Service of Executive Control Functions.

    Science.gov (United States)

    Mansouri, Farshad A; Rosa, Marcello G P; Atapour, Nafiseh

    2015-01-01

    Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.

  1. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  2. Competition between items in working memory leads to forgetting.

    Science.gov (United States)

    Lewis-Peacock, Jarrod A; Norman, Kenneth A

    2014-12-18

    Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting.

  3. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children – Working Memory (CABC-WM)

    OpenAIRE

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P.

    2017-01-01

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia1 2 and language impairment3 4, but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The C...

  4. The Role of Working Memory in Planning and Generating Written Sentences

    Directory of Open Access Journals (Sweden)

    Ronald T. Kellogg

    2016-02-01

    Full Text Available Planning a sentence with concrete concepts whose referents can be mentally imaged has been shown in past work to require the limited resources of visual working memory. By contrast, grammatically encoding such concepts as lexical items in a syntactic structure requires verbal working memory. We report an experiment designed to demonstrate a double dissociation of these two stores of working memory by manipulating the difficulty of (1 planning by comparing related concepts to unrelated concepts and (2 grammatical encoding of an English sentence in active voice versus the more complex structure of the passive voice. College students (N = 46 composed sentences that were to include two noun prompts (related versus unrelated while concurrently performing either a visual or a verbal distracting task. Instructions to produce either active or passive sentences were manipulated between groups. The results surprisingly indicated that the supposedly easier planning with related concepts made a large demand on verbal working memory, rather than unrelated concepts demanding more visual working memory. The temporal dynamics of the sentence production process appear to best account for the unexpected findings.

  5. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    Science.gov (United States)

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.

  6. Reactivation in working memory: an attractor network model of free recall.

    Science.gov (United States)

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  7. Reactivation in working memory: an attractor network model of free recall.

    Directory of Open Access Journals (Sweden)

    Anders Lansner

    Full Text Available The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  8. Reactivation in Working Memory: An Attractor Network Model of Free Recall

    Science.gov (United States)

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690

  9. Associative working memory and subsequent episodic memory in Alzheimer's disease.

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.; Tilborg, I.A. Van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  10. Associative working memory and subsequent episodic memory in Alzheimer's disease

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.C.; Tilborg, I.A.D.A. van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  11. Rhythmic Working Memory Activation in the Human Hippocampus

    Directory of Open Access Journals (Sweden)

    Marcin Leszczyński

    2015-11-01

    Full Text Available Working memory (WM maintenance is assumed to rely on a single sustained process throughout the entire maintenance period. This assumption, although fundamental, has never been tested. We used intracranial electroencephalography (EEG recordings from the human hippocampus in two independent experiments to investigate the neural dynamics underlying WM maintenance. We observed periodic fluctuations between two different oscillatory regimes: Periods of “memory activation” were reflected by load-dependent alpha power reductions and lower levels of cross-frequency coupling (CFC. They occurred interleaved with periods characterized by load-independent high levels of alpha power and CFC. During memory activation periods, a relevant CFC parameter (load-dependent changes of the peak modulated frequency correlated with individual WM capacity. Fluctuations between these two periods predicted successful performance and were locked to the phase of endogenous delta oscillations. These results show that hippocampal maintenance is a dynamic rather than constant process and depends critically on a hierarchy of oscillations.

  12. Visual working memory buffers information retrieved from visual long-term memory.

    Science.gov (United States)

    Fukuda, Keisuke; Woodman, Geoffrey F

    2017-05-16

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.

  13. Working memory load modulates microsaccadic rate.

    Science.gov (United States)

    Dalmaso, Mario; Castelli, Luigi; Scatturin, Pietro; Galfano, Giovanni

    2017-03-01

    Microsaccades are tiny eye movements that individuals perform unconsciously during fixation. Despite that the nature and the functions of microsaccades are still lively debated, recent evidence has shown an association between these micro eye movements and higher order cognitive processes. Here, in two experiments, we specifically focused on working memory and addressed whether differential memory load could be reflected in a modulation of microsaccade dynamics. In Experiment 1, participants memorized a numerical sequence composed of either two (low-load condition) or five digits (high-load condition), appearing at fixation. The results showed a reduction in the microsaccadic rate in the high-load compared to the low-load condition. In Experiment 2, five red or green digits were always presented at fixation. Participants either memorized the color (low-load condition) or the five digits (high-load condition). Hence, visual stimuli were exactly the same in both conditions. Consistent with Experiment 1, microsaccadic rate was lower in the high-load than in the low-load condition. Overall, these findings reveal that an engagement of working memory can have an impact on microsaccadic rate, consistent with the view that microsaccade generation is pervious to top-down processes.

  14. Resource allocation models of auditory working memory.

    Science.gov (United States)

    Joseph, Sabine; Teki, Sundeep; Kumar, Sukhbinder; Husain, Masud; Griffiths, Timothy D

    2016-06-01

    Auditory working memory (WM) is the cognitive faculty that allows us to actively hold and manipulate sounds in mind over short periods of time. We develop here a particular perspective on WM for non-verbal, auditory objects as well as for time based on the consideration of possible parallels to visual WM. In vision, there has been a vigorous debate on whether WM capacity is limited to a fixed number of items or whether it represents a limited resource that can be allocated flexibly across items. Resource allocation models predict that the precision with which an item is represented decreases as a function of total number of items maintained in WM because a limited resource is shared among stored objects. We consider here auditory work on sequentially presented objects of different pitch as well as time intervals from the perspective of dynamic resource allocation. We consider whether the working memory resource might be determined by perceptual features such as pitch or timbre, or bound objects comprising multiple features, and we speculate on brain substrates for these behavioural models. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mental Imagery and Visual Working Memory

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  16. Mental imagery and visual working memory.

    Directory of Open Access Journals (Sweden)

    Rebecca Keogh

    Full Text Available Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  17. Mental imagery and visual working memory.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  18. Dynamic memory management for embedded systems

    CERN Document Server

    Atienza Alonso, David; Poucet, Christophe; Peón-Quirós, Miguel; Bartzas, Alexandros; Catthoor, Francky; Soudris, Dimitrios

    2015-01-01

    This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems.  The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application.  The design methodology described in this book is based on propagating constraints among de...

  19. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM).

    Science.gov (United States)

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P

    2017-06-12

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia 1 , 2 and language impairment 3 , 4 , but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The CABC-WM is administered on a desktop computer with a touchscreen interface and was specifically developed to be engaging and motivating for children. Although the long-term goal of the CABC-WM is to provide individualized working memory profiles in children, the present study focuses on the initial success and utility of the CABC-WM for measuring central executive, visuospatial, phonological loop, and binding constructs in children with typical development. Immediate next steps are to administer the CABC-WM to children with specific language impairment, dyslexia, and comorbid specific language impairment and dyslexia.

  20. Reactivation in Working Memory : An Attractor Network Model of Free Recall

    OpenAIRE

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity...

  1. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability.

    Science.gov (United States)

    Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H

    2018-05-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Working Memory Systems in the Rat.

    Science.gov (United States)

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Working memory, long-term memory, and medial temporal lobe function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  4. HPA Axis Function Alters Development of Working Memory in Boys with FXS

    Science.gov (United States)

    Scherr, Jessica F.; Hahn, Laura J.; Hooper, Stephen R.; Hatton, Deborah; Roberts, Jane E.

    2016-01-01

    The present study examines verbal working memory over time in boys with fragile X syndrome (FXS) compared to nonverbal mental-age (NVMA) matched, typically developing (TD) boys. Concomitantly, the relationship between cortisol—a physiological marker for stress—and verbal working memory performance over time is examined to understand the role of physiological mechanisms in cognitive development in FXS. Participants were assessed between one and three times over a 2-year time frame using two verbal working memory tests that differ in complexity: memory for words and auditory working memory with salivary cortisol collected at the beginning and end of each assessment. Multilevel modeling results indicate specific deficits over time on the memory for words task in boys with FXS compared to TD controls that is exacerbated by elevated baseline cortisol. Similar increasing rates of growth over time were observed for boys with FXS and TD controls on the more complex auditory working memory task, but only boys with FXS displayed an association of increased baseline cortisol and lower performance. This study highlights the benefit of investigations of how dynamic biological and cognitive factors interact and influence cognitive development over time. PMID:26760450

  5. Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains

    OpenAIRE

    Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working mem...

  6. Comment on "Dynamic shifts of limited working memory resources in human vision".

    Science.gov (United States)

    Cowan, Nelson; Rouder, Jeffrey N

    2009-02-13

    Bays and Husain (Reports, 8 August 2008, p. 851) reported that human working memory, the limited information currently in mind, reflects resources distributed across all items in an array. In an alternative interpretation, memory is limited to several well-represented items. We argue that this item-limit model fits the extant data better than the distributed-resources model and is more interpretable theoretically.

  7. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial

    OpenAIRE

    Dunning, Darren L; Holmes, Joni; Gathercole, Susan E

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first randomized controlled trial with low working memory children investigated whether the benefits of training extend beyond standard working memory tasks...

  8. Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity.

    Science.gov (United States)

    Bashivan, Pouya; Bidelman, Gavin M; Yeasin, Mohammed

    2014-12-01

    We investigated the effect of memory load on encoding and maintenance of information in working memory. Electroencephalography (EEG) signals were recorded while participants performed a modified Sternberg visual memory task. Independent component analysis (ICA) was used to factorise the EEG signals into distinct temporal activations to perform spectrotemporal analysis and localisation of source activities. We found 'encoding' and 'maintenance' operations were correlated with negative and positive changes in α-band power, respectively. Transient activities were observed during encoding of information in the bilateral cuneus, precuneus, inferior parietal gyrus and fusiform gyrus, and a sustained activity in the inferior frontal gyrus. Strong correlations were also observed between changes in α-power and behavioral performance during both encoding and maintenance. Furthermore, it was also found that individuals with higher working memory capacity experienced stronger neural oscillatory responses during the encoding of visual objects into working memory. Our results suggest an interplay between two distinct neural pathways and different spatiotemporal operations during the encoding and maintenance of information which predict individual differences in working memory capacity observed at the behavioral level. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Prospective memory, working memory, retrospective memory and self-rated memory performance in persons with intellectual disability

    OpenAIRE

    Levén, Anna; Lyxell, Björn; Andersson, Jan; Danielsson, Henrik; Rönnberg, Jerker

    2008-01-01

    The purpose of the present study was to examine the relationship between prospective memory, working memory, retrospective memory and self-rated memory capacity in adults with and without intellectual disability. Prospective memory was investigated by means of a picture-based task. Working memory was measured as performance on span tasks. Retrospective memory was scored as recall of subject performed tasks. Self-ratings of memory performance were based on the prospective and retrospective mem...

  10. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    Science.gov (United States)

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals…

  11. Working Memory: A Selective Review.

    Science.gov (United States)

    Kent, Phillip L

    2016-01-01

    The purpose of this paper is to provide a selective overview of the evolution of the concept and assessment of working memory, and how its assessment has been confused with the assessment of some components of attention. A literature search using PsychNet Gold was conducted using the terms working memory. In addition, the writer reviewed recommendations from a sampling of recent neuropsychology texts in regard to the assessment of attention and working memory, as well as the two most recent editions of the Wechsler Memory Scale. It is argued that many clinicians have an incomplete understanding of the relationship between attention and working memory, and often conflate the two in assessment and treatment. Suggestions were made for assessing these abilities.

  12. The accessibility of memory items in children’s working memory

    OpenAIRE

    Roome, Hannah; Towse, John

    2016-01-01

    This thesis investigates the processes and systems that support recall in working memory. In particular it seeks to apply ideas from the adult-based dual-memory framework (Unsworth & Engle, 2007b) that claims primary memory and secondary memory are independent contributors to working memory capacity. These two memory systems are described as domain-general processes that combine control of attention and basic memory abilities to retain information. The empirical contribution comprises five ex...

  13. Can verbal working memory training improve reading?

    Science.gov (United States)

    Banales, Erin; Kohnen, Saskia; McArthur, Genevieve

    2015-01-01

    The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.

  14. Working memory for meaningless manual gestures.

    Science.gov (United States)

    Rudner, Mary

    2015-03-01

    Effects on working memory performance relating to item similarity have been linked to prior categorisation of representations in long-term memory. However, there is evidence from gesture processing that this link may not be obligatory. The present study investigated whether working memory for incidentally generated meaningless manual gestures is influenced by formational similarity and whether this effect is modulated by working-memory load. Results showed that formational similarity did lower performance, demonstrating that similarity effects are not dependent on prior categorisation. However, this effect was only found when working-memory load was low, supporting a flexible resource allocation model according to which it is the quality rather than quantity of working memory representations that determines performance. This interpretation is in line with proposals suggesting language modality specific allocation of resources in working memory. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  15. Dynamic intersectoral models with power-law memory

    Science.gov (United States)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2018-01-01

    Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.

  16. Changing concepts of working memory

    Science.gov (United States)

    Ma, Wei Ji; Husain, Masud; Bays, Paul M

    2014-01-01

    Working memory is widely considered to be limited in capacity, holding a fixed, small number of items, such as Miller's ‘magical number’ seven or Cowan's four. It has recently been proposed that working memory might better be conceptualized as a limited resource that is distributed flexibly among all items to be maintained in memory. According to this view, the quality rather than the quantity of working memory representations determines performance. Here we consider behavioral and emerging neural evidence for this proposal. PMID:24569831

  17. The temporal dynamics of visual working memory guidance of selective attention

    Directory of Open Access Journals (Sweden)

    Jinfeng eTan

    2014-09-01

    Full Text Available The biased competition model proposes that there is top-down directing of attention to a stimulus matching the contents of working memory (WM, even when the maintenance of a WM representation is detrimental to target relevant performance. Despite many studies elucidating that spatial WM guidance can be present early in the visual processing system, whether visual WM guidance also influences perceptual selection remains poorly understood. Here, we investigated the electrophysiological correlates of early guidance of attention by WM in humans. Participants were required to perform a visual search task while concurrently maintaining object representations in their visual working memory. Behavioral results showed that response times (RTs were longer when the distractor in the visual search task was held in WM. The earliest WM guidance effect was observed in the P1 component (90-130 ms, with match trials eliciting larger P1 amplitude than mismatch trials. A similar result was also found in the N1 component (160-200 ms. These P1 and N1 effects could not be attributed to bottom-up perceptual priming from the presentation of a memory cue, because there was no significant difference in early ERP component when the cue was merely perceptually identified but not actively held in working memory. Standardized Low Resolution Electrical Tomography Analysis (sLORETA showed that the early WM guidance occurred in the occipital lobe and the N1-related activation occurred in the parietal gyrus. Time-frequency data suggested that alpha-band event-related spectral perturbation (ERSP magnitudes increased under the match condition compared with the mismatch condition. In conclusion, the present study suggests that the reappearance of a stimulus held in WM enhanced activity in the occipital area. Subsequently, this initial capture of attention by WM could be inhibited by competing visual inputs through attention re-orientation, reflecting by the alpha-band rhythm.

  18. Shape memory alloys applied to improve rotor-bearing system dynamics - an experimental investigation

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar; Savi, Marcelo A.

    2015-01-01

    passing through critical speeds. In this work, the feasibility of applying shape memory alloys to a rotating system is experimentally investigated. Shape memory alloys can change their stiffness with temperature variations and thus they may change system dynamics. Shape memory alloys also exhibit...... perturbations and mass imbalance responses of the rotor-bearing system at different temperatures and excitation frequencies are carried out to determine the dynamic behaviour of the system. The behaviour and the performance in terms of vibration reduction and system adaptability are compared against a benchmark...... configuration comprised by the same system having steel springs instead of shape memory alloy springs. The experimental results clearly show that the stiffness changes and hysteretic behaviour of the shape memory alloys springs alter system dynamics both in terms of critical speeds and mode shapes. Vibration...

  19. Working Memory and Neurofeedback.

    Science.gov (United States)

    YuLeung To, Eric; Abbott, Kathy; Foster, Dale S; Helmer, D'Arcy

    2016-01-01

    Impairments in working memory are typically associated with impairments in other cognitive faculties such as attentional processes and short-term memory. This paper briefly introduces neurofeedback as a treatment modality in general, and, more specifically, we review several of the current modalities successfully used in neurofeedback (NF) for the treatment of working memory deficits. Two case studies are presented to illustrate how neurofeedback is applied in treatment. The development of Low Resolution Electromagnetic Tomography (LORETA) and its application in neurofeedback now makes it possible to specifically target deep cortical/subcortical brain structures. Developments in neuroscience concerning neural networks, combined with highly specific yet practical NF technologies, makes neurofeedback of particular interest to neuropsychological practice, including the emergence of specific methodologies for treating very difficult working memory (WM) problems.

  20. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    Science.gov (United States)

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  1. Working memory load improves early stages of independent visual processing.

    Science.gov (United States)

    Cocchi, Luca; Toepel, Ulrike; De Lucia, Marzia; Martuzzi, Roberto; Wood, Stephen J; Carter, Olivia; Murray, Micah M

    2011-01-01

    Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipulated by asking subjects to memorize the spatial locations of 6 or 3 disks. The grid was always presented between the encoding and recognition of the disk pattern. As a baseline condition, grid stimuli were presented without a VSWM context. VSWM load altered both perceptual performance and neural networks active during intervening grid encoding. Participants performed faster and more accurately on a challenging perceptual task under high VSWM load as compared to the low load and the baseline condition. Visual evoked potential (VEP) analyses identified changes in the configuration of the underlying sources in one particular period occurring 160-190 ms post-stimulus onset. Source analyses further showed an occipito-parietal down-regulation concurrent to the increased involvement of temporal and frontal resources in the high VSWM context. Together, these data suggest that cognitive control mechanisms supporting working memory may selectively enhance concurrent visual processing related to an independent goal. More broadly, our findings are in line with theoretical models implicating the engagement of frontal regions in synchronizing and optimizing mnemonic and perceptual resources towards multiple goals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Dynamics of brain activity underlying working memory for music in a naturalistic condition

    OpenAIRE

    Burunat Pérez, Iballa

    2012-01-01

    Working memory (WM) is at the core of any cognitive function as it is necessary for the integration of information over time. Despite WM’s critical role in high-level cognitive functions, its implementation in the neural tissue is poorly understood. Preliminary studies on auditory WM show differences between linguistic and musical memory, leading to the speculation of specific neural networks encoding memory for music. Moreover, in neuroscience WM has not been studied in naturalistic listenin...

  3. Visual working memory capacity and proactive interference.

    Science.gov (United States)

    Hartshorne, Joshua K

    2008-07-23

    Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  4. Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing

    Science.gov (United States)

    Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928

  5. Working-memory load and temporal myopia in dynamic decision making.

    Science.gov (United States)

    Worthy, Darrell A; Otto, A Ross; Maddox, W Todd

    2012-11-01

    We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward but caused future rewards for both options to decrease. The increasing option always gave a smaller immediate reward but caused future rewards for both options to increase. In each experiment we manipulated the reward structure such that the decreasing option was the optimal choice in 1 condition and the increasing option was the optimal choice in the other condition. Behavioral results indicated that dual-task participants selected the immediately rewarding decreasing option more often, and single-task participants selected the increasing option more often, regardless of which option was optimal. Thus, dual-task participants performed worse on 1 type of task but better on the other type. Modeling results showed that single-task participants' data were most often best fit by a win-stay, lose-shift (WSLS) rule-based model that tracked differences across trials, and dual-task participants' data were most often best fit by a Softmax reinforcement learning model that tracked recency-weighted average rewards for each option. This suggests that manipulating WM load affects the degree to which participants focus on the immediate versus delayed consequences of their actions and whether they employ a rule-based WSLS strategy, but it does not necessarily affect how well people weigh the immediate versus delayed benefits when determining the long-term utility of each option.

  6. Working memory and inattentional blindness.

    Science.gov (United States)

    Bredemeier, Keith; Simons, Daniel J

    2012-04-01

    Individual differences in working memory predict many aspects of cognitive performance, especially for tasks that demand focused attention. One negative consequence of focused attention is inattentional blindness, the failure to notice unexpected objects when attention is engaged elsewhere. Yet, the relationship between individual differences in working memory and inattentional blindness is unclear; some studies have found that higher working memory capacity is associated with greater noticing, but others have found no direct association. Given the theoretical and practical significance of such individual differences, more definitive tests are needed. In two studies with large samples, we tested the relationship between multiple working memory measures and inattentional blindness. Individual differences in working memory predicted the ability to perform an attention-demanding tracking task, but did not predict the likelihood of noticing an unexpected object present during the task. We discuss the reasons why we might not expect such individual differences in noticing and why other studies may have found them.

  7. Detailed Sensory Memory, Sloppy Working Memory

    OpenAIRE

    Sligte, Ilja G.; Vandenbroucke, Annelinde R. E.; Scholte, H. Steven; Lamme, Victor A. F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a...

  8. Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

    Science.gov (United States)

    Santoro, Adam; Frankland, Paul W; Richards, Blake A

    2016-11-30

    Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.

  9. The effects of autobiographical memory and visual perspective on working memory.

    Science.gov (United States)

    Cheng, Zenghu; She, Yugui

    2018-08-01

    The present research aims to explore whether recalling and writing about autobiographical memory from different perspectives (first-person perspective vs. third-person perspective) could affect cognitive function. The participants first performed a working memory task to evaluate their working memory capacity as a baseline and then were instructed to recall (Study 1) or write about (Study 2) personal events (failures vs. successes) from the first-person perspective or the third-person perspective. Finally, they performed the working memory task again. The results suggested that autobiographical memory and perspective influence working memory interactively. When recalling a success, the participants who recalled from the third-person perspective performed better than those who recalled from the first-person perspective on the working memory capacity task; when recalling a failure, the opposite was true.

  10. Visual working memory capacity and proactive interference.

    Directory of Open Access Journals (Sweden)

    Joshua K Hartshorne

    Full Text Available BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/PRINCIPAL FINDINGS: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. CONCLUSIONS/SIGNIFICANCE: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  11. Visual Working Memory Capacity and Proactive Interference

    OpenAIRE

    Hartshorne, Joshua

    2008-01-01

    BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/P...

  12. What’s working in working memory training? An educational perspective

    Science.gov (United States)

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children’s academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial research studies, the current review of all of the available evidence of working memory training efficacy is less optimistic. Our conclusion is that working memory training produces limited benefits in terms of specific gains on short-term and working memory tasks that are very similar to the training programs, but no advantage for academic and achievement-based reading and arithmetic outcomes. PMID:26640352

  13. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.

    Science.gov (United States)

    Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael

    2015-02-01

    Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Visual working memory contaminates perception.

    Science.gov (United States)

    Kang, Min-Suk; Hong, Sang Wook; Blake, Randolph; Woodman, Geoffrey F

    2011-10-01

    Indirect evidence suggests that the contents of visual working memory may be maintained within sensory areas early in the visual hierarchy. We tested this possibility using a well-studied motion repulsion phenomenon in which perception of one direction of motion is distorted when another direction of motion is viewed simultaneously. We found that observers misperceived the actual direction of motion of a single motion stimulus if, while viewing that stimulus, they were holding a different motion direction in visual working memory. Control experiments showed that none of a variety of alternative explanations could account for this repulsion effect induced by working memory. Our findings provide compelling evidence that visual working memory representations directly interact with the same neural mechanisms as those involved in processing basic sensory events.

  15. Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".

    Science.gov (United States)

    Başar, Erol

    2005-01-01

    According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.

  16. Working memory and simultaneous interpreting

    OpenAIRE

    Timarova, Sarka

    2009-01-01

    Working memory is a cognitive construct underlying a number of abilities, and it has been hypothesised for many years that it is crucial for interpreting. A number of studies have been conducted with the aim to support this hypothesis, but research has not yielded convincing results. Most researchers focused on studying working memory differences between interpreters and non-interpreters with the rationale that differences in working memory between the two groups would provide evidence of wor...

  17. Effects of Steady-State Noise on Verbal Working Memory in Young Adults.

    Science.gov (United States)

    Marrone, Nicole; Alt, Mary; DeDe, Gayle; Olson, Sarah; Shehorn, James

    2015-12-01

    We set out to examine the impact of perceptual, linguistic, and capacity demands on performance of verbal working-memory tasks. The Ease of Language Understanding model (Rönnberg et al., 2013) provides a framework for testing the dynamics of these interactions within the auditory-cognitive system. Adult native speakers of English (n = 45) participated in verbal working-memory tasks requiring processing and storage of words involving different linguistic demands (closed/open set). Capacity demand ranged from 2 to 7 words per trial. Participants performed the tasks in quiet and in speech-spectrum-shaped noise. Separate groups of participants were tested at different signal-to-noise ratios. Word-recognition measures were obtained to determine effects of noise on intelligibility. Contrary to predictions, steady-state noise did not have an adverse effect on working-memory performance in every situation. Noise negatively influenced performance for the task with high linguistic demand. Of particular importance is the finding that the adverse effects of background noise were not confined to conditions involving declines in recognition. Perceptual, linguistic, and cognitive demands can dynamically affect verbal working-memory performance even in a population of healthy young adults. Results suggest that researchers and clinicians need to carefully analyze task demands to understand the independent and combined auditory-cognitive factors governing performance in everyday listening situations.

  18. Training working memory to reduce rumination.

    Directory of Open Access Journals (Sweden)

    Thomas Onraedt

    Full Text Available Cognitive symptoms of depression, such as rumination, have shown to be associated with deficits in working memory functioning. More precisely, the capacity to expel irrelevant negative information from working memory seems to be affected. Even though these associations have repeatedly been demonstrated, the nature and causal direction of this association is still unclear. Therefore, within an experimental design, we tried to manipulate working memory functioning of participants with heightened rumination scores in two similar experiments (n = 72 and n = 45 using a six day working memory training compared to active and passive control groups. Subsequently the effects on the processing of non-emotional and emotional information in working memory were monitored. In both experiments, performance during the training task significantly increased, but this performance gain did not transfer to the outcome working memory tasks or rumination and depression measures. Possible explanations for the failure to find transfer effects are discussed.

  19. Working Memory and Attitudes

    Science.gov (United States)

    Jung, Eun Sook; Reid, Norman

    2009-01-01

    Working memory capacity has been shown to be an important factor in controlling understanding in the sciences. Attitudes related to studies in the sciences are also known to be important in relation to success in learning. It might be argued that if working memory capacity is a rate controlling feature of learning and success in understanding…

  20. Working memory and the hippocampus.

    Science.gov (United States)

    Baddeley, Alan; Jarrold, Christopher; Vargha-Khadem, Faraneh

    2011-12-01

    A number of studies suggest an important role for the hippocampus in tasks involving visuospatial or relational working memory. We test the generality of this proposal across tasks using a battery designed to investigate the various components of working memory, studying the working memory performance of Jon, who shows a bilateral reduction in hippocampal volume of approximately 50%, comparing him to a group of 48 college students. We measure performance on four complex working memory span measures based on combining visuospatial and verbal storage with visuospatial or verbal concurrent processing as well as measuring Jon's ability to carry out the component storage and processing aspects of these tasks. Jon performed at a consistently high level across our range of tasks. Possible reasons for the apparent disparity between our own findings and earlier studies showing a hippocampal deficit are discussed in terms of both the potential differences in the demands placed on relational memory and of the proposed distinction between egocentric and allocentric visuospatial processing.

  1. Interacting Memory Systems—Does EEG Alpha Activity Respond to Semantic Long-Term Memory Access in a Working Memory Task?

    Directory of Open Access Journals (Sweden)

    Barbara Berger

    2014-12-01

    Full Text Available Memory consists of various individual processes which form a dynamic system co-ordinated by central (executive functions. The episodic buffer as direct interface between episodic long-term memory (LTM and working memory (WM is fairly well studied but such direct interaction is less clear in semantic LTM. Here, we designed a verbal delayed-match-to-sample task specifically to differentiate between pure information maintenance and mental manipulation of memory traces with and without involvement of access to semantic LTM. Task-related amplitude differences of electroencephalographic (EEG oscillatory brain activity showed a linear increase in frontal-midline theta and linear suppression of parietal beta amplitudes relative to memory operation complexity. Amplitude suppression at upper alpha frequency, which was previously found to indicate access to semantic LTM, was only sensitive to mental manipulation in general, irrespective of LTM involvement. This suggests that suppression of upper EEG alpha activity might rather reflect unspecific distributed cortical activation during complex mental processes than accessing semantic LTM.

  2. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  3. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    James M Stone

    2015-06-01

    Full Text Available Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span tasks provided are; digit span, matrix span, arrow span, reading span, operation span, rotation span, and symmetry span. These tasks are built to be simple to use, flexible to adapt to the specific needs of the research design, and are open source. All files can be downloaded from the project website http://www.cognitivetools.uk and the source code is available via Github.

  4. Nonlinear dynamics of a pseudoelastic shape memory alloy system - theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; A Savi, M.; Santos, Ilmar

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilit...

  5. Assessing Working Memory in Spanish-Speaking Children: Automated Working Memory Assessment Battery Adaptation

    Science.gov (United States)

    Injoque-Ricle, Irene; Calero, Alejandra D.; Alloway, Tracy P.; Burin, Debora I.

    2011-01-01

    The Automated Working Memory Assessment battery was designed to assess verbal and visuospatial passive and active working memory processing in children and adolescents. The aim of this paper is to present the adaptation and validation of the AWMA battery to Argentinean Spanish-speaking children aged 6 to 11 years. Verbal subtests were adapted and…

  6. Can Interactive Working Memory Training Improve Learning?

    Science.gov (United States)

    Alloway, Tracy

    2012-01-01

    Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…

  7. Precision of working memory for visual motion sequences and transparent motion surfaces.

    Science.gov (United States)

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2011-12-01

    Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.

  8. Working memory training improves visual short-term memory capacity.

    Science.gov (United States)

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  9. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    OpenAIRE

    Ricker, Timothy J.; Cowan, Nelson

    2013-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals necessarily result in more forgetting. An obstacle to directly comparing conflicting reports is a divergence in methodology across studies. Studies tha...

  10. Mental Imagery and Visual Working Memory

    OpenAIRE

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance ...

  11. Does Working Memory Training Lead to Generalized Improvements in Children with Low Working Memory? A Randomized Controlled Trial

    Science.gov (United States)

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…

  12. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    Science.gov (United States)

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  13. Working memory and Down syndrome.

    Science.gov (United States)

    Baddeley, A; Jarrold, C

    2007-12-01

    A brief account is given of the evolution of the concept of working memory from a unitary store into a multicomponent system. Four components are distinguished, the phonological loop which is responsible for maintaining speech-based information, the visuospatial sketchpad performing a similar function for visual information, the central executive which acts as an attentional control system, and finally a new component, the episodic buffer. The buffer comprises a temporary multidimensional store which is assumed to form an interface between the various subsystems of working memory, long-term memory, and perception. The operation of the model is then illustrated through an account of a research programme concerned with the analysis of working memory in Down syndrome.

  14. Interactions between working memory and selective attention

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Event-related potential (ERP) was used to examine the interactions between working memory and selective attention. We combined two unrelated tasks, one requiring working memory and the other selective attention, which were performed by some undergraduates. The ERP results revealed that both congruent and incongruent stimuli in the selective attention task evoked an N400 component, reaching the peak point at around 500 ms. The N400 evoked by incongruent stimuli was more negative than that of congruent, which indicated the difference of semantic N400. Furthermore, working memory load had a significant influence on the N400 evoked by selective attention task in parietal region. And working memory load showed difference in the ERPs of working memory retrieval in central and parietal regions. The ERPs of probe under high working memory load were more positive from 350 to 550 ms post-stimulus; however, stimulus type of selective attention had no influence on working memory retrieval. The present study shows that working memory does not play a major role in the selective attention, especially in ignoring distracter, but it influences the performance of the selective attention as the background. The congruency of target and distracter in the selective attention task does not influence the working memory retrieval.

  15. Comment on “Dynamic Shifts of Limited Working Memory Resources in Human Vision”

    Science.gov (United States)

    Cowan, Nelson; Rouder, Jeffrey N.

    2009-01-01

    Bays and Husain (Reports, 8 August 2008, p. 851) reported that human working memory, the limited information currently in mind, reflects resources distributed across all items in an array. In an alternative interpretation, memory is limited to several well-represented items. We argue that this item-limit model fits the extant data better than the distributed-resources model and is more interpretable theoretically. PMID:19213899

  16. Experimental analyses of dynamical systems involving shape memory alloys

    DEFF Research Database (Denmark)

    Enemark, Søren; Savi, Marcelo A.; Santos, Ilmar F.

    2015-01-01

    The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA ...

  17. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  18. Liar, liar, working memory on fire: Investigating the role of working memory in childhood verbal deception.

    Science.gov (United States)

    Alloway, Tracy Packiam; McCallum, Fiona; Alloway, Ross G; Hoicka, Elena

    2015-09-01

    The aim of the current study was to investigate the role of working memory in verbal deception in children. We presented 6- and 7-year-olds with a temptation resistance paradigm; they played a trivia game and were then given an opportunity to peek at the final answers on the back of a card. Measures of both verbal and visuospatial working memory were included. The good liars performed better on the verbal working memory test in both processing and recall compared with the bad liars. However, there was no difference in visuospatial working scores between good liars and bad liars. This pattern suggests that verbal working memory plays a role in processing and manipulating the multiple pieces of information involved in lie-telling. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. How Does Working Memory Work in the Classroom?

    Science.gov (United States)

    Alloway, Tracy Packiam

    2006-01-01

    Working memory plays a key role in supporting children's learning over the school years, and beyond this into adulthood. It is proposed here that working memory is crucially required to store information while other material is being mentally manipulated during the classroom learning activities that form the foundations for the acquisition of…

  20. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  1. Manipulations of attention dissociate fragile visual short-term memory from visual working memory.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F

    2011-05-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability

    NARCIS (Netherlands)

    Nelwan, M.; Vissers, C.T.W.M.; Kroesbergen, E.H.

    2018-01-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were

  3. INDIVIDUAL DIFFERENCES IN WORKING MEMORY PERFORMANCE: «OVERLOAD» EFFECT

    Directory of Open Access Journals (Sweden)

    Yuri G. Pavlov

    2015-01-01

    Full Text Available The aim of this research is to study the relationship betweenfrontal midline theta rhythm changes and individual differences in working memory performance.Methods. The methods involve behavioural testing on the basis of the program for a presentation of stimulus and registration of answers «PsyTask»; method of EEG (electroencephalography; a technique of measurement of efficiency of working memory; the comparative analysis. Software packages EEGLab for Matlab and Fieldtrip are applied while data processing.Results. After the behavioral test all subjects were separated into 2 groups according to their performance: with «highly productive» and «low productive» memory. Specially prepared author’s complete set of the tasks which complexity varied from average to ultrahigh level was offered to participants of experiment –students and employees of the Ural Federal University and Ural Legal Institute of the Ministry of Internal Affairs. Working memory tasks included sets of verbal stimuli for memorizing in strict order without any mental manipulation and sets of similar stimuli for memorizing in alphabetical order (with manipulations. Measured characteristics of theta-rhythm of EEG during information deduction in memory were compared of two groups’ representatives. The obtained data has shown rather uniform and similar dynamics of decrease in quantity of right answers in process of increasing tasks’ complexity. However, changes of a thetarhythm in different groups had sharply expressed distinctions. «Highly productive» examinees have systematic expansion of a theta-rhythm in the central assignments with stabilisation on the most difficult tasks; «low productive» – while tasks performance of average complexity, a sharp falling of theta-rhythm activity is observed after achievement of its maximum activation.Scientific novelty. The working memory «overload» effect and its EEG correlates are demonstrated on a big sample of

  4. Working memory, long-term memory and language processing : issues and future directions

    OpenAIRE

    Collette, Fabienne; Van der Linden, Martial; Poncelet, Martine

    2000-01-01

    We examined different views of the relationships between working memory, long-term memory and language processing : working memory considered as a gateway between sensory input and long-term memory or rather as a workspace; working memory considered as not strictly tied to any particular cognitive system (and consequently viewed as separated from the language system) or rather as drawing on the operation and storage capacities of a subset of components involved in language processing. It is a...

  5. The impact of working memory on interpreting

    Institute of Scientific and Technical Information of China (English)

    白云安; 张国梅

    2016-01-01

    This paper investigates the roles of working memory in interpreting process. First of all, it gives a brief introduction to interpreting. Secondly, the paper exemplifies the role of working memory in interpreting. The result reveals that the working memory capacity of interpreters is not adsolutely proportional to the quality of interpreting in the real interpreting conditions. The performance of an interpreter with well-equipped working memory capacity will comprehensively influenced by various elements.

  6. A New Role for Attentional Corticopetal Acetylcholine in Cortical Memory Dynamics

    Science.gov (United States)

    Fujii, Hiroshi; Kanamaru, Takashi; Aihara, Kazuyuki; Tsuda, Ichiro

    2011-09-01

    Although the role of corticopetal acetylcholine (ACh) in higher cognitive functions is increasingly recognized, the questions as (1) how ACh works in attention(s), memory dynamics and cortical state transitions, and also (2) why and how loss of ACh is involved in dysfunctions such as visual hallucinations in dementia with Lewy bodies and deficit of attention(s), are not well understood. From the perspective of a dynamical systems viewpoint, we hypothesize that transient ACh released under top-down attention serves to temporarily invoke attractor-like memories, while a background level of ACh reverses this process returning the dynamical nature of the memory structure back to attractor ruins (quasi-attractors). In fact, transient ACh loosens inhibitions of py ramidal neurons (PYRs) by P V+ fas t spiking (FS) i nterneurons, while a baseline ACh recovers inhibitory actions of P V+ FS. Attentional A Ch thus dynamically modifies brain's connectivity. Th e core of this process is in the depression of GABAergic inhibitory currents in PYRs due to muscarinic (probably M2 subtype) presyn aptic effects on GABAergic synapses of PV+ FS neurons

  7. Components of working memory and visual selective attention.

    Science.gov (United States)

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Phone Routing using the Dynamic Memory Model

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nicolaj; Krink, Thiemo

    2002-01-01

    In earlier studies a genetic algorithm (GA) extended with the dynamic memory model has shown remarkable performance on real-world-like problems. In this paper we experiment with routing in communication networks and show that the dynamic memory GA performs remarkable well compared to ant colony...

  9. Transfer after Working Memory Updating Training

    OpenAIRE

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active cont...

  10. Academic Outcomes 2 Years After Working Memory Training for Children With Low Working Memory: A Randomized Clinical Trial.

    Science.gov (United States)

    Roberts, Gehan; Quach, Jon; Spencer-Smith, Megan; Anderson, Peter J; Gathercole, Susan; Gold, Lisa; Sia, Kah-Ling; Mensah, Fiona; Rickards, Field; Ainley, John; Wake, Melissa

    2016-05-02

    Working memory training may help children with attention and learning difficulties, but robust evidence from population-level randomized controlled clinical trials is lacking. To test whether a computerized adaptive working memory intervention program improves long-term academic outcomes of children 6 to 7 years of age with low working memory compared with usual classroom teaching. Population-based randomized controlled clinical trial of first graders from 44 schools in Melbourne, Australia, who underwent a verbal and visuospatial working memory screening. Children were classified as having low working memory if their scores were below the 15th percentile on either the Backward Digit Recall or Mister X subtest from the Automated Working Memory Assessment, or if their scores were below the 25th percentile on both. These children were randomly assigned by an independent statistician to either an intervention or a control arm using a concealed computerized random number sequence. Researchers were blinded to group assignment at time of screening. We conducted our trial from March 1, 2012, to February 1, 2015; our final analysis was on October 30, 2015. We used intention-to-treat analyses. Cogmed working memory training, comprising 20 to 25 training sessions of 45 minutes' duration at school. Directly assessed (at 12 and 24 months) academic outcomes (reading, math, and spelling scores as primary outcomes) and working memory (also assessed at 6 months); parent-, teacher-, and child-reported behavioral and social-emotional functioning and quality of life; and intervention costs. Of 1723 children screened (mean [SD] age, 6.9 [0.4] years), 226 were randomized to each arm (452 total), with 90% retention at 1 year and 88% retention at 2 years; 90.3% of children in the intervention arm completed at least 20 sessions. Of the 4 short-term and working memory outcomes, 1 outcome (visuospatial short-term memory) benefited the children at 6 months (effect size, 0.43 [95% CI, 0

  11. The nature of working memory for Braille.

    Science.gov (United States)

    Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter

    2010-05-26

    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  12. Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search

    NARCIS (Netherlands)

    de Vries, I.E.J.; van Driel, J.; Olivers, C.N.L.

    2017-01-01

    Current models of visual search assume that search is guided by an active visual working memory representation of what we are currently looking for. This attentional template for currently relevant stimuli can be dissociated from accessory memory representations that are only needed prospectively,

  13. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effects of working memory contents and perceptual load on distractor processing: When a response-related distractor is held in working memory.

    Science.gov (United States)

    Koshino, Hideya

    2017-01-01

    Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    Science.gov (United States)

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Consciousness and working memory: Current trends and research perspectives.

    Science.gov (United States)

    Velichkovsky, Boris B

    2017-10-01

    Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.

    Science.gov (United States)

    Collins, Anne G E; Frank, Michael J

    2018-03-06

    Learning from rewards and punishments is essential to survival and facilitates flexible human behavior. It is widely appreciated that multiple cognitive and reinforcement learning systems contribute to decision-making, but the nature of their interactions is elusive. Here, we leverage methods for extracting trial-by-trial indices of reinforcement learning (RL) and working memory (WM) in human electro-encephalography to reveal single-trial computations beyond that afforded by behavior alone. Neural dynamics confirmed that increases in neural expectation were predictive of reduced neural surprise in the following feedback period, supporting central tenets of RL models. Within- and cross-trial dynamics revealed a cooperative interplay between systems for learning, in which WM contributes expectations to guide RL, despite competition between systems during choice. Together, these results provide a deeper understanding of how multiple neural systems interact for learning and decision-making and facilitate analysis of their disruption in clinical populations.

  18. Caffeine, extraversion and working memory.

    Science.gov (United States)

    Smith, Andrew P

    2013-01-01

    Research has shown that extraverts performing a working memory task benefit more from caffeine than do introverts. The present study aimed to replicate this and extend our knowledge by using a lower dose of caffeine (65 mg) and a range of tasks related to different components of working memory. In addition, tasks assessing psychomotor speed and the encoding of new information were included to determine whether caffeine-extraversion interactions were restricted to working memory tasks. A double-blind design was used, with 128 participants being randomly assigned to caffeinated or de-caffeinated coffee conditions. The results showed that caffeine interacted with extraversion in the predicted direction for serial recall and running memory tasks. Caffeine improved simple reaction time and the speed of encoding of new information, effects which were not modified by extraversion. These results suggest possible biological mechanisms underlying effects of caffeine on cognitive performance.

  19. Working memory and organizational skills problems in ADHD.

    Science.gov (United States)

    Kofler, Michael J; Sarver, Dustin E; Harmon, Sherelle L; Moltisanti, Allison; Aduen, Paula A; Soto, Elia F; Ferretti, Nicole

    2018-01-01

    This study tested model-driven predictions regarding working memory's role in the organizational problems associated with ADHD. Children aged 8-13 (M = 10.33, SD = 1.42) with and without ADHD (N = 103; 39 girls; 73% Caucasian/Non-Hispanic) were assessed on multiple, counterbalanced working memory tasks. Parents and teachers completed norm-referenced measures of organizational problems (Children's Organizational Skills Scale; COSS). Results confirmed large magnitude working memory deficits (d = 1.24) and organizational problems in ADHD (d = 0.85). Bias-corrected, bootstrapped conditional effects models linked impaired working memory with greater parent- and teacher-reported inattention, hyperactivity/impulsivity, and organizational problems. Working memory predicted organization problems across all parent and teacher COSS subscales (R 2  = .19-.23). Approximately 38%-57% of working memory's effect on organization problems was conveyed by working memory's association with inattentive behavior. Unique effects of working memory remained significant for both parent- and teacher-reported task planning, as well as for teacher-reported memory/materials management and overall organization problems. Attention problems uniquely predicted worse organizational skills. Hyperactivity was unrelated to parent-reported organizational skills, but predicted better teacher-reported task planning. Children with ADHD exhibit multisetting, broad-based organizational impairment. These impaired organizational skills are attributable in part to performance deficits secondary to working memory dysfunction, both directly and indirectly via working memory's role in regulating attention. Impaired working memory in ADHD renders it extraordinarily difficult for these children to consistently anticipate, plan, enact, and maintain goal-directed actions. © 2017 Association for Child and Adolescent Mental Health.

  20. The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory

    OpenAIRE

    Bradley, Claire; Pearson, Joel

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their...

  1. The sensory components of high-capacity iconic memory and visual working memory

    OpenAIRE

    Claire eBradley; Claire eBradley; Joel ePearson

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their c...

  2. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder.

    Science.gov (United States)

    Stegmayer, Katharina; Usher, Juliana; Trost, Sarah; Henseler, Ilona; Tost, Heike; Rietschel, Marcella; Falkai, Peter; Gruber, Oliver

    2015-06-01

    Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric "cognitive-emotional" interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

  3. Response to Comment on "Dynamic Shifts of Limited Working Memory Resources in Human Vision"

    Science.gov (United States)

    Bays, Paul M; Husain, Masud

    2009-02-13

    Cowan & Rouder suggest that a modification to the four-slot model of visual working memory fits the available data better than our distributed resource model. However their comparisons of statistical fit are biased in favour of the slot model. Here we compare the predictions of the two models and present further evidence against the division of visual memory into slots.

  4. What's Working in Working Memory Training? An Educational Perspective

    Science.gov (United States)

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children's academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial…

  5. Memory rehabilitation for the working memory of patients with multiple sclerosis (MS).

    Science.gov (United States)

    Mousavi, Shokoufeh; Zare, Hossein; Etemadifar, Masoud; Taher Neshatdoost, Hamid

    2018-05-01

    The main cognitive impairments in multiple sclerosis (MS) affect the working memory, processing speed, and performances that are in close interaction with one another. Cognitive problems in MS are influenced to a lesser degree by disease recovery medications or treatments,but cognitive rehabilitation is considered one of the promising methods for cure. There is evidence regarding the effectiveness of cognitive rehabilitation for MS patients in various stages of the disease. Since the impairment in working memory is one of the main MS deficits, a particular training that affects this cognitive domain can be of a great value. This study aims to determine the effectiveness of memory rehabilitation on the working memory performance of MS patients. Sixty MS patients with cognitive impairment and similar in terms of demographic characteristics, duration of disease, neurological problems, and mental health were randomly assigned to three groups: namely, experimental, placebo, and control. Patients' cognitive evaluation incorporated baseline assessments immediately post-intervention and 5 weeks post-intervention. The experimental group received a cognitive rehabilitation program in one-hour sessions on a weekly basis for 8 weeks. The placebo group received relaxation techniques on a weekly basis; the control group received no intervention. The results of this study showed that the cognitive rehabilitation program had a positive effect on the working memory performance of patients with MS in the experimental group. These results were achieved in immediate evaluation (post-test) and follow-up 5 weeks after intervention. There was no significant difference in working memory performance between the placebo group and the control group. According to the study, there is evidence for the effectiveness of a memory rehabilitation program for the working memory of patients with MS. Cognitive rehabilitation can improve working memory disorders and have a positive effect on the

  6. The nature of working memory for Braille.

    Directory of Open Access Journals (Sweden)

    Henri Cohen

    Full Text Available Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV. In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  7. Working Memory Influences on Long-Term Memory and Comprehension

    National Research Council Canada - National Science Library

    Radvansky, Gabriel

    2004-01-01

    .... This study looked at how comprehension and memory processing at the mental model level is related to traditional measures of working memory capacity, including the word span, reading span, operation...

  8. Behavioral decoding of working memory items inside and outside the focus of attention.

    Science.gov (United States)

    Mallett, Remington; Lewis-Peacock, Jarrod A

    2018-03-31

    How we attend to our thoughts affects how we attend to our environment. Holding information in working memory can automatically bias visual attention toward matching information. By observing attentional biases on reaction times to visual search during a memory delay, it is possible to reconstruct the source of that bias using machine learning techniques and thereby behaviorally decode the content of working memory. Can this be done when more than one item is held in working memory? There is some evidence that multiple items can simultaneously bias attention, but the effects have been inconsistent. One explanation may be that items are stored in different states depending on the current task demands. Recent models propose functionally distinct states of representation for items inside versus outside the focus of attention. Here, we use behavioral decoding to evaluate whether multiple memory items-including temporarily irrelevant items outside the focus of attention-exert biases on visual attention. Only the single item in the focus of attention was decodable. The other item showed a brief attentional bias that dissipated until it returned to the focus of attention. These results support the idea of dynamic, flexible states of working memory across time and priority. © 2018 New York Academy of Sciences.

  9. Reading and Working Memory

    Science.gov (United States)

    Baddeley, Alan

    1984-01-01

    Outlines the concept of working memory, with particular reference to a hypothetical subcomponent, the articulatory loop. Discusses the role of the loop in fluent adult reading, then examines the reading performance of adults with deficits in auditory verbal memory, showing that a capacity to articulate is not necessary for the effective…

  10. Control of Interference during Working Memory Updating

    Science.gov (United States)

    Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, Andre; Kemps, Eva

    2011-01-01

    The current study examined the nature of the processes underlying working memory updating. In 4 experiments using the n-back paradigm, the authors demonstrate that continuous updating of items in working memory prevents strong binding of those items to their contexts in working memory, and hence leads to an increased susceptibility to proactive…

  11. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    Science.gov (United States)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  12. Modulation of working memory updating: Does long-term memory lexical association matter?

    Science.gov (United States)

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  13. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  14. Working memory capacity and overgeneral autobiographical memory in young and older adults.

    Science.gov (United States)

    Ros, Laura; Latorre, José Miguel; Serrano, Juan Pedro

    2010-01-01

    The objectives of this study are to compare the Autobiographical Memory Test (AMT) performance of two healthy samples of younger and older adults and to analyse the relationship between overgeneral memory (OGM) and working memory executive processes (WMEP) using a structural equation modelling with latent variables. The AMT and sustained attention, short-term memory and working memory tasks were administered to a group of young adults (N = 50) and a group of older adults (N = 46). On the AMT, the older adults recalled a greater number of categorical memories (p = .000) and fewer specific memories (p = .000) than the young adults, confirming that OGM occurs in the normal population and increases with age. WMEP was measured by reading span and a working memory with sustained attention load task. Structural equation modelling reflects that WMEP shows a strong relationship with OGM: lower scores on WMEP reflect an OGM phenomenon characterized by higher categorical and lower specific memories.

  15. Working memory overload: fronto-limbic interactions and effects on subsequent working memory function.

    Science.gov (United States)

    Yun, Richard J; Krystal, John H; Mathalon, Daniel H

    2010-03-01

    The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.

  16. Short-term and working memory impairments in aphasia.

    Science.gov (United States)

    Potagas, Constantin; Kasselimis, Dimitrios; Evdokimidis, Ioannis

    2011-08-01

    The aim of the present study is to investigate short-term memory and working memory deficits in aphasics in relation to the severity of their language impairment. Fifty-eight aphasic patients participated in this study. Based on language assessment, an aphasia score was calculated for each patient. Memory was assessed in two modalities, verbal and spatial. Mean scores for all memory tasks were lower than normal. Aphasia score was significantly correlated with performance on all memory tasks. Correlation coefficients for short-term memory and working memory were approximately of the same magnitude. According to our findings, severity of aphasia is related with both verbal and spatial memory deficits. Moreover, while aphasia score correlated with lower scores in both short-term memory and working memory tasks, the lack of substantial difference between corresponding correlation coefficients suggests a possible primary deficit in information retention rather than impairment in working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Working, declarative and procedural memory in specific language impairment

    Science.gov (United States)

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we

  18. The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory

    OpenAIRE

    Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark

    2014-01-01

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory lo...

  19. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    Science.gov (United States)

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Brain oscillation and connectivity during a chemistry visual working memory task.

    Science.gov (United States)

    Huang, Li-Yu; She, Hsiao-Ching; Chou, Wen-Chi; Chuang, Ming-Hua; Duann, Jeng-Ren; Jung, Tzyy-Ping

    2013-11-01

    Many studies have reported that frontal theta and posterior alpha activities are associated with working memory tasks. However, fewer studies have focused on examining whether or not the frontal alpha or posterior theta can play a role in the working memory task. This study investigates electroencephalography (EEG) dynamics and connectivity among different brain regions' theta and alpha oscillations. The EEG was collected from undergraduate students (n = 64) while they were performing a Sternberg-like working memory task involving chemistry concepts. The results showed that the frontal midline cluster exhibited sustained theta augmentation across the periods of stimulus presentations, maintenance, and probe presentation, suggesting that the frontal midline theta might associate with facilitating the central execute function to maintain information in the working memory. Study of the central parietal and the occipital clusters revealed a sequence of theta augmentation followed by alpha suppression at constant intervals after the onset of stimulus and probe presentations, suggesting that the posterior theta might be associated with sensory processing, theta gating, or stimulus selection. It further suggests that the posterior alpha event-related de-synchronization (ERD) might be linked to direct information flow into and out of the long-term memory (LTM) and precede stimulus recognition. An alternating phasic alpha event-related synchronization (ERS) and ERD following the 1st stimulus and probe presentations were observed at the occipital cluster, in which alpha ERS might be linked to the inhibition of irrelevant information. © 2013.

  2. Dynamics of Shape Memory Alloy Systems, Phase 2

    Science.gov (United States)

    2015-12-22

    Nonlinear Dynamics and Chaos in Systems with Discontinuous Support Using a Switch Model”, DINAME 2005 - XI International Conference on Dynamic Problems in...AFRL-AFOSR-CL-TR-2016-0003 Dynamics of Shape Memory Alloy Systems , Phase 2 Marcelo Savi FUNDACAO COORDENACAO DE PROJETOS PESQUISAS E EEUDOS TECNOL...release. 2 AFOSR FINAL REPORT Grant Title: Nonlinear Dynamics of Shape Memory Alloy Systems , Phase 2 Grant #: FA9550-11-1-0284 Reporting Period

  3. Verbal declarative memory impairments in specific language impairment are related to working memory deficits

    OpenAIRE

    Lum, Jarrad A.G.; Ullman, Michael T.; Conti-Ramsden, Gina

    2015-01-01

    This study examined verbal declarative memory functioning in SLI and its relationship to working memory. Encoding, recall, and recognition of verbal information was examined in children with SLI who had below average working memory (SLILow WM), children with SLI who had average working memory (SLIAvg. WM) and, a group of non-language impaired children with average working memory (TDAvg. WM). The SLILow WM group was significantly worse than both the SLIAvg. WM and TDAvg. WM groups at encoding ...

  4. Functional MR imaging of working memory before neurosurgery

    International Nuclear Information System (INIS)

    Wunderlich, A.P.; Groen, G.; Braun, V.

    2007-01-01

    Information concerning the tissue adjacent to a brain tumour is crucial for planning and performing a neurosurgical intervention. In this study, we evaluated the usefulness of functional imaging of working memory in terms of working memory preservation. Working memory performance of 14 patients with prefrontal tumours was tested preoperatively by means of a standardized neuropsychological test battery. Also, functional magnetic resonance imaging (fMRI) using a so-called two-back paradigm was performed to visualize brain areas related to that task. Working memory areas were reliably detected in all patients. Surgery was then planned on the basis of this information, and the data were used for intra-operative cranial neuronavigation. Three to twelve months after surgery, patients were tested again with the test battery in order to detect possible changes in working memory performance. In 13 cases the memory performance was unchanged, only one female patient had a slight impairment of working memory compared to the pre-operative status. (orig.)

  5. Working-memory training improves developmental dyslexia in Chinese children

    Institute of Scientific and Technical Information of China (English)

    Yan Luo; Jing Wang; Hanrong Wu; Dongmei Zhu; Yu Zhang

    2013-01-01

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.

  6. Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.

    Science.gov (United States)

    Halahalli, Harsha N; John, John P; Lukose, Ammu; Jain, Sanjeev; Kutty, Bindu M

    2015-11-01

    Prospective memory paradigms are conventionally classified on the basis of event-, time-, or activity-based intention retrieval. In the vast majority of such paradigms, intention retrieval is provoked by some kind of external event. However, prospective memory retrieval cues that prompt intention retrieval in everyday life are commonly endogenous, i.e., linked to a specific imagined retrieval context. We describe herein a novel prospective memory paradigm wherein the endogenous cue is generated by incremental updating of working memory, and investigated the hemodynamic correlates of this task. Eighteen healthy adult volunteers underwent functional magnetic resonance imaging while they performed a prospective memory task where the delayed intention was triggered by an endogenous cue generated by incremental updating of working memory. Working memory and ongoing task control conditions were also administered. The 'endogenous-cue prospective memory condition' with incremental working memory updating was associated with maximum activations in the right rostral prefrontal cortex, and additional activations in the brain regions that constitute the bilateral fronto-parietal network, central and dorsal salience networks as well as cerebellum. In the working memory control condition, maximal activations were noted in the left dorsal anterior insula. Activation of the bilateral dorsal anterior insula, a component of the central salience network, was found to be unique to this 'endogenous-cue prospective memory task' in comparison to previously reported exogenous- and endogenous-cue prospective memory tasks without incremental working memory updating. Thus, the findings of the present study highlight the important role played by the dorsal anterior insula in incremental working memory updating that is integral to our endogenous-cue prospective memory task.

  7. Neural oscillations in auditory working memory

    OpenAIRE

    Wilsch, A.

    2015-01-01

    The present thesis investigated memory load and memory decay in auditory working memory. Alpha power as a marker for memory load served as the primary indicator for load and decay fluctuations hypothetically reflecting functional inhibition of irrelevant information. Memory load was induced by presenting auditory signals (syllables and pure-tone sequences) in noise because speech-in-noise has been shown before to increase memory load. The aim of the thesis was to assess with magnetoencephalog...

  8. The Nature of Individual Differences in Working Memory Capacity: Active Maintenance in Primary Memory and Controlled Search from Secondary Memory

    Science.gov (United States)

    Unsworth, Nash; Engle, Randall W.

    2007-01-01

    Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…

  9. Foraging in a complex naturalistic environment: capacity of spatial working memory in flower bats.

    Science.gov (United States)

    Winter, York; Stich, Kai Petra

    2005-02-01

    Memory systems have evolved under selection pressures, such as the need to remember the locations of resources or past events within spatiotemporally dynamic natural environments. The full repertoire of complex behaviours exhibited by animals in dynamic surroundings are, however, difficult to elicit within simply structured laboratory environments. We have developed a computer-controlled naturalistic environment with 64 feeders for simulating dynamic patterns of water or food resource availability (depletion and replenishment) within the laboratory. The combination of feeder and cage remote control permits the automated transfer of animals between cage and test arena and, therefore, high experimental throughput and minimal disturbance to the animals (bats and mice). In the present study, we investigated spatial working memory in nectar-feeding bats (Glossophaga soricina, Phyllostomidae) collecting food from a 64-feeder array. Feeders gave only single rewards within trials so that efficient foraging required bats to avoid depleted locations. Initially, bats tended to revisit feeders (win-stay), but within three trials changed towards a win-shift strategy. The significant avoidance of revisits could not be explained by algorithmic search guiding movement through the array nor by scent cues left by the bats themselves and, thus, the data suggest that bats remembered spatial locations depleted of food. An examination of the recency effect on spatial working memory after bats shifted to a win-shift strategy indicated that bats held more than 40 behaviour actions (feeder visits) in working memory without indication of decay. This result surpasses previous findings for other taxa.

  10. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    Science.gov (United States)

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  11. Working memory, short-term memory and reading proficiency in school-age children with cochlear implants.

    Science.gov (United States)

    Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby

    2015-10-01

    The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these

  12. Working-memory training improves developmental dyslexia in Chinese children★

    OpenAIRE

    Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu

    2013-01-01

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8–11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the...

  13. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    Science.gov (United States)

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation.

    Science.gov (United States)

    Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred

    2014-07-11

    Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.

  15. Working Memory and Short-Term Memory Abilities in Accomplished Multilinguals

    Science.gov (United States)

    Biedron, Adriana; Szczepaniak, Anna

    2012-01-01

    The role of short-term memory and working memory in accomplished multilinguals was investigated. Twenty-eight accomplished multilinguals were compared to 36 mainstream philology students. The following instruments were used in the study: three memory subtests of the Wechsler Intelligence Scale (Digit Span, Digit-Symbol Coding, and Arithmetic,…

  16. Nonlinear dynamics of a pseudoelastic shape memory alloy system—theory and experiment

    International Nuclear Information System (INIS)

    Enemark, S; F Santos, I; A Savi, M

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilities and varying stiffness. Besides, these properties depend on the temperature and pretension conditions. Because of these capabilities, shape memory alloys are interesting in relation to engineering design of dynamic systems. A theoretical model based on a modification of the 1D Brinson model was established. Basically, the hardening and the sub-loop behaviour were altered. The model parameters were extracted from force–displacement tests of the spring at different constant temperatures as well as from differential scanning calorimetry. Model predictions were compared with experimental results of free and forced vibrations of the system setup under different temperature conditions. The experiments give a thorough insight into dynamic systems involving pseudoelastic shape memory alloys. Comparison between experimental results and the proposed model shows that the model is able to explain and predict the overall nonlinear behaviour of the system. (paper)

  17. Shielding cognition from nociception with working memory.

    Science.gov (United States)

    Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André

    2013-01-01

    Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  19. The working memory networks of the human brain.

    Science.gov (United States)

    Linden, David E J

    2007-06-01

    Working memory and short-term memory are closely related in their cognitive architecture, capacity limitations, and functional neuroanatomy, which only partly overlap with those of long-term memory. The author reviews the functional neuroimaging literature on the commonalities and differences between working memory and short-term memory and the interplay of areas with modality-specific and supramodal representations in the brain networks supporting these fundamental cognitive processes. Sensory stores in the visual, auditory, and somatosensory cortex play a role in short-term memory, but supramodal parietal and frontal areas are often recruited as well. Classical working memory operations such as manipulation, protection against interference, or updating almost certainly require at least some degree of prefrontal support, but many pure maintenance tasks involve these areas as well. Although it seems that activity shifts from more posterior regions during encoding to more anterior regions during delay, some studies reported sustained delay activity in sensory areas as well. This spatiotemporal complexity of the short-term memory/working memory networks is mirrored in the activation patterns that may explain capacity constraints, which, although most prominent in the parietal cortex, seem to be pervasive across sensory and premotor areas. Finally, the author highlights open questions for cognitive neuroscience research of working memory, such as that of the mechanisms for integrating different types of content (binding) or those providing the link to long-term memory.

  20. Working Memory From the Psychological and Neurosciences Perspectives: A Review.

    Science.gov (United States)

    Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin

    2018-01-01

    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural

  1. Working Memory and Auditory Imagery Predict Sensorimotor Synchronization with Expressively Timed Music.

    Science.gov (United States)

    Colley, Ian D; Keller, Peter E; Halpern, Andrea R

    2017-08-11

    Sensorimotor synchronization (SMS) is prevalent and readily studied in musical settings, as most people are able to perceive and synchronize with a beat (e.g. by finger tapping). We took an individual differences approach to understanding SMS to real music characterized by expressive timing (i.e. fluctuating beat regularity). Given the dynamic nature of SMS, we hypothesized that individual differences in working memory and auditory imagery-both fluid cognitive processes-would predict SMS at two levels: 1) mean absolute asynchrony (a measure of synchronization error), and 2) anticipatory timing (i.e. predicting, rather than reacting to beat intervals). In Experiment 1, participants completed two working memory tasks, four auditory imagery tasks, and an SMS-tapping task. Hierarchical regression models were used to predict SMS performance, with results showing dissociations among imagery types in relation to mean absolute asynchrony, and evidence of a role for working memory in anticipatory timing. In Experiment 2, a new sample of participants completed an expressive timing perception task to examine the role of imagery in perception without action. Results suggest that imagery vividness is important for perceiving and control is important for synchronizing with, irregular but ecologically valid musical time series. Working memory is implicated in synchronizing by anticipating events in the series.

  2. Working memory predicts the rejection of false memories.

    Science.gov (United States)

    Leding, Juliana K

    2012-01-01

    The relationship between working memory capacity (WMC) and false memories in the memory conjunction paradigm was explored. Previous research using other paradigms has shown that individuals high in WMC are not as likely to experience false memories as low-WMC individuals, the explanation being that high-WMC individuals are better able to engage in source monitoring. In the memory conjunction paradigm participants are presented at study with parent words (e.g., eyeglasses, whiplash). At test, in addition to being presented with targets and foils, participants are presented with lures that are composed of previously studied features (e.g., eyelash). It was found that high-WMC individuals had lower levels of false recognition than low-WMC individuals. Furthermore, recall-to-reject responses were analysed (e.g., "I know I didn't see eyelash because I remember seeing eyeglasses") and it was found that high-WMC individuals were more likely to utilise this memory editing strategy, providing direct evidence that one reason that high-WMC individuals are not as prone to false memories is because they are better able to engage in source monitoring.

  3. Examining procedural working memory processing in obsessive-compulsive disorder.

    Science.gov (United States)

    Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon

    2017-07-01

    Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Working memory can enhance unconscious visual perception.

    Science.gov (United States)

    Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying

    2012-06-01

    We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.

  5. Working Memory From the Psychological and Neurosciences Perspectives: A Review

    Directory of Open Access Journals (Sweden)

    Wen Jia Chai

    2018-03-01

    Full Text Available Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent

  6. Working Memory From the Psychological and Neurosciences Perspectives: A Review

    Science.gov (United States)

    Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin

    2018-01-01

    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized

  7. Response to Comment on “Dynamic Shifts of Limited Working Memory Resources in Human Vision”

    Science.gov (United States)

    Bays, Paul M; Husain, Masud

    2012-01-01

    Cowan & Rouder suggest that a modification to the four-slot model of visual working memory fits the available data better than our distributed resource model. However their comparisons of statistical fit are biased in favour of the slot model. Here we compare the predictions of the two models and present further evidence against the division of visual memory into slots. PMID:22822271

  8. Working Memory and Developmental Language Impairments

    Science.gov (United States)

    Henry, Lucy A.; Botting, Nicola

    2017-01-01

    Children with developmental language impairments (DLI) are often reported to show difficulties with working memory. This review describes the four components of the well-established working memory model, and considers whether there is convincing evidence for difficulties within each component in children with DLI. The emphasis is on the most…

  9. Working Memory Interventions with Children: Classrooms or Computers?

    Science.gov (United States)

    Colmar, Susan; Double, Kit

    2017-01-01

    The importance of working memory to classroom functioning and academic outcomes has led to the development of many interventions designed to enhance students' working memory. In this article we briefly review the evidence for the relative effectiveness of classroom and computerised working memory interventions in bringing about measurable and…

  10. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory.

    Science.gov (United States)

    Nees, Michael A

    2016-01-01

    Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3-5 s) are compared, and a "same" or "different" judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory-especially two-stimulus comparison tasks-may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  11. Resource-sharing in multiple-component working memory

    OpenAIRE

    Doherty, Jason M.; Logie, Robert H.

    2016-01-01

    Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the fu...

  12. Teachers' Perceptions of Classroom Behaviour and Working Memory

    Science.gov (United States)

    Alloway, Tracy Packiam

    2012-01-01

    Working memory, ability to remember and manipulate information, is crucial to academic attainment. The aim of the present study was to understand teachers' perception of working memory and how it impacts classroom behaviour. A semi-structured interview was used to explore teachers' ability to define working memory, identify these difficulties in…

  13. Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.

    Science.gov (United States)

    Dent, Kevin

    2010-01-01

    In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.

  14. Music training and working memory: an ERP study.

    Science.gov (United States)

    George, Elyse M; Coch, Donna

    2011-04-01

    While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Working-memory performance is related to spatial breadth of attention.

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2015-11-01

    Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.

  16. A metacognitive visuospatial working memory training for children

    Directory of Open Access Journals (Sweden)

    Sara Caviola

    2009-10-01

    Full Text Available The paper studies whether visuospatial working memory (VSWM and, specifically, recall of sequential-spatial information, can be improved by metacognitive training. Twenty-two fourth-grade children were involved in seven sessions of sequential-spatial memory training, while twenty-four children attended lessons given by their teacher. The posttraining evaluation demonstrated a specific improvement of performances in the Corsi blocks task, considered a sequential-spatial working memory task. However, no benefits of training were observed in either a verbal working memory task or a simultaneous-spatial working memory task. The results have important theoretical implications, in the study of VSWM components, and educational implications, in catering for children with specific VSWM impairments.

  17. The sensory components of high-capacity iconic memory and visual working memory.

    Science.gov (United States)

    Bradley, Claire; Pearson, Joel

    2012-01-01

    EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.

  18. The sensory components of high-capacity iconic memory and visual working memory

    Directory of Open Access Journals (Sweden)

    Claire eBradley

    2012-09-01

    Full Text Available Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of 3 different visual features (colour, orientation and motion across a range of durations from 0 to 6 seconds. We found that the amount of information stored in iconic memory is smaller for motion than for colour or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ~2 seconds. Further experiments showed that performance for the 10 items at 1 second was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory and an effortful ‘lower-capacity’ visual working memory.

  19. Structural correlates of impaired working memory in hippocampal sclerosis

    Science.gov (United States)

    Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S

    2013-01-01

    Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of

  20. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  1. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory

    Directory of Open Access Journals (Sweden)

    Michael A. Nees

    2016-12-01

    Full Text Available Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3 to 5 s are compared, and a same or different judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory—especially two-stimulus comparison tasks—may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  2. The impact of poor working memory skills on a Grade 2 learner’s written and oral literacy performance

    Directory of Open Access Journals (Sweden)

    Kate Linnegar

    2014-05-01

    Full Text Available This research examines the effects of poor working memory skills on a Grade 2 learner. Mediated learning is the theoretical framework that underpins this research project as the focus is on developing cognitive functions, particularly focusing on the working memory of a learner. An independent case study was conducted on one learner, using a qualitative research approach. Interviews and observations were conducted and inductively analysed. The learner followed a six-week intervention programme which was dynamically informed by recent literature as well as observations, interviews and a psychologist’s report. The findings indicated that the learner’s working memory, with particular reference to processing and storage, was challenged. The large demands of the classroom environment led to memory failure and he was prone to making errors. He experienced slow progress in his reading abilities, was unable to retain words and his reading was inconsistent. To alleviate some of his working memory demands, activities and instructions were broken down into smaller components to minimise his memory load, thus avoiding working memory related failures.

  3. Relating color working memory and color perception.

    Science.gov (United States)

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of motor congruence on visual working memory.

    Science.gov (United States)

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  5. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Science.gov (United States)

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  6. Anxiety and working memory capacity: A meta-analysis and narrative review.

    Science.gov (United States)

    Moran, Tim P

    2016-08-01

    Cognitive deficits are now widely recognized to be an important component of anxiety. In particular, anxiety is thought to restrict the capacity of working memory by competing with task-relevant processes. The evidence for this claim, however, has been mixed. Although some studies have found restricted working memory in anxiety, others have not. Within studies that have found impairments, there is little agreement regarding the boundary conditions of the anxiety/WMC association. The aim of this review is to critically evaluate the evidence for anxiety-related deficits in working memory capacity. First, a meta-analysis of 177 samples (N = 22,061 individuals) demonstrated that self-reported measures of anxiety are reliably related to poorer performance on measures of working memory capacity (g = -.334, p < 10-29). This finding was consistent across complex span (e.g., OSPAN; g = -.342, k = 30, N = 3,196, p = .000001), simple span (e.g., digit span; g = -.318, k = 127, N = 17,547, p < 10-17), and dynamic span tasks (e.g., N-Back; g = -.437, k = 20, N = 1,318, p = .000003). Second, a narrative review of the literature revealed that anxiety, whether self-reported or experimentally induced, is related to poorer performance across a wide variety of tasks. Finally, the review identified a number of methodological limitations common in the literature as well as avenues for future research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Sequential memory: Binding dynamics

    Science.gov (United States)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  8. High visual working memory capacity in trait social anxiety.

    Science.gov (United States)

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  9. Working memory affects false memory production for emotional events.

    Science.gov (United States)

    Mirandola, Chiara; Toffalini, Enrico; Ciriello, Alfonso; Cornoldi, Cesare

    2017-01-01

    Whereas a link between working memory (WM) and memory distortions has been demonstrated, its influence on emotional false memories is unclear. In two experiments, a verbal WM task and a false memory paradigm for negative, positive or neutral events were employed. In Experiment 1, we investigated individual differences in verbal WM and found that the interaction between valence and WM predicted false recognition, with negative and positive material protecting high WM individuals against false remembering; the beneficial effect of negative material disappeared in low WM participants. In Experiment 2, we lowered the WM capacity of half of the participants with a double task request, which led to an overall increase in false memories; furthermore, consistent with Experiment 1, the increase in negative false memories was larger than that of neutral or positive ones. It is concluded that WM plays a critical role in determining false memory production, specifically influencing the processing of negative material.

  10. Everyday memory and working memory in adolescents with mild intellectual disability

    NARCIS (Netherlands)

    van der Molen, M.J.; van Luit, J.E.H.; van der Molen, M.W.; Jongmans, M.J.

    2010-01-01

    Everyday memory and its relationship to working memory was investigated in adolescents with mild intellectual disability and compared to typically developing adolescents of the same age (CA) and younger children matched on mental age (MA). Results showed a delay on almost all memory measures for the

  11. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.

    Science.gov (United States)

    Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A

    2015-09-01

    Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.

  12. Tactile Working Memory Outside our Hands

    Directory of Open Access Journals (Sweden)

    Takako Yoshida

    2011-10-01

    Full Text Available The haptic perception of 2D images is believed to make heavy demands on working memory. During active exploration, we need to store not only the current sensory information, but also to integrate this with kinesthetic information of the hand and fingers in order to generate a coherent percept. The question that arises is how much tactile memory we have for tactile stimuli that are no longer in contact with the skin during active touch? We examined working memory using a tactile change detection task with active exploration. Each trial contained two stimulation arrays. Participants engaged in unconstrained active tactile exploration of an array of vibrotactile stimulators. In half of the trials, one of the vibrating tactors that was active in the first stimulation turned off and another started vibrating in the second stimulation. Participants had to report whether the arrays were the same or different. Performance was near-perfect when up to two tactors were used and dropped linearly as the number of the vibrating tactors increased. These results suggest that the tactile working memory off the hand is limited and there is little or no memory integration across hand movements.

  13. Interactions between visual working memory representations.

    Science.gov (United States)

    Bae, Gi-Yeul; Luck, Steven J

    2017-11-01

    We investigated whether the representations of different objects are maintained independently in working memory or interact with each other. Observers were shown two sequentially presented orientations and required to reproduce each orientation after a delay. The sequential presentation minimized perceptual interactions so that we could isolate interactions between memory representations per se. We found that similar orientations were repelled from each other whereas dissimilar orientations were attracted to each other. In addition, when one of the items was given greater attentional priority by means of a cue, the representation of the high-priority item was not influenced very much by the orientation of the low-priority item, but the representation of the low-priority item was strongly influenced by the orientation of the high-priority item. This indicates that attention modulates the interactions between working memory representations. In addition, errors in the reported orientations of the two objects were positively correlated under some conditions, suggesting that representations of distinct objects may become grouped together in memory. Together, these results demonstrate that working-memory representations are not independent but instead interact with each other in a manner that depends on attentional priority.

  14. The relationship between working memory and episodic memory disorders in transient global amnesia.

    Science.gov (United States)

    Quinette, Peggy; Guillery-Girard, Bérengère; Noël, Audrey; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2006-01-01

    In a previous study, we investigated the relationship between the disorders of both episodic memory and working memory in the acute phase of transient global amnesia (TGA). Since executive functions were spared, another dysfunction may be responsible for the binding and maintenance of multimodal informations and contribute to the encoding disorders observed in some patients [Quinette, P., Guillery, B., Desgranges, B., de la Sayette, V., Viader, F., & Eustache, F. (2003). Working memory and executive functions in transient global amnesia. Brain, 126, 1917-1934.]. The aim of this present study was to assess the functions of binding and maintenance of multimodal information during TGA and explore their involvement in episodic memory disorders. We therefore conducted a more thorough investigation of working memory in 16 new patients during the acute phase of TGA using two tasks designed to assess the binding process and both dimensions of the maintenance, namely the active storage and the memory load ability. We also investigated the nature of the episodic memory impairment in distinguishing between the performance of patients with preferential encoding deficits and those of patients with preferential storage disorders on the episodic memory task. This distinction was closely related to the severity of amnesia, i.e. an encoding disorder was observed rather in the early phase of TGA. The results showed that while the functions of binding and maintenance of multimodal information were intact in patients with storage disorders, they were impaired in the case of encoding deficits. These results are interpreted in the recent framework of episodic buffer proposed by Baddeley [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423] that represents an interface between working memory and episodic memory.

  15. Working memory biasing of visual perception without awareness.

    Science.gov (United States)

    Pan, Yi; Lin, Bingyuan; Zhao, Yajun; Soto, David

    2014-10-01

    Previous research has demonstrated that the contents of visual working memory can bias visual processing in favor of matching stimuli in the scene. However, the extent to which such top-down, memory-driven biasing of visual perception is contingent on conscious awareness remains unknown. Here we showed that conscious awareness of critical visual cues is dispensable for working memory to bias perceptual selection mechanisms. Using the procedure of continuous flash suppression, we demonstrated that "unseen" visual stimuli during interocular suppression can gain preferential access to awareness if they match the contents of visual working memory. Strikingly, the very same effect occurred even when the visual cue to be held in memory was rendered nonconscious by masking. Control experiments ruled out the alternative accounts of repetition priming and different detection criteria. We conclude that working memory biases of visual perception can operate in the absence of conscious awareness.

  16. Working memory capacity in generalized social phobia.

    Science.gov (United States)

    Amir, Nader; Bomyea, Jessica

    2011-05-01

    Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with generalized social phobia. Moreover, few studies have examined the role of threat-relevant content in working memory performance in clinically anxious populations. To this end, the present study assessed working memory capacity (WMC) in individuals with generalized social phobia and nonanxious controls using an operation span task with threat-relevant and neutral stimuli. Results revealed that nonanxious individuals demonstrated better WMC than individuals with generalized social phobia for neutral words but not for social threat words. Individuals with generalized social phobia demonstrated better WMC performance for threat words relative to neutral words. These results suggest that individuals with generalized social phobia may have relatively enhanced working memory performance for salient, socially relevant information. This enhanced working memory capacity for threat-relevant information may be the result of practice with this information in generalized social phobia.

  17. Working memory limitations in children with severe language impairment.

    Science.gov (United States)

    van Daal, John; Verhoeven, Ludo; van Leeuwe, Jan; van Balkom, Hans

    2008-01-01

    In the present study, the relations of various aspects of working memory to various aspects of language problems in a clinical sample of 97 Dutch speaking 5-year-old children with severe language problems were studied. The working memory and language abilities of the children were examined using an extensive battery of tests. Working memory was operationalized according to the model of Baddeley. Confirmative factor analyses revealed three memory factors: phonological, visual and central executive. Language was construed as a multifactorial construct, and confirmative factor analyses revealed four factors: lexical-semantic abilities, phonological abilities, syntactic abilities and speech production abilities. Moderate to high correlations were found between the memory and language factors. Structural equation modelling was used to further explore the relations between the different factors. Phonological memory was found to predict phonological abilities; central-executive memory predicted lexical-semantic abilities; and visual memory predicted speech production abilities. Phonological abilities also predicted syntactic abilities. Both the theoretical and clinical implications of the findings are discussed. The reader will be introduced to the concepts of multifactorial components of working memory as well as language impairment. Secondly the reader will recognize that working memory and language impairment factors can be related. Particular emphasis will be placed on phonological memory, central-executive memory and visual memory and their possible prediction of specific components of language impairment.

  18. Working Memory Capacity, Confidence and Scientific Thinking

    Science.gov (United States)

    Al-Ahmadi, Fatheya; Oraif, Fatima

    2009-01-01

    Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…

  19. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Science.gov (United States)

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations.

  20. Models of Working Memory

    National Research Council Canada - National Science Library

    Miyake, Akira

    1997-01-01

    .... Understanding the mechanisms and structures underlying working memory is, hence, one of the most important scientific issues that need to be addressed to improve the efficiency and performance...

  1. The Focus of Spatial Attention Determines the Number and Precision of Face Representations in Working Memory.

    Science.gov (United States)

    Towler, John; Kelly, Maria; Eimer, Martin

    2016-06-01

    The capacity of visual working memory for faces is extremely limited, but the reasons for these limitations remain unknown. We employed event-related brain potential measures to demonstrate that individual faces have to be focally attended in order to be maintained in working memory, and that attention is allocated to only a single face at a time. When 2 faces have to be memorized simultaneously in a face identity-matching task, the focus of spatial attention during encoding predicts which of these faces can be successfully maintained in working memory and matched to a subsequent test face. We also show that memory representations of attended faces are maintained in a position-dependent fashion. These findings demonstrate that the limited capacity of face memory is directly linked to capacity limits of spatial attention during the encoding and maintenance of individual face representations. We suggest that the capacity and distribution of selective spatial attention is a dynamic resource that constrains the capacity and fidelity of working memory for faces. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Directory of Open Access Journals (Sweden)

    Zhan Shi

    Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  3. Dynamics-based sequential memory: Winnerless competition of patterns

    International Nuclear Information System (INIS)

    Seliger, Philip; Tsimring, Lev S.; Rabinovich, Mikhail I.

    2003-01-01

    We introduce a biologically motivated dynamical principle of sequential memory which is based on winnerless competition (WLC) of event images. This mechanism is implemented in a two-layer neural model of sequential spatial memory. We present the learning dynamics which leads to the formation of a WLC network. After learning, the system is capable of associative retrieval of prerecorded sequences of patterns

  4. Everyday Memory and Working Memory in Adolescents with Mild Intellectual Disability

    Science.gov (United States)

    Van der Molen, M. J.; Van Luit, J. E. H.; Van der Molen, Maurits W.; Jongmans, Marian J.

    2010-01-01

    Everyday memory and its relationship to working memory was investigated in adolescents with mild intellectual disability and compared to typically developing adolescents of the same age (CA) and younger children matched on mental age (MA). Results showed a delay on almost all memory measures for the adolescents with mild intellectual disability…

  5. Working memory capacity and addiction treatment outcomes in adolescents.

    Science.gov (United States)

    Houck, Jon M; Feldstein Ewing, Sarah W

    2018-01-01

    Brief addiction treatments including motivational interviewing (MI) have shown promise with adolescents, but the factors that influence treatment efficacy in this population remain unknown. One candidate is working memory, the ability to hold a fact or thought in mind. This is relevant, as in therapy, a client must maintain and manipulate ideas while working with a clinician. Working memory depends upon brain structures and functions that change markedly during neurodevelopment and that can be negatively impacted by substance use. In a secondary analysis of data from a clinical trial for adolescent substance use comparing alcohol/marijuana education and MI, we evaluated the relationship between working memory and three-month treatment-outcomes with the hypothesis that the relationship between intervention conditions and outcome would be moderated by working memory. With a diverse sample of adolescents currently using alcohol and/or marijuana (N = 153, 64.7% male, 70.6% Hispanic), we examined the relationship between baseline measures of working memory and alcohol and cannabis-related problem scores measured at the three-month follow-up. The results showed that lower working memory scores were associated with poorer treatment response only for alcohol use, and only within the education group. No relationship was found between working memory and treatment outcomes in the MI group. The results suggest that issues with working memory capacity may interfere with adolescents' ability to process and implement didactic alcohol and marijuana content in standard education interventions. These results also suggest that MI can be implemented equally effectively across the range of working memory functioning in youth.

  6. Working memory resources are shared across sensory modalities.

    Science.gov (United States)

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  7. Working memory for braille is shaped by experience.

    Science.gov (United States)

    Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-03-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.

  8. Working memory for braille is shaped by experience

    OpenAIRE

    Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-01-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.

  9. Intrahemispheric theta rhythm desynchronization impairs working memory.

    Science.gov (United States)

    Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter

    2017-01-01

    There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.

  10. Adaptive Dynamic Process Scheduling on Distributed Memory Parallel Computers

    Directory of Open Access Journals (Sweden)

    Wei Shu

    1994-01-01

    Full Text Available One of the challenges in programming distributed memory parallel machines is deciding how to allocate work to processors. This problem is particularly important for computations with unpredictable dynamic behaviors or irregular structures. We present a scheme for dynamic scheduling of medium-grained processes that is useful in this context. The adaptive contracting within neighborhood (ACWN is a dynamic, distributed, load-dependent, and scalable scheme. It deals with dynamic and unpredictable creation of processes and adapts to different systems. The scheme is described and contrasted with two other schemes that have been proposed in this context, namely the randomized allocation and the gradient model. The performance of the three schemes on an Intel iPSC/2 hypercube is presented and analyzed. The experimental results show that even though the ACWN algorithm incurs somewhat larger overhead than the randomized allocation, it achieves better performance in most cases due to its adaptiveness. Its feature of quickly spreading the work helps it outperform the gradient model in performance and scalability.

  11. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  12. Modeling the Role of Working Memory and Episodic Memory in Behavioral Tasks

    OpenAIRE

    Zilli, Eric A.; Hasselmo, Michael E.

    2008-01-01

    The mechanisms of goal-directed behavior have been studied using reinforcement learning theory, but these theoretical techniques have not often been used to address the role of memory systems in performing behavioral tasks. The present work addresses this shortcoming by providing a way in which working memory and episodic memory may be included in the reinforcement learning framework, then simulating the successful acquisition and performance of six behavioral tasks, drawn from or inspired by...

  13. Models of Working Memory

    National Research Council Canada - National Science Library

    Miyake, Akira

    1997-01-01

    Working memory is a basic cognitive mechanism (or set of mechanisms) that is responsible for keeping track of multiple task related goals and subgoals, or integrating multiple sources of information...

  14. Symbiosis of Executive and Selective Attention in Working Memory

    Directory of Open Access Journals (Sweden)

    André eVandierendonck

    2014-08-01

    Full Text Available The notion of working memory was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated working memory system that controls task coordination. To that end, working memory models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in working memory activities. A model is proposed in which selective attention control is directly linked to the executive control part of the working memory system. The model assumes that apart from storage of declarative information, the system also includes an executive working memory module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met.. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  15. A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers.

    Science.gov (United States)

    Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine

    2018-01-01

    The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.

  16. Emotional Working Memory and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Nicola Mammarella

    2014-01-01

    Full Text Available A number of recent studies have reported that working memory does not seem to show typical age-related deficits in healthy older adults when emotional information is involved. Differently, studies about the short-term ability to encode and actively manipulate emotional information in dementia of Alzheimer’s type are few and have yielded mixed results. Here, we review behavioural and neuroimaging evidence that points to a complex interaction between emotion modulation and working memory in Alzheimer’s. In fact, depending on the function involved, patients may or may not show an emotional benefit in their working memory performance. In addition, this benefit is not always clearly biased (e.g., towards negative or positive information. We interpret this complex pattern of results as a consequence of the interaction between multiple factors including the severity of Alzheimer’s disease, the nature of affective stimuli, and type of working memory task.

  17. The neural bases of orthographic working memory

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2014-04-01

    First, these results reveal a neurotopography of OWM lesion sites that is well-aligned with results from neuroimaging of orthographic working memory in neurally intact participants (Rapp & Dufor, 2011. Second, the dorsal neurotopography of the OWM lesion overlap is clearly distinct from what has been reported for lesions associated with either lexical or sublexical deficits (e.g., Henry, Beeson, Stark, & Rapcsak, 2007; Rapcsak & Beeson, 2004; these have, respectively, been identified with the inferior occipital/temporal and superior temporal/inferior parietal regions. These neurotopographic distinctions support the claims of the computational distinctiveness of long-term vs. working memory operations. The specific lesion loci raise a number of questions to be discussed regarding: (a the selectivity of these regions and associated deficits to orthographic working memory vs. working memory more generally (b the possibility that different lesion sub-regions may correspond to different components of the OWM system.

  18. Working, declarative and procedural memory in specific language impairment

    DEFF Research Database (Denmark)

    Lum, J. A. G.; Conti-Ramsden, G.; Page, D.

    2012-01-01

    at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed......According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which...... in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact...

  19. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Neher, Tobias; Wagener, Kirsten C.; Fischer, Rosa-Linde

    2018-01-01

    OBJECTIVE: Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading......-to-noise ratio (SNR) improvement. Auditory working memory was assessed at +6 dB SNR using listening span and N-back paradigms. STUDY SAMPLE: Twenty experienced HA users ages 55-80 with large differences in reading span. RESULTS: For the listening span measurements, there was an influence of HA setting....... CONCLUSIONS: HA noise suppression may affect the recognition and recall of speech at positive SNRs, irrespective of individual reading span. Future work should improve the reliability of the auditory working memory measurements....

  20. Working memory, phonological awareness, and developing language skills

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole, S

    2008-01-01

    The relationship between working memory, verbal short-term memory, phonological awareness, and developing language skills was explored longitudinally in children growing up in a multilingual society. A sample of 121 children from Luxembourg were followed from the end of Kindergarten to 1st Grade, and completed multiple assessments of verbal short-term memory, complex working memory, phonological awareness, native and foreign vocabulary knowledge, language comprehension, and reading. Resu...

  1. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    Science.gov (United States)

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  2. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.

    Science.gov (United States)

    Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E

    2016-08-24

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.

  3. Models Provide Specificity: Testing a Proposed Mechanism of Visual Working Memory Capacity Development

    Science.gov (United States)

    Simmering, Vanessa R.; Patterson, Rebecca

    2012-01-01

    Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…

  4. Children's auditory working memory performance in degraded listening conditions.

    Science.gov (United States)

    Osman, Homira; Sullivan, Jessica R

    2014-08-01

    The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It was hypothesized that stressing the working memory system with the presence of noise would impede working memory processes in real time and result in poorer working memory performance in degraded conditions. Twenty children with typical hearing between 8 and 10 years old were tested using 4 auditory working memory tasks (Forward Digit Recall, Backward Digit Recall, Listening Recall Primary, and Listening Recall Secondary). Stimuli were from the standardized Working Memory Test Battery for Children. Each task was administered in quiet and in 4-talker babble noise at 0 dB and -5 dB signal-to-noise ratios. Children's auditory working memory performance was systematically decreased in the presence of multitalker babble noise compared with quiet. Differences between low-complexity and high-complexity tasks were observed, with children performing more poorly on tasks with greater storage and processing demands. There was no interaction between noise and complexity of task. All tasks were negatively impacted similarly by the addition of noise. Auditory working memory performance was negatively impacted by the presence of multitalker babble noise. Regardless of complexity of task, noise had a similar effect on performance. These findings suggest that the addition of noise inhibits auditory working memory processes in real time for school-age children.

  5. Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.

    Science.gov (United States)

    Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K

    2018-01-08

    Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.

  6. Concurrent performance of two memory tasks: evidence for domain-specific working memory systems.

    Science.gov (United States)

    Cocchini, Gianna; Logie, Robert H; Della Sala, Sergio; MacPherson, Sarah E; Baddeley, Alan D

    2002-10-01

    Previous studies of dual-task coordination in working memory have shown a lack of dual-task interference when a verbal memory task is combined with concurrent perceptuomotor tracking. Two experiments are reported in which participants were required to perform pairwise combinations of (1) a verbal memory task, a visual memory task, and perceptuomotor tracking (Experiment 1), and (2) pairwise combinations of the two memory tasks and articulatory suppression (Experiment 2). Tracking resulted in no disruption of the verbal memory preload over and above the impact of a delay in recall and showed only minimal disruption of the retention of the visual memory load. Performing an ongoing verbal memory task had virtually no impact on retention of a visual memory preload or vice versa, indicating that performing two demanding memory tasks results in little mutual interference. Experiment 2 also showed minimal disruption when the two memory tasks were combined, although verbal memory (but not visual memory) was clearly disrupted by articulatory suppression interpolated between presentation and recall. These data suggest that a multiple-component working memory model provides a better account for performance in concurrent immediate memory tasks than do theories that assume a single processing and storage system or a limited-capacity attentional system coupled with activated memory traces.

  7. Contrasting single and multi-component working-memory systems in dual tasking.

    Science.gov (United States)

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-05-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Spatial working memory maintenance: does attention play a role?

    NARCIS (Netherlands)

    Chan, L.K.; Hayward, W.G.; Theeuwes, J.

    2009-01-01

    Recent studies have proposed that a common mechanism may underlie spatial attention and spatial working memory. One proposal is that spatial working memory is maintained by attention-based rehearsal [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of

  9. The influences of working memory representations on long-range regression in text reading: An eye-tracking study

    Directory of Open Access Journals (Sweden)

    Teppei eTanaka

    2014-09-01

    Full Text Available The present study investigated the relationship between verbal and visuospatial working memory capacity and long-range regression (i.e., word relocation processes in reading. We analyzed eye movements during a whodunit task, in which readers were asked to answer a content question while original text was being presented. The eye movements were more efficient in relocating a target word when the target was at recency positions within the text than when it was at primacy positions. Furthermore, both verbal and visuospatial working memory capacity partly predicted the efficiency of the initial long-range regression. The results indicate that working memory representations have a strong influence at the first stage of long-range regression by driving the first saccade movement toward the correct target position, suggesting that there is a dynamic interaction between internal working memory representations and external actions during text reading.

  10. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  11. Long-term effects of frequent cannabis use on working memory and attention: an fMRI study.

    Science.gov (United States)

    Jager, Gerry; Kahn, Rene S; Van Den Brink, Wim; Van Ree, Jan M; Ramsey, Nick F

    2006-04-01

    Excessive use of cannabis may have long-term effects on cognitive abilities. Mild impairments have been found in several cognitive domains, particularly in memory and attention. It is not clear, however, whether these effects also occur with moderate, recreational use of cannabis. Furthermore, little is known about underlying brain correlates. The aim of this study is to assess brain function in frequent but relatively moderate cannabis users in the domains of working memory and selective attention. Functional magnetic resonance imaging was used to examine verbal working memory and visuo-auditory selective attention in ten frequent cannabis users (after 1 week of abstinence) and ten non-using healthy controls. Groups were similar in age, gender and estimated IQ. Cannabis users and controls performed equally well during the working memory task and the selective attention task. Furthermore, cannabis users did not differ from controls in terms of overall patterns of brain activity in the regions involved in these cognitive functions. However, for working memory, a more specific region-of-interest analysis showed that, in comparison to the controls, cannabis users displayed a significant alteration in brain activity in the left superior parietal cortex. No evidence was found for long-term deficits in working memory and selective attention in frequent cannabis users after 1 week of abstinence. Nonetheless, frequent cannabis use may affect brain function, as indicated by altered neurophysiological dynamics in the left superior parietal cortex during working memory processing.

  12. An interference model of visual working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Breaking cycles of risk: The mitigating role of maternal working memory in associations among socioeconomic status, early caregiving, and children's working memory.

    Science.gov (United States)

    Suor, Jennifer H; Sturge-Apple, Melissa L; Skibo, Michael A

    2017-10-01

    Previous research has documented socioeconomic-related disparities in children's working memory; however, the putative proximal caregiving mechanisms that underlie these effects are less known. The present study sought to examine whether the effects of early family socioeconomic status on children's working memory were mediated through experiences of caregiving, specifically maternal harsh discipline and responsiveness. Utilizing a psychobiological framework of parenting, the present study also tested whether maternal working memory moderated the initial paths between the family socioeconomic context and maternal harsh discipline and responsiveness in the mediation model. The sample included 185 socioeconomically diverse mother-child dyads assessed when children were 3.5 and 5 years old. Results demonstrated that maternal harsh discipline was a unique mediator of the relation between early experiences of family socioeconomic adversity and lower working memory outcomes in children. Individual differences in maternal working memory emerged as a potent individual difference factor that specifically moderated the mediating influence of harsh discipline within low socioeconomic contexts. The findings have implications for early risk processes underlying deficits in child working memory outcomes and potential targets for parent-child interventions.

  14. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    Science.gov (United States)

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  15. Reflections on Working Memory: Are the Two Models Complementary?

    Science.gov (United States)

    Pascual-Leone, Juan

    2000-01-01

    Compares and contrasts working memory theory of Baddeley and theory of constructive operators of Pascual- Leone. Concludes that although the theory of constructive operators is complementary with working memory theory (explains developmental and individual differences that working memory theory cannot), the converse is not true; theory of…

  16. Training Planning and Working Memory in Third Graders

    Science.gov (United States)

    Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano

    2013-01-01

    Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…

  17. Verbal Working Memory in Children With Cochlear Implants

    Science.gov (United States)

    Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.

    2017-01-01

    Purpose Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method A dual-component model of working memory was adopted, and a serial recall task measured storage and processing. Potential predictor variables were phonological awareness, vocabulary knowledge, nonverbal IQ, and several treatment variables. Potential dependent functions were literacy, expressive language, and speech-in-noise recognition. Results Children with cochlear implants showed deficits in storage and processing, similar in size to those at second grade. Predictors of verbal working memory differed across groups: Phonological awareness explained the most variance in children with normal hearing; vocabulary explained the most variance in children with cochlear implants. Treatment variables explained little of the variance. Where potentially dependent functions were concerned, verbal working memory accounted for little variance once the variance explained by other predictors was removed. Conclusions The verbal working memory deficits of children with cochlear implants arise due to signal degradation, which limits their abilities to acquire phonological awareness. That hinders their abilities to store items using a phonological code. PMID:29075747

  18. Working memory contents revive the neglected, but suppress the inhibited.

    Science.gov (United States)

    Han, Suk Won

    2015-12-01

    It is well known that attention is biased toward a stimulus matching working memory contents. However, it remains unknown whether the maintenance of information in working memory by itself is sufficient to create memory-driven attentional capture. Notably, in many previous studies showing the memory-driven attentional capture, the task settings might have explicitly or implicitly incentivized participants to strategically attend to a memory-matching stimulus. By innovating an experimental paradigm, the present study overcame this challenge and directly tested whether working memory contents capture attention in the absence of task-level attentional bias toward a memory-matching stimulus. I found that a stimulus that is usually outside the focus of attention, powerfully captured attention when it matched working memory contents, whereas a match between working memory and an inhibited stimulus suppressed attentional allocation toward the memory-matching stimulus. These findings suggest that in the absence of any task-level attentional bias toward memory-matching stimuli, attention is biased toward a memory-matching stimulus, but this memory-driven attentional capture is diminished when top-down inhibition is imposed on the stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Working memory, math performance, and math anxiety.

    Science.gov (United States)

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  20. Dynamic Memory Model for Non-Stationary Optimization

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nørgaard; Krink, Thiemo

    2002-01-01

    Real-world problems are often nonstationary and can cause cyclic, repetitive patterns in the search landscape. For this class of problems, we introduce a new GA with dynamic explicit memory, which showed superior performance compared to a classic GA and a previously introduced memory-based GA for...

  1. Social working memory: Neurocognitive networks and directions for future research

    Directory of Open Access Journals (Sweden)

    Meghan L Meyer

    2012-12-01

    Full Text Available Navigating the social world requires the ability to maintain and manipulate information about people’s beliefs, traits, and mental states. We characterize this capacity as social working memory. To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the ‘mentalizing network’ that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires social working memory and that both the mentalizing and canonical working memory neurocognitive networks support social working memory. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed.

  2. Dieting and Food Cue-Related Working Memory Performance

    OpenAIRE

    Meule, Adrian

    2016-01-01

    Executive functioning (e.g., working memory) is tightly intertwined with self-regulation. For example, food cue-elicited craving has been found to impair working memory performance. Furthermore, current dieters have been found to show lower working memory performance than non-dieters. Recent research, however, suggests that it is crucial to consider dieting success in addition to current dieting status or restrained eating in order to reveal cognitive mechanisms that are associated with succe...

  3. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    Science.gov (United States)

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. fMRI characterization of visual working memory recognition.

    Science.gov (United States)

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in

  5. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  6. Learning, working memory, and intelligence revisited.

    Science.gov (United States)

    Tamez, Elaine; Myerson, Joel; Hale, Sandra

    2008-06-01

    Based on early findings showing low correlations between intelligence test scores and learning on laboratory tasks, psychologists typically have dismissed the role of learning in intelligence and emphasized the role of working memory instead. In 2006, however, B.A. Williams developed a verbal learning task inspired by three-term reinforcement contingencies and reported unexpectedly high correlations between this task and Raven's Advanced Progressive Matrices (RAPM) scores [Williams, B.A., Pearlberg, S.L., 2006. Learning of three-term contingencies correlates with Raven scores, but not with measures of cognitive processing. Intelligence 34, 177-191]. The present study replicated this finding: Performance on the three-term learning task explained almost 25% of the variance in RAPM scores. Adding complex verbal working memory span, measured using the operation span task, did not improve prediction. Notably, this was not due to a lack of correlation between complex working memory span and RAPM scores. Rather, it occurred because most of the variance captured by the complex working memory span was already accounted for by the three-term learning task. Taken together with the findings of Williams and Pearlberg, the present results make a strong case for the role of learning in performance on intelligence tests.

  7. Working memory capacity and the spacing effect in cued recall.

    Science.gov (United States)

    Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin

    2018-07-01

    Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.

  8. A dynamic approach to recognition memory.

    Science.gov (United States)

    Cox, Gregory E; Shiffrin, Richard M

    2017-11-01

    We present a dynamic model of memory that integrates the processes of perception, retrieval from knowledge, retrieval of events, and decision making as these evolve from 1 moment to the next. The core of the model is that recognition depends on tracking changes in familiarity over time from an initial baseline generally determined by context, with these changes depending on the availability of different kinds of information at different times. A mathematical implementation of this model leads to precise, accurate predictions of accuracy, response time, and speed-accuracy trade-off in episodic recognition at the levels of both groups and individuals across a variety of paradigms. Our approach leads to novel insights regarding word frequency, speeded responding, context reinstatement, short-term priming, similarity, source memory, and associative recognition, revealing how the same set of core dynamic principles can help unify otherwise disparate phenomena in the study of memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Verbal Working Memory in Children with Mild Intellectual Disabilities

    Science.gov (United States)

    Van der Molen, M. J.; Van Luit, J. E. H.; Jongmans, M. J.; Van der Molen, M. W.

    2007-01-01

    Background: Previous research into working memory of individuals with intellectual disabilities (ID) has established clear deficits. The current study examined working memory in children with mild ID (IQ 55-85) within the framework of the Baddeley model, fractionating working memory into a central executive and two slave systems, the phonological…

  10. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  11. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  12. Gender differences in episodic memory and visual working memory including the effects of age.

    Science.gov (United States)

    Pauls, Franz; Petermann, Franz; Lepach, Anja Christina

    2013-01-01

    Analysing the relationship between gender and memory, and examining the effects of age on the overall memory-related functioning, are the ongoing goals of psychological research. The present study examined gender and age group differences in episodic memory with respect to the type of task. In addition, these subgroup differences were also analysed in visual working memory. A sample of 366 women and 330 men, aged between 16 and 69 years of age, participated in the current study. Results indicate that women outperformed men on auditory memory tasks, whereas male adolescents and older male adults showed higher level performances on visual episodic and visual working memory measures. However, the size of gender-linked effects varied somewhat across age groups. Furthermore, results partly support a declining performance on episodic memory and visual working memory measures with increasing age. Although age-related losses in episodic memory could not be explained by a decreasing verbal and visuospatial ability with age, women's advantage in auditory episodic memory could be explained by their advantage in verbal ability. Men's higher level visual episodic memory performance was found to result from their advantage in visuospatial ability. Finally, possible methodological, biological, and cognitive explanations for the current findings are discussed.

  13. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  14. Efficiency of working memory: Theoretical concept and practical application

    Directory of Open Access Journals (Sweden)

    Lalović Dejan

    2008-01-01

    Full Text Available Efficiency of working memory is the concept which connects psychology of memory with different fields of cognitive, differential and applied psychology. In this paper, the history of interest for the assessment of the capacity of short-term memory is presented in brief, as well as the different methods used nowadays to assess the individual differences in the efficiency of working memory. What follows is the consideration of studies that indicate the existence of significant links between the efficiency of working memory and general intelligence, the ability of reasoning, personality variables, as well as some socio-psychological phenomena. Special emphasis is placed on the links between the efficiency of working memory and certain aspects of pedagogical practice: acquiring the skill of reading, learning arithmetic and shedding light on the cause of general failure in learning at school. What is also provided are the suggestions that, in the light of knowledge about the development and limitations of working memory at school age, can be useful for teaching practice.

  15. Attention to information in working memory

    OpenAIRE

    Oberauer Klaus; Hein Laura

    2012-01-01

    Working memory retains information and makes it available for processing. People often need to hold several chunks of information available while concentrating on only one of them. This process requires selective attention to the contents of working memory. In this article we summarize evidence for both a broad focus of attention with a capacity of approximately four chunks and a narrow focus of attention that selects a single chunk at a time.

  16. Working Memory Intervention: A Reading Comprehension Approach

    Science.gov (United States)

    Perry, Tracy L.; Malaia, Evguenia

    2013-01-01

    For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…

  17. Power-law neuronal fluctuations in a recurrent network model of parametric working memory.

    Science.gov (United States)

    Miller, Paul; Wang, Xiao-Jing

    2006-02-01

    In a working memory system, persistent activity maintains information in the absence of external stimulation, therefore the time scale and structure of correlated neural fluctuations reflect the intrinsic microcircuit dynamics rather than direct responses to sensory inputs. Here we show that a parametric working memory model capable of graded persistent activity is characterized by arbitrarily long correlation times, with Fano factors and power spectra of neural activity described by the power laws of a random walk. Collective drifts of the mnemonic firing pattern induce long-term noise correlations between pairs of cells, with the sign (positive or negative) and amplitude proportional to the product of the gradients of their tuning curves. None of the power-law behavior was observed in a variant of the model endowed with discrete bistable neural groups, where noise fluctuations were unable to cause long-term changes in rate. Therefore such behavior can serve as a probe for a quasi-continuous attractor. We propose that the unusual correlated fluctuations have important implications for neural coding in parametric working memory circuits.

  18. Differential Age Effects on Spatial and Visual Working Memory

    Science.gov (United States)

    Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert

    2011-01-01

    The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…

  19. Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory.

    Science.gov (United States)

    Shields, Grant S; Doty, Dominique; Shields, Rebecca H; Gower, Garrett; Slavich, George M; Yonelinas, Andrew P

    2017-11-01

    Although substantial research has examined the effects of stress on cognition, much of this research has focused on acute stress (e.g. manipulated in the laboratory) or chronic stress (e.g. persistent interpersonal or financial difficulties). In contrast, the effects of recent life stress on cognition have been relatively understudied. To address this issue, we examined how recent life stress is associated with long-term, working memory, and self-reported memory in a sample of 142 healthy young adults who were assessed at two time points over a two-week period. Recent life stress was measured using the newly-developed Stress and Adversity Inventory for Daily Stress (Daily STRAIN), which assesses the frequency of relatively common stressful life events and difficulties over the preceding two weeks. To assess memory performance, participants completed both long-term and working memory tasks. Participants also provided self-reports of memory problems. As hypothesized, greater recent life stress exposure was associated with worse performance on measures of long-term and working memory, as well as more self-reported memory problems. These associations were largely robust while controlling for possible confounds, including participants' age, sex, and negative affect. The findings indicate that recent life stress exposure is broadly associated with worse memory. Future studies should thus consider assessing recent life stress as a potential predictor, moderator, or covariate of memory performance.

  20. The Development of Attention Systems and Working Memory in Infancy.

    Science.gov (United States)

    Reynolds, Greg D; Romano, Alexandra C

    2016-01-01

    In this article, we review research and theory on the development of attention and working memory in infancy using a developmental cognitive neuroscience framework. We begin with a review of studies examining the influence of attention on neural and behavioral correlates of an earlier developing and closely related form of memory (i.e., recognition memory). Findings from studies measuring attention utilizing looking measures, heart rate, and event-related potentials (ERPs) indicate significant developmental change in sustained and selective attention across the infancy period. For example, infants show gains in the magnitude of the attention related response and spend a greater proportion of time engaged in attention with increasing age (Richards and Turner, 2001). Throughout infancy, attention has a significant impact on infant performance on a variety of tasks tapping into recognition memory; however, this approach to examining the influence of infant attention on memory performance has yet to be utilized in research on working memory. In the second half of the article, we review research on working memory in infancy focusing on studies that provide insight into the developmental timing of significant gains in working memory as well as research and theory related to neural systems potentially involved in working memory in early development. We also examine issues related to measuring and distinguishing between working memory and recognition memory in infancy. To conclude, we discuss relations between the development of attention systems and working memory.

  1. Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory

    Science.gov (United States)

    Bick, Christian; Rabinovich, Mikhail I.

    2009-11-01

    The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”

  2. Ego Depletion Does Not Interfere With Working Memory Performance.

    Science.gov (United States)

    Singh, Ranjit K; Göritz, Anja S

    2018-01-01

    Ego depletion happens if exerting self-control reduces a person's capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance.

  3. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  4. Working Memory, Motivation, and Teacher-Initiated Learning

    Science.gov (United States)

    Brooks, David W.; Shell, Duane F.

    2006-01-01

    Working memory is where we "think" as we learn. A notion that emerges as a synthesis from several threads in the research literatures of cognition, motivation, and connectionism is that motivation in learning is the process whereby working memory resource allocation is instigated and sustained. This paper reviews much literature on motivation and…

  5. Processing speed and working memory span: their differential role in superficial and deep memory processes in schizophrenia.

    Science.gov (United States)

    Brébion, Gildas; Bressan, Rodrigo A; Pilowsky, Lyn S; David, Anthony S

    2011-05-01

    Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort.

  6. Does learning to read shape verbal working memory?

    Science.gov (United States)

    Demoulin, Catherine; Kolinsky, Régine

    2016-06-01

    Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.

  7. Working memory: a proposal for child evaluating

    Directory of Open Access Journals (Sweden)

    Mayra Monteiro Pires

    2015-01-01

    Full Text Available The working memory is a system with limited capacity which allows the temporary storage and manipulation of information to cognitive complex abilities like language, learning and reasoning. This study has as the objective present the construction, the adaptation and the evaluation of four psycholinguistics working memory tests in Brazilian Portuguese that were based in the English battery of tests Memory Test Battery For Children. The tests adapted were applied in a pilot investigation in a group of 15 children with learning school difficulties and compared to a group of 15 children with normal development. The adaptation of the tests was developed in the E-Prime v2.0 Professional® software. The four psycholinguistic tests access the simultaneous storage and processing capacities of information in general domain, as also specific for language information. The results suggest that the four tests are sensible instruments to detect possible difficulties in the working memory processing in children, because they could identify the different performances between the two groups in a statistical analysis. The tests developed perfectly attended their aims for evaluation and can contribute in a near future for other studies with a greater number of subjects, providing a more concrete and evidences of working memory development in children.

  8. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation.

    Science.gov (United States)

    Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus

    2018-03-19

    Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

  9. Working Memory and Learning: A Practical Guide for Teachers

    Science.gov (United States)

    Gathercole, Susan E.; Alloway, Tracy Packiam

    2008-01-01

    A good working memory is crucial to becoming a successful leaner, yet there is very little material available in an easy-to-use format that explains the concept and offers practitioners ways to support children with poor working memory in the classroom. This book provides a coherent overview of the role played by working memory in learning during…

  10. Spatial working memory load affects counting but not subitizing in enumeration.

    Science.gov (United States)

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  11. [Developmental changes in visuospatial working memory].

    Science.gov (United States)

    Oka, Makio; Takeuchi, Akihito; Morooka, Teruko; Ogino, Tatsuya; Ohtsuka, Yoko

    2010-07-01

    We investigated the developmental changes in visuospatial working memory using the Visuospatial Span Task (VST) and the Matrix Visuospatial Working Memory Test (VSWMT). VST is a short-term storage task, while VSWMT is a complex dual task. VSWMT requires the use of storage, processing, and selective attention, all of which are thought to be supported by the central executive (Baddeley). The subjects of this study were 60 typically developing children (43 boys and 17 girls) aged 6-14 years (average 10.4 years). For each task we evaluated span scores and the number of total passed trials, and investigated the changes that occurred with age. To further elucidate age-related changes in visuospatial working memory, we divided the subjects into three age groups (Group A: 6-8 years, Group B: 9-11 years, and Group C: 12-14 years of age), and statistically evaluated the differences between the groups. In both tasks, span scores and the number of total passed trials showed definite age-related changes from 6 to 14 years of age. Span scores and the number of total passed trials in VSMWT continued to increase until adolescence, with significant differences between the three age groups, while those in VST increased significantly between Groups A and B (the number of total passed trials only) and between Groups A and C (span scores and the number of total passed trials); there was no significant difference between Groups B and C, however. These results suggest that the network of the brain involved in visuospatial working memory gradually matures during early school years and adolescence, and that the basic mechanisms of this network exist by 6-7 years of age. Our results also show that VST and VSWMT are suitable tests for the evaluation of visuospatial working memory in childhood and adolescence.

  12. Improving everyday memory performance after acquired brain injury: An RCT on recollection and working memory training.

    Science.gov (United States)

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2018-04-26

    To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Changes in brain network efficiency and working memory performance in aging.

    Science.gov (United States)

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  14. The relationship between working memory and L2 reading comprehension

    Directory of Open Access Journals (Sweden)

    Mohammadtaghi Shahnazari-Dorcheh

    2014-08-01

    Full Text Available Since an important role for working memory has been found in the first language acquisition (e.g., Daneman, 1991 Daneman & Green, 1986 Waters & Caplan, 1996, research on the role of working memory is emerging as an area of concern for second language acquisition (e.g., Atkins & Baddeley, 1998 Miyake & Freidman, 1998 Robinson, 1995, 2002, 2005. The present study focused on the role of working memory capacity in the development of second language reading ability. 55 L1 Persian EFL learners at three proficiency levels from a private language school participated in this study. They completed a battery of reading and working memory measures. Memory measures included phonological short-term memory, and reading span test (RST. Reading measures included two expository reading comprehension tests. Multiple regression analysis was applied to determine whether there are any significant relationships between working memory capacity and reading measures. Results of this study indicated a significant relationship between working memory capacity (as measured by RST and reading ability at lower levels of proficiency.

  15. [Working memory, phonological awareness and spelling hypothesis].

    Science.gov (United States)

    Gindri, Gigiane; Keske-Soares, Márcia; Mota, Helena Bolli

    2007-01-01

    Working memory, phonological awareness and spelling hypothesis. To verify the relationship between working memory, phonological awareness and spelling hypothesis in pre-school children and first graders. Participants of this study were 90 students, belonging to state schools, who presented typical linguistic development. Forty students were preschoolers, with the average age of six and 50 students were first graders, with the average age of seven. Participants were submitted to an evaluation of the working memory abilities based on the Working Memory Model (Baddeley, 2000), involving phonological loop. Phonological loop was evaluated using the Auditory Sequential Test, subtest 5 of Illinois Test of Psycholinguistic Abilities (ITPA), Brazilian version (Bogossian & Santos, 1977), and the Meaningless Words Memory Test (Kessler, 1997). Phonological awareness abilities were investigated using the Phonological Awareness: Instrument of Sequential Assessment (CONFIAS - Moojen et al., 2003), involving syllabic and phonemic awareness tasks. Writing was characterized according to Ferreiro & Teberosky (1999). Preschoolers presented the ability of repeating sequences of 4.80 digits and 4.30 syllables. Regarding phonological awareness, the performance in the syllabic level was of 19.68 and in the phonemic level was of 8.58. Most of the preschoolers demonstrated to have a pre-syllabic writing hypothesis. First graders repeated, in average, sequences of 5.06 digits and 4.56 syllables. These children presented a phonological awareness of 31.12 in the syllabic level and of 16.18 in the phonemic level, and demonstrated to have an alphabetic writing hypothesis. The performance of working memory, phonological awareness and spelling level are inter-related, as well as being related to chronological age, development and scholarity.

  16. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory

    International Nuclear Information System (INIS)

    Zhao Junhui; Thomson, Douglas J; Freund, Michael S; Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M

    2010-01-01

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy 0 DBS - Li + (PPy: polypyrrole; DBS - : dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  17. The cognitive neuroscience of working memory.

    Science.gov (United States)

    D'Esposito, Mark; Postle, Bradley R

    2015-01-03

    For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The "control of the controller" emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals.

  18. Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.

    Science.gov (United States)

    Smithson, Lisa; Nicoladis, Elena

    2016-06-01

    Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.

  19. Spatial attention interacts with serial-order retrieval from verbal working memory.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim

    2013-09-01

    The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.

  20. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  1. A theory of working memory without consciousness or sustained activity

    Science.gov (United States)

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  2. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    Science.gov (United States)

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Memory – what is it and how it works?

    Directory of Open Access Journals (Sweden)

    Sanja Šešok

    2006-02-01

    Full Text Available Abstract: Memory system presents a basis for many cognitive functions and at the same time it itself depends on their normal function. The purpose of the article is to show how it works as an array of interacting systems, each capable of registring information, storing it, and making available by retrieval. In the case of the psychological study of memory, the most common model used for understanding memory functions is the time based model, which presume that memory can be divided into sensory memory, short-term or working memory and long-term memory. Memory is a process and the information processing approach to memory suggests that there are five processes involved in any type of memory: attention, encoding, storage, consolidation and retrieval. Several most common explanations of forgetting are described.

  4. Relationship Between Working Memory and English-Chinese Consecu-tive Interpreting

    Institute of Scientific and Technical Information of China (English)

    王磊; 陈莉; 徐晓娟

    2016-01-01

    Working memory is the system that actively holds multiple pieces of transitory information in the mind, where they can be manipulated. In interpreting, working memory is in charge of the storage and processing of immediate information, thus making an important factor in influencing interpreting quality. The role played by working memory capacity in interpreting re-mains to be a hotspot issue in the field of interpreting research.This thesis aims to investigate the relationship between working memory capacity and E-C consecutive interpreting by conducting two tests. The first test is working memory span test and the second one is E-C consecutive interpreting test. By comparing and analyzing the results of two tests, this thesis comes to the con-clusion that working memory capacity is positively correlated with E-C consecutive interpreting in terms of fluency and logic.

  5. Selective transfer of visual working memory training on Chinese character learning.

    Science.gov (United States)

    Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel

    2014-01-01

    Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and

  6. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    Science.gov (United States)

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  7. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    Science.gov (United States)

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dissociation of Procedural and Working Memory in Pigeons (Columba livia

    Directory of Open Access Journals (Sweden)

    Walter T. Herbranson

    2016-07-01

    Full Text Available A new method was developed to concurrently investigate procedural memory and working memory in pigeons. Pigeons performed a sequence of keypecks across 3 response keys in a serial response task, with periodic choice probes for the location of a recently produced response. Procedural memory was operationally defined as decreasing response times to predictable cues in the sequence. Working memory was reflected by accurate responses to the choice probes. Changing the sequence of required keypecks to a random sequence interfered with procedural memory in the form of slowed response times, but did not prevent pigeons from effectively using working memory to remember specific cue locations. Conversely, changing exposure duration of to a cue location influenced working memory but had no effect on procedural memory. Double dissociations such as this have supported the multiple systems approach to the study of memory in cognitive psychology and neuroscience, and they encourage a similar approach in comparative psychology.

  9. The effect of rehearsal rate and memory load on verbal working memory.

    Science.gov (United States)

    Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark

    2015-01-15

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Working memory capacity and redundant information processing efficiency.

    Science.gov (United States)

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  11. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    Science.gov (United States)

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Role of Motor Affordances in Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Diane Pecher

    2014-12-01

    Full Text Available Motor affordances are important for object knowledge. Semantic tasks on visual objects often show interactions with motor actions. Prior neuro-imaging studies suggested that motor affordances also play a role in visual working memory for objects. When participants remembered manipulable objects (e.g., hammer greater premotor cortex activation was observed than when they remembered non-manipulable objects (e.g., polar bear. In the present study participants held object pictures in working memory while performing concurrent tasks such as articulation of nonsense syllables and performing hand movements. Although concurrent tasks did interfere with working memory performance, in none of the experiments did we find any evidence that concurrent motor tasks affected memory differently for manipulable and non-manipulable objects. I conclude that motor affordances are not used for visual working memory.

  13. Working memory predicts children's analogical reasoning.

    Science.gov (United States)

    Simms, Nina K; Frausel, Rebecca R; Richland, Lindsey E

    2018-02-01

    Analogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences. We assessed 5- to 11-year-old children's working memory, inhibitory control, and cognitive flexibility using measures from the National Institutes of Health Toolbox Cognition battery. Individual differences in children's working memory best predicted performance on an analogical mapping task, even when controlling for age, suggesting a fundamental interrelationship between analogical reasoning and working memory development. These findings underscore the need to consider cognitive capacities in comprehensive theories of children's reasoning development. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The role of working memory in auditory selective attention.

    Science.gov (United States)

    Dalton, Polly; Santangelo, Valerio; Spence, Charles

    2009-11-01

    A growing body of research now demonstrates that working memory plays an important role in controlling the extent to which irrelevant visual distractors are processed during visual selective attention tasks (e.g., Lavie, Hirst, De Fockert, & Viding, 2004). Recently, it has been shown that the successful selection of tactile information also depends on the availability of working memory (Dalton, Lavie, & Spence, 2009). Here, we investigate whether working memory plays a role in auditory selective attention. Participants focused their attention on short continuous bursts of white noise (targets) while attempting to ignore pulsed bursts of noise (distractors). Distractor interference in this auditory task, as measured in terms of the difference in performance between congruent and incongruent distractor trials, increased significantly under high (vs. low) load in a concurrent working-memory task. These results provide the first evidence demonstrating a causal role for working memory in reducing interference by irrelevant auditory distractors.

  15. Childhood Obesity and Academic Performance: The Role of Working Memory.

    Science.gov (United States)

    Wu, Nan; Chen, Yulu; Yang, Jinhua; Li, Fei

    2017-01-01

    The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10-13 years were analyzed for weight and height, of which 159 children (44 "obese," 23 "overweight," and 92 "normal weight") filled out questionnaires on school performance and socioeconomic status. And then, all subjects finished three kinds of working memory tasks based on the digit memory task in 30 trials, which were image-generated with a series of numbers recall trial sets. After each trial set, subjects were given 5 s to recall and write down the numbers which hand appeared in the trial, in the inverse order in which they had appeared. The results showed there were significant academic performance differences among the three groups, with normal-weight children scoring higher than overweight and obese children after Bonferroni correction. A mediation model revealed a partial indirect effect of working memory in the relationship between obesity and academic performance. Although the performance of obese children in basic working memory tests was poorer than that of normal-weight children, they recalled more items than normal-weight children in working memory tasks involving with food/drink. Working memory deficits partially explain the poor academic performance of obese children. Those results indicated the obese children show domain-specific working memory deficits, whereas they recall more items than normal-weight children in working memory tasks associated with food/drink.

  16. Stress Effects on Working Memory, Explicit Memory, and Implicit Memory for Neutral and Emotional Stimuli in Healthy Men

    OpenAIRE

    Luethi, Mathias; Meier, Beat; Sandi, Carmen

    2009-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult...

  17. Selective attention on representations in working memory: cognitive and neural mechanisms.

    Science.gov (United States)

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  18. The impact of taxing working memory on negative and positive memories

    NARCIS (Netherlands)

    Engelhard, I.M.; van Uijen, S.L.; Van den Hout, M.A.

    2010-01-01

    BACKGROUND: Earlier studies have shown that horizontal eye movement (EM) during retrieval of a negative memory reduces its vividness and emotionality. This may be due to both tasks competing for working memory (WM) resources. This study examined whether playing the computer game "Tetris" also blurs

  19. Direct Access to Working Memory Contents

    NARCIS (Netherlands)

    Bialkova, S.E.; Oberauer, K.

    2010-01-01

    Abstract. In two experiments participants held in working memory (WM) three digits in three different colors, and updated individual digits with the results of arithmetic equations presented in one of the colors. In the memory-access condition, a digit from WM had to be used as the first number in

  20. How visual working memory contents influence priming of visual attention.

    Science.gov (United States)

    Carlisle, Nancy B; Kristjánsson, Árni

    2017-04-12

    Recent evidence shows that when the contents of visual working memory overlap with targets and distractors in a pop-out search task, intertrial priming is inhibited (Kristjánsson, Sævarsson & Driver, Psychon Bull Rev 20(3):514-521, 2013, Experiment 2, Psychonomic Bulletin and Review). This may reflect an interesting interaction between implicit short-term memory-thought to underlie intertrial priming-and explicit visual working memory. Evidence from a non-pop-out search task suggests that it may specifically be holding distractors in visual working memory that disrupts intertrial priming (Cunningham & Egeth, Psychol Sci 27(4):476-485, 2016, Experiment 2, Psychological Science). We examined whether the inhibition of priming depends on whether feature values in visual working memory overlap with targets or distractors in the pop-out search, and we found that the inhibition of priming resulted from holding distractors in visual working memory. These results are consistent with separate mechanisms of target and distractor effects in intertrial priming, and support the notion that the impact of implicit short-term memory and explicit visual working memory can interact when each provides conflicting attentional signals.

  1. Progression paths in children's problem solving: The influence of dynamic testing, initial variability, and working memory.

    Science.gov (United States)

    Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G

    2017-01-01

    The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Working memory capacity and task goals modulate error-related ERPs.

    Science.gov (United States)

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  3. Storage of features, conjunctions and objects in visual working memory.

    Science.gov (United States)

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  4. Do Computerised Training Programmes Designed to Improve Working Memory Work?

    Science.gov (United States)

    Apter, Brian J. B.

    2012-01-01

    A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…

  5. Levels of processing and language modality specificity in working memory.

    Science.gov (United States)

    Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker

    2013-03-01

    Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Visual working memory capacity and the medial temporal lobe.

    Science.gov (United States)

    Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2012-03-07

    Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

  7. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.

    Science.gov (United States)

    Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker

    2013-07-01

    It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.

  8. Working memory and attentional bias on reinforcing efficacy of food.

    Science.gov (United States)

    Carr, Katelyn A; Epstein, Leonard H

    2017-09-01

    Reinforcing efficacy of food, or the relationship between food prices and purchasing, is related to obesity status and energy intake in adults. Determining how to allocate resources for food is a decision making process influenced by executive functions. Attention to appetitive cues, as well as working memory capacity, or the ability to flexibly control attention while mentally retaining information, may be important executive functions involved in food purchasing decisions. In two studies, we examined how attention bias to food and working memory capacity are related to reinforcing efficacy of both high energy-dense and low energy-dense foods. The first study examined 48 women of varying body mass index (BMI) and found that the relationship between attentional processes and reinforcing efficacy was moderated by working memory capacity. Those who avoid food cues and had high working memory capacity had the lowest reinforcing efficacy, as compared to those with low working memory capacity. Study 2 systematically replicated the methods of study 1 with assessment of maintained attention in a sample of 48 overweight/obese adults. Results showed the relationship between maintained attention to food cues and reinforcing efficacy was moderated by working memory capacity. Those with a maintained attention to food and high working memory capacity had higher reinforcing efficacy than low working memory capacity individuals. These studies suggest working memory capacity moderated the relationship between different aspects of attention and food reinforcement. Understanding how decision making process are involved in reinforcing efficacy may help to identify future intervention targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Working memory still needs verbal rehearsal.

    Science.gov (United States)

    Lucidi, Annalisa; Langerock, Naomi; Hoareau, Violette; Lemaire, Benoît; Camos, Valérie; Barrouillet, Pierre

    2016-02-01

    The causal role of verbal rehearsal in working memory has recently been called into question. For example, the SOB-CS (Serial Order in a Box-Complex Span) model assumes that there is no maintenance process for the strengthening of items in working memory, but instead a process of removal of distractors that are involuntarily encoded and create interference with memory items. In the present study, we tested the idea that verbal working memory performance can be accounted for without assuming a causal role of the verbal rehearsal process. We demonstrate in two experiments using a complex span task and a Brown-Peterson paradigm that increasing the number of repetitions of the same distractor (the syllable ba that was read aloud at each of its occurrences on screen) has a detrimental effect on the concurrent maintenance of consonants whereas the maintenance of spatial locations remains unaffected. A detailed analysis of the tasks demonstrates that accounting for this effect within the SOB-CS model requires a series of unwarranted assumptions leading to undesirable further predictions contradicted by available experimental evidence. We argue that the hypothesis of a maintenance mechanism based on verbal rehearsal that is impeded by concurrent articulation still provides the simplest and most compelling account of our results.

  11. Declarative and Procedural Working Memory: Common Principles, Common Capacity Limits?

    Directory of Open Access Journals (Sweden)

    Klus Oberauer

    2010-10-01

    Full Text Available Working memory is often described as a system for simultaneous storage and processing. Much research – and most measures of working-memory capacity – focus on the storage component only, that is, people's ability to recall or recognize items after short retention intervals. The mechanisms of processing information are studied in a separate research tradition, concerned with the selection and control of actions in simple choice situations, dual-task constellations, or task-switching setups. both research traditions investigate performance based on representations that are temporarily maintained in an active, highly accessible state, and constrained by capacity limits. In this article an integrated theoretical framework of declarative and procedural working memory is presented that relates the two domains of research to each other. Declarative working memory is proposed to hold representations available for processing (including recall and recognition, whereas procedural working memory holds representations that control processing (i. e., task sets, stimulus-response mappings, and executive control settings. The framework motivates two hypotheses: Declarative and procedural working memory have separate capacity limits, and they operate by analogous principles. The framework also suggests a new characterization of executive functions as the subset of processes governed by procedural working memory that has as its output a change in the conditions of operation of the working-memory system.

  12. Working memory, intelligence and reading ability in children

    NARCIS (Netherlands)

    de Jonge, P.; de Jong, P.F.

    1996-01-01

    The dimensions of working memory in children and the relationships between working memory capacity, reasoning and reading ability were investigated. Simple and complex span tests were administered to 280 grade four, five and six elementary school children. Simple span tests were hypothesized to

  13. A heuristic model for working memory deficit in schizophrenia.

    Science.gov (United States)

    Qi, Zhen; Yu, Gina P; Tretter, Felix; Pogarell, Oliver; Grace, Anthony A; Voit, Eberhard O

    2016-11-01

    The life of schizophrenia patients is severely affected by deficits in working memory. In various brain regions, the reciprocal interactions between excitatory glutamatergic neurons and inhibitory GABAergic neurons are crucial. Other neurotransmitters, in particular dopamine, serotonin, acetylcholine, and norepinephrine, modulate the local balance between glutamate and GABA and therefore regulate the function of brain regions. Persistent alterations in the balances between the neurotransmitters can result in working memory deficits. Here we present a heuristic computational model that accounts for interactions among neurotransmitters across various brain regions. The model is based on the concept of a neurochemical interaction matrix at the biochemical level and combines this matrix with a mobile model representing physiological dynamic balances among neurotransmitter systems associated with working memory. The comparison of clinical and simulation results demonstrates that the model output is qualitatively very consistent with the available data. In addition, the model captured how perturbations migrated through different neurotransmitters and brain regions. Results showed that chronic administration of ketamine can cause a variety of imbalances, and application of an antagonist of the D2 receptor in PFC can also induce imbalances but in a very different manner. The heuristic computational model permits a variety of assessments of genetic, biochemical, and pharmacological perturbations and serves as an intuitive tool for explaining clinical and biological observations. The heuristic model is more intuitive than biophysically detailed models. It can serve as an important tool for interdisciplinary communication and even for psychiatric education of patients and relatives. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Bayesian hierarchical model for the measurement of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.

    Working memory is the memory system that allows for conscious storage and manipulation of information. The capacity of working memory is extremely limited. Measurements of this limit, and what affects it, are critical to understanding working memory. Cowan (2001) and Pashler (1988) suggested

  15. Working Memory in the Classroom: An Inside Look at the Central Executive.

    Science.gov (United States)

    Barker, Lauren A

    2016-01-01

    This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.

  16. Creativity and working memory capacity in sports: working memory capacity is not a limiting factor in creative decision making amongst skilled performers.

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel

    2015-01-01

    The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete's domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.

  17. Rethinking the Connection between Working Memory and Language Impairment

    Science.gov (United States)

    Archibald, Lisa M. D.; Harder Griebeling, Katherine

    2016-01-01

    Background: Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. Aims: To examine the processing function of working memory in children with low language (LL) by employing tasks imposing…

  18. Paradoxical facilitation of working memory after basolateral amygdala damage.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    Full Text Available Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical

  19. Working memory distortions of duration perception are modulated by attentional tags.

    Science.gov (United States)

    Pan, Yi; Hou, Xiu

    2016-03-01

    Recent research has shown that the contents of working memory can alter our perceptual experiences of visual matching stimuli. However, it is possible that different kinds of working memory representations may distort visual perception in different ways. In the present study, we associated working memory representations with different attentional tags and then examined their effects on perceived duration. The results showed that working memory representations prolonged apparent duration when they were tagged as a target and shortened perceived duration when they were tagged as a distractor. This is the first demonstration that attentional tags can modulate working memory effects on perceptual experience. We conclude that the influences of working memory on visual perception are determined not only by what information to be held in memory, but also by how the information is represented in memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2010-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  1. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2009-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  2. Working memory training to improve speech perception in noise across languages.

    Science.gov (United States)

    Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun

    2015-06-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.

  3. Predictors of verbal working memory in children with cerebral palsy.

    NARCIS (Netherlands)

    Peeters, M.; Verhoeven, L.; Moor, J.M.H. de

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by

  4. Predictors of verbal working memory in children with cerebral palsy

    NARCIS (Netherlands)

    Peeters, M.H.J.; Verhoeven, L.T.W.; Moor, J.M.H. de

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by

  5. Selective attention on representations in working memory: cognitive and neural mechanisms

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2018-04-01

    Full Text Available Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  6. Social working memory: neurocognitive networks and directions for future research.

    Science.gov (United States)

    Meyer, Meghan L; Lieberman, Matthew D

    2012-01-01

    Navigating the social world requires the ability to maintain and manipulate information about people's beliefs, traits, and mental states. We characterize this capacity as social working memory (SWM). To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the "mentalizing network") that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires SWM and that both the mentalizing and canonical working memory neurocognitive networks support SWM. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed.

  7. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    Science.gov (United States)

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-06-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.

  8. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks.

    Science.gov (United States)

    Chen, S H Annabel; Desmond, John E

    2005-01-15

    Converging evidence has implicated the cerebellum in verbal working memory. The current fMRI study sought to further characterize cerebrocerebellar participation in this cognitive process by revealing regions of activation common to a verbal working task and an articulatory control task, as well as regions that are uniquely activated by working memory. Consistent with our model's predictions, load-dependent activations were observed in Broca's area (BA 44/6) and the superior cerebellar hemisphere (VI/CrusI) for both working memory and motoric rehearsal. In contrast, activations unique to verbal working memory were found in the inferior parietal lobule (BA 40) and the right inferior cerebellum hemisphere (VIIB). These findings provide evidence for two cerebrocerebellar networks for verbal working memory: a frontal/superior cerebellar articulatory control system and a parietal/inferior cerebellar phonological storage system.

  9. Can we improve the clinical assessment of working memory? An evaluation of the Wechsler Adult Intelligence Scale-Third Edition using a working memory criterion construct.

    Science.gov (United States)

    Hill, B D; Elliott, Emily M; Shelton, Jill T; Pella, Russell D; O'Jile, Judith R; Gouvier, W Drew

    2010-03-01

    Working memory is the cognitive ability to hold a discrete amount of information in mind in an accessible state for utilization in mental tasks. This cognitive ability is impaired in many clinical populations typically assessed by clinical neuropsychologists. Recently, there have been a number of theoretical shifts in the way that working memory is conceptualized and assessed in the experimental literature. This study sought to determine to what extent the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Working Memory Index (WMI) measures the construct studied in the cognitive working memory literature, whether an improved WMI could be derived from the subtests that comprise the WAIS-III, and what percentage of variance in individual WAIS-III subtests is explained by working memory. It was hypothesized that subtests beyond those currently used to form the WAIS-III WMI would be able to account for a greater percentage of variance in a working memory criterion construct than the current WMI. Multiple regression analyses (n = 180) revealed that the best predictor model of subtests for assessing working memory was composed of the Digit Span, Letter-Number Sequencing, Matrix Reasoning, and Vocabulary. The Arithmetic subtest was not a significant contributor to the model. These results are discussed in the context of how they relate to Unsworth and Engle's (2006, 2007) new conceptualization of working memory mechanisms.

  10. Working memory capacity predicts the beneficial effect of selective memory retrieval.

    Science.gov (United States)

    Schlichting, Andreas; Aslan, Alp; Holterman, Christoph; Bäuml, Karl-Heinz T

    2015-01-01

    Selective retrieval of some studied items can both impair and improve recall of the other items. This study examined the role of working memory capacity (WMC) for the two effects of memory retrieval. Participants studied an item list consisting of predefined target and nontarget items. After study of the list, half of the participants performed an imagination task supposed to induce a change in mental context, whereas the other half performed a counting task which does not induce such context change. Following presentation of a second list, memory for the original list's target items was tested, either with or without preceding retrieval of the list's nontarget items. Consistent with previous work, preceding nontarget retrieval impaired target recall in the absence of the context change, but improved target recall in its presence. In particular, there was a positive relationship between WMC and the beneficial, but not the detrimental effect of memory retrieval. On the basis of the view that the beneficial effect of memory retrieval reflects context-reactivation processes, the results indicate that individuals with higher WMC are better able to capitalise on retrieval-induced context reactivation than individuals with lower WMC.

  11. Working Memory in the Prefrontal Cortex

    Science.gov (United States)

    Funahashi, Shintaro

    2017-01-01

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453

  12. The generalizability of working-memory capacity in the sport domain.

    Science.gov (United States)

    Buszard, Tim; Masters, Rich Sw; Farrow, Damian

    2017-08-01

    Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Working Memory: Maintenance, Updating, and the Realization of Intentions

    Science.gov (United States)

    Nyberg, Lars; Eriksson, Johan

    2016-01-01

    Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287

  14. The Implications of Congenital Deafness for Working Memory.

    Science.gov (United States)

    Chalifoux, Lisa M.

    1991-01-01

    A. Baddeley's model of the working memory of congenitally deaf persons is examined in light of research on encoding by this population. It is concluded that a model of the working memory of the deaf must include subsystems for articulatory, sign, and visual encoding. (Author/DB)

  15. Stimulus-specific variability in color working memory with delayed estimation.

    Science.gov (United States)

    Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Wilson, Colin; Flombaum, Jonathan I

    2014-04-08

    Working memory for color has been the central focus in an ongoing debate concerning the structure and limits of visual working memory. Within this area, the delayed estimation task has played a key role. An implicit assumption in color working memory research generally, and delayed estimation in particular, is that the fidelity of memory does not depend on color value (and, relatedly, that experimental colors have been sampled homogeneously with respect to discriminability). This assumption is reflected in the common practice of collapsing across trials with different target colors when estimating memory precision and other model parameters. Here we investigated whether or not this assumption is secure. To do so, we conducted delayed estimation experiments following standard practice with a memory load of one. We discovered that different target colors evoked response distributions that differed widely in dispersion and that these stimulus-specific response properties were correlated across observers. Subsequent experiments demonstrated that stimulus-specific responses persist under higher memory loads and that at least part of the specificity arises in perception and is eventually propagated to working memory. Posthoc stimulus measurement revealed that rendered stimuli differed from nominal stimuli in both chromaticity and luminance. We discuss the implications of these deviations for both our results and those from other working memory studies.

  16. Age differences and format effects in working memory.

    Science.gov (United States)

    Foos, Paul W; Goolkasian, Paula

    2010-07-01

    Format effects refer to lower recall of printed words from working memory when compared to spoken words or pictures. These effects have been attributed to an attenuation of attention to printed words. The present experiment compares younger and older adults' recall of three or six items presented as pictures, spoken words, printed words, and alternating case WoRdS. The latter stimuli have been shown to increase attention to printed words and, thus, reduce format effects. The question of interest was whether these stimuli would also reduce format effects for older adults whose working memory capacity has fewer attentional resources to allocate. Results showed that older adults performed as well as younger adults with three items but less well with six and that format effects were reduced for both age groups, but more for young, when alternating case words were used. Other findings regarding executive control of working memory are discussed. The obtained differences support models of reduced capacity in older adult working memory.

  17. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  18. Effects of chewing in working memory processing.

    Science.gov (United States)

    Hirano, Yoshiyuki; Obata, Takayuki; Kashikura, Kenichi; Nonaka, Hiroi; Tachibana, Atsumichi; Ikehira, Hiroo; Onozuka, Minoru

    2008-05-09

    It has been generally suggested that chewing produces an enhancing effect on cognitive performance-related aspects of memory by the test battery. Furthermore, recent studies have shown that chewing is associated with activation of various brain regions, including the prefrontal cortex. However, little is known about the relation between cognitive performances affected by chewing and the neuronal activity in specified regions in the brain. We therefore examined the effects of chewing on neuronal activities in the brain during a working memory task using fMRI. The subjects chewed gum, without odor and taste components, between continuously performed two- or three-back (n-back) working memory tasks. Chewing increased the BOLD signals in the middle frontal gyrus (Brodmann's areas 9 and 46) in the dorsolateral prefrontal cortex during the n-back tasks. Furthermore, there were more prominent activations in the right premotor cortex, precuneus, thalamus, hippocampus and inferior parietal lobe during the n-back tasks after the chewing trial. These results suggest that chewing may accelerate or recover the process of working memory besides inducing improvement in the arousal level by the chewing motion.

  19. Manipulations of attention dissociate fragile visual short-term memory from visual working memory

    NARCIS (Netherlands)

    Vandenbroucke, A.R.E.; Sligte, I.G.; Lamme, V.A.F.

    2011-01-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research

  20. Item-location binding in working memory: is it hippocampus-dependent?

    Science.gov (United States)

    Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D

    2014-07-01

    A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Efficiency of working memory: Theoretical concept and practical application

    OpenAIRE

    Lalović Dejan

    2008-01-01

    Efficiency of working memory is the concept which connects psychology of memory with different fields of cognitive, differential and applied psychology. In this paper, the history of interest for the assessment of the capacity of short-term memory is presented in brief, as well as the different methods used nowadays to assess the individual differences in the efficiency of working memory. What follows is the consideration of studies that indicate the existence of significant links between the...

  2. Do Interpreters Indeed Have Superior Working Memory in Interpreting

    Institute of Scientific and Technical Information of China (English)

    于飞

    2012-01-01

    With the frequent communications between China and western countries in the field of economy,politics and culture,etc,Inter preting becomes more and more important to people in all walks of life.This paper aims to testify the author’s hypothesis "professional interpreters have similar short-term memory with unprofessional interpreters,but they have superior working memory." After the illustration of literatures concerning with consecutive interpreting,short-term memory and working memory,experiments are designed and analysis are described.

  3. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.C.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and

  4. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia.

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.C.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and

  5. Short-term memory in Down syndrome: applying the working memory model.

    Science.gov (United States)

    Jarrold, C; Baddeley, A D

    2001-10-01

    This paper is divided into three sections. The first reviews the evidence for a verbal short-term memory deficit in Down syndrome. Existing research suggests that short-term memory for verbal information tends to be impaired in Down syndrome, in contrast to short-term memory for visual and spatial material. In addition, problems of hearing or speech do not appear to be a major cause of difficulties on tests of verbal short-term memory. This suggests that Down syndrome is associated with a specific memory problem, which we link to a potential deficit in the functioning of the 'phonological loop' of Baddeley's (1986) model of working memory. The second section considers the implications of a phonological loop problem. Because a reasonable amount is known about the normal functioning of the phonological loop, and of its role in language acquisition in typical development, we can make firm predictions as to the likely nature of the short-term memory problem in Down syndrome, and its consequences for language learning. However, we note that the existing evidence from studies with individuals with Down syndrome does not fit well with these predictions. This leads to the third section of the paper, in which we consider key questions to be addressed in future research. We suggest that there are two questions to be answered, which follow directly from the contradictory results outlined in the previous section. These are 'What is the precise nature of the verbal short-term memory deficit in Down syndrome', and 'What are the consequences of this deficit for learning'. We discuss ways in which these questions might be addressed in future work.

  6. The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating

    Science.gov (United States)

    Voigt, Babett; Mahy, Caitlin E. V.; Ellis, Judi; Schnitzspahn, Katharina; Krause, Ivonne; Altgassen, Mareike; Kliegel, Matthias

    2014-01-01

    This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was…

  7. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation

    Science.gov (United States)

    Fiebig, Florian

    2017-01-01

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and

  8. Cognitive control in auditory working memory is enhanced in musicians

    DEFF Research Database (Denmark)

    Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J

    2010-01-01

    focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally...... hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task....... The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may...

  9. The influence of working memory capacity on experimental heat pain.

    Science.gov (United States)

    Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko

    2013-10-01

    Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Neural mechanisms of interference control in working memory capacity.

    Science.gov (United States)

    Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N

    2018-02-01

    The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.

  11. Predictors of Verbal Working Memory in Children with Cerebral Palsy

    Science.gov (United States)

    Peeters, Marieke; Verhoeven, Ludo; de Moor, Jan

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by means of a forced-recognition task. As precursors…

  12. When high working memory capacity is and is not beneficial for predicting nonlinear processes.

    Science.gov (United States)

    Fischer, Helen; Holt, Daniel V

    2017-04-01

    Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.

  13. Discrepancy of performance among working memory-related tasks in autism spectrum disorders was caused by task characteristics, apart from working memory, which could interfere with task execution.

    Science.gov (United States)

    Nakahachi, Takayuki; Iwase, Masao; Takahashi, Hidetoshi; Honaga, Eiko; Sekiyama, Ryuji; Ukai, Satoshi; Ishii, Ryouhei; Ishigami, Wataru; Kajimoto, Osami; Yamashita, Ko; Hashimoto, Ryota; Tanii, Hisashi; Shimizu, Akira; Takeda, Masatoshi

    2006-06-01

    Working memory performance has been inconsistently reported in autism spectrum disorders (ASD). Several studies in ASD have found normal performance in digit span and poor performance in digit symbol task although these are closely related with working memory. It is assumed that poor performance in digit symbol could be explained by confirmatory behavior, which is induced due to the vague memory representation of number-symbol association. Therefore it was hypothesized that the performance of working memory task, in which vagueness did not cause confirmatory behavior, would be normal in ASD. For this purpose, the Advanced Trail Making Test (ATMT) was used. The performance of digit span, digit symbol and ATMT was compared between ASD and normal control. The digit span, digit symbol and ATMT was given to 16 ASD subjects and 28 IQ-, age- and sex-matched control subjects. The scores of these tasks were compared. A significantly lower score for ASD was found only in digit symbol compared with control subjects. There were no significant difference in digit span and working memory estimated by ATMT. Discrepancy of scores among working memory-related tasks was demonstrated in ASD. Poor digit symbol performance, normal digit span and normal working memory in ATMT implied that ASD subjects would be intact in working memory itself, and that superficial working memory dysfunction might be observed due to confirmatory behavior in digit symbol. Therefore, to evaluate working memory in ASD, tasks that could stimulate psychopathology specific to ASD should be avoided.

  14. The selective disruption of spatial working memory by eye movements.

    Science.gov (United States)

    Postle, Bradley R; Idzikowski, Christopher; Sala, Sergio Della; Logie, Robert H; Baddeley, Alan D

    2006-01-01

    In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book, these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory.

  15. The effects of working memory on brain-computer interface performance.

    Science.gov (United States)

    Sprague, Samantha A; McBee, Matthew T; Sellers, Eric W

    2016-02-01

    The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. The results indicate that both working memory and general intelligence are significant predictors of BCI performance. This suggests that working memory training could be used to improve performance on a BCI task. Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Working Memory and Cognitive Styles in Adolescents' Attainment

    Science.gov (United States)

    Packiam Alloway, Tracy; Banner, Gloria E.; Smith, Patrick

    2010-01-01

    Background: Working memory, the ability to store and process information, is strongly related to learning outcomes. Aims: The aim of the present study is to extend previous research on early learning and investigate the relationship between working memory, cognitive styles, and attainment in adolescents using both national curriculum tests and…

  17. Working Memory Underpins Cognitive Development, Learning, and Education

    Science.gov (United States)

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…

  18. Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory

    Directory of Open Access Journals (Sweden)

    Tansu Celikel

    2007-10-01

    Full Text Available Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1amediated uncoupling for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet controlled expression of Venus-tagged Homer1a (H1aV in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP, which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP. These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.

  19. Motor learning and working memory in children born preterm: a systematic review.

    Science.gov (United States)

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Working Memory in Students with Mathematical Difficulties

    Science.gov (United States)

    Nur, I. R. D.; Herman, T.; Ningsih, S.

    2018-04-01

    Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.

  1. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.

    Science.gov (United States)

    Nissim, Nicole R; O'Shea, Andrew M; Bryant, Vaughn; Porges, Eric C; Cohen, Ronald; Woods, Adam J

    2016-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance ( N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p frontal regions may underlie age-related decline of working memory function.

  2. Low-level lead exposure effects on spatial reference memory and working memory in rats

    Institute of Scientific and Technical Information of China (English)

    Xinhua Yang; Ping Zhou; Yonghui Li

    2009-01-01

    BACKGROUND: Studies have demonstrated that lead exposure can result in cognitive dysfunction and behavior disorders. However, lead exposure impairments vary under different experimental conditions.OBJECTIVE: To detect changes in spatial learning and memory following low-level lead exposure in rats, in Morris water maze test under the same experimental condition used to analyze lead exposure effects on various memory types and learning processes.DESIGN AND SETTING: The experiment was conducted at the Animal Laboratory, Institute of Psychology, Chinese Academy of Science between February 2005 and March 2006. One-way analysis of variance (ANOVA) and behavioral observations were performed.MATERIALS: Sixteen male, healthy, adult, Sprague Dawley rats were randomized into normal control and lead exposure groups (n = 8).METHODS: Rats in the normal control group were fed distilled water, and those in the lead exposure group were fed 250 mL of 0.05% lead acetate once per day. At day 28, all rats performed the Morris water maze test, consisting of four phases: space navigation, probe test, working memory test, and visual cue test.MAIN OUTCOME MEASURES: Place navigation in the Morris water maze was used to evaluate spatial learning and memory, probe trials for spatial reference memory, working memory test for spatial working memory, and visual cue test for non-spatial cognitive function. Perkin-Elmer Model 300 Atomic Absorption Spectrometer was utilized to determine blood lead levels in rats.RESULTS: (1) In the working memory test, the time to reach the platform remained unchanged between the control and lead exposure groups (F(1,1) = 0.007, P = 0.935). A visible decrease in escape latencies was observed in each group (P = 0.028). However, there was no significant difference between the two groups (F(1,1) = 1.869, P = 0.193). The working memory probe test demonstrated no change between the two groups in the time spent in the target quadrant during the working memory probe test

  3. Effects of emotional content on working memory capacity.

    Science.gov (United States)

    Garrison, Katie E; Schmeichel, Brandon J

    2018-02-13

    Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.

  4. Negative affect improves the quality of memories: trading capacity for precision in sensory and working memory.

    Science.gov (United States)

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2014-08-01

    Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. An evaluation of a working memory training scheme in older adults

    Directory of Open Access Journals (Sweden)

    Laura Patricia McAvinue

    2013-05-01

    Full Text Available Working memory is a cognitive process that is particularly vulnerable to decline with age. The current study sought to evaluate the efficacy of a working memory training scheme in improving memory in a group of older adults. A 5-week online training scheme was designed to provide training in the main components of Baddeley’s (2000 working memory model, namely auditory and visuospatial short-term and working memory. A group of older adults aged between 64 and 79 were randomly assigned to a trainee (n = 19 or control (n = 17 group, with trainees engaging in the adaptive training scheme and controls engaging in a non-adaptive version of the programme. Before and after training and at 3- and 6-month follow-up sessions, trainees and controls were asked to complete measures of short-term and working memory, long-term episodic memory, subjective ratings of memory and attention and achievement of goals set at the beginning of training. The results provided evidence of an expansion of auditory short-term memory span, which was maintained 6 months later, and transfer to long-term episodic memory but no evidence of improvement in working memory capacity per se. A serendipitous and intriguing finding of a relationship between time spent training, psychological stress and training gains provided further insight into individual differences in training gains in older adults.

  6. Working memory capacity predicts listwise directed forgetting in adults and children.

    Science.gov (United States)

    Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T

    2010-05-01

    In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.

  7. Working Memory Training and Speech in Noise Comprehension in Older Adults

    Directory of Open Access Journals (Sweden)

    Rachel V. Wayne

    2016-03-01

    Full Text Available Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald & Nusbaum, 2014, and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg, Forssberg & Westerberg, 2002 in 24 older adults, assessing generalization to other working-memory tasks (near-transfer and to other cognitive domains (far-transfer using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter 1980. We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd, Best & Mason 2005. To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context and half were semantically anomalous (low-context. Subjects completed 25 sessions (0.5-1 hour each; 5 sessions/week of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects’ scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.

  8. Working Memory Training and Speech in Noise Comprehension in Older Adults.

    Science.gov (United States)

    Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S

    2016-01-01

    Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.

  9. Working memory and new learning following pediatric traumatic brain injury.

    Science.gov (United States)

    Mandalis, Anna; Kinsella, Glynda; Ong, Ben; Anderson, Vicki

    2007-01-01

    Working memory (WM), the ability to monitor, process and maintain task relevant information on-line to respond to immediate environmental demands, is controlled by frontal systems (D'Esposito et al., 2006), which are particularly vulnerable to damage from a traumatic brain injury (TBI). This study employed the adult-based Working Memory model of Baddeley and Hitch (1974) to examine the relationship between working memory function and new verbal learning in children with TBI. A cross-sectional sample of 36 school-aged children with a moderate to severe TBI was compared to age-matched healthy Controls on a series of tasks assessing working memory subsystems: the Phonological Loop (PL) and Central Executive (CE). The TBI group performed significantly more poorly than Controls on the PL measure and the majority of CE tasks. On new learning tasks, the TBI group consistently produced fewer words than Controls across the learning and delayed recall phases. Results revealed impaired PL function related to poor encoding and acquisition on a new verbal learning task in the TBI group. CE retrieval deficits in the TBI group contributed to general memory dysfunction in acquisition, retrieval and recognition memory. These results suggest that the nature of learning and memory deficits in children with TBI is related to working memory impairment.

  10. Escaping Capture: Bilingualism Modulates Distraction from Working Memory

    Science.gov (United States)

    Hernandez, Mireia; Costa, Albert; Humphreys, Glyn W.

    2012-01-01

    We ask whether bilingualism aids cognitive control over the inadvertent guidance of visual attention from working memory and from bottom-up cueing. We compare highly-proficient Catalan-Spanish bilinguals with Spanish monolinguals in three visual search conditions. In the working memory (WM) condition, attention was driven in a top-down fashion by…

  11. Verbal Working Memory in Children with Cochlear Implants

    Science.gov (United States)

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.

    2017-01-01

    Purpose: Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants: Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method: A dual-component model of…

  12. Memory systems in the rat: effects of reward probability, context, and congruency between working and reference memory.

    Science.gov (United States)

    Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden

    2016-05-01

    The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2.

  13. Neutron detection using soft errors in dynamic Random Access Memories

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1994-01-01

    The purpose of this paper is to present results from experiments that have been performed to show the memory cycle time dependence of the soft errors produced by the interaction of alpha particles with dynamic random access memory devices, with a view to using these as position sensitive detectors. Furthermore, a preliminary feasibility study being carried out indicates the use of dynamic RAMs as neutron detectors by the utilization of (n, α) capture reactions in a Li converter placed on the top of the active area of the memory chip. ((orig.))

  14. Dynamic functional reorganizations and relationship with working memory performance in healthy aging.

    Directory of Open Access Journals (Sweden)

    Roser eSala-Llonch

    2012-06-01

    Full Text Available In recent years, several theories have been proposed in attempts to identify the neural mechanisms underlying successful cognitive aging. Old subjects show increased neural activity during the performance of tasks, mainly in prefrontal areas, which is interpreted as a compensatory mechanism linked to functional brain efficiency. Moreover, resting-state studies have concluded that elders show disconnection or disruption of large-scale functional networks. We used functional MRI during resting-state and a verbal n-back task with different levels of memory load in a cohort of young and old healthy adults to identify patterns of networks associated with working memory and brain default mode. We found that the disruption of resting-state networks in the elderly coexists with task-related overactivations of certain brain areas and with reorganizations within these functional networks. Moreover, elders who were able to activate additional areas and to recruit a more bilateral frontal pattern within the task-related network achieved successful performance on the task. We concluded that the balanced and plastic reorganization of brain networks underlies successful cognitive aging. This observation allows the integration of several theories that have been proposed to date regarding the aging brain.

  15. Autonomy in action: linking the act of looking to memory formation in infancy via dynamic neural fields.

    Science.gov (United States)

    Perone, Sammy; Spencer, John P

    2013-01-01

    Looking is a fundamental exploratory behavior by which infants acquire knowledge about the world. In theories of infant habituation, however, looking as an exploratory behavior has been deemphasized relative to the reliable nature with which looking indexes active cognitive processing. We present a new theory that connects looking to the dynamics of memory formation and formally implement this theory in a Dynamic Neural Field model that learns autonomously as it actively looks and looks away from a stimulus. We situate this model in a habituation task and illustrate the mechanisms by which looking, encoding, working memory formation, and long-term memory formation give rise to habituation across multiple stimulus and task contexts. We also illustrate how the act of looking and the temporal dynamics of learning affect each other. Finally, we test a new hypothesis about the sources of developmental differences in looking. Copyright © 2012 Cognitive Science Society, Inc.

  16. Selective updating of working memory content modulates meso-cortico-striatal activity.

    Science.gov (United States)

    Murty, Vishnu P; Sambataro, Fabio; Radulescu, Eugenia; Altamura, Mario; Iudicello, Jennifer; Zoltick, Bradley; Weinberger, Daniel R; Goldberg, Terry E; Mattay, Venkata S

    2011-08-01

    Accumulating evidence from non-human primates and computational modeling suggests that dopaminergic signals arising from the midbrain (substantia nigra/ventral tegmental area) mediate striatal gating of the prefrontal cortex during the selective updating of working memory. Using event-related functional magnetic resonance imaging, we explored the neural mechanisms underlying the selective updating of information stored in working memory. Participants were scanned during a novel working memory task that parses the neurophysiology underlying working memory maintenance, overwriting, and selective updating. Analyses revealed a functionally coupled network consisting of a midbrain region encompassing the substantia nigra/ventral tegmental area, caudate, and dorsolateral prefrontal cortex that was selectively engaged during working memory updating compared to the overwriting and maintenance of working memory content. Further analysis revealed differential midbrain-dorsolateral prefrontal interactions during selective updating between low-performing and high-performing individuals. These findings highlight the role of this meso-cortico-striatal circuitry during the selective updating of working memory in humans, which complements previous research in behavioral neuroscience and computational modeling. Published by Elsevier Inc.

  17. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    Science.gov (United States)

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  18. Neural Networks for Time Perception and Working Memory

    Science.gov (United States)

    Üstün, Sertaç; Kale, Emre H.; Çiçek, Metehan

    2017-01-01

    Time is an important concept which determines most human behaviors, however questions remain about how time is perceived and which areas of the brain are responsible for time perception. The aim of this study was to evaluate the relationship between time perception and working memory in healthy adults. Functional magnetic resonance imaging (fMRI) was used during the application of a visual paradigm. In all of the conditions, the participants were presented with a moving black rectangle on a gray screen. The rectangle was obstructed by a black bar for a time period and then reappeared again. During different conditions, participants (n = 15, eight male) responded according to the instructions they were given, including details about time and the working memory or dual task requirements. The results showed activations in right dorsolateral prefrontal and right intraparietal cortical networks, together with the anterior cingulate cortex (ACC), anterior insula and basal ganglia (BG) during time perception. On the other hand, working memory engaged the left prefrontal cortex, ACC, left superior parietal cortex, BG and cerebellum activity. Both time perception and working memory were related to a strong peristriate cortical activity. On the other hand, the interaction of time and memory showed activity in the intraparietal sulcus (IPS) and posterior cingulate cortex (PCC). These results support a distributed neural network based model for time perception and that the intraparietal and posterior cingulate areas might play a role in the interface of memory and timing. PMID:28286475

  19. Visual working memory is more tolerant than visual long-term memory.

    Science.gov (United States)

    Schurgin, Mark W; Flombaum, Jonathan I

    2018-05-07

    Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Release of Inattentional Blindness by High Working Memory Load: Elucidating the Relationship between Working Memory and Selective Attention

    Science.gov (United States)

    de Fockert, Jan W.; Bremner, Andrew J.

    2011-01-01

    An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus…

  1. Controlling attention to nociceptive stimuli with working memory.

    Directory of Open Access Journals (Sweden)

    Valéry Legrain

    Full Text Available BACKGROUND: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. METHODOLOGY AND PRINCIPAL FINDINGS: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials, tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory, reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. CONCLUSION AND SIGNIFICANCE: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal

  2. Working memory and flexibility in awareness and attention.

    Science.gov (United States)

    Bunting, Michael F; Cowan, Nelson

    2005-06-01

    We argue that attention and awareness form the basis of one type of working-memory storage. In contrast to models of working memory in which storage and retrieval occur effortlessly, we document that an attention-demanding goal conflict within a retrieval cue impairs recall from working memory. In a conceptual span task, semantic and color-name cues prompted recall of four consecutive words from a twelve-word list. The first-four, middle-four, and final-four words belonged to different semantic categories (e.g., body parts, animals, and tools) and were shown in different colors (e.g., red, blue, and green). In Experiment 1, the color of the cue matched that of cued items 75% of the time, and the rare mismatch impaired recall. In Experiment 2, though, the color of the cue matched that of the cued items only 25% of the time, and the now-more-frequent mismatches no longer mattered. These results are difficult to explain with passive storage alone and indicate that a processing difficulty impedes recall from working memory, presumably by distracting attention away from its storage function.

  3. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung; Choi, Dae Seob

    2000-01-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  4. Functional MR imaging of working memory in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Dae Seob [Dongguk University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory.

  5. Oculomotor preparation as a rehearsal mechanism in spatial working memory.

    Science.gov (United States)

    Pearson, David G; Ball, Keira; Smith, Daniel T

    2014-09-01

    There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  7. Effects of load on the guidance of visual attention from working memory.

    Science.gov (United States)

    Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping

    2011-12-08

    An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Visual-spatial processing and working-memory load as a function of negative and positive psychotic-like experiences.

    Science.gov (United States)

    Abu-Akel, A; Reniers, R L E P; Wood, S J

    2016-09-01

    Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.

  9. Neurotensin receptor 1 gene (NTSR1 polymorphism is associated with working memory.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT, in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453 were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.

  10. Interference control in working memory: comparing groups of children with atypical development.

    Science.gov (United States)

    Palladino, Paola; Ferrari, Marcella

    2013-01-01

    The study aimed to test whether working memory deficits in children at risk of Learning Disabilities (LD) and/or attention deficit/hyperactivity disorder (ADHD) can be attributed to deficits in interference control, thereby implicating prefrontal systems. Two groups of children known for showing poor working memory (i.e., children with poor comprehension and children with ADHD) were compared to a group of children with specific reading decoding problems (i.e., having severe problems in phonological rather than working memory) and to a control group. All children were tested with a verbal working memory task. Interference control of irrelevant items was examined by a lexical decision task presented immediately after the final recall in about half the trials, selected at random. The interference control measure was therefore directly related to working memory performance. Results confirmed deficient working memory performance in poor comprehenders and children at risk of ADHD + LD. More interestingly, this working memory deficit was associated with greater activation of irrelevant information than in the control group. Poor decoders showed more efficient interference control, in contrast to poor comprehenders and ADHD + LD children. These results indicated that interfering items were still highly accessible to working memory in children who fail the working memory task. In turn, these findings strengthen and clarify the role of interference control, one of the most critical prefrontal functions, in working memory.

  11. INTERACTIONS BETWEEN WORKING MEMORY AND CREATIVITY: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Taís Crema Remoli

    2017-03-01

    Full Text Available Creativity and working memory are academic and professional success markers. Paradoxically, correlational studies do not always find associations between these constructs; some studies show positive associations between them and others show negative associations. Probably, the contradictory findings arise from different parameters, because of that it is important to identify them in order to have a more coherent understanding of this relationship. Thus, this systematic literature review aimed to answer the questions: “What is the relationship between working memory and creativity? Do update and serial recall mnemonic processes also interfere in the production of convergent or divergent thinking?” For this purpose, a survey of specific descriptors generated 384 articles found in Scopus, Web of Science and Pubmed databases, from which fifteen studies were selected. Despite the methodological variability between the selected studies, the results found suggest associations between working memory and creativity, which are explained by the attentional, inhibitory, analytical and motivational processes involved. A systematic review of these studies concluded that the characteristics of experimental tasks to study creativity and working memory used can influence the results of this association. It is also possible to infer that working memory overload can impair creative performance.

  12. Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.

    Science.gov (United States)

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2016-11-01

    Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.

  13. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Magnetic stimulation of the dorsolateral prefrontal cortex dissociates fragile visual short-term memory from visual working memory.

    Science.gov (United States)

    Sligte, Ilja G; Wokke, Martijn E; Tesselaar, Johannes P; Scholte, H Steven; Lamme, Victor A F

    2011-05-01

    To guide our behavior in successful ways, we often need to rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). While VSTM is usually broken down into iconic memory (brief and high-capacity store) and visual working memory (sustained, yet limited-capacity store), recent studies have suggested the existence of an additional and intermediate form of VSTM that depends on activity in extrastriate cortex. In previous work, we have shown that this fragile form of VSTM can be dissociated from iconic memory. In the present study, we provide evidence that fragile VSTM is different from visual working memory as magnetic stimulation of the right dorsolateral prefrontal cortex (DLPFC) disrupts visual working memory, while leaving fragile VSTM intact. In addition, we observed that people with high DLPFC activity had superior working memory capacity compared to people with low DLPFC activity, and only people with high DLPFC activity really showed a reduction in working memory capacity in response to magnetic stimulation. Altogether, this study shows that VSTM consists of three stages that have clearly different characteristics and rely on different neural structures. On the methodological side, we show that it is possible to predict individual susceptibility to magnetic stimulation based on functional MRI activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  15. Selective attention supports working memory maintenance by modulating perceptual processing of distractors.

    Science.gov (United States)

    Sreenivasan, Kartik K; Jha, Amishi P

    2007-01-01

    Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.

  16. THE COGNITIVE NEUROSCIENCE OF WORKING MEMORY

    Science.gov (United States)

    D’Esposito, Mark; Postle, Bradley R.

    2015-01-01

    For over 50 years, psychologists and neuroscientists have recognized the importance of a “working memory” to coordinate processing when multiple goals are active, and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory via the allocation of attention to internal representations – be they semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking-memory contexts. The prefrontal cortex, on the other hand, exerts control over behavior by biasing the salience of mnemonic representations, and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits, and ascending dopaminergic neuromodulatory signals. PMID:25251486

  17. Working Memory Modulation of Frontoparietal Network Connectivity in First-Episode Schizophrenia

    DEFF Research Database (Denmark)

    Nielsen, Jesper Duemose; Madsen, Kristoffer Hougaard; Wang, Zheng

    2017-01-01

    Working memory (WM) impairment is regarded as a core aspect of schizophrenia. However, the neural mechanisms behind this cognitive deficit remain unclear. The connectivity of a frontoparietal network is known to be important for subserving WM. Using functional magnetic resonance imaging, the curr......Working memory (WM) impairment is regarded as a core aspect of schizophrenia. However, the neural mechanisms behind this cognitive deficit remain unclear. The connectivity of a frontoparietal network is known to be important for subserving WM. Using functional magnetic resonance imaging......, the current study investigated whether WM-dependent modulation of effective connectivity in this network is affected in a group of first-episode schizophrenia (FES) patients compared with similarly performing healthy participants during a verbal n-back task. Dynamic causal modeling (DCM) of the coupling...... between regions (left inferior frontal gyrus (IFG), left inferior parietal lobe (IPL), and primary visual area) identified in a psychophysiological interaction (PPI) analysis was performed to characterize effective connectivity during the n-back task. The PPI analysis revealed that the connectivity...

  18. Aging well: Processing speed inhibition and working memory related to balance and aerobic endurance.

    Science.gov (United States)

    Zettel-Watson, Laura; Suen, Meagan; Wehbe, Lara; Rutledge, Dana N; Cherry, Barbara J

    2017-01-01

    The present study explored whether certain physical performance measures could be linked to specific cognitive domains in healthy older adults. A total of 50 adults (mean age 69.5 years, SD 8.1) were evaluated on physical performance using measures of balance (Fullerton Advanced Balance Scale), functional mobility (8-ft up-and-go), lower body strength (30-s chair stand), gait (30-ft walk velocity) and aerobic endurance (6-min walk). Cognitive measures included Stroop Color-Word Test, Digit Span Backward, Trail Making Tests, Everyday Problems Test, Digit Symbol Substitution and a Brown-Peterson test. Principal component analyses reduced cognition to domains of processing speed, inhibition and working memory. Hierarchical regression analyses were carried out with age and each physical measure as potential predictors of the three cognitive domains. The balance scale and 6-min walk were specifically associated with processing speed, inhibition and working memory. Better dynamic balance and aerobic endurance predicted enhanced processing speed, inhibition and working memory in older adults, with these last two domains considered components of executive function. Geriatr Gerontol Int 2017; 17: 108-115. © 2015 Japan Geriatrics Society.

  19. The relationship between sustained inattentional blindness and working memory capacity.

    Science.gov (United States)

    Beanland, Vanessa; Chan, Esther Hiu Chung

    2016-04-01

    Inattentional blindness, whereby observers fail to detect unexpected stimuli, has been robustly demonstrated in a range of situations. Originally research focused primarily on how stimulus characteristics and task demands affect inattentional blindness, but increasingly studies are exploring the influence of observer characteristics on the detection of unexpected stimuli. It has been proposed that individual differences in working memory capacity predict inattentional blindness, on the assumption that higher working memory capacity confers greater attentional capacity for processing unexpected stimuli. Unfortunately, empirical investigations of the association between inattentional blindness and working memory capacity have produced conflicting findings. To help clarify this relationship, we examined the relationship between inattentional blindness and working memory capacity in two samples (Ns = 195, 147) of young adults. We used three common variants of sustained inattentional blindness tasks, systematically manipulating the salience of the unexpected stimulus and primary task practice. Working memory capacity, measured by automated operation span (both Experiments 1 & 2) and N-back (Experiment 1 only) tasks, did not predict detection of the unexpected stimulus in any of the inattentional blindness tasks tested. Together with previous research, this undermines claims that there is a robust relationship between inattentional blindness and working memory capacity. Rather, it appears that any relationship between inattentional blindness and working memory is either too small to have practical significance or is moderated by other factors and consequently varies with attributes such as the sample characteristics within a given study.

  20. Postural responses to specific types of working memory tasks

    NARCIS (Netherlands)

    Ramenzoni, V.C.; Riley, M.A.; Shockley, K.; Chiu, C.Y.P.

    2007-01-01

    Standing participants performed working memory tasks that varied along three dimensions: (1) type of information presented (verbal or visual); (2) the primary cognitive process engaged (encoding or rehearsal); and (3) interference that targeted the working memory components (phonological loop and

  1. Goal-neglect links Stroop interference with working memory capacity

    NARCIS (Netherlands)

    Morey, C.C.; Elliott, E.M.; Wiggers, J.; Eaves, S.L.; Shelton, J.T.; Mall, Jonathan

    2012-01-01

    Relationships between Stroop interference and working memory capacity may reflect individual differences in resolving conflict, susceptibility to goal neglect, or both of these factors. We compared relationships between working memory capacity and three Stroop tasks: a classic, printed color-word

  2. Confident failures: Lapses of working memory reveal a metacognitive blind spot.

    Science.gov (United States)

    Adam, Kirsten C S; Vogel, Edward K

    2017-07-01

    Working memory performance fluctuates dramatically from trial to trial. On many trials, performance is no better than chance. Here, we assessed participants' awareness of working memory failures. We used a whole-report visual working memory task to quantify both trial-by-trial performance and trial-by-trial subjective ratings of inattention to the task. In Experiment 1 (N = 41), participants were probed for task-unrelated thoughts immediately following 20% of trials. In Experiment 2 (N = 30), participants gave a rating of their attentional state following 25% of trials. Finally, in Experiments 3a (N = 44) and 3b (N = 34), participants reported confidence of every response using a simple mouse-click judgment. Attention-state ratings and off-task thoughts predicted the number of items correctly identified on each trial, replicating previous findings that subjective measures of attention state predict working memory performance. However, participants correctly identified failures on only around 28% of failure trials. Across experiments, participants' metacognitive judgments reliably predicted variation in working memory performance but consistently and severely underestimated the extent of failures. Further, individual differences in metacognitive accuracy correlated with overall working memory performance, suggesting that metacognitive monitoring may be key to working memory success.

  3. Relating working memory to compression parameters in clinically fit hearing AIDS.

    Science.gov (United States)

    Souza, Pamela E; Sirow, Lynn

    2014-12-01

    Several laboratory studies have demonstrated that working memory may influence response to compression speed in controlled (i.e., laboratory) comparisons of compression. In this study, the authors explored whether the same relationship would occur under less controlled conditions, as might occur in a typical audiology clinic. Participants included 27 older adults who sought hearing care in a private practice audiology clinic. Working memory was measured for each participant using a reading span test. The authors examined the relationship between working memory and aided speech recognition in noise, using clinically fit hearing aids with a range of compression speeds. Working memory, amount of hearing loss, and age each contributed to speech recognition, but the contribution depended on the speed of the compression processor. For fast-acting compression, the best performance was obtained by patients with high working memory. For slow-acting compression, speech recognition was affected by age and amount of hearing loss but was not affected by working memory. Despite the expectation of greater variability from differences in compression implementation, number of compression channels, or attendant signal processing, the relationship between working memory and compression speed showed a similar pattern as results from more controlled, laboratory-based studies.

  4. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    Science.gov (United States)

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  5. Social Working Memory: Neurocognitive networks and plasticity

    OpenAIRE

    Meyer, Meghan Leigh

    2014-01-01

    The social world is incredibly complex and the ability to keep track of various pieces of social information at once is imperative for success as a social species. Yet, how humans manage social information in mind has to date remained a mystery. On the one hand, psychological models of working memory, or the ability to maintain and manipulate information in mind, suggest that managing social information in mind would rely on generic working memory processes. However, recent research in social...

  6. The role of visual representations within working memory for paired-associate and serial order of spoken words.

    Science.gov (United States)

    Ueno, Taiji; Saito, Satoru

    2013-09-01

    Caplan and colleagues have recently explained paired-associate learning and serial-order learning with a single-mechanism computational model by assuming differential degrees of isolation. Specifically, two items in a pair can be grouped together and associated to positional codes that are somewhat isolated from the rest of the items. In contrast, the degree of isolation among the studied items is lower in serial-order learning. One of the key predictions drawn from this theory is that any variables that help chunking of two adjacent items into a group should be beneficial to paired-associate learning, more than serial-order learning. To test this idea, the role of visual representations in memory for spoken verbal materials (i.e., imagery) was compared between two types of learning directly. Experiment 1 showed stronger effects of word concreteness and of concurrent presentation of irrelevant visual stimuli (dynamic visual noise: DVN) in paired-associate memory than in serial-order memory, consistent with the prediction. Experiment 2 revealed that the irrelevant visual stimuli effect was boosted when the participants had to actively maintain the information within working memory, rather than feed it to long-term memory for subsequent recall, due to cue overloading. This indicates that the sensory input from irrelevant visual stimuli can reach and affect visual representations of verbal items within working memory, and that this disruption can be attenuated when the information within working memory can be efficiently supported by long-term memory for subsequent recall.

  7. Can we throw information out of visual working memory and does this leave informational residue in long-term memory?

    Directory of Open Access Journals (Sweden)

    Ashleigh Monette Maxcey

    2014-04-01

    Full Text Available Can we entirely erase a temporary memory representation from mind? This question has been addressed in several recent studies that tested the specific hypothesis that a representation can be erased from visual working memory based on a cue that indicated that the representation was no longer necessary for the task. In addition to behavioral results that are consistent with the idea that we can throw information out of visual working memory, recent neurophysiological recordings support this proposal. However, given the infinite capacity of long-term memory, it is unclear whether throwing a representation out of visual working memory really removes its effects on memory entirely. In this paper we advocate for an approach that examines our ability to erase memory representations from working memory, as well as possible traces that those erased representations leave in long-term memory.

  8. Evidence against decay in verbal working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lewandowsky, Stephan

    2013-05-01

    The article tests the assumption that forgetting in working memory for verbal materials is caused by time-based decay, using the complex-span paradigm. Participants encoded 6 letters for serial recall; each letter was preceded and followed by a processing period comprising 4 trials of difficult visual search. Processing duration, during which memory could decay, was manipulated via search set size. This manipulation increased retention interval by up to 100% without having any effect on recall accuracy. This result held with and without articulatory suppression. Two experiments using a dual-task paradigm showed that the visual search process required central attention. Thus, even when memory maintenance by central attention and by articulatory rehearsal was prevented, a large delay had no effect on memory performance, contrary to the decay notion. Most previous experiments that manipulated the retention interval and the opportunity for maintenance processes in complex span have confounded these variables with time pressure during processing periods. Three further experiments identified time pressure as the variable that affected recall. We conclude that time-based decay does not contribute to the capacity limit of verbal working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    Directory of Open Access Journals (Sweden)

    Sarah R Rudebeck

    Full Text Available One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity presented simultaneously (i.e. a dual n-back paradigm. Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores, we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice

  10. Individual differences in children's working memory and writing skill.

    Science.gov (United States)

    Swanson, H L; Berninger, V W

    1996-11-01

    The purpose of this research is to address (a) whether individual differences in working memory (WM) and writing are related to a general or process-specific system, (b) whether WM tasks operate independently of phonological short-term memory (STM) on measures of writing and reading, and (c) whether working memory predicts variance in writing beyond that predicted by reading alone. The present study correlated several WM and phonological STM measures with writing and reading measures. The study showed among the memory measures that a four-factor model reflecting phonological STM, verbal WM span, executive processing, and visual-spatial WM span best fit the multivariate data set. Working memory was correlated significantly with a number of writing measures, particularly those related to text generation. WM measures contributed unique variance to writing that was independent of reading skill, and STM measures best predicted transcription processes and reading recognition, whereas WM measures best predicted text generation and reading comprehension. Both verbal and visual-spatial working memory measures predicted reading comprehension, whereas only WM measures that reflect executive processing significantly predicted writing. In general, the results suggest that individual differences in children's writing reflect a specific capacity system, whereas reading comprehension draws upon a multiple capacity system.

  11. Working memory in multilingual children: is there a bilingual effect?

    Science.gov (United States)

    Engel de Abreu, Pascale M J

    2011-07-01

    This research investigates whether early childhood bilingualism affects working memory performance in 6- to 8-year-olds, followed over a longitudinal period of 3 years. The study tests the hypothesis that bilinguals might exhibit more efficient working memory abilities than monolinguals, potentially via the opportunity a bilingual environment provides to train cognitive control by combating interference and intrusions from the non-target language. A total of 44 bilingual and monolingual children, matched on age, sex, and socioeconomic status, completed assessments of working memory (simple span and complex span tasks), fluid intelligence, and language (vocabulary and syntax). The data showed that the monolinguals performed significantly better on the language measures across the years, whereas no language group effect emerged on the working memory and fluid intelligence tasks after verbal abilities were considered. The study suggests that the need to manage several language systems in the bilingual mind has an impact on children's language skills while having little effects on the development of working memory.

  12. Neuro-Cognitive Intervention for Working Memory: Preliminary Results and Future Directions.

    Science.gov (United States)

    Bree, Kathleen D; Beljan, Paul

    2016-01-01

    Definitions of working memory identify it as a function of the executive function system in which an individual maintains two or more pieces of information in mind and uses that information simultaneously for some purpose. In academics, working memory is necessary for a variety of functions, including attending to the information one's teacher presents and then using that information simultaneously for problem solving. Research indicates difficulties with working memory are observed in children with mathematics learning disorder (MLD) and reading disorders (RD). To improve working memory and other executive function difficulties, and as an alternative to medication treatments for attention and executive function disorders, the Motor Cognition(2)® (MC(2)®)program was developed. Preliminary research on this program indicates statistically significant improvements in working memory, mathematics, and nonsense word decoding for reading. Further research on the MC(2)® program and its impact on working memory, as well as other areas of executive functioning, is warranted.

  13. ASSERT: Augmentation Grant on Working Memory Capacity

    National Research Council Canada - National Science Library

    Engle, Randall

    2000-01-01

    .... That work has resulted in numerous publications and conference presentations demonstrating that individuals who score in the bottom quartile on measures of working memory capacity show more errors...

  14. Executive and Perceptual Distraction in Visual Working Memory

    Science.gov (United States)

    2017-01-01

    The contents of visual working memory are likely to reflect the influence of both executive control resources and information present in the environment. We investigated whether executive attention is critical in the ability to exclude unwanted stimuli by introducing concurrent potentially distracting irrelevant items to a visual working memory paradigm, and manipulating executive load using simple or more demanding secondary verbal tasks. Across 7 experiments varying in presentation format, timing, stimulus set, and distractor number, we observed clear disruptive effects of executive load and visual distraction, but relatively minimal evidence supporting an interactive relationship between these factors. These findings are in line with recent evidence using delay-based interference, and suggest that different forms of attentional selection operate relatively independently in visual working memory. PMID:28414499

  15. Recollecting positive and negative autobiographical memories disrupts working memory.

    Science.gov (United States)

    Allen, Richard J; Schaefer, Alexandre; Falcon, Thomas

    2014-09-01

    The present article reports two experiments examining the impact of recollecting emotionally valenced autobiographical memories on subsequent working memory (WM) task performance. Experiment 1 found that negatively valenced recollection significantly disrupted performance on a supra-span spatial WM task. Experiment 2 replicated and extended these findings to a verbal WM task (digit recall), and found that both negative and positive autobiographical recollections had a detrimental effect on verbal WM. In addition, we observed that these disruptive effects were more apparent on early trials, immediately following autobiographical recollection. Overall, these findings show that both positive and negative affect can disrupt WM when the mood-eliciting context is based on autobiographical memories. Furthermore, these results indicate that the emotional disruption of WM can take place across different modalities of WM (verbal and visuo-spatial). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    Science.gov (United States)

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  17. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Directory of Open Access Journals (Sweden)

    Aaron T. Mattfeld

    2016-01-01

    Full Text Available Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI. Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  18. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Science.gov (United States)

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  19. White matter hyperintensities and working memory : An explorative study

    NARCIS (Netherlands)

    van Harten, Barbera; Weinstein, Henry C.; Scheltens, Philip; Sergeant, Joseph A.; Scherder, Erik J. A.; Oosterman, J

    2008-01-01

    White matter hyperintensities (WMH) are commonly observed in elderly people and may have the most profound effect on executive functions, including working memory. Surprisingly, the Digit Span backward, a frequently employed working memory task, reveals no association with WMH. In the present study,

  20. Content-specific working memory modulation of the attentional blink

    NARCIS (Netherlands)

    Akyürek, Elkan G.; Abedian-Amiri, Ali; Ostermeier, Sonja M.

    2011-01-01

    Three experiments were conducted to investigate the effects of working memory content on temporal attention in a rapid serial visual presentation attentional blink paradigm. It was shown that categorical similarity between working memory content and the target stimuli pertaining to the attentional

  1. Working memory assessment in schizophrenia and its correlation with executive functions ability.

    Science.gov (United States)

    Berberian, Arthur A; Trevisan, Bruna T; Moriyama, Tais S; Montiel, José M; Oliveira, José Ari C; Seabra, Alessandra G

    2009-09-01

    Working memory impairment is common in schizophrenia and is possibly a cause of multiple features of the disorder. However few studies have replicated such findings of impairment patterns in Brazilian samples. The main target of this study was to assess auditory and visual working memory in patients with schizophrenia, to assess if they work as separate systems, and to correlate working memory deficits with executive functions. Twenty subjects with schizophrenia and twenty healthy subjects matched by gender, age, and schooling have participated. The abilities assessed were auditory and visual working memory, selective attention, inhibitory control, cognitive flexibility, and planning. Patients showed declines in all measures evaluated, except for a measure reaction time of inhibitory control. Auditory working memory was correlated to selective attention, inhibition, flexibility and planning while Visual working memory to planning and flexibility. The present study suggests that working memory and executive functions deficits are present in patients with schizophrenia in the Brazilian sample evaluated. Alterations in executive functions may lead to incapacity of operation of processes of working memory. These findings may contribute to delineate and develop new strategies of schizophrenia treatment in the Brazilian population.

  2. Dynamic relation between working memory capacity and speech recognition in noise during the first 6 months of hearing aid use.

    Science.gov (United States)

    Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker

    2014-11-23

    The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.

  3. Sex differences in visual-spatial working memory: A meta-analysis.

    Science.gov (United States)

    Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean

    2017-04-01

    Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.

  4. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    Science.gov (United States)

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  5. The development of real-time stability supports visual working memory performance: Young children's feature binding can be improved through perceptual structure.

    Science.gov (United States)

    Simmering, Vanessa R; Wood, Chelsey M

    2017-08-01

    Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Working memory for conjunctions relies on the medial temporal lobe.

    Science.gov (United States)

    Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-04-26

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.

  7. Distinct Transfer Effects of Training Different Facets of Working Memory Capacity

    Science.gov (United States)

    von Bastian, Claudia C.; Oberauer, Klaus

    2013-01-01

    The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…

  8. Working Memory and Binding in Sentence Recall

    Science.gov (United States)

    Baddeley, A. D.; Hitch, G. J.; Allen, R. J.

    2009-01-01

    A series of experiments explored whether chunking in short-term memory for verbal materials depends on attentionally limited executive processes. Secondary tasks were used to disrupt components of working memory and chunking was indexed by the sentence superiority effect, whereby immediate recall is better for sentences than word lists. To…

  9. Accessibility Limits Recall from Visual Working Memory

    Science.gov (United States)

    Rajsic, Jason; Swan, Garrett; Wilson, Daryl E.; Pratt, Jay

    2017-01-01

    In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response…

  10. Working memory maintenance is sufficient to reduce state anxiety.

    Science.gov (United States)

    Balderston, Nicholas L; Quispe-Escudero, David; Hale, Elizabeth; Davis, Andrew; O'Connell, Katherine; Ernst, Monique; Grillon, Christian

    2016-11-01

    According to the attentional control theory (ACT) proposed by Eysenck and colleagues, anxiety interferes with cognitive processing by prioritizing bottom-up attentional processes over top-down attentional processes, leading to competition for access to limited resources in working memory, particularly the central executive (Eysenck, Derakshan, Santos, & Calvo, ). However, previous research using the n-back working memory task suggests that working memory load also reduces state anxiety. Assuming that similar mechanisms underlie the effect of anxiety on cognition, and the effect of cognition on anxiety, one possible implication of the ACT would suggest that the reduction of state anxiety with increasing working memory load is driven by activation of central executive attentional control processes. We tested this hypothesis using the Sternberg working memory paradigm, where maintenance processes can be isolated from central executive processes (Altamura et al., ; Sternberg, ). Consistent with the n-back results, subjects showed decreased state anxiety during the maintenance period of high-load trials relative to low-load trials, suggesting that maintenance processes alone are sufficient to achieve this state anxiety reduction. Given that the Sternberg task does not require central executive engagement, these results are not consistent with an implication of the ACT where the cognition/anxiety relationship and anxiety/cognition relationship are mediated by similar central executive mechanisms. Instead, we propose an extension of the ACT such that engaging working memory maintenance suppresses state anxiety in a load-dependent manner. Furthermore, we hypothesize that the efficacy of this effect may moderate the effect of trait anxiety on cognition. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Different effects of executive and visuospatial working memory on visual consciousness.

    Science.gov (United States)

    De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip

    2015-11-01

    Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.

  12. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations

    NARCIS (Netherlands)

    Vandenbroucke, A.R.; Sligte, I.G.; Vries, J.G. de; Cohen, M.S.; Lamme, V.A.F.

    2015-01-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F.

  13. Neural correlates of visual short-term memory dissociate between fragile and working memory representations

    NARCIS (Netherlands)

    Vandenbroucke, A.R.E.; Sligte, I.G.; de Vries, J.G.; Cohen, M.X.; Lamme, V.A.F.

    2015-01-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F.

  14. Working memory capacity in social anxiety disorder: Revisiting prior conclusions.

    Science.gov (United States)

    Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E

    2018-04-01

    In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  16. Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

    Science.gov (United States)

    Berggren, Nick; Eimer, Martin

    2016-12-01

    During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.

  17. Central and Peripheral Components of Working Memory Storage

    Science.gov (United States)

    Cowan, Nelson; Saults, J. Scott; Blume, Christopher L.

    2014-01-01

    This study re-examines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and re-analysis of some prior evidence, the innovations of the present work compared to previous studies of memory for two stimulus sets include (1) use of a principled set of formulas to estimate the number of items in working memory, and (2) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only one kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007), and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance. PMID:24867488

  18. How to assess gaming-induced benefits on attention and working memory

    OpenAIRE

    Mishra, Jyoti; Bavelier, Daphné; Gazzaley, Adam

    2012-01-01

    Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extra...

  19. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load.

    Science.gov (United States)

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2008-07-01

    The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.

  20. Perspectives on working memory: introduction to the special issue.

    Science.gov (United States)

    Logie, Robert H; Cowan, Nelson

    2015-04-01

    More than 40 years ago, Baddeley and Hitch (1974) published an article with a wealth of experimentation and theorization on working memory, the small amount of information held in mind and often used within cognitive processes such as language comprehension and production, reasoning, and problem solving. We honor this seminal accomplishment in the present special issue, and take this opportunity to provide an introduction to our perspectives on the origin of the theory of working memory, how it has affected our work, what may be coming in the near future, and how the research articles in the present issue contribute to several related themes within the clearly thriving field of working memory.