WorldWideScience

Sample records for women engineering students

  1. University Experiences and Women Engineering Student Persistence

    Science.gov (United States)

    Ayers, LoAnn Debra Gienger

    Riverside University (a pseudonym), like many universities, has not significantly increased the number of women who graduate with bachelor's degrees in engineering. The purpose of the study is to understand how the university experiences of women students influence the decision to persist in an undergraduate engineering degree and to understand the role of self-perception in how the students perceive experiences as supporting or hindering their persistence in the major. Archival data, documents and artifacts, observations, individual interviews, and a focus group with women engineering students provide insights into students' perceived barriers and supports of student success. Analysis of the data results in two major themes. First, students' self-confidence and self-efficacy influence how women assimilate university experiences as either supportive or diminishing of academic success. Second, university policies and practices shape the campus environment within which student experiences are formed and influence a student's level of institutional, academic, and social integration. The results of the study indicate opportunities for university leadership to enhance strategies that positively shape students' institutional, academic and social integration as precursors toward increasing the number of women students who successfully complete undergraduate engineering degrees at Riverside University. Future research is indicated to better understand how gender and gender identity intersects with other demographic factors, such as socio-economic status, immigration status, and life stage (e.g., traditional versus non-traditional students), to support or deter the persistence of engineering students to degree completion.

  2. Women Engineering Transfer Students: The Community College Experience

    Science.gov (United States)

    Patterson, Susan J.

    2011-01-01

    An interpretative philosophical framework was applied to a case study to document the particular experiences and perspectives of ten women engineering transfer students who once attended a community college and are currently enrolled in one of two university professional engineering programs. This study is important because women still do not earn…

  3. Women Students in Engineering in Mexico: Exploring Responses to Gender Differences

    Science.gov (United States)

    García Villa, Carmen; González y González, Elsa M.

    2014-01-01

    The percentage of women students in engineering in Mexico is still low compared to the percentage of women enrolled in higher education institutions in the country, which has achieved parity with male enrollment. It is thus important to understand how gender can shape the experiences of female college students in engineering programs, which was…

  4. Women Ph.D. Students in Engineering and a Nuanced Terrain: Avoiding and Revealing Gender

    Science.gov (United States)

    Erickson, Shelley K.

    2012-01-01

    Tensions regarding gender emerged from interviews conducted with 20 women Ph.D. students. This article does not focus explicitly on the reasons for women's continued underrepresentation in engineering. Rather the students' explanations for underrepresentation serve as a case study with which to analyze their gendered experiences. They avoid freely…

  5. The impact of program experiences on the retention of women engineering students in Mexico

    Science.gov (United States)

    Villa, Maria Del Carmen Garcia

    This qualitative study sought to describe and understand the experiences of female students attending engineering colleges in Mexico and the sources of support and strategies that helped them persist in their programs. The participants were 20 women engineering students enrolled in at least their third year in selected colleges of engineering in Mexico, in both public and private universities, and pursuing a variety of engineering majors. Findings focus on the experiences of female students that helped them stay in their programs. Participants described their experiences in college as very challenging and perceived the environment as hostile and uncertain. In addition, patriarchal Mexican cultural values and stereotypes were identified by students as influencing and helping shape the engineering environment. However, in this context, participants were able to find sources of support and use strategies that helped them remain in their majors, such as a strong desire to succeed, a perceived academic self-ability; and support from their families, peers, institutions, and---most importantly---their professors. Furthermore, the fact that participants were able to persist in their programs gave them a sense of pride and satisfaction that was shared by their families, peers, and faculty. In addition, participants experienced contradictory forces and were constantly negotiating between rejecting traditional gender norms and upholding the norms that are so deeply engrained in Mexican society. Finally, as the students advanced in their programs and became "accepted to the club," they tended to reproduce the male-dominated value system present in engineering colleges accepting their professors' expectations of being "top students," accepting the elitist culture of engineering superiority, and embracing the protection given by their male peers. Retention of Mexican female engineering students is important for all engineering colleges, but cultural factors must be taken into

  6. Academic satisfaction among Latino/a and White men and women engineering students.

    Science.gov (United States)

    Flores, Lisa Y; Navarro, Rachel L; Lee, Hang Shim; Addae, Dorothy A; Gonzalez, Rebecca; Luna, Laura L; Jacquez, Ricardo; Cooper, Sonya; Mitchell, Martha

    2014-01-01

    The current study tests a model of academic satisfaction in engineering based on Lent, Brown, and Hackett's (1994, 2000) social cognitive career theory among a sample of 527 engineering majors attending a Hispanic serving institution. The findings indicated that (a) an alternative bidirectional model fit the data for the full sample; (b) all of the hypothesized relations were significant for the full sample, except the path from engineering interests to goals; (c) social cognitive career theory predictors accounted for a significant amount of variance in engineering goals (26.6%) and academic satisfaction (45.1%); and (d) the model parameters did not vary across men and women or across Latino/a and White engineering undergraduate students. Implications for research and practice are discussed in relation to persistence in engineering among women and Latinos/as. (c) 2014 APA, all rights reserved.

  7. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    Science.gov (United States)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  8. Mentornet - E-Mentoring for Women Students in Engineering and Science

    Science.gov (United States)

    Single, Peg Boyle; Muller, Carol B.; Cunningham, Christine M.; Single, Richard M.; Carlsen, William S.

    MentorNet www.MentorNet.net;, the E-Mentoring Network for Diversity in Engineering and Science, addresses the underrepresentation of women in science, technology, engineering, and mathematics "STEM". MentorNet offers a multiinstitutional, structured, electronic mentoring "e-mentoring" program that pairs undergraduate and graduate students, primarily women, with professionals and supports them through e-mentoring relationships of specified lengths. The program evaluations established that over 90% of the participants would recommend MentorNet to a friend or colleague. The e-mentoring program allowed participants to establish satisfactory and beneficial e-mentoring relationships based on investments of approximately 20 minutes per week - in between more serious exchanges, email exchanges that included light-hearted social interactions and jokes were an important aspect of sustaining e-mentoring relationships. Participation in MentorNet increased the students' self-confidence in their f elds - desire to obtain work in industry, national laboratories, or national agencies; and intent to pursue careers in their fields. Three years of evaluation results support the need for and efficacy of the program.

  9. Women in science & engineering and minority engineering scholarships : year 5.

    Science.gov (United States)

    2011-06-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  10. Women in science & engineering and minority engineering scholarships : year 4.

    Science.gov (United States)

    2010-04-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  11. Learning to Become Graduate Students: Japanese Women's Experience in the Research Unit in Engineering

    Science.gov (United States)

    Hosaka, Masako

    2010-01-01

    Based on the analysis of 16 interviews with women first-year master's students at two national engineering schools in Japan, this article examines the socialisation role of compulsory undergraduate research experience in Japanese women's decisions to pursue graduate education and choices of the programme. The findings suggest that research…

  12. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  13. Engineering education research: Impacts of an international network of female engineers on the persistence of Liberian undergraduate women studying engineering

    Science.gov (United States)

    Rimer, Sara; Reddivari, Sahithya; Cotel, Aline

    2015-11-01

    As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.

  14. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    Science.gov (United States)

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  15. Differential Experiences of Women and Minority Engineering Students in a Cooperative Education Program

    Science.gov (United States)

    Fifolt, Matthew M.; Abbott, Gypsy

    Although slight gains have been made in attracting women and minority students to the field of engineering, the differences are not great enough to meet current economic demands [National Academy of Sciences (2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future, Washington, DC: National Academies Press]. Therefore, it has become imperative that colleges and universities increase efforts to both recruit and retain these students who express interest in the STEM fields [National Science Foundation (2006), Women, minorities, and persons with disabilities in science and engineering, NSF 4-311, Arlington, VA: NSF]. In engineering, one promising venue for students to gain professional experience as part of their undergraduate training is through cooperative education (co-op). However, there is a dearth of information in the research literature regarding how co-op programs can be structured to address the needs of diverse students. There is consensus, however, about one aspect of addressing the needs of diverse students, namely, mentoring and role models are key strategies for success. In this study, a mixed methods design was used to examine students' perceptions of mentoring in a cooperative education program in a southeastern university. Using Noe's [Noe, R. (1988). An investigation of the determinants of successful assigned mentoring relationships. Personnel Psychology, 1, 457-479] mentoring functions scales, which described psychosocial and career-related support, research findings indicated a statistically significant difference between gender and the psychosocial aspect of mentoring. Analysis of the qualitative data further confirmed differences in cooperative education experiences with respect to both gender and ethnicity.

  16. Women Engineering Faculty: Expanding the Pipeline

    Science.gov (United States)

    Greni, Nadene Deiterman

    2006-01-01

    The purpose for this case study was to explore the features of undergraduate engineering departmental and college support that influenced the persistence of women students. Women engineering faculty members were among the participants at three Land Grant universities in the Midwest. The data revealed the theme, Expanding the Pipeline, and…

  17. Pipeline or Personal Preference: Women in Engineering

    Science.gov (United States)

    Schreuders, P. D.; Mannon, S. E.; Rutherford, B.

    2009-01-01

    Although the number of women in the engineering field has increased since the 1960s, those increases have largely stagnated over the last few years. This paper re-examines the pipeline for bringing women into engineering and, based on survey data, examines the attitudes, motivations, and interests of 969 male and female engineering students.…

  18. Women in science & engineering and minority engineering scholarships : year 3, report for 2008-2009 activities.

    Science.gov (United States)

    2009-05-01

    Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  19. Women in science & engineering and minority engineering scholarships : year 2 report for 2007-2008 activities.

    Science.gov (United States)

    2008-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  20. Investigation of students' experiences of gendered cultures in engineering workplaces

    Science.gov (United States)

    Male, Sally A.; Gardner, Anne; Figueroa, Eugenia; Bennett, Dawn

    2018-05-01

    Women remain severely under-represented in engineering in Australia as in all Western countries. This limits the pool of talent, standpoints and approaches within the profession. Furthermore, this under-representation equates to restriction of the benefits of being an engineer mainly to men. Gendered workplace experiences have been found to contribute to women leaving the profession. In this study we explore students' experiences of gendered cultures in engineering workplaces, using interviews with a purposive sample of 13 students (4 male) recruited following a previous survey. Although the overall experience of workplace learning is positive for many students, male and female engineering students reported experiences consistent with masculine cultures. Educators and employers must proactively lead improvements to the culture in engineering workplaces, prepare students for gendered workplaces and support students to reflect during and after workplace experiences. The experiences presented here could be adapted to enhance inclusivity training.

  1. `It's more flexible': persistence of women engineers in the academy

    Science.gov (United States)

    Mlambo, Yeukai Angela; Mabokela, Reitumetse Obakeng

    2017-05-01

    The under-representation of women in engineering is an issue of concern for policy-makers. While much of the existing literature has focussed on understanding reasons for women's under-representation in engineering and related technical fields, there is a paucity of research that examines why women who are already in engineering persist. This study aims to answer the question, why do women engineers in academe persist in a discipline that is generally perceived to be inhospitable to women. Three main challenges, namely gender discrimination, lack of institutional and disciplinary support, and the rigid nature of the workplace, emerged as key impediments to women engineers in the private sector. In contrast, women engineers in the academy identified the flexibility offered by academic environments, the presence of personal support networks, and a passion for teaching and students as critical factors that influenced their decision to remain in academia.

  2. Motivational and adaptational factors of successful women engineers

    Science.gov (United States)

    Bornsen, Susan Edith

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged in the field. This paper examines how women engineers view their education, their work, and their motivation to remain in the field. A qualitative research design was used to understand the motivation and adaptability factors women use to support their decision to major in engineering and stay in the engineering profession. Women engineers were interviewed using broad questions about motivation and adaptability. Interviews were transcribed and coded, looking for common threads of factors that suggest not only why women engineers persist in the field, but also how they thrive. Findings focus on the experiences, insights, and meaning of women interviewed. A grounded theory approach was used to describe the success factors found in practicing women engineers. The study found categories of attraction to the field, learning environment, motivation and adaptability. Sub-categories of motivation are intrinsic motivational factors such as the desire to make a difference, as well as extrinsic factors such as having an income that allows the kind of lifestyle that supports the family. Women engineers are comfortable with and enjoy working with male peers and when barriers arise, women learn to adapt in the male dominated field. Adaptability was indicated in areas of gender, culture, and communication. Women found strength in the ability to 'read' their clients, and provide insight to their teams. Sufficient knowledge from the field advances theory and offers strategies to programs for administrators and faculty of schools of engineering as well as engineering firms, who have interest in recruitment, and retention of female students

  3. Women and physics A tribute to Engin Arik

    CERN Document Server

    Gagnon, P

    2008-01-01

    More than 2200 scientists coming from 37 countries participate in the ATLAS experiment. Only 17% of these are women. Why is this so? In Turkey, like elsewhere in the Balkans, there is a higher proportion of women physicists than in other European and North American countries. I will address this difference as well as examine the role of women in the ATLAS collaboration. I will also talk about the activities of the ATLAS Women's Network, of which Prof. Engin Arik was a founding member. Since Prof. Arik also worked hard to bring talented young Turkish students to CERN, I will also talk about the Engin Arik Fellowship which was created in memory of Engin and her colleagues, to continue her work offering research opportunities to young Turkish physicists.

  4. Women in science & engineering scholarships and summer camp outreach programs : year 6.

    Science.gov (United States)

    2012-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  5. Providing Co-Curricular Support: A Multi-Case Study of Engineering Student Support Centers

    Science.gov (United States)

    Lee, Walter C., Jr.

    2015-01-01

    In response to the student retention and diversity issues that have been persistent in undergraduate engineering education, many colleges have developed Engineering Student Support Centers (ESSCs) such as Minority Engineering Programs (MEPs) and Women in Engineering Programs (WEPs). ESSCs provide underrepresented students with co-curricular…

  6. Women's Experiences in the Engineering Laboratory in Japan

    Science.gov (United States)

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  7. Undergraduate engineering student experiences: Comparing sex, gender and switcher status

    Science.gov (United States)

    Fergen, Brenda Sue

    This dissertation explores undergraduate engineering experiences, comparing men with women and switchers with non-switchers. Factors related to a chilly academic climate and gender-role socialization are hypothesized to contribute to variations in men's and women's academic experiences and persistence rates. Both quantitative and qualitative data are utilized in an effort to triangulate the findings. Secondary survey data, acquired as result of a 1992 Academic Environment Survey, were utilized to test the hypothesis that sex is the most important predictor (i.e., demographic variable) of perceptions of academic climate. Regression analyses show that sex by itself is not always a significant determinant. However, when sex and college (engineering vs. other) are combined into dummy variables, they are statistically significant in models where sex was not significant alone. This finding indicates that looking at sex differences alone may be too simplistic. Thirty personal interviews were conducted with a random stratified sample of undergraduate students from the 1993 engineering cohort. The interview data indicate that differences in childhood socialization are important. With regard to persistence, differences in socialization are greater for switchers vs. non-switchers than men vs. women. Thus, gender-role socialization does not appear to play as prominent a role in women's persistence as past literature would indicate. This may be due to the self-selection process that occurs among women who choose to pursue engineering. Other aspects of childhood socialization such as parents' level of educational and occupation, students' high school academic preparation and knowledge of what to expect of college classes appear to be more important. In addition, there is evidence that, for women, male siblings play an important role in socialization. There is also evidence that women engineering students at Midwestern University face a chilly academic climate. The factors which

  8. Interests and attitudes of engineering students

    Science.gov (United States)

    Rutherford, Brian

    2007-12-01

    Engineering programs have been less successful than other professions in achieving gender equity. Analyses of gender differences in the attitudes and interests of engineering students may help illuminate ways to combat the underrepresentation of women in engineering. This study examined data collected from 863 engineering students who attended 15 American universities from fall 2005 through spring 2006 using an online survey. The survey was designed to understand the backgrounds, academic preparation, motivation, interests, and attitudes of engineering students. To determine whether males and females received different academic preparation prior to entering engineering, the survey examined participants' mathematics, science, and technical coursework taken in high school. The questions probed students' comfort and interest level in mathematics, science, and technology/engineering and investigated student interest in the three fundamental engineering activities by asking 49 design, build, and analyze questions on topics covering a variety of engineering disciplines. A combination of question formats was used including pre-categorized demographic information, 5-point Likert scales, and open-ended responses. Gender similarities and differences were identified and their implications were considered for the recruitment and retention of engineers. Female engineering students in this study were equally or better prepared than males to major in engineering based on the number and types of science and mathematics classes taken in high school. However, statistically significant gender differences were found in the attitudes and interests of engineering students. The difference in the comfort level, interest in learning, being able to demonstrate, or in performing stem skills depended on the question topic rather than gender. The areas with the highest comfort and interest level were often different for females and males. Several topics and curriculum areas of high interest to

  9. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering.

    Science.gov (United States)

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-04-21

    For years, public discourse in science education, technology, and policy-making has focused on the "leaky pipeline" problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created "microenvironments" (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students' academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women's academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women's verbal participation in group work, which often affects learning and mastery.

  10. Multiple case study analysis of young women's experiences in high school engineering

    Science.gov (United States)

    Pollock, Meagan C.

    At a time when engineers are in critical demand, women continue to be significantly underrepresented in engineering fields (11.7%) and degree programs (21.3%) in the United States. As a result, there is a national demand for improved K-12 STEM education and targeted efforts to improve equity and access to engineering and science careers for every underrepresented group. High school engineering has become a nascent and growing market for developers and an emergent opportunity for students across the United States to learn introductory engineering skills through strategic career pathways; however there is a disparity in participation at this level as well. Much useful research has been used to examine the problematization of underrepresentation (K Beddoes, 2011), but there is a dearth of literature that helps us to understand the experiences of young women in high school engineering. By examining the experiences of young women in high school engineering, we can learn ways to improve the curriculum, pedagogy, and environment for underrepresented groups such as females to ensure they have equitable access to these programs and are subsequently motivated to persist in engineering. Understanding the needs of marginalized groups is complex, and intersectional feminism seeks to understand gender in relation to other identities such as race, class, ethnicity, sexuality, and nationality. This theory asserts that gender alone is neither a total identity nor a universal experience, and it is thus advantageous to consider each of the intersecting layers of identity so as to not privilege a dominate group as representative of all women. Thus, to understand how female students engage with and experience engineering in grade school, it is useful to examine through the lens of gender, class, race, and sexuality, because this intersection frames much of the human experience. The purpose of this study is to examine high school females' experiences in engineering, with a goal to

  11. Engineering women re-visioning women's scientific achievements and impacts

    CERN Document Server

    Tietjen, Jill S

    2017-01-01

    Packed with fascinating biographical sketches of female engineers, this chronological history of engineering brightens previously shadowy corners of our increasingly engineered world’s recent past. In addition to a detailed description of the diverse arenas encompassed by the word ‘engineering’ and a nuanced overview of the development of the field, the book includes numerous statistics and thought provoking facts about women’s roles in the achievement of thrilling scientific innovations. This text is a unique resource for students launching research projects in engineering and related fields, professionals interested in gaining a broader understanding of how engineering as a discipline has been impacted by events of global significance, and scholars of women’s immense, often obscured, contributions to scientific progress. Illuminates the many significant contributions of women in engineering Educates readers about the evolution of the field of engineering over the last century Demonstrates how key ...

  12. Gender stereotypes among women engineering and technology students in the UK: lessons from career choice narratives

    Science.gov (United States)

    Powell, Abigail; Dainty, Andrew; Bagilhole, Barbara

    2012-12-01

    In the UK, women remain under-represented in engineering and technology (E&T). Research has, therefore, investigated barriers and solutions to women's recruitment, retention and progression. Recruitment into the sector may be supported by exploring the career decisions of women and men who have chosen to study E&T. Triangulating quantitative and qualitative data from E&T students at a UK university, this paper examines the gendered nature of career choice narratives. It finds that women often maintain contradictory views; upholding gendered stereotypes about women's suitability for the so-called masculine work, yet also subscribing to ideals that the sector is accessible to all who wish to work in it. This is explained using an individualist framework in which women construct an autonomous sense of self, yet are also shaped by a gendered self. Women's discourse around career choice, therefore, reveals the problematic nature of gender norms for achieving gender equity in E&T.

  13. Becoming an engineer: Doctoral women's perspectives on identity and learning in the culture of engineering

    Science.gov (United States)

    Wood, Shaunda L.

    Women face many obstacles in their academic careers but there is a gap in the research with regards to their perceptions of science and engineering education and how non/participation in the culture of engineering affects their identities. Moreover, little research has been conducted with female Ph.D. students especially with regard to the reasons they have continued their studies, and their level of satisfaction with their career and lives. This study was guided by the sociocultural approach and theories of learning and identity. Methodologically, the design adopted is a naturalistic qualitative inquiry using two open-ended interviews with participant verification after the first interview. The life history narratives (Mishler, 1999) obtained from the seven doctoral electrical and mechanical women engineers, at various stages in their programs, were the primary source of data. By examining the path of becoming a doctoral woman engineer, this study makes the educational experiences of women intelligible to the general public as well as policy makers. It gives voice to the women engineers whose perspectives are rarely heard in academic settings or mainstream society. The findings of the study lend insight to the importance and necessity of more inclusive engineering education, incorporating not only women's studies courses into the curriculum but anti-racism education as well as including the perspective of 'Other' people of difference. Moreover, multi-perspective approaches to increasing enrolment and retention of women in engineering were more effective and in keeping with addressing notions of 'difference' in engineering populations.

  14. Engineering Students at Typically Invisible Transition Points: A Focus on Admissions and the Sophomore Year

    OpenAIRE

    Holloway, Elizabeth M

    2013-01-01

    As of 2012, women are approximately 19% of all engineering undergraduate students nationally (American Society for Engineering Education, 2012). Women's representation in engineering has not changed significantly over the last 20 years, despite increased attention, increased funding, and increased programmatic activities intended to encourage more women to become engineers. Research around the world continues to seek identification of the reasons for the underrepresentation of women in engine...

  15. Women?s Reasons for Leaving the Engineering Field

    OpenAIRE

    Fouad, Nadya A.; Chang, Wen-Hsin; Wan, Min; Singh, Romila

    2017-01-01

    Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. ...

  16. "I Don't Want to Be an Almost Engineer": Women's Voices of Persistence in Undergraduate Engineering Degrees

    Science.gov (United States)

    Yates, Heather N.

    2012-01-01

    This narrative qualitative study focused on the experiences of four women pursuing undergraduate engineering degrees and how the experiences affect their self-efficacy and in turn persistence in the degree. The use of narrative methodologies allowed the addition of the voice of the women engineering students to the study providing a more robust…

  17. "A Woman in a Room Full of Monks": Women, German Studies, and Engineering.

    Science.gov (United States)

    Kirchner, Doris

    1998-01-01

    Investigates the linkage between German studies and engineering and how it affects the learning environment and quality for students. Linking two different modes of scholarly investigation and teaching--engineering and humanities--has attracted and retained a significant number of women. In addition to the positive effects on students, this…

  18. Female peer mentors early in college increase women's positive academic experiences and retention in engineering.

    Science.gov (United States)

    Dennehy, Tara C; Dasgupta, Nilanjana

    2017-06-06

    Scientific and engineering innovation is vital for American competitiveness, quality of life, and national security. However, too few American students, especially women, pursue these fields. Although this problem has attracted enormous attention, rigorously tested interventions outside artificial laboratory settings are quite rare. To address this gap, we conducted a longitudinal field experiment investigating the effect of peer mentoring on women's experiences and retention in engineering during college transition, assessing its impact for 1 y while mentoring was active, and an additional 1 y after mentoring had ended. Incoming women engineering students ( n = 150) were randomly assigned to female or male peer mentors or no mentors for 1 y. Their experiences were assessed multiple times during the intervention year and 1-y postintervention. Female (but not male) mentors protected women's belonging in engineering, self-efficacy, motivation, retention in engineering majors, and postcollege engineering aspirations. Counter to common assumptions, better engineering grades were not associated with more retention or career aspirations in engineering in the first year of college. Notably, increased belonging and self-efficacy were significantly associated with more retention and career aspirations. The benefits of peer mentoring endured long after the intervention had ended, inoculating women for the first 2 y of college-the window of greatest attrition from science, technology, engineering, and mathematics (STEM) majors. Thus, same-gender peer mentoring for a short period during developmental transition points promotes women's success and retention in engineering, yielding dividends over time.

  19. Women's Doctoral Student Experiences and Degree Progress in Education versus Engineering

    Science.gov (United States)

    Masterman, Ann Katherine

    2014-01-01

    This study's purpose was to compare the lived experiences of doctoral women studying Education, a prototypically female field, with women studying Engineering, a prototypically male field to illustrate the phenomenon of doctoral degree progress in the two fields. Using critical feminist theory and Valian's (1999) concept of gender schemas, this…

  20. Engineering Students at Typically Invisible Transition Points: A Focus on Admissions and the Sophomore Year

    Science.gov (United States)

    Holloway, Elizabeth M.

    2013-01-01

    As of 2012, women are approximately 19% of all engineering undergraduate students nationally (American Society for Engineering Education, 2012). Women's representation in engineering has not changed significantly over the last 20 years, despite increased attention, increased funding, and increased programmatic activities intended to encourage more…

  1. Using Self-Determination Theory to build communities of support to aid in the retention of women in engineering

    Science.gov (United States)

    Dell, Elizabeth M.; Verhoeven, Yen; Christman, Jeanne W.; Garrick, Robert D.

    2018-05-01

    Diverse perspectives are required to address the technological problems facing our world. Although women perform as well as their male counterparts in math and science prior to entering college, the numbers of women students entering and completing engineering programmes are far below their representation in the workforce. This paper reports on a qualitative, multiyear study of the experiences of women students in an Engineering Technology programme. The project addressed some of the unique, fundamental challenges that female students face within their programmes, and the authors describe a programmatic framework based on Self-Determination Theory as an intervention for the recruitment and retention of female engineering students. Data from focus groups and interviews show how students were supported in their undergraduate experiences and how inclusive learning environments are needed to further improve outcomes. Conceptual issues and methodological considerations of our outcomes are presented.

  2. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering

    Science.gov (United States)

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-01-01

    For years, public discourse in science education, technology, and policy-making has focused on the “leaky pipeline” problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created “microenvironments” (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students’ academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women’s academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women’s verbal participation in group work, which often affects learning and mastery. PMID:25848061

  3. A Survey of Gender Biases of Freshman Students toward Engineering.

    Science.gov (United States)

    Schaer, Barbara; And Others

    1991-01-01

    A survey of 724 freshman engineering orientation students investigated the significance of 5 literature-cited barriers to women's success in engineering--sexual discrimination, financial concerns, academic comfort, career awareness, and locus of control. Significant main effects were found for gender but not ethnic group. The instrument is…

  4. Electronic Communities: a Forum for Supporting Women Professionals and Students in Technical and Scientific Fields

    Science.gov (United States)

    Single, Peg Boyle; Muller, Carol B.; Cunningham, Christine M.; Single, Richard M.

    In this article, we report on electronic discussion lists (e-lists) sponsored by MentorNet, the National Electronic Industrial Mentoring Network for Women in Engineering and Science. Using the Internet, the MentorNet program connects students in engineering and science with mentors working in industry. These e-lists are a feature of MentorNet's larger electronic mentoring program and were sponsored to foster the establishment of community among women engineering and science students and men and women professionals in those fields. This research supports the hypothesis that electronic communications can be used to develop community among engineering and science students and professionals and identifies factors influencing the emergence of electronic communities (e-communities). The e-lists that emerged into self-sustaining e-communities were focused on topic-based themes, such as balancing personal and work life, issues pertaining to women in engineering and science, and job searching. These e-communities were perceived to be safe places, embraced a diversity of opinions and experiences, and sanctioned personal and meaningful postings on the part of the participants. The e-communities maintained three to four simultaneous threaded discussions and were sustained by professionals who served as facilitators by seeding the e-lists with discussion topics. The e-lists were sponsored to provide women students participating in MentorNet with access to groups of technical and scientific professionals. In addition to providing benefits to the students, the e-lists also provided the professionals with opportunities to engage in peer mentoring with other, mostly female, technical and scientific professionals. We discuss the implications of our findings for developing e-communities and for serving the needs of women in technical and scientific fields.

  5. Women in engineering: A case study in preparation, persistence, and response

    Science.gov (United States)

    Winkelman, Colin Kim

    This qualitative case study examined women students' perceptions of major influences on their successful completion of a Bachelor of Science degree in nine different disciplines of engineering. In-depth interviews were conducted with 13 female engineering students at an Institute of Technology over the period of a school year. The conceptual framework of analysis linked theoretical principles to categories of analysis that were correlated to three outcomes: preparation, persistence, and response. Emergent properties generated from in-depth interviews were then linked to the categories of preparation, interest-congruence, gender identity, social acceptance, campus culture, learning styles, classroom and faculty relations, sense of accomplishment, tokenism, career expectations, and family planning. Data collection was triangulated through individual interviews and a focus group with the 13 respondents and comparisons to quantitative research outcomes concerning self-confidence, persistence, satisfaction, and career expectations. The findings generally support the theories and propositions outlined in the conceptual framework constructed for this study. The most important of these findings include the impact of social conditioning on gender and academic preparation, the correlation of peer group relations to persistence, and the future expectations female students derive from their experiences over their 4 years of study. The data strongly suggest that traditional gender roles are a social conditioning process that can be overcome, permitting women to succeed in nontraditional academic career fields. Further research could build on these findings to explore social changes in attitudes about women engineers in the workplace, comparisons between men and women's persistence styles, and the importance of science and mathematics intervention programs for girls.

  6. Women in Engineering Program Advocates Network (WEPAN): Evaluation of the seventh annual conference

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, S.G.

    1996-08-01

    The primary goals of the 1996 WEPAN Conference were to: (1) Conduct technical and programmatic seminars for institutions desiring to initiate, replicate, or expand women in engineering programs; (2) Provide assistance in fundraising and grant writing; (3) Profile women in engineering programs of excellence; (4) Sponsor inspiring, knowledgeable and motivational keynote speakers; and, (5) Offer a series of workshops focused on topics such as: establishing partnerships with industry, current research findings, retention strategies, issues affecting special populations, and early intervention techniques. In an effort to provide greater access for women to engineering careers, women in engineering program directors at Purdue University, Stevens Institute of Technology and the University of Washington joined together in 1990 to establish WEPAN, a national network of individuals interested in the recruitment, admission, retention, and graduation of women engineering students. This is the seventh year of operation. Success of this effort has been reflected in numerous ways: increased membership in the organization; increased number of women in engineering programs; increased number of women graduating in engineering; and grants from the U.S. Department of Energy, the National Science Foundation, the Alfred P. Sloan Foundation, the AT&T Foundation, and many other corporations to carry out the goals of WEPAN. The Seventh Annual Women in Engineering Conference entitled, Capitalizing on Today`s Challenges, was held in Denver, Colorado on June 1-4, 1996 at the Hyatt Regency. The conference brought together representatives from academia, government, and industry and examined current issues and initiatives for women in technology, science, and education. Building on the successes of the previous conferences, the seventh conference offered a new variety of speakers and topics.

  7. Chemical Engineering Students: A Distinct Group among Engineers

    Science.gov (United States)

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  8. Intervention to Improve Engineering Self-Efficacy and Sense of Belonging of First-Year Engineering Students

    Science.gov (United States)

    Jordan, Kari L.

    The percentage of bachelor's degrees in STEM awarded to women and underrepresented minority students needs to increase dramatically to reach parity with their majority counterparts. While three key underrepresented minority (URM) groups, African Americans, Hispanic/Latinos, and Native Americans constitute some 30 percent of the overall undergraduate student population in the United States, the share of engineering degrees earned by members of these groups declines as degree level increases. Underrepresented minority students accounted for about 12% of engineering bachelor's degrees awarded in 2009, 7% of master's degrees and 3% of doctorates (NSF Science Resource Statistics, 2009). The percent in engineering has been steadily decreasing, while overall participation in higher education among these groups has increased considerably. Keeping those thoughts in mind it is important to examine the historical theories and frameworks that will help us not only understand why underrepresented minority students pursue and persist in STEM majors in low numbers, but to also develop interventions to improve the alarming statistics that hamper engineering diversity. As indicated by our past two U.S. Presidents, there has been an increased discussion on the national and state level regarding the number of students entering engineering disciplines in general and underrepresented minority students in particular. Something happens between a student's freshman year and the point they decide to either switch their major or drop out of school altogether. Some researchers attribute the high dropout rate of underrepresented minority students in engineering programs to low engineering self-efficacy (e.g. Jordan et al., 2011). A student's engineering self-efficacy is his/her belief that he/she can successfully navigate the engineering curriculum and eventually become a practicing engineer. A student's engineering self-efficacy is formed by mastery experiences, vicarious experiences, his

  9. First year engineering students: Perceptions of engineers and engineering work amongst domestic and international students

    Directory of Open Access Journals (Sweden)

    Dawn Bennett

    2015-03-01

    Full Text Available Despite being well ahead of many other disciplines in establishing strong and evidence-based research and practice, engineering in many countries still experiences high rates of student and graduate attrition. One possible reason for this is that students enter engineering study without understanding the realities of either their degree program or engineering work, and without a sense of motivation and commitment. The research reported here aimed to extend understanding of first year engineering students’ thinking about their competencies, identity, self-efficacy, motivation, and career. The study involved over 1,100 first year engineering students enrolled in a common first year unit. Responses were coded using the Engineers Australia graduate competencies as a framework, and this paper reports findings from the most diverse cohort of students (n=260, of whom 49% were international students with English as their second language. The research identified differences between international and domestic students’ perceptions of self and of career competencies, possibly related to self-esteem. Implications include improved confidence and motivation to learn as students consider their strengths, interests and goals. Further, the research raises the need for analysis of international students’ cultural and educational background to determine how different cohorts of international students self-appraise and how they associate learning with their future careers.

  10. Engineering students at typically invisible transition points: A focus on admissions and the sophomore year

    Science.gov (United States)

    Holloway, Elizabeth M.

    As of 2012, women are approximately 19% of all engineering undergraduate students nationally (American Society for Engineering Education, 2012). Women's representation in engineering has not changed significantly over the last 20 years, despite increased attention, increased funding, and increased programmatic activities intended to encourage more women to become engineers. Research around the world continues to seek identification of the reasons for the underrepresentation of women in engineering. This prior work has focused primarily on two broad areas: recruiting, that is, preparation, socialization, exposure, and experiences prior to college; and retention, that is, experiences in higher education. Retention studies and programmatic responses to those studies mostly have been confined to the collegiate first year, a time of historically high attrition. Little attention has been paid to the university admissions process, one of the gateways to engineering studies. Little attention also has been paid to the experiences of college sophomores, whose attrition rates approach those of first-year college students. The first section of this dissertation presents a statistical analysis that indicated a bias in favor of men in the admission process. Success factor modeling suggested a different set of admission criteria could mitigate this bias. After recommendations to change admission criteria were implemented, the percent of female enrollment in engineering increased and statistical analysis confirmed that bias was substantially neutralized. The second section of this dissertation presents three frameworks for understanding how sophomores may be defined. The processes of conceptualizing and operationalizing what it means to be a sophomore impact the types of issues that can be investigated about student attrition, the findings that result from those investigations, and the ability to make cross institutional or programmatic comparisons using a clearly stated

  11. Engineering students' sustainability approaches

    Science.gov (United States)

    Haase, S.

    2014-05-01

    Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The empirical base of the article is a nation-wide, web-based survey sent to all newly enrolled engineering students in Denmark commencing their education in the fall term 2010. The response rate was 46%. The survey focused on a variety of different aspects of what can be conceived as sustainability. By means of cluster analysis, three engineering student approaches to sustainability are identified and described. The article provides knowledge on the different prerequisites of engineering students in relation to the role of sustainability in engineering. This information is important input to educators trying to target new engineering students and contribute to the provision of engineers equipped to meet sustainability challenges.

  12. Women's Reasons for Leaving the Engineering Field.

    Science.gov (United States)

    Fouad, Nadya A; Chang, Wen-Hsin; Wan, Min; Singh, Romila

    2017-01-01

    Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. Specifically, we analyze the reasons for departure given by national sample of 1,464 women engineers who left the profession after having worked in the engineering field. We applied a person-environment fit theoretical lens, in particular, the Theory of Work Adjustment (TWA) (Dawis and Lofquist, 1984) to understand and categorize the reasons for leaving the engineering field. According to the TWA, occupations have different "reinforcer patterns," reflected in six occupational values, and a mismatch between the reinforcers provided by the work environment and individuals' needs may trigger departure from the environment. Given the paucity of literature in this area, we posed research questions to explore the reinforcer pattern of values implicated in women's decisions to leave the engineering field. We used qualitative analyses to understand, categorize, and code the 1,863 statements that offered a glimpse into the myriad reasons that women offered in describing their decisions to leave the engineering profession. Our results revealed the top three sets of reasons underlying women's decision to leave the jobs and engineering field were related to: first, poor and/or inequitable compensation, poor working conditions, inflexible and demanding work environment that made work-family balance difficult; second, unmet achievement needs that reflected a dissatisfaction with effective utilization of their math and science skills, and third, unmet needs with regard to lack of recognition

  13. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study.

    Science.gov (United States)

    Rulifson, Greg; Bielefeldt, Angela R

    2018-03-20

    Engineers should learn how to act on their responsibility to society during their education. At present, however, it is unknown what students think about the meaning of socially responsible engineering. This paper synthesizes 4 years of longitudinal interviews with engineering students as they progressed through college. The interviews revolved broadly around how students saw the connections between engineering and social responsibility, and what influenced these ideas. Using the Weidman Input-Environment-Output model as a framework, this research found that influences included required classes such as engineering ethics, capstone design, and some technical courses, pre-college volunteering and familial values, co-curricular groups such as Engineers Without Borders and the Society of Women Engineers, as well as professional experiences through internships. Further, some experiences such as technical courses and engineering internships contributed to confine students' understanding of an engineer's social responsibility. Overall, students who stayed in engineering tended to converge on basic responsibilities such as safety and bettering society as a whole, but tended to become less concerned with improving the lives of the marginalized and disadvantaged. Company loyalty also became important for some students. These results have valuable, transferable contributions, providing guidance to foster students' ideas on socially responsible engineering.

  14. First-Year Engineering Students' Portrayal of Engineering in a Proposed Museum Exhibit for Middle School Students

    Science.gov (United States)

    Mena, Irene B.; Diefes-Dux, Heidi A.

    2012-04-01

    Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others. First-year engineering student teams proposed a museum exhibit, targeted to middle school students, to explore the question "What is engineering?" The proposals took the form of a poster. The overarching research question focuses on how these students would portray engineering to middle school students as seen through their museum exhibit proposals. A preliminary analysis was done on 357 posters to determine the overall engineering themes for the proposed museum exhibits. Forty of these posters were selected and, using open coding, more thoroughly analyzed to learn what artifacts/objects, concepts, and skills student teams associate with engineering. These posters were also analyzed to determine if there were any differences by gender composition of the student teams. Building, designing, and teamwork are skills the first-year engineering students link to engineering. Regarding artifacts, students mentioned those related to transportation and structures most often. All-male teams were more likely to focus on the idea of space and to mention teamwork and designing as engineering skills; equal-gender teams were more likely to focus on the multidisciplinary aspect of engineering. This analysis of student teams' proposals provides baseline data, positioning instructors to develop and assess instructional interventions that stretch students' self-exploration of engineering.

  15. “Girl Power”: Gendered Academic and Workplace Experiences of College Women in Engineering

    Directory of Open Access Journals (Sweden)

    Kathleen N. Smith

    2018-01-01

    Full Text Available Women in engineering continue to experience bias in the field. This constructivist case study uses feminist theory to examine the gendered experiences of graduating senior women engineering students in academic and workplace environments. In each setting we identified three subthemes; in academia: “I don’t think my education is any different,” “Being underestimated constantly,” and “You don’t want to be seen as getting advantages”; in the workplace: “Oh, you’re a girl,” “There’s a lot of sexism,” and Benefits of “girl power.” Overall, findings indicate that women experience bias in both settings, often via implicit bias in academia and with instances of implicit bias, sexism, and sexual harassment occurring even more often in the workplace through internship experiences. The article concludes with suggestions for practice, future research, and strategies to create supportive academic and workplace experiences and environments for women engineers.

  16. I "Still" Wanna Be an Engineer! Women, Education and the Engineering Profession

    Science.gov (United States)

    Gill, Judith; Sharp, Rhonda; Mills, Julie; Franzway, Suzanne

    2008-01-01

    Women's low enrolment in post-school engineering degrees continues to be a problem for engineering faculties and the profession generally. A qualitative interview-based study of Australian women engineers across the range of engineering disciplines showed the relevance of success in math and science at school to their enrolling in engineering at…

  17. Women in Engineering: Insight into Why Some Engineering Departments Have More Success in Recruiting and Graduating Women

    Science.gov (United States)

    Bossart, Jean; Bharti, Neelam

    2017-01-01

    Universities across the United States (U.S.) are perplexed as to why fewer women than men study engineering and why even fewer complete the curriculum and earn an undergraduate degree in engineering. The percentage of undergraduate engineering degrees awarded annually to women in the U.S. since 2000 has remained relatively constant at around 20%.…

  18. Two Brief Interventions to Mitigate a "Chilly Climate" Transform Women's Experience, Relationships, and Achievement in Engineering

    Science.gov (United States)

    Walton, Gregory M.; Logel, Christine; Peach, Jennifer M.; Spencer, Steven J.; Zanna, Mark P.

    2015-01-01

    In a randomized-controlled trial, we tested 2 brief interventions designed to mitigate the effects of a "chilly climate" women may experience in engineering, especially in male-dominated fields. Participants were students entering a selective university engineering program. The "social-belonging intervention" aimed to protect…

  19. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    Science.gov (United States)

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  20. Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program

    Science.gov (United States)

    Rosbottom, Steven R.

    The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.

  1. Teaching Engineering Students Team Work

    Science.gov (United States)

    Levi, Daniel

    1998-01-01

    The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.

  2. Empathy among students in engineering programmes

    Science.gov (United States)

    Rasoal, Chato; Danielsson, Henrik; Jungert, Tomas

    2012-10-01

    Engineers face challenges when they are to manage project groups and be leaders for organisations because such positions demand skills in social competence and empathy. Previous studies have shown that engineers have low degrees of social competence skills. In this study, the level of empathy as measured by the four subscales of the Interpersonal Reactivity Index, perspective taking, fantasy, empathic distress and empathic concern, among engineering students was compared to students in health care profession programmes. Participants were undergraduate students at Linköping University, 365 students from four different health care profession programmes and 115 students from two different engineering programmes. When the empathy measures were corrected for effects of sex, engineering students from one of the programmes had lower empathy than psychology and social worker students on the fantasy and perspective-taking subscales. These results raise questions regarding opportunities for engineering students to develop their empathic abilities. It is important that engineering students acquire both theoretical and practical knowledge and skills regarding empathy.

  3. Are recent cohorts of women with engineering bachelors less likely to stay in engineering?

    Directory of Open Access Journals (Sweden)

    Shulamit eKahn

    2015-08-01

    Full Text Available Women are an increasing percentage of Bachelors in Engineering (BSEs graduates – rising from 1% in 1970 to 20% in the 2000s – encouraged by increasing K-12 emphasis on attracting girls to STEM and efforts to incorporate engineering and technology into K-12 curricula. Retention of women in STEM and in engineering in particular has been a concern historically. In this paper, we investigate whether this gap has increased because a larger proportion of females entering engineering find themselves ill-matched to this field, or whether the gap has decreased as engineering becomes more accommodating to women. Using 1993 - 2010 nationally representative NSF SESTAT surveys, we compare cohorts of BSEs at the same early-career stages (from 1-2 years to 7-8 years post-bachelors. We find no evidence of a time trend in the gender gap in retention in engineering and a slightly decreasing gender gap in leaving the labor force. We find, as others have, that the majority of the gender retention gap is due to women leaving the labor force entirely and that this exit is highly correlated with child-bearing; yet women with engineering majors are half as likely as all college-educated women to leave the labor market. There are no clear time trends in female BSEs leaving the labor market. Single childless women are actually more likely than men to remain in engineering jobs. Some gender differences in retention others found are caused by differences in race and engineering subfield. With controls for these, there is no gender retention difference by 7-8 years post-bachelors for those full-time employed. There were two usual cohorts – women with 1991-1994 BSEs were particularly likely to remain in engineering and women with 1998-2001 BSEs were particularly likely to leave engineering, compared to men. Cohorts before and after these revert towards the mean, indicating no time trend. Also, women who leave engineering are just as likely as men to stay in math

  4. Are recent cohorts of women with engineering bachelors less likely to stay in engineering?

    Science.gov (United States)

    Kahn, Shulamit; Ginther, Donna K

    2015-01-01

    Women are an increasing percentage of Bachelors in Engineering (BSEs) graduates-rising from 1% in 1970 to 20% in the 2000s-encouraged by increasing K-12 emphasis on attracting girls to STEM and efforts to incorporate engineering and technology into K-12 curricula. Retention of women in STEM and in engineering in particular has been a concern historically. In this paper, we investigate whether this gap has increased because a larger proportion of females entering engineering find themselves ill-matched to this field, or whether the gap has decreased as engineering becomes more accommodating to women. Using 1993-2010 nationally representative NSF SESTAT surveys, we compare cohorts of BSEs at the same early-career stages (from 1-2 to 7-8 years post-bachelors). We find no evidence of a time trend in the gender gap in retention in engineering and a slightly decreasing gender gap in leaving the labor force. We find, as others have, that the majority of the gender retention gap is due to women leaving the labor force entirely and that this exit is highly correlated with child-bearing; yet women with engineering majors are half as likely as all college-educated women to leave the labor market. There are no clear time trends in female BSEs leaving the labor market. Single childless women are actually more likely than men to remain in engineering jobs. Some of the gender differences in retention we find are caused by differences in race and engineering subfield. With controls for these, there is no gender retention difference by 7-8 years post-bachelors for those full-time employed. There were two unusual cohorts-women with 1991-1994 BSEs were particularly likely to remain in engineering and women with 1998-2001 BSEs were particularly likely to leave engineering, compared to men. Cohorts before and after these revert toward the mean, indicating no time trend. Also, women who leave engineering are just as likely as men to stay in math-intensive STEM jobs.

  5. Gender Stereotypes among Women Engineering and Technology Students in the UK: Lessons from Career Choice Narratives

    Science.gov (United States)

    Powell, Abigail; Dainty, Andrew; Bagilhole, Barbara

    2012-01-01

    In the UK, women remain under-represented in engineering and technology (E&T). Research has, therefore, investigated barriers and solutions to women's recruitment, retention and progression. Recruitment into the sector may be supported by exploring the career decisions of women and men who have chosen to study E&T. Triangulating…

  6. Designed by Engineers: An analysis of interactionaries with engineering students

    Directory of Open Access Journals (Sweden)

    Henrik Artman

    2014-12-01

    Full Text Available The aim of this study is to describe and analyze learning taking place in a collaborative design exercise involving engineering students. The students perform a time-constrained, open-ended, complex interaction design task, an “interactionary”. A multimodal learning perspective is used. We have performed detailed analyses of video recordings of the engineering students, including classifying aspects of interaction. Our results show that the engineering students carry out and articulate their design work using a technology-centred approach and focus more on the function of their designs than on aspects of interaction. The engineering students mainly make use of ephemeral communication strategies (gestures and speech rather than sketching in physical materials. We conclude that the interactionary may be an educational format that can help engineering students learn the messiness of design work. We further identify several constraints to the engineering students’ design learning and propose useful interventions that a teacher could make during an interactionary. We especially emphasize interventions that help engineering students-retain aspects of human-centered design throughout the design process. This study partially replicates a previous study which involved interaction design students.

  7. Constructing engineers through practice: Gendered features of learning and identity development

    Science.gov (United States)

    Tonso, Karen L.

    How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of

  8. Recruiting women smokers: the engineering of consent.

    Science.gov (United States)

    Brandt, A M

    1996-01-01

    A range of social forces contributed to the effective recruitment of women to cigarette smoking in the crucial period between 1900 and 1940. Cigarette advertisers and public relations experts recognized the significance of women's changing roles and the rising culture of consumption, and worked to create specific meanings for the cigarette to make it appeal to women. The cigarette was a flexible symbol, with a remarkably elastic set of meanings; for women, it represented rebellious independence, glamour, seduction, and sexual allure, and served as a symbol for both feminists and flappers. The industry, with the help of advertisers and public relations experts, effectively engineered consent for women as smokers. The "engineering of consent" has a role to play in smoking cessation, since negative meanings for the cigarette can be engineered as well.

  9. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov (United States)

    harassment on women and their careers in science, engineering, and medicine. In addition to evidence-based Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science

  10. A Critical Discourse Analysis of Engineering Course Syllabi and Recommendations for Increasing Engagement among Women in STEM

    Science.gov (United States)

    Savaria, Michael; Monteiro, Kristina

    2017-01-01

    Men outnumber women in the enrollment of science, technology, engineering, and mathematics (STEM) undergraduate majors. Course syllabi are distributed to students during open enrollment and provide key insights into the courses. A critical discourse analysis of introductory engineering syllabi at a 4-year public university revealed limited to no…

  11. More on enrolling female students in science and engineering.

    Science.gov (United States)

    Townley, Cynthia

    2010-06-01

    This paper investigates reasons for practices and policies that are designed to promote higher levels of enrollment by women in scientific disciplines. It challenges the assumptions and problematic arguments of a recent article questioning their legitimacy. Considering the motivations for and merits of such programs suggests a practical response to the question of whether there should be programs to attract female science and engineering students.

  12. The Effect of World War II on Women in Engineering

    Science.gov (United States)

    Barker, Anne M.

    The field of engineering has been one of the most difficult for women to enter. Even with an increase in the proportion of women in the engineering workforce from 0.3% before the 1970s to 9.5% in 1999, women are still seriously underrepresented. This article examines the history of women in engineering in the United States during World War II. Women were actively recruited as engineering aides by the federal government, which saw them as a temporary substitute for men who were in the military. Yet this crisis did not break down the barriers to and prejudices against women in engineering, nor did it give them a real opportunity to become professional engineers equal to men. After the war, calls for a return to normalcy were used to reestablish social norms, which kept women at home and reserved desirable places in the workforce, including in engineering, for men.

  13. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  14. The Impact of Engineering Identification and Stereotypes on Undergraduate Women's Achievement and Persistence in Engineering

    Science.gov (United States)

    Jones, Brett D.; Ruff, Chloe; Paretti, Marie C.

    2013-01-01

    Women almost always comprise a minority in engineering programs and a smaller percentage of women pursue engineering than other science and technology majors. The culture of engineering departments and negative stereotypes of women's engineering and mathematical ability have been identified as factors that inhibit women's entry into…

  15. Challenges before Women Scientists, Technologists & Engineers

    Indian Academy of Sciences (India)

    NATIONAL INSTITUTE OF TECHNOLOGY. ROURKELA ... oBjectives. To provide a common platform for women scientists, engineers and technologists ... particularly from companies involving women entrepreneurs and managers. expected ...

  16. A Poisoned Chalice? Why UK Women Engineering and Technology Students May Receive More "Help" than Their Male Peers

    Science.gov (United States)

    Powell, Abigail; Dainty, Andrew; Bagilhole, Barbara

    2011-01-01

    The UK engineering and technology (E&T) sector is male-dominated, with women facing various cultural and structural barriers in entering and developing their careers within it. Existing research in this area has focused on women's recruitment or retaining women in employment, but little has addressed women's transition to industry through the…

  17. Creativity among Geomatical Engineering Students

    Science.gov (United States)

    Keh, Lim Keng; Ismail, Zaleha; Yusof, Yudariah Mohammad

    2017-01-01

    This research aims to find out the creativity among the geomatical engineering students. 96 geomatical engineering students participated in the research. They were divided into 24 groups of 4 students. Each group were asked to solve a real world problem collaboratively with their creative thinking. Their works were collected and then analysed as…

  18. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  19. Using Notable Women in Environmental Engineering to Dispel Misperceptions of Engineers

    Science.gov (United States)

    Hoh, Yin Kiong

    2009-01-01

    This paper describes an activity the author has carried out with 72 high school science teachers to enable them to overcome their stereotypical perceptions of engineers. The activity introduced them to notable women in environmental engineering, and raised their awareness of these female engineers' contributions to engineering and society. The…

  20. Exhibit celebrates five decades of women in engineering

    OpenAIRE

    Gilbert, Karen

    2007-01-01

    "Petticoats and Slide Rules," a historical exhibit on women in engineering from the Society of Women Engineers (SWE), is currently on display in the lobby of Hancock 100 and will remain at Virginia Tech through March of 2007.

  1. Why Do Women Leave Science and Engineering?

    OpenAIRE

    Hunt, Jennifer

    2012-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60\\% of the gap can be explained by the relatively greater exit rate from engineering of women dissatisfied with pay and promotion opportunities. Contrary to the existing literature, I find that family--related constraint...

  2. Long Term Benefits for Women in a Science, Technology, Engineering, and Mathematics Living-Learning Community

    Science.gov (United States)

    Maltby, Jennifer L.; Brooks, Christopher; Horton, Marjorie; Morgan, Helen

    2016-01-01

    Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation…

  3. Communication Needs of Thai Civil Engineering Students

    Science.gov (United States)

    Kaewpet, Chamnong

    2009-01-01

    This article reports on an examination of the communication needs of a group of Thai civil engineering students. Twenty-five stakeholders helped identify the communication needs of the students by participating in individual interviews. These included employers, civil engineers, civil engineering lecturers, ex-civil engineering students of the…

  4. Using Self-Determination Theory to Build Communities of Support to Aid in the Retention of Women in Engineering

    Science.gov (United States)

    Dell, Elizabeth M.; Verhoeven, Yen; Christman, Jeanne W.; Garrick, Robert D.

    2018-01-01

    Diverse perspectives are required to address the technological problems facing our world. Although women perform as well as their male counterparts in math and science prior to entering college, the numbers of women students entering and completing engineering programmes are far below their representation in the workforce. This paper reports on a…

  5. Women Engineers: Stories of Persistence

    Science.gov (United States)

    Kuzmak, Nancy

    2010-01-01

    More engineers are needed to support the infrastructure of the United States and to solve economic, human, and environmental problems. Women have been cited as the untapped resource who can provide new perspectives, solutions, and diversity. Unfortunately, over the last 20 years, colleges have not learned how to graduate more women, keeping…

  6. "It's More Flexible": Persistence of Women Engineers in the Academy

    Science.gov (United States)

    Mlambo, Yeukai Angela; Mabokela, Reitumetse Obakeng

    2017-01-01

    The under-representation of women in engineering is an issue of concern for policy-makers. While much of the existing literature has focussed on understanding reasons for women's under-representation in engineering and related technical fields, there is a paucity of research that examines why women who are already in engineering persist. This…

  7. Why They Stay: Women Persisting in US Engineering Careers

    Science.gov (United States)

    Buse, Kathleen; Bilimoria, Diana; Perelli, Sheri

    2013-01-01

    Purpose: Women remain dramatically underrepresented in the engineering profession and far fewer women than men persist in the field. This study aims to identify individual and contextual factors that distinguish women who persist in engineering careers in the US. Design/methodology/approach: Qualitative research was conducted based on…

  8. Efficacy of an Online Resource for Teaching Interpersonal Problem Solving Skills to Women Graduate Students in Engineering

    Science.gov (United States)

    Bekki, Jennifer M.; Bernstein, Bianca; Fabert, Natalie; Gildar, Natalie; Way, Amy

    2014-01-01

    Interpersonal problem solving skills allow engineers to prevent interpersonal difficulties more effectively and to manage conflict, both of which are critical to successful participation on teams. This research provides evidence that the "Career"WISE online learning environment can improve those skills among women in engineering graduate…

  9. Comparing the Entrepreneurial Intention between Female and Male Engineering Students

    OpenAIRE

    Lo Choitung; Sun Hongyi; Law Kris

    2012-01-01

    Women business ownership contributes to entrepreneurship quality and diversity. However, the new venture creation rate of females lags far behind that of males. How to increase female entrepreneurship by entrepreneurship education is an important topic in the field. It has been reported that students’ entrepreneurial intention is a key to their future entrepreneurial behaviors. This paper aims to empirically compare the entrepreneurial intentions between female and male engineering students w...

  10. Navigating Transitions: Challenges for Engineering Students

    Science.gov (United States)

    Moore-Russo, Deborah; Wilsey, Jillian N.; Parthum, Michael J., Sr.; Lewis, Kemper

    2017-01-01

    As college students enter engineering, they face challenges when they navigate across various transitions. These challenges impact whether a student can successfully adapt to the rigorous curricular requirements of an engineering degree and to the norms and expectations that are particular to engineering. This article focuses on the transitions…

  11. Effect of an Engineering Camp on Students' Perceptions of Engineering and Technology

    Science.gov (United States)

    Hammack, Rebekah; Ivey, Toni A.; Utley, Juliana; High, Karen A.

    2015-01-01

    Students' knowledge about a profession influences their future decisions about careers. Research indicates that students tend to hold stereotypical views of engineers, which would hinder engineering as a career choice. The purpose of this study was to measure how participating in a week long engineering summer camp affected middle school students'…

  12. Women In Engineering Learning Community: What We Learned The First Year

    OpenAIRE

    LaBoone, Kimberly; Lazar, Maureen; Watford, Bevlee

    2007-01-01

    The College of Engineering at Virginia Tech reflects national trends with respect to women in engineering. With first year enrollments hovering around 17%, the retention through graduation of these women is critical to increasing the number of women in the engineering profession. When examining year to year retention rates, it is observed that the largest percentage of women drop out of engineering during or immediately following their first year. It is therefore believed that efforts to incr...

  13. Are recent cohorts of women with engineering bachelors less likely to stay in engineering?

    OpenAIRE

    Kahn, Shulamit; Ginther, Donna K.

    2015-01-01

    Women are an increasing percentage of Bachelors in Engineering (BSEs) graduates – rising from 1% in 1970 to 20% in the 2000s – encouraged by increasing K-12 emphasis on attracting girls to STEM and efforts to incorporate engineering and technology into K-12 curricula. Retention of women in STEM and in engineering in particular has been a concern historically. In this paper, we investigate whether this gap has increased because a larger proportion of females entering engineering find themselve...

  14. Increasing Retention of Women in Engineering at WSU: A Model for a Women's Mentoring Program

    Science.gov (United States)

    Poor, Cara J.; Brown, Shane

    2013-01-01

    Concerns with the retention of women in engineering have led to the implementation of numerous programs to improve retention, including mentoring programs. The college of engineering at Washington State University (WSU) started a novel women's mentoring program in 2008, using professional engineers who graduated from WSU as mentors. The program is…

  15. The experiences of female high school students and interest in STEM: Factors leading to the selection of an engineering or computer science major

    Science.gov (United States)

    Genoways, Sharon K.

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These

  16. Women Break an Engineering Barrier: While Other Engineering Disciplines Stumble, BME Represents a Success Story in Attracting American Women to a Male-Dominated Field.

    Science.gov (United States)

    Gutierrez, Claudia; Paulosky, Meaghan; Aguinaldo, Angeline; Gerhart, Jackie

    2017-01-01

    While the field of engineering as a whole is largely male-dominated, biomedical engineering (BME) is one area poised to overturn this trend. Women in the United States were awarded only 20% of all engineering B.S. degrees in 2015; in BME, however, 40.9% of the degree recipients were women. This stands in stark contrast to the more traditional fields of mechanical and electrical engineering, where women were awarded just 13.2% and 12.5% of B.S. degrees, respectively. This trend toward more female participation in BME continues at both the M.S. and Ph.D. degree levels. In fact, in 2015, BME had the highest percentage of female engineering M.S. degree recipients in the United States of all engineering disciplines, according to the American Society for Engineering Education (Figure 1).

  17. The Characteristics and Experiences of Successful Undergraduate Latina Students Who Persist in Engineering

    Science.gov (United States)

    Robinson, Carrie

    Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates

  18. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting indigenous women in science, technology, engineering and mathematics careers in Mexico and Central ... ROSSA's latest bulletin puts a focus on women. ... IDRC invites applications for the IDRC Doctoral Research Awards.

  19. Motivational and Adaptational Factors of Successful Women Engineers

    Science.gov (United States)

    Bornsen, Susan Edith

    2012-01-01

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged…

  20. Women Students at Coeducational and Women's Colleges: How Do Their Experiences Compare?

    Science.gov (United States)

    Kinzie, Jillian L.; Thomas, Auden D.; Palmer, Megan M.; Umbach, Paul D.; Kuh, George D.

    2007-01-01

    This study compared the experiences of women attending women's colleges with those of women attending coeducational institutions. Analyses of data from the National Survey of Student Engagement (NSSE) from random samples of female first-year and senior students from 26 women's colleges and 264 other four-year institutions were conducted. Women at…

  1. The Role of Gender in Students' Ratings of Teaching Quality in Computer Science and Environmental Engineering

    Science.gov (United States)

    Price, Linda; Svensson, Ingrid; Borell, Jonas; Richardson, John T. E.

    2017-01-01

    Students' ratings of teaching quality on course units in a computer science program and an environmental engineering program at a large Swedish university were obtained using the Course Experience Questionnaire; 8888 sets of ratings were obtained from men and 4280 sets were obtained from women over ten academic years. These student ratings from…

  2. Barriers to student success in engineering education

    Science.gov (United States)

    Boles, Wageeh; Whelan, Karen

    2017-07-01

    In the UK, the USA and Australia, there have been calls for an increase in the number of engineering graduates to meet the needs of current global challenges. Universities around the world have been grappling with how to both attract more engineering students and to then retain them. Attrition from engineering programmes is disturbingly high. This paper reports on an element of research undertaken through an Australian Learning and Teaching Council-funded Fellowship that investigated the factors leading to student attrition in engineering programmes, by identifying barriers to student success. Here, we contrast a review of the literature related to student barriers and success with student perceptions, gathered through a series of focus groups and interviews at three Australian universities. We also present recommendations for action to try to remove barriers to student success.

  3. Are women engineers in Lebanon prepared for the challenges of an engineering profession?

    Science.gov (United States)

    Baytiyeh, Hoda

    2013-08-01

    This study investigates the status of women engineers in the Middle East, considering women engineers in Lebanon as a case study. The author investigated the following questions: What are the influences behind females' decisions to choose engineering as their major course of study? What are the motives behind this decision? What are the perceptions of females regarding the essential skills for a successful engineering career? An online survey consisting of Likert-scale items was completed by 327 female engineers who graduated from universities in Lebanon and now work in various locations around the world. A genuine interest in the field appeared to be the main influence in the participants' decisions to choose engineering profession. The potential for professional growth was the leading motivator for choosing engineering. Although participants reported that they possessed adequate theoretical knowledge and technical skills before graduation, in the actual practice of engineering, they noted weaknesses in creativity and innovation.

  4. "Setting up for the Next Big Thing": Undergraduate Women Engineering Students' Postbaccalaureate Career Decisions

    Science.gov (United States)

    Smith, Kathleen N.; Gayles, Joy Gaston

    2017-01-01

    Using social cognitive career theory and the cognitive information processing model as frameworks, in this constructivist case study we examined the career-related experiences and decisions of 10 women engineering undergraduate seniors who accepted full-time positions. From the data analysis 3 major themes emerged: critical undergraduate…

  5. Engineering students and their entrepreneurial intentions

    Directory of Open Access Journals (Sweden)

    Filipa Dionísio Vieira

    2014-02-01

    Full Text Available Promoting entrepreneurship is a key opportunity in the current environment, and engineering have recognized this criticism by including in their curricula basic financial disciplines. Given the current economic situation, provide the future engineer with concepts and techniques to move from knowledge to action, can improve the value perception of entrepreneurship as an alternative to employability on behalf of others. The aim of this paper is to present the preliminary results of the ENGEmpreende survey developed to measure the perceived attitudes and values of entrepreneurship by engineering students. Our sample involves 387 students of engineering courses from University of Minho. Portuguese engineering students report good levels of thoughts about entrepreneurship. Our study also found that their entrepreneurship predisposition has dependency relationships with gender, thoughts about entrepreneurship and entrepreneurial activities. The results of the perceived image of the entrepreneur suggest that students recognize the positive image of the entrepreneur in society, but have doubts about what is best: entrepreneur or employee in a large company? As perceived barriers, engineering students perceive as difficult to find a business idea or access to bank loans. Students’ perceived skills and competence suggest a perceived high adaptability, perseverance, technical confidence and orientation to results. The results of ENGEmpreende survey give an additional contribution to the theme of engineering entrepreneurship intentions through the identification of entrepreneurship predisposition, attitude to self-employment, entrepreneurial image, barriers to entrepreneurship, risk perception and technical confidence.

  6. Engineering Students' Sustainability Approaches

    Science.gov (United States)

    Haase, S.

    2014-01-01

    Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The…

  7. Engineering education for youth: Diverse elementary school students' experiences with engineering design

    Science.gov (United States)

    Hegedus, Theresa

    Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge

  8. Women in science and engineering

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    Women constitute nearly half of Canada's graduates in law, medicine and commerce, but only 28% in mathematics and physical sciences, and only 13% in engineering and applied sciences. Reasons may include: a lack of role models, a lack of encouragement and financial assistance, and the prevalence of sexist attitudes. Remedies may include: promotional material, banning of sexual harassment, and the inclusion in coursed of social and ethical issues and of information about women scientists

  9. How to Recruit Women and Girls to the Science, Technology, Engineering, and Math (STEM) Classroom

    Science.gov (United States)

    Milgram, Donna

    2011-01-01

    Numbers do not exist for the percentage of girls in science, technology, engineering, and math (STEM) academies across the U.S. The most recent career and technical education statistics at the secondary level from the U.S. Department of Education are from 2005, and they show very low numbers of female students in STEM. The absence of women from…

  10. Engineering Computer Games: A Parallel Learning Opportunity for Undergraduate Engineering and Primary (K-5 Students

    Directory of Open Access Journals (Sweden)

    Mark Michael Budnik

    2011-04-01

    Full Text Available In this paper, we present how our College of Engineering is developing a growing portfolio of engineering computer games as a parallel learning opportunity for undergraduate engineering and primary (grade K-5 students. Around the world, many schools provide secondary students (grade 6-12 with opportunities to pursue pre-engineering classes. However, by the time students reach this age, many of them have already determined their educational goals and preferred careers. Our College of Engineering is developing resources to provide primary students, still in their educational formative years, with opportunities to learn more about engineering. One of these resources is a library of engineering games targeted to the primary student population. The games are designed by sophomore students in our College of Engineering. During their Introduction to Computational Techniques course, the students use the LabVIEW environment to develop the games. This software provides a wealth of design resources for the novice programmer; using it to develop the games strengthens the undergraduates

  11. Current Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  12. Admissions - Undergraduate Students | College of Engineering & Applied

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  13. Student Organizations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  14. Transfer Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  15. The experiences of women engineers who have completed one to five years of professional engineering employment: A phenomenological study

    Science.gov (United States)

    White, Susan M.

    Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.

  16. Perceptions of Engineering students, lecturers and academic ...

    African Journals Online (AJOL)

    Perceptions of Engineering students, lecturers and academic development practitioners about academic development classes at a university of technology. ... development, engineering education, scaffolding, self-regulated learning, students ...

  17. Building inclusive engineering identities: implications for changing engineering culture

    Science.gov (United States)

    Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.

    2018-05-01

    Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two first-year engineering courses to integrate curriculum activities designed to promote the formation of engineering identities and build an appreciation for how diversity and inclusion strengthen engineering practice. Multilevel modelling results indicated positive effects of the intervention on appreciation for diversity but no effects on engineering identity, and qualitative results indicated students learned the most about diversity not through one of the intervention activities, but through team projects in the courses. We also describe lessons learned in how to teach engineering students about diversity in ways that are relevant to engineering.

  18. Engineering Knowledge and Student Development: An Institutional and Pedagogical Critique of Engineering Education

    Science.gov (United States)

    Tang, Xiaofeng

    Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.

  19. Software Engineering Frameworks: Textbooks vs. Student Perceptions

    Science.gov (United States)

    McMaster, Kirby; Hadfield, Steven; Wolthuis, Stuart; Sambasivam, Samuel

    2012-01-01

    This research examines the frameworks used by Computer Science and Information Systems students at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64 Software Engineering concepts was given to students upon completion of their first Software Engineering course. This survey was given to samples of…

  20. First-year engineering students' views of the nature of engineering: implications for engineering programmes

    Science.gov (United States)

    Karataş, F. Ö.; Bodner, G. M.; Unal, Suat

    2016-01-01

    A study was conducted on the views of the nature of engineering held by 114 first-year engineering majors; the study built on prior work on views of the nature of science held by students, their instructors, and the general public. Open-coding analysis of responses to a 12-item questionnaire suggested that the participants held tacit beliefs that engineering (1) involves problem solving; (2) is a form of applied science; (3) involves the design of artefacts or systems; (4) is subject to various constraints; and (5) requires teamwork. These beliefs, however, were often unsophisticated, and significant aspects of the field of engineering as described in the literature on engineering practices were missing from the student responses. The results of this study are important because students' beliefs have a strong influence on what they value in a classroom situation, what they attend to in class, and how they choose to study for a course.

  1. Women Scientists and Engineers: Trends in Participation.

    Science.gov (United States)

    Vetter, Betty M.

    1981-01-01

    Examines trends in participation of women in science and engineering over the past decade and estimates changes during the 1980s. Focuses on educational attainment, employment status and sector, and salaries, and indicates a gap in salaries and career opportunities between men and women. (JN)

  2. Women in Engineering: The Impact of the College Internship on Persistence into an Engineering Field

    Science.gov (United States)

    Brush, Kimberly M.

    2013-01-01

    The development of a diverse engineering workforce, with a variety of skills and interests is essential to the future of American innovation. Historically, the engineering field has been grounded in a series of standards that often benefit men while creating barriers for women. Thus, strategies for overcoming barriers to women's successful…

  3. Intending to stay: Positive images, attitudes, and classroom experiences as influences on students' intentions to persist in science and engineering majors

    Science.gov (United States)

    Wyer, Mary Beth

    2000-10-01

    Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality

  4. A novel paradigm for engineering education: virtual internships with individualized mentoring and assessment of engineering thinking.

    Science.gov (United States)

    Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David

    2015-02-01

    Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.

  5. Transforming the Professoriate: Preparing Women for Careers in Science & Engineering

    OpenAIRE

    Virginia Tech

    2006-01-01

    Schedule for 2006's Transforming the Professoriate: Preparing Women for Careers in Science & Engineering Conference. Transforming the Professoriate: Preparing Women for Careers in Science & Engineering took place from July 20 – 22, 2006 at the Inn at Virginia Tech and Skelton Conference Center

  6. An Investigation of Women Engineers in Non-Traditional Occupations in the Thai Construction Industry

    Directory of Open Access Journals (Sweden)

    Nuanthip Kaewsri

    2011-06-01

    Full Text Available For over a decade, the public and the private sectors have carried out research aimed at attracting women engineers to the construction industry and retaining them. However, studies on women engineers working in other types of construction-related businesses apart from contractor companies such as consultancies, developers, etc., have not been many. This paper aims to examine the experiences of women engineers in non-traditional careers and the implications for their turnover. A literature search on women’s careers in construction was performed in conjunction with semi-structured interviews with a sampling of 141 individuals. Results from three viewpoints, viz those of professional men and women engineers in contractor companies, and women engineers in non-contractor companies, were found to differ in many respects, including their opinions about career advancement, career path and the difficulties involved. It was also found that women engineers in contractor companies were much more affected by problems such as sexual harassment, work-life conflicts and equal opportunity than women engineers in non-contractor companies. Turnover rates of women engineers and their reasons for leaving were examined. Women engineers, particularly those in contractor companies, had to confront more barriers in non-traditional careers than their male counterparts.  Nonetheless, working in non-contractor companies provides a viable alternative for women engineers who want to have successful careers in the Thai construction industry.

  7. An Account of Women's Progress in Engineering: a Social Cognitive Perspective

    Science.gov (United States)

    Vogt, Christina

    Traditionally, women were not welcome in higher education, especially in male-dominated fields. Undoubtedly, women have dramatically increased their enrollments in many once male-only fields, such as law, medicine, and several of the sciences; nevertheless, engineering remains a field where women continue to be underrepresented. This has often been attributed to social barriers in engineering classrooms. However, a new turn of events has been reported: Young women entering engineering may receive higher grades and have a greater tendency to remain than men. To examine what has recently changed, the author applied Bandura's triadic model of reciprocity between environment, self, and behavior. The measured variables included academic integration or discrimination, self-measures of academic self-confidence, engineering self-efficacy, and behaviors taken to self-regulate learning: critical thinking, effort, peer learning, and help seeking. The data revealed that women apply slightly more effort and have slightly less self-efficacy than men. Their academic confidence is nearly equal in almost all areas. Most significantly, many previous gender biases appear diminished, and those that do exist are slight. However, it is recommended that continued efforts be undertaken to attract and retain women in engineering programs.

  8. Women Studies in Engineering Education: Content Analysis in Three Referred Journals

    Science.gov (United States)

    Chou, Pao-Nan

    2013-01-01

    Little is known about the research characteristics of past women studies in engineering education. In order to add knowledge base about the advanced development of women studies in current engineering education research, the purpose of the study is to investigate research characteristics of past women studies published in three referred…

  9. Success in Undergraduate Engineering Programs: A Comparative Analysis by Race and Gender

    Science.gov (United States)

    Lord, Susan

    2010-03-01

    Interest in increasing the number of engineering graduates in the United States and promoting gender equality and diversification of the profession has encouraged considerable research on women and minorities in engineering programs. Drawing on a framework of intersectionality theory, this work recognizes that women of different ethnic backgrounds warrant disaggregated analysis because they do not necessarily share a common experience in engineering education. Using a longitudinal, comprehensive data set of more than 79,000 students who matriculated in engineering at nine universities in the Southeastern United States, this research examines how the six-year graduation rates of engineering students vary by disaggregated combinations of gender and race/ethnicity. Contrary to the popular opinion that women drop out of engineering at higher rates, our results show that Asian, Black, Hispanic, Native American, and White women who matriculate in engineering are as likely as men to graduate in engineering in six years. In fact, Asian, Black, Hispanic, and Native American women engineering matriculants graduate at higher rates than men and there is a small difference for white students. 54 percent of White women engineering matriculants graduate in six-years compared with 53 percent of white men. For male and female engineering matriculants of all races, the most likely destination six years after entering college is graduation within engineering. This work underscores the importance of research disaggregated by race and gender and points to the critical need for more recruitment of women into engineering as the low representation of women in engineering education is primarily a reflection of their low representation at matriculation.

  10. Admissions - Graduate Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  11. Undergraduate Engineers and Teachers: Can Students Be Both?

    OpenAIRE

    Zarske, Malinda S; Vadeen, Maia L; Tsai, Janet Y; Sullivan, Jacquelyn F; Carlson, Denise W

    2017-01-01

    Today’s college-aged students are graduating into a world that relies on multidisciplinary talents to succeed. Engineering college majors are more likely to find jobs after college that are outside of STEM (science, technology, engineering, and mathematics) fields, including jobs in healthcare, management, and social services. A survey of engineering undergraduate students at the University of Colorado Boulder in November 2012 indicated a desire by students to simultaneously pursue secondary ...

  12. Introducing systems engineering to industrial design engineering students with hands-on experience

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Lutters-Weustink, Ilanit F.; van Houten, Frederikus J.A.M.; Selvaraj, H.; Muthukumar, V.

    2005-01-01

    The article presents an innovative educational project to introduce systems engineering to third year students in industrial design engineering at the University of Twente. In a short period the students are confronted with new technology, namely sensors and actuators. They have to apply this

  13. An Exploratory Survey of Student Perspectives Regarding Search Engines

    Science.gov (United States)

    Alshare, Khaled; Miller, Don; Wenger, James

    2005-01-01

    This study explored college students' perceptions regarding their use of search engines. The main objective was to determine how frequently students used various search engines, whether advanced search features were used, and how many search engines were used. Various factors that might influence student responses were examined. Results showed…

  14. Biomedical and Biochemical Engineering for K-12 Students

    Science.gov (United States)

    Madihally, Sundararajan V.; Maase, Eric L.

    2006-01-01

    REACH (Reaching Engineering and Architectural Career Heights) is a weeklong summer academy outreach program for high school students interested in engineering, architecture, or technology. Through module-­based instruction, students are introduced to various engineering fields. This report describes one of the modules focused on introducing…

  15. Sustaining Global Pressures: Women in Science and Engineering

    Indian Academy of Sciences (India)

    Women in Science and Engineering. (SGPW 2008). Next Generation. Challenges and Opportunities. January 3 - 5, 2008. Venue. SRI Convention Centre,. Anupuram, Kalpakkam,. Tamil Nadu, India www.iwsakalpakkam.com. Organised by. Indian Women Scientists' Association (IWSA). Kalpakkam Branch. IWSA. IN DA.

  16. High School Student Modeling in the Engineering Design Process

    Science.gov (United States)

    Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde

    2014-01-01

    A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…

  17. Empowering Engineering Students through Employability Skills

    Directory of Open Access Journals (Sweden)

    Urvashi Kaushal

    2016-12-01

    Full Text Available A professional course like engineering strives to get maximum number of its students placed through campus interviews. While communication skills have been added in all the engineering courses with the aim to improve their performance in placement, the syllabus mostly concentrates on the development of four language skills. The students are not made aware of the employability skills and their significance. the increasing competition makes it imperative that apart from a regular degree certain skills are required by engineers. Industries while advertising for various posts even mention essential skills required along with the essential qualification. However skills and the significance of skills while applying for jobs or while facing interviews is a topic which is rarely given consideration while preparing for job interviews or while entering the job market. This paper intends to enlist the importance of skills and why students need to be aware of the skills they possess and how they can work on packaging their candidature around a few skills.  Different profession requires different skills and if students identify their skills or acquire certain skills they can unquestionably have an added advantage in the interview and placement. Hence, this paper intends to enlist the skills, the importance of skills, ways to create awareness of individual skills specifically in engineering students who will step into the industry in near future.

  18. Views of Women's Sexuality and Violence Against Women in Turkey: A Cross-Sectional Investigation Among University Students.

    Science.gov (United States)

    Gursoy, Elif; McCool, William F; Sahinoglu, Serap; Yavuz Genc, Yasemin

    2016-03-01

    This study explored Turkish university students' views of women-related issues--gender roles, sexuality, and violence against women. A cross-sectional study was conducted with 605 students--337 females and 268 males--at Ankara University, Turkey. A survey exploring students' views of female sexuality and violence was used. Comparisons of responses were made among groups based on sex, year of study at the university, and field of study at the university. Three relevant findings were found: male students had more traditional, nonegalitarian approaches toward women's issues than female students; educational levels and fields of study did not significantly influence students' views of women; and a small percentage of students approve of violence against women. These results show that patriarchal values in Turkish society influence the formation of students' opinions, and university education alone cannot affect everyone's views of gender roles, women's sexuality, and violence against women. © The Author(s) 2014.

  19. Women withdrawers in engineering studies : identity formation and learning culture as gendered barriers for persistence?

    OpenAIRE

    Wolffram, Andrea; Derboven, Wibke; Winker, Gabriele

    2009-01-01

    Scholarship on women in engineering education mainly focuses on the question of how to attract more women to this subject. The topic concerning women in engineering education is here guided by the question of why women leave engineering studies. The paper aims to examine the main conflicts women encounter in engineering education and to derive implications for interventions suited for strengthening institutional bonding forces.

  20. Minority Engineering Program Pipeline: A Proposal to Increase Minority Student Enrollment and Retention in Engineering

    Science.gov (United States)

    Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan

    1995-01-01

    The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.

  1. A Reanalysis of Engineering Majors' Self-Efficacy Beliefs

    Science.gov (United States)

    Concannon, James P.; Barrow, Lloyd H.

    2012-01-01

    This study examines differences in women's engineering self-efficacy beliefs across grade levels in comparison to men's engineering self-efficacy (ESE) beliefs across grade levels. Data for this study was collected from 746 (635 men, 111 women) engineering students enrolled in a large research extensive university. Four major conclusions resulted…

  2. Building Inclusive Engineering Identities: Implications for Changing Engineering Culture

    Science.gov (United States)

    Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.

    2018-01-01

    Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two…

  3. Engineering Self-Efficacy Contributing to the Academic Performance of AMAIUB Engineering Students: A Qualitative Investigation

    Science.gov (United States)

    Aleta, Beda T.

    2016-01-01

    This research study aims to determine the factors of engineering skills self- efficacy sources contributing on the academic performance of AMAIUB engineering students. Thus, a better measure of engineering self-efficacy is needed to adequately assess engineering students' beliefs in their capabilities to perform tasks in their engineering…

  4. Where are the women? Campus climate and the degree aspirations of women in science, technology, engineering and mathematics programs

    Science.gov (United States)

    Schulz, Phyllis

    Women remain underrepresented in science, technology, engineering, and mathematics (STEM) at all levels of higher education, which has become a concern in the competitive global marketplace. Using both quantitative and qualitative analysis, this dissertation sought to learn more about how the campus climate and self-concept influence the degree aspirations of female undergraduate students majoring in STEM programs. Using the Beginning Post-Secondary dataset, regression analyses showed that a student's initial degree aspirations, SAT scores, and interactions with faculty were all positively related to their degree aspirations three years later. Interviews with seven current STEM undergraduates confirmed the importance of interaction with faculty and suggested undergraduate research and classroom experiences also play a role in the degree aspirations of STEM students. Three of the seven students interviewed began their undergraduate educations as non-STEM majors, suggesting that the traditional STEM pipeline may no longer be the norm. These findings suggest that both future research and current practitioners should focus on undergraduate STEM classroom and research experiences. Additionally, the characteristics of students who switch into STEM majors should be explored so that we may continue to expand the number of students pursuing STEM degrees.

  5. Will Computer Engineer Barbie® Impact Young Women's Career Choices?

    Science.gov (United States)

    Martincic, Cynthia J.; Bhatnagar, Neelima

    2012-01-01

    Controversy and fanfare accompanied the announcement in 2010 by Mattel, Inc. of the Barbie® doll's 126th career--computer engineer. Even though women have been and still are in a minority in the information technology (IT) and computer science (CS) fields, enough women voted for the computer engineer as the next career for Barbie® on Mattel's…

  6. Elementary Students' Acquisition of Academic Vocabulary Through Engineering Design

    Science.gov (United States)

    Kugelmass, Rachel

    This study examines how STEM (science, technology, engineering, and mathematics) inquiry-based learning through a hands-on engineering design can be beneficial in helping students acquire academic vocabulary. This research took place in a second grade dual- language classroom in a public, suburban elementary school. English language learners, students who speak Spanish at home, and native English speakers were evaluated in this study. Each day, students were presented with a general academic vocabulary focus word during an engineering design challenge. Vocabulary pre-tests and post-tests as well as observation field notes were used to evaluate the student's growth in reading and defining the focus academic vocabulary words. A quiz and KSB (knowledge and skill builder) packet were used to evaluate students' knowledge of science and math content and engineering design. The results of this study indicate that engineering design is an effective means for teaching academic vocabulary to students with varying levels of English proficiency.

  7. Examining the Personal Nature of the K-14 Engineering Pipeline for Young Women

    Science.gov (United States)

    Gurski, Jennifer Sue

    This mixed-methods study examined young women's perceptions of their K-14 STEM pipeline experiences and their resulting choice to enter and persist in an engineering major. Despite the increase of women in the STEM workforce, women remain underrepresented among engineering majors (Beasley & Fischer, 2012; Heilbronner, 2012; Neihart & Teo, 2013). Few studies exist that utilize a retrospective approach to understand how the culmination of young women's K-14 experiences have influenced their formation of individually held perceptions that lead to engineering persistence. It is this study's aim to utilize a mixed-methods approach to answer the following research question: How do young women's perceptions of their K-14 STEM experiences influence their decision to enroll and persist in an engineering major? These perceptions are explored through an ethnographic approach focusing on young women enrolled in engineering programs during their junior and senior years of study at a small private liberal arts university with eight engineering majors. The mixed-methods approach follows a sequential design method (Creswell, 2013) and utilizes questions in a quantitative Likert-type survey from the Academic Pathways for People Learning Engineering (APPLES) survey (Eris, Chachra, Chen, Sheppard, & Ludlow, 2010) and the Motivated Strategy Learning Questionnaire (MSLQ) (Pintrich, Smith, Garcia, & McKeachie, 1991). The quantitative study results will lead to the development of open-ended, structured questions for conducting a qualitative focus group. Anonymity of all participants is maintained. Keywords: STEM, young women, perceptions, pipeline, intervention, underrepresentation, engineering, persistence, retrospective, self-efficacy.

  8. Appraising Capacity Building among Engineering Students in ...

    African Journals Online (AJOL)

    The results showed that 66.9% of the respondents had passion for their choice of engineering courses. Out of 110 students that had access to computer system, about 87.4% had related engineering application software on their personal computer while only 76.2% could use them proficiently. Based on the students' ...

  9. Engaging Community College Students Using an Engineering Learning Community

    Science.gov (United States)

    Maccariella, James, Jr.

    The study investigated whether community college engineering student success was tied to a learning community. Three separate data collection sources were utilized: surveys, interviews, and existing student records. Mann-Whitney tests were used to assess survey data, independent t-tests were used to examine pre-test data, and independent t-tests, analyses of covariance (ANCOVA), chi-square tests, and logistic regression were used to examine post-test data. The study found students that participated in the Engineering TLC program experienced a significant improvement in grade point values for one of the three post-test courses studied. In addition, the analysis revealed the odds of fall-to-spring retention were 5.02 times higher for students that participated in the Engineering TLC program, and the odds of graduating or transferring were 4.9 times higher for students that participated in the Engineering TLC program. However, when confounding variables were considered in the study (engineering major, age, Pell Grant participation, gender, ethnicity, and full-time/part-time status), the analyses revealed no significant relationship between participation in the Engineering TLC program and course success, fall-to-spring retention, and graduation/transfer. Thus, the confounding variables provided alternative explanations for results. The Engineering TLC program was also found to be effective in providing mentoring opportunities, engagement and motivation opportunities, improved self confidence, and a sense of community. It is believed the Engineering TLC program can serve as a model for other community college engineering programs, by striving to build a supportive environment, and provide guidance and encouragement throughout an engineering student's program of study.

  10. Impacts of Innovativeness and Attitude on Entrepreneurial Intention: Among Engineering and Non-Engineering Students

    Science.gov (United States)

    Law, Kris M. Y.; Breznik, Kristijan

    2017-01-01

    This study attempted to explore the impacts of attitudinal antecedents on students' entrepreneurial intention. Comparisons between students of engineering and non-engineering backgrounds and gender groups were made. Total of 998 students from universities in Hong Kong were surveyed, leading to a number of highlights in the study. First, it is…

  11. Fiction and the First Women Students.

    Science.gov (United States)

    Schellenberger, John

    1982-01-01

    Novels about female students in the early years of British university education for women provide insight into established attitudes about the status and expectations of women just before and during the campaign for women's suffrage. They also illustrate how much, and how little, society has changed. (MSE)

  12. Beyond Blackboards: Engaging Underserved Middle School Students in Engineering.

    Science.gov (United States)

    Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H; Petrosino, Anthony J; White, Christina K; Lin, Fu-An; Wood, Kristin L

    Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students' engagement with engineering through design-based experiences focused on the 21 st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students' interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants' and nonparticipants' questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students' interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students' awareness of opportunities within engineering.

  13. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  14. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness

  15. Linking First-Year and Senior Engineering Design Teams: Engaging Early Academic Career Students in Engineering Design

    Science.gov (United States)

    Fox, Garey A.; Weckler, Paul; Thomas, Dan

    2015-01-01

    In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and trans­fer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…

  16. The effect of generation on retention of women engineers in aerospace and industry

    Science.gov (United States)

    Kiernan, Kristine Maria

    The purpose of this dissertation was to determine the nature and extent of differences between generational cohorts regarding the effect of family factors on retention of women in engineering, with an emphasis on women in the aerospace industry. While 6% of the aerospace workforce is made up of aeronautical engineers, an additional 11.2% of the aerospace workforce is drawn from other engineering disciplines. Therefore, the analysis included all engineering sub-disciplines. In order to include women who had left the workforce, women in all industries were used as a proxy for women in aerospace. Exits to other fields were modeled separately from exits out of the workforce. The source of data was the National Survey of College Graduates. Women engineers were divided into the Baby Boom cohort (born 1945-1964), the Generation X cohort (born 1965-1980), and the Millennial cohort (born 1981-1997). A time-lag design was used to compare generational cohorts when they were the same age. The results of this study showed that generational cohort did not affect retention of women in engineering. However, generational cohort affected family formation decisions, with Millennial women marrying and having children later than their counterparts in the Generation X and Baby Boom cohorts. Generational cohort also affected the influence of motherhood on retention in the workforce, with Generation X and Millennial mothers more likely to stay in the workforce than their counterparts in the Baby Boom cohort. There was no significant difference between Generation X and Millennial women in the proportion of mothers who stayed in the workforce. Generational cohort influenced the reasons women left the workforce. Women in the Millennial cohort were more likely to cite not needing or wanting to work, while women in the Generation X cohort were more likely to cite family responsibilities. Among mothers in the Millennial cohort who were out of the workforce, the proportion who cited not needing

  17. Comprehensive Training of Engineering Students through Continuing Education

    Directory of Open Access Journals (Sweden)

    Miguel Reynoso Flores

    2014-01-01

    Full Text Available This paper addresses a priority for student training in general and particularly for future engineers. Although this issue has been frequently addressed in recent years, proposals are still insufficient for engineering students. This paper is aimed at theoretically and empirically demonstrating the potential of continuing education as one of the key areas that engineering schools have for the comprehensive training of students. Preliminary results of a research project commissioned by the School of Mechanical and Electrical Engineering (Facultad de Ingeniería Mecánica y Electrica-FIME of Universidad Autónoma de Nuevo León, Mexico, are presented to respond to the need to improve the learning process of students with a comprehensive approach. The research justification and some of the results obtained in the exploratory phase are also described.

  18. Diesel Technology: Engines. [Teacher and Student Editions.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  19. Motivational Factors, Gender and Engineering Education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Holgaard, Jette Egelund

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students reasons for choosing a career in engineering. We find that women are significantly more influenced by…

  20. Women in science and engineering: Thriving or surviving?

    Science.gov (United States)

    Baxter, Kathleen B.

    As a result of the underrepresentation of women in science and engineering programs, the culture is male-dominated and perpetuates an unsupportive and biased climate that discourages undergraduate women from connecting to their gender. Using a social identity framework, this study addresses how gender influences undergraduate women's perception of themselves, their role in the engineering community and their decision to persist. By capturing the experiences of 16 undergraduate women who are enrolled at two elite technical universities in Southern California, this qualitative study utilizes focus groups and individual interviews to provide key insight and perspective on the role of gender in their experience. Through the data, we learn perception has a significant impact on women, that women are willing to acclimate to a masculine culture as a means to both prove legitimacy and feel a sense of belonging and lastly, women manage their gender in two primary ways, one by integrating within the culture through adopting more masculine tendencies and second, by adapting to the environment as needed and persevering in spite of the masculine undercurrent. The implications at the conclusion of this study are two-fold. One focus is helping undergraduate women understand gendered experiences and bringing gender to the forefront of their experience and the second is studying the overall structure of this culture in an effort to move from a masculine, gender-neutral philosophy to one that is gender-sensitive and gender-inclusive.

  1. Women in engineering conference: capitalizing on today`s challenges

    Energy Technology Data Exchange (ETDEWEB)

    Metz, S.S.; Martins, S.M. [eds.

    1996-06-01

    This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.

  2. Behavior of Engineering Students in Kuwait University

    OpenAIRE

    M. A. Al-Ajmi; R. S. Al-Kandari

    2015-01-01

    This initial study is concerned with the behavior of engineering students in Kuwait University which became a concern due to the global issues of education in all levels. A survey has been conducted to identify academic and societal issues affecting the engineering student performance. The study is drawing major conclusions with regard to private tutoring and the online availability of textbooks’ solution manuals.

  3. The Rise of Student-to-Student Learning: Youth-led Programs Impacting Engineering Education Globally

    Directory of Open Access Journals (Sweden)

    Julian O'Shea

    2011-07-01

    Full Text Available Around the globe, students and young engineers are playing an increasing role in the coordination and delivery of engineering education programs. Many youth-led initiatives are now conducted with students involved in all aspects of their creation, organisation and delivery. This trend presents an exciting opportunity for the education of engineering students, both those involved in delivery of the courses and for participants. This paper profiles four leading youth-led engineering education programs and analyses their structure and growth in recent years. Profiled are initiatives coordinated by Engineers Without Borders – Australia (EWB-A; the Board of European Students of Technology (BEST; the Electrical Engineering Students’ European Association (EESTEC; and the Student Platform for Engineering Education Development (SPEED. Each case study includes a brief history of the organisation, program overview, growth analysis and future projections. The common features amongst these programs were analysed, as were the aspects which made them distinct from traditional university offerings. Key findings about the initiatives include: an international focus; the mixture of formal learning and social aspects; an integral role of volunteers within the organisation; the use of residential programs; and the role of internal professional development of committee members and volunteers. Additionally, this paper outlines the benefits for universities and provides a guide for how engineering faculties can support and nurture these initiatives and effectively create partnerships.

  4. Engineering Students' Views of Corporate Social Responsibility: A Case Study from Petroleum Engineering.

    Science.gov (United States)

    Smith, Jessica M; McClelland, Carrie J; Smith, Nicole M

    2017-12-01

    The mining and energy industries present unique challenges to engineers, who must navigate sometimes competing responsibilities and codes of conduct, such as personal senses of right and wrong, professional ethics codes, and their employers' corporate social responsibility (CSR) policies. Corporate social responsibility (CSR) is the current dominant framework used by industry to conceptualize firms' responsibilities to their stakeholders, yet has it plays a relatively minor role in engineering ethics education. In this article, we report on an interdisciplinary pedagogical intervention in a petroleum engineering seminar that sought to better prepare engineering undergraduate students to critically appraise the strengths and limitations of CSR as an approach to reconciling the interests of industry and communities. We find that as a result of the curricular interventions, engineering students were able to expand their knowledge of the social, rather than simply environmental and economic dimensions of CSR. They remained hesitant, however, in identifying the links between those social aspects of CSR and their actual engineering work. The study suggests that CSR may be a fruitful arena from which to illustrate the profoundly sociotechnical dimensions of the engineering challenges relevant to students' future careers.

  5. Expose Mechanical Engineering Students to Biomechanics Topics

    Science.gov (United States)

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  6. Selected engagement factors and academic learning outcomes of undergraduate engineering students

    Science.gov (United States)

    Justice, Patricia J.

    The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable

  7. Personal Vision: Enhancing Work Engagement and the Retention of Women in the Engineering Profession

    Directory of Open Access Journals (Sweden)

    Kathleen Relihan Buse

    2014-12-01

    Full Text Available This study examines how personal vision enhances work engagement and the retention of women in the engineering profession. Using a mixed method approach to understand the factors related to the retention of women in the engineering profession, we first interviewed women who persisted and women who opted out of the profession (Buse & Bilimoria, 2014. In these rich stories we found that women who persisted had a personal vision that included their profession, and that this personal vision enabled them to overcome the bias, barriers and discrimination in the engineering workplace. To validate this finding on a larger population, we developed a scale to measure one’s personal vision conceptualized as the ideal self (Boyatzis & Akrivou, 2006. The measure was tested in a pilot study and then used in a study of 495 women with engineering degrees. The findings validate that the ideal self is comprised of self efficacy, hope, optimism and core identity. For these women the ideal self directly impacts work engagement and work engagement directly impacts career commitment to engineering. The findings add to extant theory related to the role of personal vision and intentional change theory. From a practical perspective these findings will aid efforts to retain women in engineering and other STEM professions.

  8. Personal vision: enhancing work engagement and the retention of women in the engineering profession.

    Science.gov (United States)

    Buse, Kathleen R; Bilimoria, Diana

    2014-01-01

    This study examines how personal vision enhances work engagement and the retention of women in the engineering profession. Using a mixed method approach to understand the factors related to the retention of women in the engineering profession, we first interviewed women who persisted and women who opted out of the profession (Buse and Bilimoria, 2014). In these rich stories, we found that women who persisted had a personal vision that included their profession, and that this personal vision enabled them to overcome the bias, barriers and discrimination in the engineering workplace. To validate this finding on a larger population, we developed a scale to measure one's personal vision conceptualized as the ideal self (Boyatzis and Akrivou, 2006). The measure was tested in a pilot study and then used in a study of 495 women with engineering degrees. The findings validate that the ideal self is comprised of self-efficacy, hope, optimism and core identity. For these women, the ideal self directly impacts work engagement and work engagement directly impacts career commitment to engineering. The findings add to extant theory related to the role of personal vision and intentional change theory. From a practical perspective, these findings will aid efforts to retain women in engineering and other STEM professions.

  9. Personal vision: enhancing work engagement and the retention of women in the engineering profession

    Science.gov (United States)

    Buse, Kathleen R.; Bilimoria, Diana

    2014-01-01

    This study examines how personal vision enhances work engagement and the retention of women in the engineering profession. Using a mixed method approach to understand the factors related to the retention of women in the engineering profession, we first interviewed women who persisted and women who opted out of the profession (Buse and Bilimoria, 2014). In these rich stories, we found that women who persisted had a personal vision that included their profession, and that this personal vision enabled them to overcome the bias, barriers and discrimination in the engineering workplace. To validate this finding on a larger population, we developed a scale to measure one's personal vision conceptualized as the ideal self (Boyatzis and Akrivou, 2006). The measure was tested in a pilot study and then used in a study of 495 women with engineering degrees. The findings validate that the ideal self is comprised of self-efficacy, hope, optimism and core identity. For these women, the ideal self directly impacts work engagement and work engagement directly impacts career commitment to engineering. The findings add to extant theory related to the role of personal vision and intentional change theory. From a practical perspective, these findings will aid efforts to retain women in engineering and other STEM professions. PMID:25538652

  10. 46 CFR 166.10 - Course of study for engineering students.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip the...

  11. The Complex Dynamics of Student Engagement in Novel Engineering Design Activities

    Science.gov (United States)

    McCormick, Mary

    In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The

  12. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    Science.gov (United States)

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

  13. An Australian study of possible selves perceived by undergraduate engineering students

    Science.gov (United States)

    Bennett, Dawn; Male, Sally A.

    2017-11-01

    In this study, we worked with second-year engineering students at an Australian university to examine previously identified threshold concepts within the theoretical framework of Possible Selves. Using workshops as the context for intensive work with students, students were encouraged to consider their future lives and work, including their engineering fears, expectations, and aspirations. The findings revealed many students to have a poor understanding of the realities of engineering work. Moreover, perceived gaps between self-efficacy and the requirements of engineering work appeared to be motivating if students deemed it possible to reduce the gap, but demotivating if they identified a characteristic over which there was perceived to be no control. The study suggests that these engineering students needed more opportunities to explore both the roles of engineers and their own possible selves. Overall, the findings indicate that higher education students may need encouragement and support to explore potential future roles, and they strengthen calls for further research in this area.

  14. Investigation into the past and future of women in science and engineering.

    Science.gov (United States)

    Frize, M

    2009-01-01

    Covering the Ancient Greek era, the Middle Ages, the Renaissance, the Enlightenment, the 19th and 20th C., this paper explores the visions of the abilities of women, their access to education, and their roles in these epochs. Recent data on the participation rate of women in science and engineering, the culture in these fields, and strategies to increase their presence are discussed. The paper ends with a discussion on how science and engineering could benefit from integrating and valuing a blend of masculine and feminine perspectives. Biomedical engineering as a field frequently chosen by women is mentioned.

  15. Formula Student as Part of a Mechanical Engineering Curriculum

    Science.gov (United States)

    Davies, Huw Charles

    2013-01-01

    Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that…

  16. Navigating the science, technology, engineering, and mathematics pipeline: How social capital impacts the educational attainment of college-bound female students

    Science.gov (United States)

    Lee, Rebecca Elizabeth

    Despite the proliferation of women in higher education and the workforce, they have yet to achieve parity with men in many of the science, technology, engineering, and math (STEM) majors and careers. The gap is even greater in the representation of women from lower socioeconomic backgrounds. This study examined pre-college intervention strategies provided by the University of Southern California's Math, Engineering, Science Achievement (MESA) program, as well as the relationships and experiences that contributed to the success of underrepresented female high school students in the STEM pipeline. A social capital framework provided the backdrop to the study. This qualitative study takes an ethnographic approach, incorporating 11 interviews, 42 hours of observation, and document analysis to address the research questions: How does involvement in the MESA program impact female students' decisions to pursue a mathematics or science major in college? What is the role of significant others in supporting and encouraging student success? The findings revealed a continuous cycle of support for these students. The cycle started in the home environment, where parents were integral in the early influence on the students' decisions to pursue higher education. Relationships with teachers, counselors, and peers provided critical networks of support in helping these students to achieve their academic goals. Participation in the MESA program empowered the students and provided additional connections to knowledge-based resources. This study highlights the interplay among family, school, and the MESA program in the overall support of underrepresented female students in the STEM pipeline.

  17. MULTIDISCIPLINARY PROJECTS FOR SECOND YEAR CHEMICAL AND MECHANICAL ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2013-04-01

    Full Text Available In the second semester of the second year of a Mechanical Engineering course, students are supposed to take a Module Outside the Main Discipline (MOMD. This module is chosen to be “Product Design Exercise” a module that is offered to Chemical Engineering students at the same stage. The aim was to expose students from both disciplines to an environment in which they are encouraged to interact with and engage team members with a relatively different background. The students were divided into eight groups all comprised of Chemical and Mechanical Engineering students, and they were offered different open-ended projects that were selected to exploit the knowledge developed by the students thus far and they were slightly skewed towards Chemical Engineering. The students demonstrated a high level of cooperation and motivation throughout the period of the project. Effective communication and closing of knowledge gaps were prevalent. At the end of the project period, students produced a journal paper in lieu of the project report.

  18. Cognitive abilities of Emirati and German engineering university students.

    Science.gov (United States)

    Rindermann, Heiner; Baumeister, Antonia E E; Gröper, Anne

    2014-03-01

    According to human capital theory, individual competences and personality attributes are relevant for individual productivity and income. Within human capital, intelligence is crucial. To study engineering and work successfully as an engineer, high cognitive abilities are necessary, especially for work in research and development. In a study of 30 German and 30 Emirati engineering students (mean age: 22 years), both groups were tested with mathematical and figural intelligence scales (CogAT). German engineering students achieved a mean IQ of 116, and Emirati students 104 (in converted UK norms). In both groups male students achieved better results than females (2 to 4 IQ point difference). The results are compared with those from PISA and TIMSS. The possible causes of these results, their consequences and strategies for improvement are discussed.

  19. Motivational factors, gender and engineering education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne Schioldann

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find...... that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering......; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education....

  20. Understanding the Experience of Women in Undergraduate Engineering Programs at Public Universities

    Science.gov (United States)

    Perez, Jessica Ohanian

    2017-01-01

    Women earn bachelor's degrees in engineering at a rate of less than 17% at public universities in California. The purpose of this study was to understand how women experience undergraduate engineering programs at public universities. To understand this lack of attainment, a qualitative methodology and Feminist Poststructuralist perspective were…

  1. Beyond the first "click:" Women graduate students in computer science

    Science.gov (United States)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of

  2. AN EXPLORATORY STUDY OF DIVERSIFIED MENTORING RELATIONSHIPS AMONG GRADUATE STUDENTS AND THEIR ADVISORS IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS FIELDS

    OpenAIRE

    Bodden, Krystin R.

    2014-01-01

    Minorities and women continue to be underrepresented in science, technology, engineering, and mathematics (STEM) fields. In graduate education, factors such as racism, prejudice, discrimination, sexism, stereotypes, tokenism, and a lack of role models can all plague students and contribute to uncompleted degrees and non-entrance into STEM fields. One of the tools being used to combat these barriers is effective mentoring. Graduate students and their advisors generally have close working relat...

  3. Humanitarian Aspirations of Engineering Students: Differences between Disciplines and Institutions

    Directory of Open Access Journals (Sweden)

    Angela R. Bielefeldt

    2016-03-01

    Full Text Available This study explored the aspirations of undergraduate engineering students in regard to helping others, examining potential differences between disciplines and institutions. Over 1900 undergraduate students from 17 U.S. universities responded to a survey in spring 2014. In open-ended responses, 15.5% of the students included some form of helping people and/or the world as one of the factors that motivated them to select their engineering major; for 6.7% of the students this was the primary or only motivating factor listed. Helping as a motivation was not equally prevalent among different engineering disciplines, being much more common among students majoring in biomedical, environmental, materials, and civil and less common in computer and aerospace. Different disciplines also varied in the priority for helping people relative to other future job factors - highest in chemical/biological, moderate in civil and related majors, and lowest among electrical/computer and mechanical. Institutional differences were found in the extent to which students indicated an importance that their career would help people and the extent to which an ability to help others was a central message in their major. The results indicate the percentages of engineering students who are most likely to embrace humanitarian engineering; fostering these aspirations in students could help with attraction and retention.

  4. Empowering Engineering Students through Employability Skills

    Science.gov (United States)

    Kaushal, Urvashi

    2016-01-01

    A professional course program like engineering strives to get the maximum number of its students placed through campus interviews. While communication skills have been added in all the engineering courses with the aim to improve their performance in placement, the syllabus mostly concentrates on the development of four language skills. The…

  5. Fostering Passion among First Year Engineering Students

    Science.gov (United States)

    Mazumder, Quamrul H.

    2010-01-01

    Engineering is a complex field of study. Declining enrollment in engineering programs in the United States is of concern and understanding the various factors that contribute to this decline is in order. Fostering a higher level of student engagement with the content may foster passion towards engineering which could increase academic competency…

  6. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    Science.gov (United States)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent

  7. Faculty Women as Models for Women Students: How Context Matters

    Science.gov (United States)

    van Mens-Verhulst, Janneke; Woertman, Liesbeth; Radtke, Lorraine

    2015-01-01

    We explored how frequently academic staff serve as role models for women undergraduate students, how this compares to the family context, and the qualities associated with potential role models in both contexts. Participants were 138 psychology students at a Dutch university. They completed a self-administered, online survey about inspirational…

  8. Engineers' Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens.

    Science.gov (United States)

    Campbell, Ryan C; Wilson, Denise

    2017-04-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.

  9. Teaching Engineering students to "Think thief"

    NARCIS (Netherlands)

    Hartel, Pieter H.; Junger, Marianne

    We report on an educational experiment where information technology students were encouraged to think out of the box about the dark side of information technology. Instead of taking the usual point of view of the engineer we challenged the students to take the point of view of the motivated

  10. Engineering Careers in the UK: Still Not What Women Want?

    Science.gov (United States)

    Hodgkinson, Liz; Hamill, Les

    2006-01-01

    Of all professions, engineering is ranked near the bottom in the UK in terms of the proportion of female applicants for university places, so the engineering industry is missing out on some of the best young talent available. Despite initiatives to increase the number of women entering engineering, there has been little change over the last…

  11. Students' perceptions of the relevance of mathematics in engineering

    Science.gov (United States)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-09-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

  12. Teaching and Learning about Women and Leadership: Students' Expectations and Experiences

    Science.gov (United States)

    Shollenn, S. Lynn

    2015-01-01

    Qualitative, case study methods were used to examine students' expectations of and experiences with studying women and leadership. Participants were 48 undergraduate students enrolled in an elective course titled Women and Leadership offered in the Leadership Studies minor curriculum at a liberal arts institution. Students perceived women and…

  13. A Qatari Perspective on Women in the Engineering Pipeline: An Exploratory Study

    Science.gov (United States)

    Sulaiman, Noor Fauziah; AlMuftah, Hend

    2010-01-01

    Under-representation of women in engineering has received a great deal of attention, but remained limited largely to a Western context. Thus, this article aims to unveil the barriers to progress, tracking the performance and the emerging trend of success at the undergraduate level of women in engineering in a different cultural dimension.…

  14. Engineering Education and Students' Challenges: Strategies toward Enhancing the Educational Environment in Engineering Colleges

    Science.gov (United States)

    Alkandari, Nabila Y.

    2014-01-01

    The main goal of this research is to gain an understanding of the challenges which have to be confronted by the engineering students at the College of Engineering and Petroleum at Kuwait University. The college has a large number of students, of which three hundred and eighty five were selected on a random basis for study purposes. The results…

  15. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  16. UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model

    Science.gov (United States)

    Thorsen, D.

    2017-12-01

    Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.

  17. Engineering for All: A Middle School Program to Introduce Students to Engineering as a Potential Social Good

    Science.gov (United States)

    Hacker, Michael; Crismond, David; Hecht, Deborah; Lomask, Michal

    2017-01-01

    This article is the first of a two-part series about Engineering for All (EfA), a $1.7M National Science Foundation-funded project, which introduces middle school students to engineering, not only as a career path, but as an endeavor with potential for doing social good. Engineering for All opens students' eyes to the role engineers play in…

  18. Making a Move: Next Steps for Women. A Follow-up Study of Women Onto Work Students.

    Science.gov (United States)

    Howieson, Cathy

    A 4-year longitudinal study assessed the longer-term outcomes for students of Women Onto Work (WOW) courses aimed at unemployed Scottish women from Wester Hailes, Craigmillar, and Pilton/Muirhouse and unemployed women with disabilities from minority ethnic groups from Edinburgh (Scotland). The research covered 4-year groups of students who were in…

  19. Student-driven courses on the social and ecological responsibilities of engineers : commentary on "student-inspired activities for the teaching and learning of engineering ethics".

    Science.gov (United States)

    Baier, André

    2013-12-01

    A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.

  20. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    Science.gov (United States)

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  1. Student involvement as a vehicle for empowerment: a case study of the student platform for engineering education development

    KAUST Repository

    Delaine, David A.

    2010-08-01

    This paper examines the mission, structure and outputs of one organisation, the Student Platform for Engineering Education Development (SPEED), as a case study for how student-led organisations can use student involvement to promote and sustain student self-efficacy in an academic field. SPEED attracts young people to engineering through student participation in engineering education (EE). SPEED is a global, non-profit student organisation that functions as an interdisciplinary network to diversify dialogue, stimulate change and impact the development of EE and its effect on society. SPEED is directly attracting young people to engineering in various ways: the organisation of its keynote event, the Global Student Forum; facilitating interactions between globally minded, socially inclined engineers with aspirations to change the world; and through the global dissemination of SPEED\\'s work and practices through broad and relevant channels. Short-term outcomes are highlighted here. This case study can serve as a model for student engagement and involvement in other disciplines. © 2010 SEFI.

  2. Attitudes of University Students Towards Domestic Violence Against Women.

    Science.gov (United States)

    Aktaş, Demet

    2016-12-01

    The purpose of this study was to determine the attitudes of university students towards domestic violence against women. This cross-sectional study was conducted on students attending the School of Nursing and School of Physical Therapy and Rehabilitation at a university in Turkey. The study was conducted between February 2015 and May 2015. The study was conducted on 415 volunteer students without resorting to the sampling selection method. Data were collected using a Personal Information Form and The Scale of Attitude Toward Domestic Violence. The data were analysed using frequencies, means, standard deviations, independent t-tests and ANOVA. The mean of attitude scores of university students toward domestic violence were 23.13 ± 6.66 and were affected by variables such as gender, and whether the questions should be asked to women who experienced domestic violence such as: "Does your partner have justified reasons for applying domestic violence against women?" and "Should domestic violence against women be shared by others?" and "Does domestic violence against women bother you?" (p.

  3. Modeling Student Success in Engineering Education

    Science.gov (United States)

    Jin, Qu

    2013-01-01

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation.…

  4. Motivating students in engineering & ICT education

    NARCIS (Netherlands)

    Ir. Peter van Kollenburg; Ir. Dick van Schenk Brill

    2009-01-01

    We found out that 25 % of our students came to study at the Electrical & Electronic Engineering department (E&E) because they were active (as a hobby) in music. Because of this the E&E department offers their students to work in video and audio themes in all projects of their education. From our

  5. Photonics education development for electrical engineering students

    Science.gov (United States)

    Cao, Yang; Luo, Yuan; Liu, Yu; Hu, ZhangFang; Cai, Xuemei

    2017-08-01

    We describe the contents of an advanced undergraduate course on photonics at School of Electrical Engineering, Chongqing University of Posts and Telecommunications. The main goal of the course is to equip the student with the necessary theoretical and practical knowledge to participate in photonics-related industry and further graduate level study and research if they choose. The prerequisites include college-level physics and higher mathematics which a general engineering student has already had in his/her first and second year college study. Although applications of photonics are ubiquitous such as telecommunications, photonic computing, spectroscopy, military technology, and biophotonics etc. Telecommunication information system application is more emphasized in our course considering about the potential job chances for our students.

  6. Impact of distributed virtual reality on engineering knowledge retention and student engagement

    Science.gov (United States)

    Sulbaran, Tulio Alberto

    Engineering Education is facing many problems, one of which is poor knowledge retention among engineering students. This problem affects the Architecture, Engineering, and Construction (A/E/C) industry, because students are unprepared for many necessary job skills. This problem of poor knowledge retention is caused by many factors, one of which is the mismatch between student learning preferences and the media used to teach engineering. The purpose of this research is to assess the impact of Distributed Virtual Reality (DVR) as an engineering teaching tool. The implementation of DVR addresses the issue of poor knowledge retention by impacting the mismatch between learning and teaching style in the visual versus verbal spectrum. Using as a point of departure three knowledge domain areas (Learning and Instruction, Distributed Virtual Reality and Crane Selection as Part of Crane Lift Planning), a DVR engineering teaching tool is developed, deployed and assessed in engineering classrooms. The statistical analysis of the data indicates that: (1) most engineering students are visual learners; (2) most students would like more classes using DVR; (3) engineering students find DVR more engaging than traditional learning methods; (4) most students find the responsiveness of the DVR environments to be either good or very good; (5) all students are able to interact with DVR and most of the students found it easy or very easy to navigate (without previous formal training in how to use DVR); (6) students' knowledge regarding the subject (crane selection) is higher after the experiment; and, (7) students' using different instructional media do not demonstrate statistical difference in knowledge retained after the experiment. This inter-disciplinary research offers opportunities for direct and immediate application in education, research, and industry, due to the fact that the instructional module developed (on crane selection as part of construction crane lift planning) can be

  7. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  8. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  9. Eliciting and characterizing students' mental models within the context of engineering design

    Science.gov (United States)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  10. Men's and Women's Intentions to Persist in Undergraduate Engineering Degree Programs

    Science.gov (United States)

    Concannon, James P.; Barrow, Lloyd H.

    2010-01-01

    This is a quantitative study of 493 undergraduate engineering majors' intentions to persist in their engineering program. Using a multiple analysis of variance analysis, men and women had one common predictor for their intentions to persist, engineering career outcome expectations. However, the best sociocognitive predictor for men's persistence…

  11. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  12. "Soft-Engineering" Students Learning Math during Project Work on Optical Illusions

    DEFF Research Database (Denmark)

    Timcenko, Olga; Triantafyllou, Evangelia

    2015-01-01

    Media Technology is a study line between engineering, art and humanities, situated at Faculty of Engineering and Science of Aalborg University. Although formally students of engineering, Media Technology students show even greater difficulties with entry-level mathematical knowledge than typical ...

  13. Multivariate Analysis of Students' Performance in Math Courses and Specific Engineering Courses

    OpenAIRE

    H. Naccache; R. Hleiss

    2016-01-01

    The aim of this research is to study the relationship between the performance of engineering students in different math courses and their performance in specific engineering courses. The considered courses are taken mainly by engineering students during the first two years of their major. Several factors are being studied, such as gender and final grades in the math and specific engineering courses. Participants of this study comprised a sample of more than thousands of engineering students a...

  14. Changing demographics and shrinking engineering enrollments

    International Nuclear Information System (INIS)

    Vetter, B.M.

    1992-01-01

    This paper reports that changing U.S. population demographics, poor academic preparation, and a decreasing interest in engineering among college student indicate possible shortages ahead, particularly among chemical and petroleum engineers. If we are to ensure an adequate future supply for the U.S., the engineering talent pool must be enlarged to include women and minority men

  15. Discovery Camp Excites Students about Engineering and Technology Careers

    Science.gov (United States)

    Massiha, G. H.

    2011-01-01

    In the United States and elsewhere, there is a dramatic shortage of engineers and technologists. And, unfortunately, these professions often suffer from a lack of awareness among K-12 students. Clearly, educators need to show students the very exciting and lucrative aspects of these fields. Engineering and technology are consistently listed by…

  16. Effects of Numeric Representation of Women on Interest in Engineering as a Career

    Science.gov (United States)

    Creamer, Elizabeth G.

    2012-01-01

    Little is known about how the presence of women influences undergraduates' experiences in engineering. This paper presents results from a mixed methods, multivariate, and multi-institutional study to determine the impact of the numeric representation of women on the intent to be employed in engineering following graduation. Results from the…

  17. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    Science.gov (United States)

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  18. A phenomenographic study of students' experiences with transition from pre-college engineering programs to first-year engineering

    Science.gov (United States)

    Salzman, Noah

    Recent national dialogues on the importance of preparing more students for careers in Science, Technology, Engineering, and Mathematics has driven the development of formal and informal learning opportunities for children and adolescents to explore engineering. Despite the growth of these programs, relatively little research exists on how participation in these programs affects students who choose to pursue further study in engineering. The present study addressed this gap through an exploration of the different ways that First-Year Engineering students experience the transition from pre-college engineering to undergraduate engineering studies. Given the focus of this research on students' experiences, phenomenography was chosen to explore the phenomenon of transition from pre-college to first-year engineering at a large, public Midwestern university. This facilitated understanding the range of variation in the ways that students experienced this transition. Twenty-two students with different amounts of participation in a variety of different engineering programs were selected to be interviewed using a purposeful maximum variation sampling strategy. The interviews were guided by a semi-structured interview protocol that encouraged the participants to reflect on their pre-college engineering experiences, their experiences in First-Year Engineering, and the transition between the two domains. The interviews were analyzed using phenomenographic methods to develop an outcome space consisting of five qualitatively different but related ways of experiencing the transition from pre-college to First-Year Engineering. These categories of description included Foreclosure, Frustration, Tedium, Connection, and Engaging Others. With the exception of the first category which was characterized by a lack of passion and commitment to engineering, the remaining four categories formed a hierarchical relationship representing increasing integration in First-Year Engineering. The

  19. The First Year of College: Understanding Student Persistence in Engineering

    OpenAIRE

    Hayden, Marina Calvet

    2017-01-01

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experien...

  20. Engineering Students: Enhancing Employability Skills through PBL

    Science.gov (United States)

    H, Othman; Mat Daud K., A.; U, Ewon; Salleh B, Mohd; Omar N., H.; Baser J, Abd; Ismail M., E.; A, Sulaiman

    2017-05-01

    As a developing country, Malaysia faces challenging tasks to develop her economy just like many other countries. Nowadays, change involves many aspects like the economy from agriculture to manufacturing, technology from modern to more advanced ones; mindset from traditional to advanced and so on. Previous studies show that one of the major issues facing local graduates is the lack of employability skills. This problem concerns not only the government but undergraduates and institutions alike. From the pedagogical aspect, one of the more effective ways to improve this is through instructional delivery and in this case the use of Problem-based Learning (PBL). The need to adopt PBL should involved applied subjects undertaken by engineering students. Studies have shown that the use of PBL has been proven to make learning more attractive and effective. In this research, we studied the effectiveness of PBL towards enhancing employability skills among engineering undergraduates. This study adopted a combination of qualitative and quantitative approaches. Data was collected using documents analysis. Student samples comprised manufacturing engineering undergraduates from public institutions of higher learning in Malaysia. The results show that student’s employability skills can be enhanced using PBL. In addition, students become more competitive towards making them more relevance with the needs of the industry with regard to employability skills. In conclusion, PBL is a very effective catalyst towards raising the employability skills among engineering undergraduates and should be adopted in all engineering education.

  1. Misconceptions About Sound Among Engineering Students

    Science.gov (United States)

    Pejuan, Arcadi; Bohigas, Xavier; Jaén, Xavier; Periago, Cristina

    2012-12-01

    Our first objective was to detect misconceptions about the microscopic nature of sound among senior university students enrolled in different engineering programmes (from chemistry to telecommunications). We sought to determine how these misconceptions are expressed (qualitative aspect) and, only very secondarily, to gain a general idea of the extent to which they are held (quantitative aspect). Our second objective was to explore other misconceptions about wave aspects of sound. We have also considered the degree of consistency in the model of sound used by each student. Forty students answered a questionnaire including open-ended questions. Based on their free, spontaneous answers, the main results were as follows: a large majority of students answered most of the questions regarding the microscopic model of sound according to the scientifically accepted model; however, only a small number answered consistently. The main model misconception found was the notion that sound is propagated through the travelling of air particles, even in solids. Misconceptions and mental-model inconsistencies tended to depend on the engineering programme in which the student was enrolled. However, students in general were inconsistent also in applying their model of sound to individual sound properties. The main conclusion is that our students have not truly internalised the scientifically accepted model that they have allegedly learnt. This implies a need to design learning activities that take these findings into account in order to be truly efficient.

  2. Creativity Development for Engineering Students

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Holgaard, Jette Egelund; Kolmos, Anette

    2010-01-01

    In this paper we outline two approaches to enhance creative skills in a PBL environment at Aalborg University, Denmark. The two strategies are respectively characterized by 1) integrating creativity training into curriculum and 2) introducing real life engineering projects for students. Two cases...

  3. Adaptation of abbreviated mathematics anxiety rating scale for engineering students

    Science.gov (United States)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah

    2015-05-01

    Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.

  4. Perceptions of Engineering students, lecturers and academic development practitioners about academic development classes at a university of technology

    Directory of Open Access Journals (Sweden)

    Thembeka G.C. Shange

    2016-03-01

    Full Text Available With the increase in student enrolments in higher education, which has resulted in changesto student profiles, academic development has become important in terms of students’success. This article is a report on a qualitative study that used in-depth interviews toinvestigate the perceptions of Engineering students and staff to academic developmentclasses at a university of technology (UoT in South Africa. The students’ feelingsconcerning the need for academic development to continue beyond their first year ofstudy was of particular interest. Participants included five lecturers from the Engineeringfaculty and four academic development practitioners, who were all purposefully selected.The sample consisted of men and women who were interviewed individually. Interviewswere also conducted with ten first-year Engineering students and ten second-year students,who were randomly selected on the grounds of having been involved in the academicdevelopment programme during their first year.The responses of the lecturers were compared with those of the academic developmentpractitioners and the first- and second-year students’ responses were compared. It emergedthat academic development was considered questionable as it did not seem to be structuredand that the academic development curriculum, itself, was problematic.

  5. Resource Review: Why So Few? Women in Science, Technology, Engineering, and Mathematics

    OpenAIRE

    Patricia A. Dawson

    2014-01-01

    “Why So Few? Women in Science, Technology, Engineering and Mathematics” (Hill, C., Corbett, C., Rose, A., 2010) reports on an extensive study of women’s underrepresentation in science, technology, engineering, and mathematics professions. Funded by the National Science Foundation, the project was conducted by American Association of University Women. The resource includes findings from eight research studies which examined social and environmental factors which contribute to women’s underrepr...

  6. Elementary students' engagement in failure-prone engineering design tasks

    Science.gov (United States)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  7. Improving motivation and engagement in core engineering courses with student teams

    Science.gov (United States)

    Trenshaw, Kathryn Faye

    Team-based projects are common in capstone engineering design courses and increasingly common in first-year engineering programs. Despite high enrollments and budget cutbacks affecting many programs, second- and third-year students can also benefit from team-based project experiences, which motivate them to succeed in engineering and prepare them for a globally competitive workforce. My dissertation research demonstrates that team design projects can be incorporated into the curricula of engineering departments, and these projects result in positive affective outcomes for students. Using ABET outcomes and Self Determination Theory (SDT) as the background for my studies, I investigated students' confidence, motivation, and sense of community after experiencing team design projects in two different engineering departments at a large public institution. In the first study, I used a sequential mixed methods approach with a primary quantitative phase followed by an explanatory qualitative phase to evaluate a chemical engineering program that integrated team design projects throughout the curriculum. The evaluation methods included a survey based on desired ABET outcomes for students and focus groups to expand on the quantitative results. Students reported increased confidence in their design, teamwork, and communication skills after completing the projects. In my second and third studies, I used qualitative interviews based on SDT to explore student motivation in an electrical and computer engineering course redesigned to support students' intrinsic motivation to learn. SDT states that intrinsic motivation to learn is supported by increasing students' sense of autonomy, competence, and relatedness in regard to their learning. Using both narrative inquiry and phenomenological methodologies, I analyzed data from interviews of students for mentions of autonomy, competence, and relatedness as well as course events that were critical in changing students' motivation

  8. Student employment and study effort for engineering students

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Harder, D. E.

    2015-01-01

    more than those in studies from e.g. UK and US [3, 4, 5]. A similar trend was seen in a study from Norway [6]. Government financial support seems to limit the amount of hours spent on paid work but not the percentage of students who take on paid work. Thus, full-time studies with benefits of increased...... capabilities and experience gained through employment could be aided by proper policies. Additionally, one of the highest impacts on study activity was the perceived study environment. As the engineering students have four hours per week of interaction with an instructor for each five ECTS...... to answer if the full-time student is under demise in these settings as opposed to settings without financial support [1, 2]. The research consisted of a web-based survey amongst all students at the Technical University of Denmark (DTU). The students in this survey had fewer employment hours and studied...

  9. Exclusion and symbolic violence in the educational experience of female engineering students

    Directory of Open Access Journals (Sweden)

    Cecilia Ortmann

    2016-11-01

    Full Text Available On the initial problem the gender gap in enrollment in engineering careers, this paper analyzes the link between masculinity attribution of science and technology, and the perception of symbolic violence in the everyday experience of women trying to study these careers. From testimonies and narrations, I explore the experiences of students to identify assumptions about how the subjects and formed in these areas and should be, as well as the possibilities, capabilities and limitations that are assigned to them, contributing from the empiria to a conceptualization of modes of exclusion and delegitimization that support the formation of a strongly masculinized scene.

  10. Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.

    Science.gov (United States)

    VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal

    2017-08-01

    Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.

  11. Exploring Efficacy in Negotiating Support: Women Re-Entry Students in Higher Education

    Science.gov (United States)

    Filipponi-Berardinelli, Josephine Oriana

    2013-01-01

    The existing literature on women re-entry students reveals that women students concurrently struggle with family, work, and sometimes health issues. Women students often do not receive adequate support from their partners or from other sources in helping manage the multiple roles that compete for their time, and often face constraints that affect…

  12. The engineering capstone course fundamentals for students and instructors

    CERN Document Server

    Hoffman, Harvey F

    2014-01-01

    This essential book takes students and instructors through steps undertaken in a start-to-finish engineering project as conceived and presented in the engineering capstone course. The learning experience follows an industry model to prepare students to recognize a need for a product or service and work in a team; identify competition, patent overlap, and necessary resources; generate a project proposal that accounts for business issues; prepare a design, develop and fabricate the product or service; develop a test plan to evaluate the product or service; and prepare and deliver a final report and presentation. Throughout the book, students are asked to examine the business viability of the project. The Engineering Capstone Course: Fundamentals for Students and Instructors emphasizes that a design must meet a set of realistic technical specifications and constraints, including examination of attendant economics, environmental needs, sustainability, manufacturability, health and safety, governmental regulations...

  13. Evolving social responsibility understandings, motivations, and career goals of undergraduate students initially pursuing engineering degrees

    Science.gov (United States)

    Rulifson, Gregory A.

    Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social

  14. A Qualitative Study of African American Women in Engineering Technology Programs in Community Colleges

    Science.gov (United States)

    Blakley, Jacquelyn

    2016-01-01

    This study examined the experiences of African American women in engineering technology programs in community colleges. There is a lack of representation of African American women in engineering technology programs throughout higher education, especially in community/technical colleges. There is also lack of representation of African American…

  15. Drawing Women In: Engaging in Science and Engineering Disciplines

    Science.gov (United States)

    Greene, Senta

    2013-03-01

    Recent data on the participation of women in the scientific, technological, engineering, and mathematical (STEM) disciplines shows a landscape that is somewhat different from our expectations in the past. For example, women who earn bachelors' degrees in physics go on to earn PhDs, be hired to faculty positions, and achieve promotions at the same rate as their male counterparts. However, such gains do not foretell equal participation of women in physics since, although girls make up about half of high school physics classes, the fraction of bachelor's degrees earned by women has been flat at around 20% for about a decade. This remains true even with significantly increased awareness of the need to attract more women to STEM fields and despite various interventions to attract and retain talented women. This talk will present an overview of data on women's participation in STEM disciplines, provide possible explanations for the continued failure to attract women to some STEM fields, and give a brief description of some current interventions.

  16. Oxford engineering students to study new solutions for vacuum chambers

    CERN Multimedia

    Department of Engineering Science - University of Oxford

    2012-01-01

    In April, eleven engineering science students in their third year at Oxford University were invited here to present their design ideas for new vacuum chamber materials to be used in accelerators. We publish below an abstract of the article that the University of Oxford featured on its website.   The 11 Oxford students who worked at CERN on alternatives to beryllium in vacuum chambers. (Photo courtesy of the Department of Engineering Science, University of Oxford.) Engineering Science students invited to design for CERN’s Large Hadron Collider In April, eleven Engineering Science students in their third year were invited to the CERN laboratory in Geneva to present their ideas for new vacuum chamber designs for the experiments of the Large Hadron Collider (LHC). Their design objectives were to propose alternatives to beryllium – the material used for some of the existing experimental vacuum chambers. Beryllium (chemical element with the symbol Be and atomic number 4) is to...

  17. SUCCESS FRAMEWORK FOR TEACHING ERGONOMICS TO ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2013-04-01

    Full Text Available Taylor's University School of Engineering (Malaysia is a project-based-learning school that puts a conscious effort to educate engineers on the importance of applying ergonomic principles at the conceiving and designing stages of a product life cycle. This paper reports on an innovative approach to teaching ergonomics using the SUCCESS framework (Simple, Unexpected, Credible, Concrete, Emotions, Story, and Simulation. This teaching technique was adopted to engage the hearts and minds of the students and get them to embrace ergonomics as an important skill for engineers. Comparing students’ module evaluation and feedback, both before and after the adoption of the SUCCESS framework showed that students enjoyed the new approach of teaching and found it more fulfilling.

  18. On the Compliance of Women Engineers with a Gendered Scientific System.

    Directory of Open Access Journals (Sweden)

    Gita Ghiasi

    Full Text Available There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations from the scientific community. Engineers-regardless of their gender-contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse.

  19. On the Compliance of Women Engineers with a Gendered Scientific System.

    Science.gov (United States)

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers-regardless of their gender-contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse.

  20. A Summer Leadership Development Program for Chemical Engineering Students

    Science.gov (United States)

    Simpson, Annie E.; Evans, Greg J.; Reeve, Doug

    2012-01-01

    The Engineering Leaders of Tomorrow Program (LOT) is a comprehensive curricular, co-curricular, extra-curricular leadership development initiative for engineering students. LOT envisions: "an engineering education that is a life-long foundation for transformational leaders and outstanding citizens." Academic courses, co-curricular certificate…

  1. Why So Few? Women in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Hill, Catherine; Corbett, Christianne; St. Rose, Andresse

    2010-01-01

    The number of women in science and engineering is growing, yet men continue to outnumber women, especially at the upper levels of these professions. In elementary, middle, and high school, girls and boys take math and science courses in roughly equal numbers, and about as many girls as boys leave high school prepared to pursue science and…

  2. A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation

    Science.gov (United States)

    Fila, Nicholas David

    Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific progress, and obtain key personal benefits. Innovation is also a complex phenomenon. It occurs across a variety of contexts and domains, encompasses numerous phases and activities, and requires unique competency profiles. Despite this complexity, many studies in engineering education focus on specific aspects (e.g., engineering students' abilities to generate original concepts during idea generation), and we still know little about the variety of ways engineering students approach and understand innovation. This study addresses that gap by asking: 1. What are the qualitatively different ways engineering students experience innovation during their engineering projects? 2. What are the structural relationships between the ways engineering students experience innovation? This study utilized phenomenography, a qualitative research method, to explore the above research questions. Thirty-three engineering students were recruited to ensure thorough coverage along four factors suggested by the literature to support differences related to innovation: engineering project experience, academic major, year in school, and gender. Each participant completed a 1-2 hour, semi-structured interview that focused on experiences with and conceptions of innovation. Whole transcripts were analyzed using an eight-stage, iterative, and comparative approach meant to identify a limited number of categories of description (composite ways of experiencing innovation comprised of the experiences of several participants), and the structural relationships between these categories. Phenomenographic analysis revealed eight categories of description that were

  3. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    Science.gov (United States)

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  4. The effects of computer-aided design software on engineering students' spatial visualisation skills

    Science.gov (United States)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  5. Results of Summer Enrichment Program to Promote High School Students' Interest in Engineering

    Science.gov (United States)

    Hart, Brenda; McAnulty, Kate

    2014-01-01

    For more than thirty years, personnel from the University of Louisville J.B. Speed School of Engineering have presented a summer program targeting high school students historically underrepresented in engineering fields. INSPIRE provides these students with an introduction to careers in engineering and assists the students in planning their…

  6. At Hesitant Doors: The lived experience of women in STEM

    Directory of Open Access Journals (Sweden)

    Romina B. da Costa

    2016-12-01

    Full Text Available This phenomenological investigation aims to explore the lived experience of women in Science, Technology, Engineering and Mathematics (STEM disciplines. As a minority group within a traditionally male-dominated space, women are still underrepresented in the upper echelons of science, even if the number of women in STEM is increasing. The author draws from her experiences as an “undesirable statistic,” a woman who entered college as a STEM student but ended up getting a degree in the social sciences. The author attempts to gain some new insights and understanding of the issue of women in STEM, engaging in two in-depth phenomenological conversations with a female engineering student in a large public university of US Mid-Atlantic region.

  7. Linking Engineering and Medical Training: A USC program seeks to introduce medical and engineering students to medical device development.

    Science.gov (United States)

    Tolomiczenko, George; Sanger, Terry

    2015-01-01

    Medical students are attracted by the prospect of a meaningful addition to their clinical work. Engineering students are excited by a unique opportunity to learn directly alongside their medical student peers. For both, as well as the scientific community at large, the boutique program at the University of Southern California (USC) linking engineering and medical training at the graduate level is instructive of a new way of approaching engineering education that can potentially provide benefits to both students and society. Students who have grown up in an era of ?mass customization? in the retail and service industries can enjoy that same degree of flexibility also in the realm of education. At the same time, society gains engineers who have developed an increased empathy and awareness of the clinical contexts in which their innovations will be implemented.

  8. Engineers as Information Processors: A Survey of US Aerospace Engineering Faculty and Students.

    Science.gov (United States)

    Holland, Maurita Peterson; And Others

    1991-01-01

    Reports on survey results from 275 faculty and 640 students, predominantly in the aerospace engineering field, concerning their behaviors about the appropriation and dissemination of information. Indicates that, as information processors, aerospace faculty and students are "information naive." Raises questions about the efficacy of…

  9. Campus Climate and the Underrepresented Minority Engineering Student Experience: A Critical Race Study

    Science.gov (United States)

    Mayes, Terrance

    In the current technological era, the number of minorities in science, technology, engineering, and mathematics (STEM) is a crucial factor in predetermining the economic growth of the United States. Since the minority population is growing at much faster rates than the non-minority population, the lack of proportionate production of minority engineers poses a threat to the United States' ability to remain a global competitor in technological innovation. Sixty-three per cent (63%) of undergraduate students who enter engineering majors continue on to graduate in that major. The graduation rate, however, for African-American, Hispanic, and Native-American students in engineering is significantly lower at 39%. As this group represents only a small fraction of the annual student enrollment, engineering programs are graduating these minority groups at rates that are greatly disproportionate to United States demographics. Therefore, researchers are thoroughly investigating certain initiatives that promote academic success among underrepresented minority students in engineering. Colleges and universities have attempted to address the growing achievement gap between underrepresented minority and non-minority engineering students, predominately through various deficit-based interventions, focusing on the student's flaws and problems. As the pipeline for minorities in engineering continues to narrow, it begs the question of whether institutions are focusing on the right solutions to the problem. Critical Race Theory scholars argue that colleges and universities must address institutional climate issues around students, such as racism, microaggressions, and marginalization, before members of oppressed groups can truly succeed. This dissertation explored the unique experiences of underrepresented minority engineering students in a predominately White and Asian campus.

  10. Evaluation of the 1997 Joint National Conference, Women in Engineering Program Advocates Network (WEPAN) and National Association of Minority Engineering Program Administrators (NAMEPA)

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, Suzanne G.

    1997-07-01

    The primary goal of the 1997 Joint National Conference was to unite NAMEPA and WEPAN in a unique collaborative effort to further the cause of increasing the participation of women and minorities in science and engineering. The specific objectives were to: (1) conduct technical and programmatic seminars for institutions desiring to initiate, replicate, or expand women and minorities in engineering program; (2) provide assistance in fundraising and grant writing; (3) profile women in engineering programs of excellence; (4) sponsor inspiring knowledgeable and motivational keynote speakers; and (5) offer a series of workshops focused on a multitude of topics.

  11. Student diversity programs : sponsored items and events for 2013-2014.

    Science.gov (United States)

    2014-07-01

    Support made scholarships available to minority and women students interested in engineering and science and increased significantly : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  12. What Do Final Year Engineering Students Know about Sustainable Development?

    Science.gov (United States)

    Nicolaou, I.; Conlon, E.

    2012-01-01

    This paper presents data from a project that aims to determine the level of knowledge and understanding of engineering students about sustainable development (SD). The data derive from a survey completed by final year engineering students in three Irish Higher Education Institutions. This paper is part of a larger study that examines the…

  13. Teaching electronics to first-year non-electrical engineering students

    OpenAIRE

    Dahnoun, Naim

    2017-01-01

    Teaching electronics is not only for electrical and electronics students but also for mechanical, aerospace, engineering design, civil and engineering mathematics programmes, which are likely to have electronics units as part of their curriculum. To teach electronics for these non-electronic programmes is very challenging in many aspects. First, the electronics unit has to satisfy the learning outcomes for each programme. Second, the student's motivation is normally very low since electronics...

  14. Attitudes towards Communication Skills among Engineering Students

    Science.gov (United States)

    Kovac, Mirjana M.; Sirkovic, N.

    2017-01-01

    Good communication skills are of utmost importance in the education of engineering students. It is necessary to promote not only their education, but also to prepare them for the demanding and competitive job market. The purpose of this study was to compare the attitudes towards communication skills after formal instruction between the students of…

  15. Language Aspects of Engineering Students' View of Entropy

    Science.gov (United States)

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2016-01-01

    Entropy is a central concept in thermodynamics, but has been found to be challenging to students due to its abstract nature and the fact that it is not part of students' everyday language. Interviews with three pairs of engineering students (N = 6) were conducted and video recorded regarding their interpretation and use of the entropy concept, one…

  16. Development of American and Foreign-National Female Graduate Students in Engineering at Research Universities

    Science.gov (United States)

    Morrison, Briana Marie Keafer

    2013-01-01

    Women continue to be underrepresented among engineering faculty despite decades of reform and intervention. To understand why more graduate women do not pursue careers in academia, this mixed methods study focuses on the experiences of women currently in graduate engineering programs, and how the graduate culture shapes their development and…

  17. Increasing Interest of Young Women in Engineering

    Science.gov (United States)

    Hinterlong, Diane; Lawrence, Branson; DeVol, Purva

    2014-01-01

    The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential…

  18. Interacting with sexist men triggers social identity threat among female engineers.

    Science.gov (United States)

    Logel, Christine; Walton, Gregory M; Spencer, Steven J; Iserman, Emma C; von Hippel, William; Bell, Amy E

    2009-06-01

    Social identity threat is the notion that one of a person's many social identities may be at risk of being devalued in a particular context (C. M. Steele, S. J. Spencer, & J. Aronson, 2002). The authors suggest that in domains in which women are already negatively stereotyped, interacting with a sexist man can trigger social identity threat, undermining women's performance. In Study 1, male engineering students who scored highly on a subtle measure of sexism behaved in a dominant and sexually interested way toward an ostensible female classmate. In Studies 2 and 3, female engineering students who interacted with such sexist men, or with confederates trained to behave in the same way, performed worse on an engineering test than did women who interacted with nonsexist men. Study 4 replicated this finding and showed that women's underperformance did not extend to an English test, an area in which women are not negatively stereotyped. Study 5 showed that interacting with sexist men leads women to suppress concerns about gender stereotypes, an established mechanism of stereotype threat. Discussion addresses implications for social identity threat and for women's performance in school and at work.

  19. Turkish Students' Career Choices in Engineering: Experiences from Turkey

    Science.gov (United States)

    Cavas, Bulent; Cakiroglu, Jale; Cavas, Pinar; Ertepinar, Hamide

    2011-01-01

    The shortfall of young people, particularly women, in the field of Science, Mathematics and Engineering (SME) has been shown in many national studies. Schreiner and Sjoberg (2007) indicated that boys outnumber girls in physics and engineering studies, while the gender balance is shifted towards the girls in studies including medicine, veterinary…

  20. Sex segregation in undergraduate engineering majors

    Science.gov (United States)

    Litzler, Elizabeth

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher education, I explore gender stratification within one field: engineering. This dissertation investigates why some engineering disciplines have a greater representation of women than other engineering disciplines. I assess the individual and institutional factors and conditions associated with women's representation in certain engineering departments and compare the mechanisms affecting women's and men's choice of majors. I use national data from the Engineering Workforce Commission, survey data from 21 schools in the Project to Assess Climate in Engineering study, and Carnegie Foundation classification information to study sex segregation in engineering majors from multiple perspectives: the individual, major, institution, and country. I utilize correlations, t-tests, cross-tabulations, log-linear modeling, multilevel logistic regression and weighted least squares regression to test the relative utility of alternative explanations for women's disproportionate representation across engineering majors. As a whole, the analyses illustrate the importance of context and environment for women's representation in engineering majors. Hypotheses regarding hostile climate and discrimination find wide support across different analyses, suggesting that women's under-representation in certain engineering majors is not a question of choice or ability. However, individual level factors such as having engineering coursework prior to college show an especially strong association with student choice of major. Overall, the analyses indicate that institutions matter, albeit less for women, and women's under-representation in engineering is not

  1. Differences in Chemical Engineering Student-Faculty Interactions by Student Age and Experience at a Large, Public, Research University

    Science.gov (United States)

    Ciston, Shannon; Sehgal, Sanya; Mikel, Tressa; Carnasciali, Maria-Isabel

    2018-01-01

    Adult undergraduate students aged 25+ in engineering disciplines are an important demographic bringing a wealth of life experience to the classroom. This study uses qualitative data drawn from semi-structured interviews with two groups of undergraduate chemical engineering students at a large, public research university: adult students with…

  2. Professional Role Confidence and Gendered Persistence in Engineering

    OpenAIRE

    Cech, Erin; Rubineau, Brian; Seron, Caroll; Silbey, Susan S.

    2011-01-01

    Social psychological research on gendered persistence in science, technology, engineering, and mathematics (STEM) professions is dominated by two explanations: women leave because they perceive their family plans to be at odds with demands of STEM careers, and women leave due to low self-assessment of their skills in STEM’s intellectual tasks, net of their performance. This study uses original panel data to examine behavioral and intentional persistence among students who enter an engineering...

  3. The Intersection of Gender and Race: Exploring Chemical Engineering Students' Attitudes

    Science.gov (United States)

    Goodwin, Allison; Verdín, Dina; Kirn, Adam; Satterfield, Derrick

    2018-01-01

    We surveyed 342 first-year engineering students at four U.S. institutions interested in a chemical engineering career about their feelings of belonging in engineering, motivation, and STEM identities. We compared these students by both gender and race/ethnicity on these attitudinal factors. We found several significant differences in…

  4. Influencing Student Beliefs about the Role of the Civil Engineer in Society

    Science.gov (United States)

    Nesbit, Susan E.; Sianchuk, Robert; Aleksejuniene, Jolanta; Kindiak, Rebecca

    2012-01-01

    This study suggests that community service learning experiences facilitate the reconstruction of civil engineering student beliefs about both the type of work performed by civil engineers and the broad impact of civil engineering knowledge. Further, the service learning experiences highlight for students 1) the importance of relationships between…

  5. Gauging Workplace Readiness: Assessing the Information Needs of Engineering Co-op Students

    Science.gov (United States)

    Jeffryes, Jon; Lafferty, Meghan

    2012-01-01

    Librarians at the Science and Engineering Library at the University of Minnesota surveyed engineering students participating in a work placement as part of the cooperative education program. The survey asked about students' on-the-job information usage, comfort level accessing different types of engineering literature, and experience learning to…

  6. The Retention of Women in Science, Technology, Engineering, and Mathematics: A Framework for Persistence

    Science.gov (United States)

    White, Jeffry L.; Massiha, G. H.

    2016-01-01

    Women make up 47% of the total U.S. workforce, but are less represented in engineering, computer sciences, and the physical sciences. In addition, race and ethnicity are salient factors and minority women comprise fewer than 1 in 10 scientist or engineer. In this paper, a review of the literature is under taken that explores the many challenges…

  7. Women in Student Affairs: Navigating the Roles of Mother and Administrator

    Science.gov (United States)

    Bailey, Krista Jorge

    2011-01-01

    The purpose of this study was to understand the experiences of women who have children and work in mid-level student affairs positions. The study of this phenomenon was driven by four problems: (a) women face barriers in rising to upper-level leadership positions, (b) women are more likely than men to leave the field of student affairs, (c) there…

  8. Beyond access to transformations: A cross-national analysis of women in science and engineering education, 1970--2000

    Science.gov (United States)

    Wotipka, Christine Min

    2001-12-01

    Over the years, attention to the issue of women in science has tended to focus on individual and organizational efforts to encourage women's greater participation in science and engineering fields of study and occupations. With more intense globalization processes that increasingly shape and are shaped by science, national- and global-level understandings of the situation of women in science and engineering as well as methods to boost their greater and more equal participation in these fields are necessary. This study is a cross-national and longitudinal study of women's participation in science and engineering fields of study at the higher education level. In order to explain the growth in women's participation in these fields of study between 1972--1992, I use a world society theoretical perspective to argue that national linkages to global models regarding women's educational equality and women in science may positively influence their participation in these fields. In multivariate statistical analyses, women's participation in higher education, measured as female enrollment in non-science and non-engineering fields of study, exerted a positive effect on women in science and engineering as did male enrollment in science and engineering higher education. The fact that linkage variables and those measuring women's status and other national-level factors were not found to be influential suggests that world-level factors may be contributing to women's greater participation in these fields. To better understand processes at this level, I use feminist critiques of science to examine the efforts made by the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the United Nations Children's Fund (UNICEF), and the World Bank to address women in science and engineering education over a thirty year time period. My examination of their publications as well as conference declarations and platforms of action from ten international conferences finds a

  9. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  10. Students' Attitudes and Enrollment Trends in Physics and Engineering

    Science.gov (United States)

    Banjong, Delphine

    Science, Technology, Engineering, and Mathematics (STEM) fields are critical for meeting ever-increasing demands in the U.S. for STEM and related skills, and for ensuring the global competitiveness of the United States in technological advancement and scientific innovation. Nonetheless, few U.S. students consider a STEM degree after high school and fewer STEM students end up graduating with a STEM degree. In 2012, the United States ranked 35th in math and 27th in science out of 64 participating countries in the Program for International Student Assessment (PISA), sponsored by the Organization for Economic Cooperation and Development (OECD). Considering the significant role physics and engineering play in technological advancement, this work investigates the attitudes of students and recent enrollment trends in these important subject areas.

  11. A grounded theory study on the academic success of undergraduate women in science, engineering, and mathematics fields at a private, research university

    Science.gov (United States)

    Hroch, Amber Michelle

    2011-12-01

    This grounded theory study revealed the common factors of backgrounds, strategies, and motivators in academically successful undergraduate women in science, engineering, and mathematics (SEM) fields at a private, research university in the West. Data from interviews with 15 women with 3.25 or better grade point averages indicated that current academic achievement in their college SEM fields can be attributed to previous academic success, self awareness, time management and organizational skills, and maintaining a strong support network. Participants were motivated by an internal drive to academically succeed and attend graduate school. Recommendations are provided for professors, advisors, and student affairs professionals.

  12. An exploration of students' perceptions and attitudes towards creativity in engineering education

    Science.gov (United States)

    Waller, David R.

    This study used a mixed methods approach to develop a broad and deep understanding of students’ perceptions towards creativity in engineering education. Studies have shown that students’ attitudes can have an impact on their motivation to engage in creative behavior. Using an ex-post facto independent factorial design, attitudes of value towards creativity, time for creativity, and creativity stereotypes were measured and compared across gender, year of study, engineering discipline, preference for open-ended problem solving, and confidence in creative abilities. Participants were undergraduate engineering students at Queen’s University from all years of study. A qualitative phenomenological methodology was adopted to study students’ understandings and experiences with engineering creativity. Eleven students participated in oneon- one interviews that provided depth and insight into how students experience and define engineering creativity, and the survey included open-ended items developed using the 10 Maxims of Creativity in Education as a guiding framework. The findings from the survey suggested that students had high value for creativity, however students in fourth year or higher had less value than those in other years. Those with preference for open-ended problem solving and high confidence valued creative more than their counterparts. Students who preferred open-ended problem solving and students with high confidence reported that time was less of a hindrance to their creativity. Males identified more with creativity stereotypes than females, however overall they were both low. Open-ended survey and interview results indicated that students felt they experienced creativity in engineering design activities. Engineering creativity definitions had two elements: creative action and creative characteristic. Creative actions were associated with designing, and creative characteristics were predominantly associated with novelty. Other barriers that emerged

  13. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    Science.gov (United States)

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  14. Undergraduate Engineers and Teachers: Can Students Be Both?

    Science.gov (United States)

    Zarske, Malinda S.; Vadeen, Maia L.; Tsai, Janet Y.; Sullivan, Jacquelyn F.; Carlson, Denise W.

    2017-01-01

    Today's college-aged students are graduating into a world that relies on multidisciplinary talents to succeed. Engineering college majors are more likely to find jobs after college that are outside of STEM (science, technology, engineering, and mathematics) fields, including jobs in healthcare, management, and social services. A survey of…

  15. Engineering Ethics : The Second Report on Student Awareness and Course Methodology

    Science.gov (United States)

    Abe, Takao; Hachimori, Akira; Honywood, Michael

    This paper is the second one detailing the findings of a questionnaire survey administered to gauge respondents' awareness of engineering ethics. The survey was carried out with the cooperation of Japanese, South Korean, and Chinese universities as well as a number of Japanese corporations. Our findings indicate that while students and company employees alike generally exhibit an appetite for learning about engineering ethics, South Korean and Chinese students have adopted a posture that is more conducive to such study than their Japanese counterparts. We also discovered a number of other differences rooted in students' nationality. Engineering ethics content seems to receive little attention in corporate training programs. Small and medium size companies in particular may not be addressing questions of engineering ethics in an aggressive manner.

  16. Discovering the Barriers to Rural Women in STEM

    Science.gov (United States)

    Kreft Pearce, Jennifer; McCaslin, Sara; Morgan, Leann

    2011-10-01

    This study investigates the attitudes women and girls from the East Texas region have towards engineering and physics. We use an online survey and interviews to determine what influences women to choose their career paths. Surprisingly, we find that women have more positive attitudes about physics and engineering than their male counterparts. For the group of students interviewed, self assessment of ability, lack of role models, and confusion about work/life balance issues were some of the determining factors in their choice not to pursue a career in a STEM field.

  17. Motivational factors, gender and engineering education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  18. A Study to Investigate the Consumer Behavior and Cultural Dimensions of Engineering Students in Pakistan

    Directory of Open Access Journals (Sweden)

    FARYAL SALMAN SALMAN

    2016-10-01

    Full Text Available The current study compares consumer behavior and Cultural Orientations between engineering and non-engineering students in Pakistan. Engineering students by virtue of their academic background are considered to have more technical know-how, more cognitive skills and can easily learn and adopt a new technology as compared to students from a non-engineering background. Furthermore the researchers were interested to find out that how the thinking skills and choice making of engineering students differ from other students and ultimately effects their consumer behavior and Cultural Dimensions. For this purpose three consumer behavior variables have been selected that are Customer Satisfaction, Customer Loyalty and Customer Switching. Cultural Dimensions are measured using the model proposed by Geert Hofstede. Two technologically sophisticated services are used in this study that is Mobile Phone and Debit Cards. The target population of the study consisted of 5000 students of which approximately 500 respondents were from various engineering universities in Pakistan. The comparison of consumer behavior and Cultural Dimensions differences was made through two group?s Discriminant Analysis. Differences in behavior and Cultural Dimensions have been reported among the engineering versus non-engineering students. Mobile Phone services satisfaction and loyalty were high among nonengineering students whereas engineering student?s registered higher satisfaction and loyalty in Debit Card services. Another interesting finding is difference in switching behavior. In case of both the servicesengineering students reported a higher mean score for switching. Score for Cultural Dimensions were also different among the two students type; whereby mean score for Masculinity

  19. Assessing students' performance in software requirements engineering education using scoring rubrics

    Science.gov (United States)

    Mkpojiogu, Emmanuel O. C.; Hussain, Azham

    2017-10-01

    The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.

  20. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  1. An Arts-Based Instructional Model for Student Creativity in Engineering Design

    Directory of Open Access Journals (Sweden)

    Brian Laduca

    2017-02-01

    Full Text Available Over the past twenty years, nearly all job growth in the United States has emerged from new companies and organizations with assumedly innovative products, services, and practices. Yet, the nurturing of student creative thinking and problem solving is infrequent in engineering education. Inherent to developing these creativity skills and attributes is the need to be exposed to difference — in people and environment. Engineering education rarely offers such opportunities. Additionally, engineering students are rarely presented opportunities to develop designs responding to real human problems. This paper puts forth a new instructional model to address these needs by utilizing arts processes and practices as catalysts for both creativity development in students and transdisciplinary collaboration on problems addressing deep human needs. This model is premised on the substantiated role of the arts in developing creativity and growing understanding of the human condition. This art-based instructional model was piloted as exploratory pedagogical research during the summers of 2015 and 2016 as a partnership between the Arts Nexus (IAN and the School of Engineering at the University of Dayton. In each year, this program supported twelve student interns from engineering, business, science, the arts, and the humanities to develop innovative technologies and services meeting client needs. Student growth in creative problem-solving and transdisciplinary collaboration, as well as the success of the completed innovation technology prototype were assessed by the project mentors and participating students via survey evaluations and narrative responses. The assessment results revealed substantial student growth in student creativity and transdisciplinary collaboration and a remarkably strong evaluation of the success of the students’ innovations. Also realized for all students was a transformation in their perception of their place in the world as

  2. "Womanhood does not reside in documentation": Queer and feminist student activism for transgender women's inclusion at women's colleges.

    Science.gov (United States)

    Weber, Shannon

    2016-01-01

    This article considers queer-driven student activism at Smith College, as well as admissions policy shifts at a number of prominent U.S. women's colleges for transgender women's inclusion. The author illustrates how student attempts to dismantle the transmisogyny at Smith as a purportedly feminist "women's" space, as well as some women's colleges' shifts in admissions policy, challenge divisions between transgender and cisgender women. This paradigmatic shift reflects the campuses as comparative havens for gender and sexual exploration, the influence of postmodern gender theory in understanding identity, and the growth of "queer" as an all-encompassing signifier for sexual and gender transgression.

  3. "I'm just a boy with girl parts": Understanding gender perception and negotiation in an undergraduate engineering program

    Science.gov (United States)

    Dickinson Skaggs, Jennifer Anne

    The number of women being enrolled and retained in engineering programs has steadily decreased since 1999, even with increased efforts and funding of initiatives to counteract this trend. Why are women not persisting or even choosing to pursue engineering? This qualitative research examines how undergraduate female engineering students perceive and negotiate their gender identities to successfully persist in engineering education. Narrative inquiry including semi-structured interviews, participant observation, and data analysis was conducted at a Research I institution. Participants were recruited through purposeful network sampling. Criteria for inclusion include students who have been in the American K-12 educational pipeline at least eight years and are junior or senior level academic standing and academic eligibility. By including male students in the collection of data, perceptions of the issues for women could be seen in context when compared to the perceptions of men in the same engineering discipline. The study focuses on the individual, institutional, and cultural perceptions of gender performativity within a network and the strategies and negotiations employed by undergraduate female engineering students to achieve their educational goals regarding each of these perspectives. Findings reveal female students utilize strategies of camouflage and costume, as well as internal and external support to persist in engineering education. Also, female engineering students are being prepared to only become engineering-students-in-the-making and kept from the larger engineering network, while male students are becoming engineers-in-the-making automatically connected to the larger engineering network based on gender. This lack of association with the network influences female engineering students in their decisions to pursue a career in professional engineering, or to pursue more traditionally gendered careers after graduation. This research is significant in its use

  4. Persistence of undergraduate women in STEM fields

    Science.gov (United States)

    Pedone, Maggie Helene

    The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in STEM. This study also examined and compared the characteristics of undergraduate women who entered STEM fields and non-STEM fields in 2003-2004. The nationally representative Beginning Postsecondary Students Longitudinal Study (BPS:04/09) data set was used for analysis. BPS:04/09 study respondents were surveyed three times (NPSAS:04, BPS:04/06, BPS:04/09) over a six-year period, which enabled me to explore factors related to long-term persistence. Astin's Input-Environment-Output (I-E-O) model was used as the framework to examine student inputs and college environmental factors that predict female student persistence (output) in STEM. Chi-square tests revealed significant differences between undergraduate women who entered STEM and non-STEM fields in 2003-2004. Differences in student demographics, prior academic achievement, high school course-taking patterns, and student involvement in college such as participation in study groups and school clubs were found. Notably, inferential statistics showed that a significantly higher proportion of female minority students entered STEM fields than non-STEM fields. These findings challenge the myth that underrepresented female minorities are less inclined to enter STEM fields. Logistic regression analyses revealed thirteen significant predictors of persistence for undergraduate women in STEM. Findings showed that undergraduate women who were younger, more academically prepared, and academically and socially involved in college (e.g., lived on campus, interacted with faculty, participated in study groups, fine arts activities, and school sports) were more likely to persist in STEM

  5. Engineering Students' Conceptions of Entrepreneurial Learning as Part of Their Education

    Science.gov (United States)

    Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso

    2016-01-01

    The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group…

  6. Appropriate Programs for Foreign Students in U.S. Chemical Engineering Curricula.

    Science.gov (United States)

    Findley, M. E.

    Chemical engineers in developing countries may need abilities in a number of diverse areas including management, planning, chemistry, equipment, processes, politics, and improvisation. Chemical engineering programs for foreign students can be arranged by informed advisers with student input for inclusion of some of these areas in addition to…

  7. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    Science.gov (United States)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  8. Improving innovation and multidisciplinary competences among bachelor of engineering students

    DEFF Research Database (Denmark)

    Løje, Hanne; Andersson, Pernille Hammar; Grex, Sara

    2017-01-01

    within Engineering Education. Furthermore, there is also a demand for the graduates to be able to work multidisciplinary and to be able to use generic skills in their work. In this paper, the research question is how to enhance innovation and multidisciplinary competences of engineering students......From society and industry, there are increasing requirements for skilled and well-educated engineers who can develop new solutions through innovation and this have pushed universities to meet these requirements by having an increasing focus on developing innovation and entrepreneurship programmes......? This is a central question in order to educate engineers that can create sustainable solutions for the environment, for products and to secure future workplaces. In this paper, a new mandatory course for Bachelor of Engineering students at the Technical University of Denmark (DTU) "Innovation Pilot...

  9. Why Not Academia?--The Streamlined Career Choice Process of Black African Women Engineers: A Grounded Theory Study

    Science.gov (United States)

    Mlambo, Yeukai Angela

    2017-01-01

    Black African women are grossly underrepresented as academic staff in engineering programs at South African universities. The problem is exacerbated at historically White institutions (HWI) where Black women are simply absent as engineering research and teaching staff. The absence of Black African women in the academy occurs despite Black African…

  10. Assessing Students' Motivation to Engage in Sustainable Engineering

    Science.gov (United States)

    McCormick, Mary; Bielefeldt, Angela R.; Swan, Christopher W.; Paterson, Kurtis G.

    2015-01-01

    Purpose: The purpose of this study was to design an assessment instrument to evaluate students' attitudes toward sustainable engineering (SE). Factors that impact SE beliefs could then be explored. Design/methodology/approach: Using the definition of sustainability from the Brundtland report and expectancy value theory, students' sentiment toward…

  11. Student-inspired activities for the teaching and learning of engineering ethics.

    Science.gov (United States)

    Alpay, E

    2013-12-01

    Ethics teaching in engineering can be problematic because of student perceptions of its subjective, ambiguous and philosophical content. The use of discipline-specific case studies has helped to address such perceptions, as has practical decision making and problem solving approaches based on some ethical frameworks. However, a need exists for a wider range of creative methods in ethics education to help complement the variety of activities and learning experiences within the engineering curriculum. In this work, a novel approach is presented in which first-year undergraduate students are responsible for proposing ethics education activities of relevance to their peers and discipline area. The students are prepared for the task through a short introduction on engineering ethics, whereby generic frameworks for moral and professional conduct are discussed, and discipline and student-relevance contexts provided. The approach has been used in four departments of engineering at Imperial College London, and has led to the generation of many creative ideas for wider student engagement in ethics awareness, reflection and understanding. The paper presents information on the premise of the introductory sessions for supporting the design task, and an evaluation of the student experience of the course and task work. Examples of proposals are given to demonstrate the value of such an approach to teachers, and ultimately to the learning experiences of the students themselves.

  12. Women's Leadership in Science, Technology, Engineering and Mathematics: Barriers to Participation

    Science.gov (United States)

    McCullough, Laura

    2011-01-01

    Despite gains overall, women are still under-represented in leadership positions in science, technology, engineering, and mathematics (STEM) fields. Data in the US suggest around one-quarter of deans and department heads are women; in science this drops to nearly 1 in 20. Part of this problem of under-representation stems from the population pool:…

  13. Stereotype Threat: A Qualitative Study of the Challenges Facing Female Undergraduate Engineering Students

    Science.gov (United States)

    Entsminger, J. R., II

    From a sociocultural point of view, this qualitative case study explored how upper-level, female undergraduate engineering students perceived the possibility of or experience with stereotype threat as shaping their experiences. The study also investigated how these students explained their reasons for choosing their engineering major, the challenges they encountered in the major, and their reasons for persevering in spite of those challenges. Using Steele and Aronson's (1995) stereotype threat theory as a framework, and considering the documented underrepresentation of females in engineering, the study sought to examine how stereotype threat shaped the experiences of these students and if stereotype threat could be considered a valid reason for the underrepresentation. The study was conducted at a large, four-year public university. First, students in the College of Engineering and Engineering Technology completed the Participant Screening Survey. Based on responses from the survey, six female engineering students from the college were identified and invited to participate in the study. The participants came from the following majors: Electrical Engineering, Industrial and Systems Engineering, and Mechanical Engineering. After receiving the study consent letter and agreeing to participate, the students were involved in a 90-minute focus group meeting, a 45-minute one-on-one interview, and a 30-minute follow-up interview. After conducting the data collection methods, the data were then transcribed, analyzed, and coded for theme development. The themes that emerged coincided with each research question. The themes highlighted the complex interactions and experiences shared by the female engineering majors. The female students were enveloped in an environment where there existed an increased risk for activating stereotype threat. In addition, the female students described feeling pushed to prove to themselves and to others that the negative stereotype that 'females

  14. The Underrepresentation of Women in the Engineering Element of STEM Occupations and Influencers Contributing to the Persistent Gap

    Science.gov (United States)

    Holl, David

    Within Science, Technology, Engineering, and Mathematics (STEM) careers fields, the representation of women remains at an inequitable level when compared to men and to women's representation in other professions. Given the current state of women representing 52% of the professional and management-related workforce (U.S. Bureau of Labor and Statistics, 2015), their representation at only 15% of employed engineers nationwide appears to be a problem. When considering the fact that recent graduation data show women earn over 19% of Bachelor's degrees in engineering each year, the low number becomes increasingly puzzling. What factors are contributing to this low number of women in engineering professions? One of the contributing factors is clearly women's choice of education and career paths. However, empirical literature suggests, after pursuing and entering the engineer profession, women often are victim to gender schema, cognitive bias, and an absence of family-friendly work policies, an insufficient number of female mentors, social exclusion, and other drivers potentially leading to their higher turnover rate compared to their male counterparts. This project looks within one military-related organization to uncover reasons for the low representation of female engineers. The combination of a mixed-methods approach to data collection and the Knowledge, Motivation, and Organization (KMO) framework developed by Clark and Estes (2008) for analysis is employed by this project. Comparison of the analysis results to widely accepted learning and motivation principles presented in the reviewed literature led to a proposal of research-based solutions to address the representation gap and ultimately increase women's representation in engineering and other STEM career fields.

  15. Mathematics Education for Engineering Technology Students – A Bridge Too Far?

    Directory of Open Access Journals (Sweden)

    Noraishiyah Abdullah

    2013-03-01

    Full Text Available Trying to decide what is best suited for someone or something is an ever enduring task let alone trying to prepare students with the right engineering mind. So ‘how do you build an engineer?’ if that is the right word. What is the right ingredient? Mathematics has been said as the most important foundation in engineers’ life. Curriculum has been developed and reviewed over the years to meet this target. This work explores how much or lack of it has the curriculum prepares the future technologist to face the world of engineering technology as far as mathematics is concerned. Analysis of mathematics lectures, interviews of engineering technologist students and engineering technology subject lecturer is undertaken. Understand what each contributes help in understanding the picture that the current education is painting. Based on the theory of learning, APOS theory helps in explaining how students bridge their knowledge of mathematics when it comes to solving engineering technology problems. The question is, is it a bridge too far? 

  16. Shedding light on the subject: introduction to illumination engineering and design for multidiscipline engineering students

    Science.gov (United States)

    Ronen, Ram S.; Smith, R. Frank

    1995-10-01

    Educating engineers and architects in Illumination Engineering and related subjects has become a very important field and a very satisfying and rewarding one. Main reasons include the need to significantly conserve lighting energy and meet government regulations while supplying appropriate light levels and achieving aesthetical requirements. The proliferation of new lamps, luminaries and lighting controllers many of which are 'energy savers' also helps a trend to seek help from lighting engineers when designing new commercial and residential buildings. That trend is believed to continue and grow as benefits become attractive and new government conservation regulations take affect. To make things even better one notices that Engineering and Science students in most disciplines make excellent candidates for Illumination Engineers because of their background and teaching them can move ahead at a brisk pace and be a rewarding experience nevertheless. In the past two years, Cal Poly Pomona College of Engineering has been the beneficiary of a DOE/California grant. Its purpose was to precipitate and oversee light curricula in various California community colleges and also develop and launch an Illumination Engineering minor at Cal Poly University. Both objectives have successfully been met. Numerous community colleges throughout California developed and are offering a sequence of six lighting courses leading to a certificate; the first graduating class is now coming out of both Cypress and Consumnes Community Colleges. At Cal Poly University a four course/laboratory sequence leading to a minor in Illumination Engineering (ILE) is now offered to upper division students in the College of Engineering, College of Science and College of Architecture and Design. The ILE sequence will briefly be described. The first course, Introduction to Illumination Engineering and its laboratory are described in more detail alter. Various methods of instruction including lectures, self work

  17. COMPETENCE CRITERIA OF TEACHERS AT BLENDED LEARNING OF ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    Kateryna A. Ivanova

    2017-09-01

    Full Text Available The work is devoted to the definition of competence criteria of teachers in the mixed (hybrid education of engineering students. The study was conducted based on generalization of known competence criteria of teachers of traditional education and analysis of publications of domestic and foreign authors devoted to the problems of mixed education. The competence criteria of the teachers in mixed training of engineering students were proposed, an expert evaluation of the importance of each criterion was conducted using the non-parametric Friedman criterion. 27 criteria which are most significant for assessing the competence of teachers in the mixed education of engineering students were identified. Taking into account the specificity of the teacher's work in mixed education, the singled out competence criteria were divided into three subgroups.

  18. Energizing Engineering Students with Hydrogen Fuel Cell Project

    Science.gov (United States)

    Cannell, Nori; Zavaleta, Dan

    2010-01-01

    At Desert Vista High School, near Phoenix, Arizona, Perkins Innovation Grant funding is being used to fund a program that is helping to prepare students for careers in engineering by giving them hands-on experience in areas like hydrogen generation and fuel cell utilization. As one enters Dan Zavaleta's automotive and engineering classroom and lab…

  19. Perception of Leadership in Electrical Engineering Students, UTHM

    Science.gov (United States)

    Saari, Farrah Atikah Binti; Ghani, Nor Aslasiah Binti

    2015-01-01

    Demand for graduates with leadership skills more in priority to meet the needs of human resources. Hence, this study was undertaken to investigate the level of leadership skills among students in Electrical Engineering at University Tun Hussein Onn Malaysia. Descriptive study carried out to evaluate student leadership. The study sample consisted…

  20. Undergraduate engineering students' attitudes and perceptions towards `professional ethics' course: a case study of India

    Science.gov (United States)

    Sethy, Satya Sundar

    2017-11-01

    'Professional Ethics' has been offered as a compulsory course to undergraduate engineering students in a premier engineering institution of India. It was noticed that students' perceptions and attitudes were frivolous and ornamental towards this course. Course instructors and institution authorities were motivated to find out the factors contributing to this awkwardness. For this purpose, a questionnaire was prepared and administrated to 336 students registered for the July-November 2014 semester. The study found two factors contributing to students' indifference towards the Professional Ethics course. First, most of the students did not have self-interest to join the engineering programme, and while pursuing their study, they decided to switch to a different field upon completion of their engineering study. Second, students who desired to be engineers in their future believed that engineering code of ethics is not really referred to in most of the engineering jobs, and therefore Professional Ethics course is only meant for classroom discussions.

  1. Examining Department Climate for Women in Engineering: The Role of STEM Interventions

    Science.gov (United States)

    Rincón, Blanca E.; George-Jackson, Casey E.

    2016-01-01

    Women comprise over half of the total undergraduate population in the United States (National Center for Education Statistics, 2014), yet remain underrepresented in a number of science, technology, engineering, and mathematics (STEM) fields (National Science Foundation [NSF], 2014). Although women have steadily increased their representation in…

  2. Women's decision to major in STEM fields

    Science.gov (United States)

    Conklin, Stephanie

    This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer

  3. Study Strategies for Engineering Students at DTU

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2002-01-01

    The study strategies of first year Master students are investigated at DTU fall 1999 - spring 2002. The results show that the students study less than their teachers expect. And they spend most time on activities not leading to deep understanding and engineering competencies. The students spend...... almost half of their study time on theoretical calculations and only little on authentic problems. They attend many lectures but read very little. This may be a reasonable response to the teaching and examination they encounter; but not with respect to learning. Changing the teaching structure at DTU has...

  4. Influence of gender in choosing a career amongst engineering fields: a survey study from Turkey

    Science.gov (United States)

    Bucak, Seyda; Kadirgan, Neset

    2011-10-01

    The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices are shown to be career services and family members. Generally, students have claimed to choose a profession based on 'finding a job' and 'being happy'. Some engineering branches such as Genetic and Bioengineering, Chemical Engineering, Environmental Engineering and Industrial Engineering, are shown to be distinctly preferred by female students, whereas mechanical, civil and electronic engineering are favourites for male students. The survey results were also compared with the distribution of male and female students in various engineering departments. This study clearly shows that certain engineering branches are perceived as more appropriate for women and are thus favoured by female students, while those perceived as more appropriate for men are favoured by male students.

  5. The Power of Numbers: Grades and Female Density in Influencing the Persistence of Women in Engineering Majors

    Science.gov (United States)

    Stine, Michelle L.

    2010-01-01

    Female participation in engineering has never topped 20% nationally for the proportion of bachelor's degrees earned by women. Research on this topic, as well as related self-esteem literature, suggest that women may be more likely than men to leave engineering if they have unmet grade expectations. Additionally, the presence of more women in…

  6. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    Science.gov (United States)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  7. Where Are All the Women Engineers? An Insider's View of Socialization and Power in Engineering Education

    Science.gov (United States)

    Christman, Jeanne

    2017-01-01

    Despite more than thirty years of the underrepresentation of women in engineering being a persistent concern, research on the cause of the problem has not been successful in reversing the trend. A plethora of theories as to why females are not entering engineering exist, yet they only address issues on the surface and do not attend to a…

  8. Improvement of Engineering Students' Communication Skills in English through Extensive Reading

    Science.gov (United States)

    Nishizawa, Hitoshi; Yoshioka, Takayoshi; Itoh, Kazuaki

    The students' communication skills in English have improved after introducing Extensive Reading courses into the curriculum of Electrical and Electronic Engineering Department. The students' average TOEIC scores, which used to be far lower than the ones of students in other educational institutions, have increased in recent two years. The students who used to avoid learning English have welcomed extensive reading of graded readers for foreign learners and books for native children of English. This is because the extensive reading causes less stress and it is enjoyable. The students who have read more than 0.2 million words of English texts have faster reading speed and more confidence in reading. They seem to change their reading style from English-to-Japanese translation (and comprehension in Japanese) to direct comprehension in English. Their listening comprehension is also improved. Extensive reading is an effective educational method to improve English communication skills of engineering students, and it also becomes a useful method of continuous education for engineers in need of improving their skills.

  9. A Profile of the Woman Engineer, 1984.

    Science.gov (United States)

    Hetrick, Haydee; And Others

    This biennial report is based on responses from 2,112 of the 4,453 non-student members of the Society of Women Engineers (SWE) who were surveyed during the winter of 1983-84. All responses to the survey questionnaire (included in an appendix) were considered in the data analysis. Any woman with an engineering degree, holding state engineering…

  10. Entry-Level Employment Prospects for Women in College-Student Personnel Work.

    Science.gov (United States)

    Kuh, George D.

    1979-01-01

    Women are no longer underrepresented in student personnel preparation programs. However, an increased number of female master's degree graduates are seeking a limited number of entry-level positions. Women (and men) should be made aware of the inherent free-market employment risks when contemplating a career in student personnel work. (Author)

  11. Sexual Harassment of Women Graduate Students: The Impact of Institutional Factors.

    Science.gov (United States)

    Fuehrer, Ann; Schilling, Karen Maitland

    Sexual harassment is one concern of women graduate students in community psychology programs. When a sexual relationship exists between male faculty and female students, the distribution of power reflects the subordinate status of women and the dominant position of men. Many studies have documented the negative consequences of sexual contact…

  12. Engineering Students as Science Teachers: A Case Study on Students' Motivation

    Directory of Open Access Journals (Sweden)

    Aharon Gero

    2014-06-01

    Full Text Available The program "Educational Clinic" was recently developed and implemented at the Technion – Israel Institute of Technology. This one year program is designed to train engineering students as teaching assistants in high schools in order to help high school pupils with mathematics and science. The study described in this paper tracked changes in students' motivation to participate in the program throughout the year. Data was collected by questionnaires and interviews. The findings reveal that alongside a fixed high level of extrinsic motivational factors, which reflect student satisfaction of improving their teaching skills, a considerable increase was found in the level of intrinsic motivational factors, which express the students' interest in the program.

  13. Career development in Bioengineering/Biomedical Engineering: a student's roadmap.

    Science.gov (United States)

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/biomedical engineering education has progressed since the late 1950s and is still evolving in leading academic institutions worldwide. Today, Bioengineering/Biomedical Engineering is acclaimed as one of the most reputable fields within the global arena, and will likely be the catalyst for any future breakthroughs in Medicine and Biology. This paper provides a set of strategies and recommendations to be pursued by individuals aiming at planning and developing careers in this field. The paper targets the international student contemplating bioengineering/biomedical engineering as a career, with an underlying emphasis on the student within developing and transitional countries where career guidance is found deficient. The paper also provides a comprehensive definition of the field and an enumeration of its subdivisions.

  14. Engineering surveying theory and examination problems for students

    CERN Document Server

    Schofield, W

    2013-01-01

    Engineering Surveying: Theory and Examination Problems for Students, Volume 1, Third Edition discusses topics concerning engineering surveying techniques and instrumentations. The book is comprised of eight chapters that cover several concerns in engineering survey. Chapter 1 discusses the basic concepts of surveying. Chapter 2 deals with simple and precise leveling, while Chapter 3 covers earthworks. The book also talks about the theodolite and its applications, and then discusses optical distance measurement. Curves, underground and hydrographic surveying, and aspects of dimensional control

  15. Analyzing Student Aid Packaging To Improve Low-Income and Minority Student Access, Retention and Degree Completion. AIR 1999 Annual Forum Paper.

    Science.gov (United States)

    Fenske, Robert H.; Porter, John D.; DuBrock, Caryl P.

    This study examined the persistence of and financial aid to needy students, underrepresented minority students, and women students, especially those majoring in science, engineering, and mathematics at a large public research university. An institutional student tracking and student financial aid database was used to follow four freshmen cohorts…

  16. Learning English: Experiences and Needs of Saudi Engineering Students

    Science.gov (United States)

    Unruh, Susan; Obeidat, Fayiz

    2015-01-01

    In this qualitative study, Saudi engineering students talk openly of their experiences learning English in the Kingdom of Saudi Arabia (KSA) and as university students in the United States (US). These students reported that they learned only the basics of vocabulary and grammar in KSA. Consequently, they came to the US with few English skills. In…

  17. A Novel Approach to Physiology Education for Biomedical Engineering Students

    Science.gov (United States)

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  18. Preparing students for workplace learning in higher engineering education

    NARCIS (Netherlands)

    Dehing, A.J.M.

    2012-01-01

    Student preparation for professional practice is an important course aim in the education of engineers by the universities of applied sciences (Geurts & Meijers, 2004; Sheppard, et al., 2008; Sullivan & Rosin, 2008). Since the start of the professional engineering schools at the beginning of the

  19. Innovation Pilot – to Improve Innovation Competences of Engineering Students

    DEFF Research Database (Denmark)

    Løje, Hanne; Grex, Sara

    2017-01-01

    In the future, there will be increasing demands for skilled and well-educated engineers who are capable of developing new solutions through innovation and can work in multidisciplinary teams. Therefore the universities are developing innovation and entrepreneurship programs to improve...... the innovation competences of the engineering students to meet this demand. In this paper, we will discuss how to improve innovation competences of engineering students and describe how it is done in a newly developed course at the Technical University of Denmark (DTU). The aim of the course is to strengthened...... innovation skills in addition to personal and interpersonal skills. This is done in close collaboration with companies. The outline for the course is that the students work in multidisciplinary teams with specific challenges offered by the companies. The main findings so far show the importance of the use...

  20. Biomedical learning experiences for middle school girls sponsored by the Kansas State University Student Chapter of the IEEE EMBS.

    Science.gov (United States)

    Gruber, Lucinda; Griffith, Connor; Young, Ethan; Sullivan, Adriann; Schuler, Jeff; Arnold-Christian, Susan; Warren, Steve

    2009-01-01

    Learning experiences for middle school girls are an effective means to steer young women toward secondary engineering curricula that they might not have otherwise considered. Sponsorship of such experiences by a collegiate student group is worthwhile, as it gives the group common purpose and places college students in a position to mentor these young women. This paper addresses learning experiences in different areas of bio-medical engineering offered to middle school girls in November 2008 via a day-long workshop entitled "Engineering The Body." The Kansas State University (KSU) Student Chapter of the IEEE Engineering in Medicine and Biology Society (EMBS) worked with the KSU Women in Engineering and Science Program (WESP) to design and sponsor these experiences, which addressed the areas of joint mechanics, electrocardiograms, membrane transport, computer mouse design, and audio filters for cochlear implants. Fifty five middle-school girls participated in this event, affirming the notion that biomedical engineering appeals to young women and that early education and recruitment efforts have the potential to expand the biomedical engineering talent pool.

  1. Women of science righting the record

    CERN Document Server

    Farnes, Patricia

    1993-01-01

    Women of Science is a collection of essays dealing with contributions women have made to various scientific disciplines, written by women scientists in those disciplines. The areas covered are: astronomy, archaeology, biology, chemistry, crystallography, engineering, geology, mathematics, medicine, and physics. The women who have written these essays are, for the most part, not professional historians, but rather scientific professionals who felt the necessity of researching the contributions women have made to the devlopment of their fields. The essays are unique, not only because they recover lost women who made significant contributions to their disciplines, but also because they are written with a depth of understanding that only a scientist working in a specific area can have. The essays will be of interest not only to students (especially women students) of science who may be unaware of the many contributions women have made, but also to readers of the history of science whoses texts more often than n...

  2. Crack in the Pipeline: Why Female Underrepresented Racial Minority College Students Leave Engineering

    Science.gov (United States)

    Vazquez-Akim, Jenny Amanda

    Female and underrepresented racial minority (URM) students are indicating their interest in STEM fields at increasing rates, yet when examining the engineering discipline specifically disparities in degree completion rates between female URM students and others in the racial or gender majority are even more severe. This study explored female URM college student perceptions of school and classroom climate and the impact these factors had on their decision to persist or to leave engineering. Through a qualitative interview methodology grounded in Social Cognitive Career Theory (SCCT), this study explored factors including self-efficacy, perceived barriers and supports, other-group orientation and outcome expectations that influenced students' academic decision-making. Interview participants consisted of 5 female URM students that matriculated into an engineering major at a top tier, private university but subsequently left the discipline in pursuit of another field of study. The perceptions of this target population were juxtaposed with interview data from 4 male non-URM, 4 female non-URM, and 4 male URM leavers in addition to 7 female URM engineering persisters. As a final component in the research design, 9 undergraduate engineering faculty were interviewed to understand their perceptions of why female URM students leave engineering in pursuit of other disciplines. With faculty being a central component of the academic environment, their perceptions of female URM students, as well as how they view their role in these students' retention, provided insight on this other side of retention question. Salient findings emerged that differentiated female URM leavers' experiences in engineering from other student populations. Female URM leavers were less likely to call upon self-directed learning strategies in response to academic challenges. Perceived academic barriers such as heavy course loads, lack of connection between material and application, and perceived academic

  3. Insights into Technopreneurship: Self-Employment Perceptions among Engineering Students

    Science.gov (United States)

    Urban, B.; Barreira, J.

    2007-01-01

    Infusing an enterprising spirit into student endeavors and the promotion of entrepreneurial skills has been implemented worldwide as an impetus to promote "technopreneurship". This study empirically investigates entrepreneurial perceptions among non-business engineering students before and after exposure to an entrepreneurship intervention.…

  4. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering

    OpenAIRE

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-01-01

    Advances in science, technology, engineering, and mathematics are critical to the American economy and require a robust workforce. The scarcity of women in this workforce is a well-recognized problem, but data-driven solutions to this problem are less common. We provide experimental evidence showing that gender composition of small groups in engineering has a substantial impact on undergraduate women’s persistence. Women participate more actively in engineering groups when members are mostly ...

  5. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  6. The investigation of STEM Self-Efficacy and Professional Commitment to Engineering among female high school students

    Directory of Open Access Journals (Sweden)

    Yi-hui Liu

    2014-06-01

    Full Text Available This study employed social cognitive theory and social cognitive career theory (SCCT as foundations to explore the influence of high school students' beliefs about female gender roles and female engineer role models on science, technology, engineering, and mathematics (STEM self-efficacy and professional commitment to engineering. A total of 88 students from a national girls' high school participated in STEM project-based learning. A survey questionnaire named The STEM Self-efficacy and Professional Commitment to Engineering Questionnaire, developed by the researchers, was administered to collect data, and a structured equation model was employed to confirm the multi-theoretical model developed in this study. The results of this study show that enhancing the gender role beliefs and engineer role models of female students may increase their STEM self-efficacy and professional commitment to engineering. In other words, the female high school students' professional commitment to engineering model can explain students' intentions for future engineering careers. Thus, this study suggests integrating STEM project-based learning into the curricula of various schools and integrating female engineer role models into STEM project-based learning activities for female students, which can enhance female high school students' STEM self-efficacy and professional commitment to engineering.

  7. Implementing a Flip-Flop Teaching Model in Thermal Physics for Engineering Students

    Directory of Open Access Journals (Sweden)

    Dr. Emil C. Alcantara

    2015-11-01

    Full Text Available Implementing flip-flop teaching in a physics classroom allows students to learn concepts outside of the classroom and apply what they learn in the classroom, working with other students and getting immediate feedback from the instructor. The purpose of this study was to determine the effect of flip-flop teaching in the performance of engineering students in introductory physics particularly in thermal physics. The study employed descriptive and quasi-experimental method to describe and compare the performance of engineering students in thermal physics when grouped according to sex and types of instruction. Three physics classes consisting of 125 sophomore engineering students at the Batangas State University during the second semester of the SY 2013-2014 were handled by the researcher and selected purposively as participants of the study. It was found out that the variation in the performances of male and female students in the conceptual questions, in the problem solving questions, and overall performance in thermal physics are not significantly different. Male and female students have an overall satisfactory performance in thermal physics. The study also revealed that the variation in the performances of the students in the conceptual questions, in the problem solving questions, and overall performance in thermal physics when grouped according to the types of instruction are not significantly different. Engineering students taught in a traditional physics classroom, in a flipped physics classroom, and in an enhanced-flipped physics classroom are more likely to have similar performances in thermal physics.

  8. Science, Technology, Engineering, Math (STEM) in Higher Education from the Perspective of Female Students: An Institutional Ethnography

    Science.gov (United States)

    Parson, Laura J.

    A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate

  9. Using Student Video Cases to Assess Pre-service Elementary Teachers' Engineering Teaching Responsiveness

    Science.gov (United States)

    Dalvi, Tejaswini; Wendell, Kristen

    2017-10-01

    Our study addresses the need for new approaches to prepare novice elementary teachers to teach both science and engineering, and for new tools to measure how well those approaches are working. This in particular would inform the teacher educators of the extent to which novice teachers are developing expertise in facilitating their students' engineering design work. One important dimension to measure is novice teachers' abilities to notice the substance of student thinking and to respond in productive ways. This teacher noticing is particularly important in science and engineering education, where students' initial, idiosyncratic ideas and practices influence the likelihood that particular instructional strategies will help them learn. This paper describes evidence of validity and reliability for the Video Case Diagnosis (VCD) task, a new instrument for measuring pre-service elementary teachers' engineering teaching responsiveness. To complete the VCD, participants view a 6-min video episode of children solving an engineering design problem, describe in writing what they notice about the students' science ideas and engineering practices, and propose how a teacher could productively respond to the students. The rubric for scoring VCD responses allowed two independent scorers to achieve inter-rater reliability. Content analysis of the video episode, systematic review of literature on science and engineering practices, and solicitation of external expert educator responses establish content validity for VCD. Field test results with three different participant groups who have different levels of engineering education experience offer evidence of construct validity.

  10. Women in Engineering in Turkey--A Large Scale Quantitative and Qualitative Examination

    Science.gov (United States)

    Smith, Alice E.; Dengiz, Berna

    2010-01-01

    The underrepresentation of women in engineering is well known and unresolved. However, Turkey has witnessed a shift in trend from virtually no female participation in engineering to across-the-board proportions that dominate other industrialised countries within the 76 years of the founding of the Turkish Republic. This paper describes the largest…

  11. Engineering Education at a New Public University in Brazil: First Students' Contact with Engineering Methods

    Science.gov (United States)

    Romero, Jesus Franklin A.; Leite, Patricia; Mantovani, Gerson L.; Lanfredi, Alexandre J. C.; Martins-Filho, Luiz S.

    2011-01-01

    This paper describes the experience of an introductory discipline to the engineering curricula at the Brazilian Federal University of ABC (UFABC). The university offers a common basic curriculum that must be accomplished by every student and can be followed by professionalising courses. The discipline "Introduction to Engineering"…

  12. Young Women's Conference in STEM: Our starting point for getting women into STEM fields

    Science.gov (United States)

    Ortiz, Deedee; Zwicker, Andrew; Greco, Shannon; Dominguez, Arturo

    2015-11-01

    The number of women in STEM careers is staggeringly low; just one in seven engineers are female and only 27% of all computer science jobs are held by women. A recent US Dept. of Commerce report found that between 2000-2011 women experienced no employment growth in STEM jobs. According to the AIP, the percentage of women in physics overall is 26% and women make up less than 7% of the fusion energy workforce. To address this problem we have, since 2001, run a conference to introduce young women to the wide range of careers in STEM fields in a way that is not part of their typical education. By introducing students in a meaningful way to successful women in STEM, from graduate students to senior researchers, the intent of the conference is to foster interest, develop mentoring relationships, and to provide role models that will have a positive influence on future educational and career choices. Data from surveys indicate that this is indeed the impact. For example, 86% of 2015 attendees indicated they are more likely to major in a scientific field after attending the conference then they were before. We are now in the process of expanding and improving the conference in order to reach more students and increase the overall impact.

  13. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    Science.gov (United States)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  14. Gendered practices of constructing an engineering identity in a problem-based learning environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    2006-01-01

    of an engineering identity with masculinity and the culturally defined engineering competencies leads to different learning experiences for male and female students. The nature of hard-core engineering subjects, based on male interests, privileges men and acts as a barrier to women. The masculine culture......This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data...

  15. Taking the initiative. A leadership conference for women in science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-01-01

    The conference sprang from discussions on the current climate that women face in science, mathematics, engineering, and technology. The conference (and this document) is a beginning, not a culmination, of women`s learning leadership skills. Conferees were active, articulate, energetic, and ready to learn leadership qualities, some of which seem universal, others that appear to require skills in specific fields. After the introduction, the workshops and presentations are arranged under vision and direction, barriers, alignment and communication, and motivation and inspiration. Some statistics are presented on women degrees and employment in various fields.

  16. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    Science.gov (United States)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  17. Think first job! Preferences and expectations of engineering students in a French `Grande Ecole'

    Science.gov (United States)

    Gerwel Proches, Cecile N.; Chelin, Nathalie; Rouvrais, Siegfried

    2018-03-01

    A career in engineering may be appealing owing to the prospect of a good salary and a dynamic work environment. There may, however, be challenges for students wishing to enter their first job. In engineering education, career preparation courses may be included so as to prepare students adequately for their first job, future careers, and to reinforce career decision-making skills. This study explored the first-job preferences and expectations of engineering students at a generalist French 'Grande Ecole' before their compulsory internship. The study ultimately provided insight into ways in which future engineers may best be equipped for their first jobs. A qualitative research study was employed, using four focus groups to collect data, which was analysed thematically. Key findings indicate the resolute importance that engineering students place on having a challenging job, teamwork, independence, opportunities for development, and a participative style of being managed. The research findings may be of value in order to renew an engineering curriculum with better alignment between students' expectations and industry needs.

  18. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  19. The attitudes of the undergraduate nursing students towards lesbian women and gay men.

    Science.gov (United States)

    Unlu, Hayriye; Beduk, Tülin; Duyan, Veli

    2016-12-01

    This study was conducted to determine the attitudes of undergraduate nursing students towards lesbian women and gay men. Nursing education in Turkey is conducted holistically; in other words, it is an integration of the physical, spiritual, mental and social realms. Students are therefore expected to not express any discrimination due to factors such as religion, language, race and gender. However, some serious problems still exist in terms of the practical applications of that philosophy. This study was descriptive. This study included 964 students. The Attitudes towards Lesbian Women and Gay Men scale and a questionnaire were used to learn about the attitudes of undergraduate nursing students regarding gay men and lesbian women. Results of this study have indicated that the attitudes of religiously educated and/or conservative students towards lesbian women and gay men were negative. Female students from families with high incomes and highly educated families attended social activities and read more than other female students. The students with free life choice options expressed very positive attitudes towards gay men. The nursing education curriculum should cover information about patients with diverse sexual orientations and their absolute rights for equally optimal healthcare. Strategies to discourage traditional gender role stereotypes and educational and media experiences for better acceptance of sexual minorities need to be developed by educational policy makers. Antidiscrimination policies protecting lesbian women and gay men should be developed by the legislative authorities and then taught to students during their nursing education. Getting familiar with diverse sexual orientations might create awareness among nursing students and reduce their attitudinal and behavioural prejudices and biases. To provide equal healthcare services for all patients, nurses must have accurate information about lesbian women, gay men and modify their attitude and behaviour

  20. The Influence of Self-Efficacy on Entrepreneurial Intention among Engineering Students

    Directory of Open Access Journals (Sweden)

    N. Saraih U.

    2018-01-01

    Full Text Available The objective of this study is to examine the influence of self-efficacy on entrepreneurial intention amongst engineering students from Public Higher Educational Institution (PHEI in Malaysia. This study employs a quantitative method using the questionnaire instrument. Data is obtained from 345 respondents comprising of final year students from various public institutes of higher learning in Malaysia. Findings revealed that the students from these public institutes demonstrated a high interest in entrepreneurial intention (mean=3.67, SD=.54 and a moderate level of sel-efficacy (mean=3.22, SD=.71. Findings also pointed out that self-efficacy is significantly associated with entrepreneurial intention (β=.45, p<.01 as exhibited by the engineering students in these institutes. These findings further reinforces an element of Bandura Social Learning Theory which states that self-efficacy is able to influence the entrepreneurial intention amongst engineering students in public institutions. As a result, public instituitions can emphasize strategies to increase the degree of self-efficacy amongst students to enhance the level of entrepreneurial intention. Theoretical and practical implications of the findings are also discussed along with recommendations for the further improvement of institution management.

  1. Women of Color in Mathematics, Science & Engineering: A Review of the Literature.

    Science.gov (United States)

    Clewell, Beatriz Chu; Anderson, Bernice

    This review of the literature on women of color in mathematics, science, and engineering helps define the need for a national agenda for equity in these fields sponsored by the Educational Equity Policy Studies Program of the Center for Women Policy Studies, and for a comprehensive research program that examines barriers to the participation of…

  2. Changes in the Social Responsibility Attitudes of Engineering Students Over Time.

    Science.gov (United States)

    Bielefeldt, Angela R; Canney, Nathan E

    2016-10-01

    This research explored how engineering student views of their responsibility toward helping individuals and society through their profession, so-called social responsibility, change over time. A survey instrument was administered to students initially primarily in their first year, senior year, or graduate studies majoring in mechanical, civil, or environmental engineering at five institutions in September 2012, April 2013, and March 2014. The majority of the students (57 %) did not change significantly in their social responsibility attitudes, but 23 % decreased and 20 % increased. The students who increased, decreased, or remained the same in their social responsibility attitudes over time did not differ significantly in terms of gender, academic rank, or major. Some differences were found between institutions. Students who decreased in social responsibility initially possessed more positive social responsibility attitudes, were less likely to indicate that college courses impacted their views of social responsibility, and were more likely to have decreased in the frequency that they participated in volunteer activities, compared to students who did not change or increased their social responsibility. Although the large percentage of engineering students who decreased their social responsibility during college was disappointing, it is encouraging that courses and participation in volunteer activities may combat this trend.

  3. Do Gender Differences in Perceived Prototypical Computer Scientists and Engineers Contribute to Gender Gaps in Computer Science and Engineering?

    Science.gov (United States)

    Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E

    2018-01-01

    Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.

  4. A biased historical perspective of women in the engineering field at Dryden from 1946 to November 1992

    Science.gov (United States)

    Powers, Sheryll Goecke

    1994-01-01

    Being a woman in engineering, and in particular, being the woman with the dubious distinction of having the most years at Dryden, gives the author a long-term perspective on the women who worked in the engineering field and their working environment. The working environment for the women was influenced by two main factors. One factor was the Dryden's growth of 14 persons (2 of them women) at the end of 1946 to the present size. The other factor was the need for programming knowledge when the digital computers came into use. Women have been involved with flight research at Dryden since the days of the first transonic and supersonic airplanes. This paper uses available records, along with memory, to document the number of women in engineering at Dryden, to comment about observed trends, and to make personal observations.

  5. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  6. Academic Performance as a Predictor of Student Growth in Achievement and Mental Motivation During an Engineering Design Challenge in Engineering and Technology Education

    OpenAIRE

    Mentzer, Nathan

    2008-01-01

    The purpose of this correlational research study was to determine if students’ academic success was correlated with: (a) the student change in achievement during an engineering design challenge; and (b) student change in mental motivation toward solving problems and critical thinking during an engineering design challenge. Multiple experimental studies have shown engineering design challenges increase student achievement and attitude toward learning, but conflicting evidence surrounded the im...

  7. A unicorn's tale: Examining the experiences of Black women in engineering industry

    OpenAIRE

    Ross, Monique S

    2016-01-01

    Black women have recently been identified as the most educated demographic in the United States, and yet they are grossly underrepresented in engineering. They comprise 6.4 % of the U.S. population and only 0.72 % of engineering industry. Meanwhile, engineers have been identified as the key to the United States’ ability to maintain its prominence and leadership in a competitive global economy due to their contribution to maintaining and improving our infrastructures and standard of living. Th...

  8. Student Leaders at Women's Postsecondary Institutions: A Global Perspective

    Science.gov (United States)

    Renn, Kristen A.; Lytle, Jesse H.

    2010-01-01

    The single-sex higher education sector is growing worldwide as more women seek access to postsecondary education. Although positive learning outcomes--including leadership development--of women's colleges are well documented in the United States, less is known internationally. We conducted an exploratory qualitative study of 46 student leaders…

  9. Engaging Students in the Ethics of Engineering and Technology

    DEFF Research Database (Denmark)

    Keiko, Yasukawa

    This paper argues that education for engineers and technologists should focus on the ethics of technology and engineering, and not just ethics in technology and engineering projects. It argues that one's expression of their ethical position is linked closely to their identity formation, and is di......, and is different to other "competencies" that are emphasised in engineering and technology education. Principles of sustainable development are proposed as a framework for engaging students in reflecting on their ethical positions and practices.......This paper argues that education for engineers and technologists should focus on the ethics of technology and engineering, and not just ethics in technology and engineering projects. It argues that one's expression of their ethical position is linked closely to their identity formation...

  10. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  11. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  12. An Academic Survey of Engineering Student Athletes at a Division I University

    Science.gov (United States)

    Pierce, Charles E.

    2007-01-01

    This paper explores the academic success of NCAA Division I collegiate student athletes that enroll in engineering majors. At the University of South Carolina, which is a member of the NCAA Division I Southeastern Conference, nineteen engineering students were on an active athletic roster during the spring semester of 2005. The mean cumulative…

  13. Examining Gender Inequality In A High School Engineering Course.

    Science.gov (United States)

    Riegle-Crumb, Catherine; Moore, Chelsea

    2013-01-01

    This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear minority, comprising only a total of 14% of students. Quantitative analyses of surveys administered at the beginning of the school year (Fall 2011) revealed statistically significant gender gaps in personal attitudes towards engineering and perceptions of engineering climate. Specifically, we found that compared to males, females reported lower interest in and intrinsic value for engineering, and expressed less confidence in their engineering skills. Additionally, female students felt that the classroom was less inclusive and viewed engineering occupations as less progressive. Gender disparities on all of these measures did not significantly decrease by the end of the school year (Spring 2012). Findings suggest that efforts to increase the representation of women in the engineering pipeline via increasing exposure in secondary education must contend not only with obstacles to recruiting high school girls into engineering courses, but must also work to remedy gender differences in engineering attitudes within the classroom.

  14. Helping hands : successful women take time out to be mentors to girls, fostering an advantage males take for granted

    International Nuclear Information System (INIS)

    Lorenz, A.

    1999-01-01

    Efforts by professional women in industry to encourage and mentor young women to study science and engineering and to raise the profile of women in industry are described. The case of Dr. Jane Cooley at Syncrude Research Centre is cited as an example of similar programs. Dr. Cooley provides guidance to third-year university students working on year-long internships at Syncrude. Reference is also made to the Alberta Women's Science Network (Internet address: www.awsn.com) where young women interested in careers in science and engineering can turn for advice. Female high school students unanimously complain of guidance counselors who even today discourage women from entering science and engineering programs. The general conclusion is that better guidance must start in the high schools, because missing out on the right courses in science and mathematics at that level can close career doors by the end of the twelfth grade

  15. Cartesian and Corporeal Agency: Women's Studies Students' Reflections on Body Experience

    Science.gov (United States)

    Liimakka, Satu

    2011-01-01

    This article explores young women's agency in relation to the body and the possible role of women's studies in interpreting body experiences and constructing agency. The article is based on written accounts of one's body experience written by Finnish students of women's studies. The young women's accounts manifested two types of agency: the…

  16. Dilemmas of Girls and Women in Engineering: A Study in Portugal

    Science.gov (United States)

    Saavedra, Luísa; Araújo, Alexandra M.; Taveira, Maria do Céu; Vieira, Cristina C.

    2014-01-01

    The reason that girls and women withdraw from science and technology education and careers has been a universal concern in the social sciences. This study investigated how gendered constructions of identity are translated into the barriers and fears that female students and professional women experience in decision-making about their careers. We…

  17. Cultivation of students' engineering designing ability based on optoelectronic system course project

    Science.gov (United States)

    Cao, Danhua; Wu, Yubin; Li, Jingping

    2017-08-01

    We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.

  18. Students' Perceptions of the Relevance of Mathematics in Engineering

    Science.gov (United States)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-01-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, "Education for Civil…

  19. Evaluating Risk Awareness in Undergraduate Students Studying Mechanical Engineering

    Science.gov (United States)

    Langdon, G. S.; Balchin, K.; Mufamadi, P.

    2010-01-01

    This paper examines the development of risk awareness among undergraduate students studying mechanical engineering at a South African university. A questionnaire developed at the University of Liverpool was modified and used on students from the first, second and third year cohorts to assess their awareness in the areas of professional…

  20. Qualitative Study of First-Generation Latinas: Understanding Motivation for Choosing and Persisting in Engineering

    OpenAIRE

    Verdin, Dina; Godwin, Allison F; Morazes, Jennifer

    2015-01-01

    Latina undergraduates pursuing an engineering degree continue to be an underrepresented group at four-year universities. Compared to their male counterparts, fewer women enter the field of engineering; however, of those Latino/as who do matriculate, they have the same likelihood of persisting as their White counterparts. Furthermore, a dearth of underrepresented students such as Latino/as and first-generation college students enter or remain in the field of engineering. The need for increased...

  1. Student Attraction to Engineering through Flexibility and Breadth in the Curriculum

    Science.gov (United States)

    Alpay, E.

    2013-01-01

    Several European universities provide entry to general engineering studies prior to degree specialisation. The potential advantages of such entry include the provision of a broader foundation in engineering fundamentals, the option for students to defer specialisation until a greater awareness of the different engineering disciplines and the…

  2. Information seeking and students studying for professional careers: the cases of engineering and law students in Ireland

    Directory of Open Access Journals (Sweden)

    Gillian Kerins

    2004-01-01

    Full Text Available This paper reports the results of two empirical studies which explored the information seeking behaviour of engineering and law students in Ireland. Findings reveal similar patterns in the information seeking behaviour between students studying to become professionals and information seeking patterns of these groups identified in Leckie et al.'s model. Students learned their information seeking strategies, including effective and less effective approaches, from educators and continuing mis-perceptions of libraries and information professionals. The studies suggest that engineering and law students in Ireland could benefit from greater information literacy training and awareness, enabling them to acquire the information skills they need to function effectively and efficiently in their future professional work lives.

  3. Why Do Women Leave Science and Engineering? NBER Working Paper No. 15853

    Science.gov (United States)

    Hunt, Jennifer

    2010-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60% of the gap can be explained by the relatively greater exit rate from…

  4. Current status of nuclear engineering education

    International Nuclear Information System (INIS)

    Palladino, N.J.

    1975-01-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of the present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs

  5. The First Year of College: Understanding Student Persistence in Engineering

    Science.gov (United States)

    Hayden, Marina Calvet

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experience of academic life and academic policies, as well as in their level of pre-college academic preparation and financial circumstances. One key finding was that students' experiences during the first year of college varied widely based on the extent to which they had acquired organizational and learning skills prior to college. The study used a mixed methods approach. Quantitative and qualitative data were collected through an online survey and one-on-one interviews conducted with freshman students near the end of their first year of college. The theoretical foundations of this study included Astin's Theory of Student Involvement and Tinto's Theory of Student Departure. The design of the study was guided by these theories which emphasize the critical importance of student involvement with the academic and social aspects of college during the first year of college.

  6. Investigation of Students' Experiences of Gendered Cultures in Engineering Workplaces

    Science.gov (United States)

    Male, Sally A.; Gardner, Anne; Figueroa, Eugenia; Bennett, Dawn

    2018-01-01

    Women remain severely under-represented in engineering in Australia as in all Western countries. This limits the pool of talent, standpoints and approaches within the profession. Furthermore, this under-representation equates to restriction of the benefits of being an engineer mainly to men. Gendered workplace experiences have been found to…

  7. Computer vision syndrome and associated factors among medical and engineering students in chennai.

    Science.gov (United States)

    Logaraj, M; Madhupriya, V; Hegde, Sk

    2014-03-01

    Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer.

  8. Optics in engineering education: stimulating the interest of first-year students

    Science.gov (United States)

    Blanco-García, Jesús; Vazquez-Dorrío, Benito

    2014-07-01

    The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.

  9. A Mathematics Support Programme for First-Year Engineering Students

    Science.gov (United States)

    Hillock, Poh Wah; Jennings, Michael; Roberts, Anthony; Scharaschkin, Victor

    2013-01-01

    This article describes a mathematics support programme at the University of Queensland, targeted at first-year engineering students identified as having a high risk of failing a first-year mathematics course in calculus and linear algebra. It describes how students were identified for the programme and the main features of the programme. The…

  10. Tinkering and Technical Self-Efficacy of Engineering Students at the Community College

    Science.gov (United States)

    Baker, Dale R.; Wood, Lorelei; Corkins, James; Krause, Stephen

    2015-01-01

    Self-efficacy in engineering is important because individuals with low self-efficacy have lower levels of achievement and persistence in engineering majors. To examine self-efficacy among community college engineering students, an instrument to specifically measure two important aspects of engineering, tinkering and technical self-efficacy, was…

  11. Five Years of Women in Nuclear at Texas A&M University

    International Nuclear Information System (INIS)

    Dromgoole, L.

    2015-01-01

    Texas A&M University Women in Nuclear (WiN–TAMU) seeks to provide professional development opportunities for its members while also reaching out to the public both on the university campus and the surrounding local community. The purpose of this poster is to share best practices and learning experiences promoting the career development and education of women in nuclear-related fields acquired over five years of existence as a chapter. Since its reestablishment in 2010, WiN–TAMU has hosted events for women in disciplines related to nuclear technology, including presentations from experts in the nuclear field, Q&A sessions with nuclear engineering faculty, workshops on communicating technical issues about nuclear to the public, public screenings of nuclear films, technical tours of nuclear power plants, medical facilities and regulatory bodies, and socials to build camaraderie among members. WiN–TAMU collaborates with the Nuclear Power Institute (NPI) by interacting with high school students in NPI’s POWER SET programmes. POWER SET (Powerful Opportunities forWomen Eager and Ready for Science, Engineering, and Technology) provides young women with the educational tools and support to pursue education and careers in science, technology, engineering, and math (STEM). The POWER SET students also interact with members of WiN at Texas’s two nuclear power plants, Comanche Peak and South Texas Project. This tiered approach provides the students with the perspectives of WiN members at various stages in their education and careers. As of the end of the 2014 school year, 81% of the students self-identified that they will pursue STEM course of study (as opposed to the U.S. average of 15–17%). The POWER SET model has recently been implemented internationally in the Philippines with a new programme of 50 young women and is being considered for implementation at the Vienna International School as well. (author)

  12. Engineering Women’s Attitudes and Goals in Choosing Disciplines with above and Below Average Female Representation

    Directory of Open Access Journals (Sweden)

    Dina Verdín

    2018-03-01

    Full Text Available Women’s participation in engineering remains well below that of men at all degree levels. However, despite the low enrollment of women in engineering as a whole, some engineering disciplines report above average female enrollment. We used multiple linear regression to examine the attitudes, beliefs, career outcome expectations, and career choice of first-year female engineering students enrolled in below average, average, and above average female representation disciplines in engineering. Our work begins to understand how the socially constructed masculine cultural norms of engineering may attract women differentially into specific engineering disciplines. This study used future time perspective, psychological personality traits, grit, various measures of STEM identities, and items related to career outcome expectations as theoretical frameworks. The results of this study indicate that women who are interested in engineering disciplines with different representations of women (i.e., more or less male-dominated have significantly different attitudes and beliefs, career goals, and career plans. This study provides information about the perceptions that women may have and attitudes that they bring with them into particular engineering pathways.

  13. Women and Minorities in Engineering: A Review of the Literature

    Science.gov (United States)

    Mamaril, Natasha J. A; Royal, Kenneth D.

    2008-01-01

    This review of the literature investigates the various factors identified by researchers to explain women's underrepresentation in the engineering field. Because a great deal of research has been published through the years, a compilation summary of existing research was necessary. This literature review utilized searches from thousands of…

  14. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    Science.gov (United States)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found

  15. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    Science.gov (United States)

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  16. The Role of Entrepreneurship Program Models and Experiential Activities on Engineering Student Outcomes

    Science.gov (United States)

    Duval-Couetil, Nathalie; Shartrand, Angela; Reed, Teri

    2016-01-01

    Entrepreneurship education is being delivered to greater numbers of engineering students through a variety of courses, programs, and experiential learning activities. Some of these opportunities are designed primarily to serve engineering students in their departments and colleges, while others are cross-campus, university-wide efforts to serve…

  17. Assessing Freshman Engineering Students' Understanding of Ethical Behavior.

    Science.gov (United States)

    Henslee, Amber M; Murray, Susan L; Olbricht, Gayla R; Ludlow, Douglas K; Hays, Malcolm E; Nelson, Hannah M

    2017-02-01

    Academic dishonesty, including cheating and plagiarism, is on the rise in colleges, particularly among engineering students. While students decide to engage in these behaviors for many different reasons, academic integrity training can help improve their understanding of ethical decision making. The two studies outlined in this paper assess the effectiveness of an online module in increasing academic integrity among first semester engineering students. Study 1 tested the effectiveness of an academic honesty tutorial by using a between groups design with a Time 1- and Time 2-test. An academic honesty quiz assessed participants' knowledge at both time points. Study 2, which incorporated an improved version of the module and quiz, utilized a between groups design with three assessment time points. The additional Time 3-test allowed researchers to test for retention of information. Results were analyzed using ANCOVA and t tests. In Study 1, the experimental group exhibited significant improvement on the plagiarism items, but not the total score. However, at Time 2 there was no significant difference between groups after controlling for Time 1 scores. In Study 2, between- and within-group analyses suggest there was a significant improvement in total scores, but not plagiarism scores, after exposure to the tutorial. Overall, the academic integrity module impacted participants as evidenced by changes in total score and on specific plagiarism items. Although future implementation of the tutorial and quiz would benefit from modifications to reduce ceiling effects and improve assessment of knowledge, the results suggest such tutorial may be one valuable element in a systems approach to improving the academic integrity of engineering students.

  18. The Chemical Engineering behind How Carbonated Beverages Go Flat: A Hands-On Experiment for Freshmen Students

    Science.gov (United States)

    Hohn, Keith L.

    2007-01-01

    A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…

  19. REPROBATION AND LACK OF INTEREST IN MECHATRONICS ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    César Humberto Guzmán Valdivia

    2013-07-01

    Full Text Available Engineering education in mechatronics is an attractive field of research because it is a new multidisciplinary career. However, a potential problem is the reprobation rate. In the period from January to April 2012 at the Universidad Politécnica de Zacatecas a 53% regular students of a total of 197 were registered. To find the causes of this problem, a survey was conducted to determine the causes of reprobation, lack of motivation and interest to a population of 96 students, of which 40 were the first training cycle, 32 the second and 24 the third. The surveys yielded three main results. The first indicates that the lack of interest is proportional to the time spent in college. The second shows that the reprobation rate is linked to the laziness and the excess of courses. And the last shows a lack of motivation and low expectations of student due to the monotony of the theoretical courses. In conclusion, more research is needed to have a motivated student in an engineering career in mechatronics.

  20. Women in Science and Engineering Building Community Online

    Science.gov (United States)

    Kleinman, Sharon S.

    This article explores the constructs of online community and online social support and discusses a naturalistic case study of a public, unmoderated, online discussion group dedicated to issues of interest to women in science and engineering. The benefits of affiliation with OURNET (a pseudonym) were explored through participant observation over a 4-year period, telephone interviews with 21 subscribers, and content analysis of e-mail messages posted to the discussion group during a 125-day period. The case study findings indicated that through affiliation with the online discussion group, women in traditionally male-dominated fields expanded their professional networks, increased their knowledge, constituted and validated positive social identities, bolstered their self-confidence, obtained social support and information from people with a wide range of experiences and areas of expertise, and, most significantly, found community.

  1. Student involvement as a vehicle for empowerment: a case study of the student platform for engineering education development

    KAUST Repository

    Delaine, David A.; Seif-Naraghi, Sonya B.; Al-Haque, Shahed; Wojewoda, Nicolò ; Meninato, Yvonne; DeBoer, Jennifer

    2010-01-01

    This paper examines the mission, structure and outputs of one organisation, the Student Platform for Engineering Education Development (SPEED), as a case study for how student-led organisations can use student involvement to promote and sustain

  2. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  3. The Civil Engineering Graduate Program at PUC-Rio: A Brazilian Experience.

    Science.gov (United States)

    Romanel, Celso; Filho, Jose Napoleao

    This document discusses the graduate programs in civil engineering at the Pontifical Catholic University of Rio de Janeiro, Brazil, the oldest Brazilian private university. The report features discussions of faculty member backgrounds, trends in student enrollment, women's participation in the program, degree completion, student origins,…

  4. A Project-Based Engineering and Leadership Workshop for High School Students

    Science.gov (United States)

    Ryder, Linda Sue; Pegg, Jerine; Wood, Nathan

    2012-01-01

    Summer outreach programs provide pre-college participants an introduction to college life and exposure to engineering in an effort to raise the level of interest and bring more students into engineering fields. The Junior Engineering, Mathematics, and Science (JEMS) program is a project-based summer workshop in which teams of high school students…

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 20: Engineers as information processors: A survey of US aerospace engineering faculty and students

    Science.gov (United States)

    Holland, Maurita Peterson; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1991-01-01

    U.S. aerospace engineering faculty and students were surveyed as part of the NASA/DoD Aerospace Knowledge Research Project. Faculty and students were viewed as information processors within a conceptual framework of information seeking behavior. Questionnaires were received from 275 faculty members and 640 students, which were used to determine: (1) use and importance of information sources; (2) use of specific print sources and electronic data bases; (3) use of information technology; and (4) the influence of instruction on the use of information sources and the products of faculty and students. Little evidence was found to support the belief that instruction in library or engineering information use has significant impact either on broadening the frequency or range of information products and sources used by U.S. aerospace engineering students.

  6. Taking the initiative: A leadership conference for women in science and engineering

    Science.gov (United States)

    1994-01-01

    The conference sprang from discussions on the current climate that women face in science, mathematics, engineering, and technology. The conference (and this document) is a beginning, not a culmination, of women's learning leadership skills. Conferees were active, articulate, energetic, and ready to learn leadership qualities, some of which seem universal, others that appear to require skills in specific fields. After the introduction, the workshops and presentations are arranged under vision and direction, barriers, alignment and communication, and motivation and inspiration. Some statistics are presented on women degrees and employment in various fields.

  7. An Effective Industry-Based Mentoring Approach for the Recruitment of Women and Minorities in Engineering

    Science.gov (United States)

    Ilumoka, Abby; Milanovic, Ivana; Grant, Natalie

    2017-01-01

    This article reflects upon an investigative study of the powerful impact that mentoring partnerships have on pre-college students and young engineering professionals in Hartford, CT. It was found that these partnerships can provide very strong foundations for a diverse pre-college student engineering pipeline that includes significant numbers of…

  8. Improving student retention in computer engineering technology

    Science.gov (United States)

    Pierozinski, Russell Ivan

    The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.

  9. Excel Exercises for First-Year Engineering Students

    Science.gov (United States)

    Wagner, Geri

    2006-01-01

    Several Excel applications are presented which are part of the syllabus in the first semester of engineering studies at Haugesund College. The aim of the applications is for the students to acquire both computing skills and mathematical understanding at the same time. The applications cover numerical solution of equations, differentiation,…

  10. An Alternative Route to Chemical Engineering for Minority and Other Students.

    Science.gov (United States)

    Cussler, E. L.

    The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…

  11. Gaming, texting, learning? Teaching engineering ethics through students' lived experiences with technology.

    Science.gov (United States)

    Voss, Georgina

    2013-09-01

    This paper examines how young peoples' lived experiences with personal technologies can be used to teach engineering ethics in a way which facilitates greater engagement with the subject. Engineering ethics can be challenging to teach: as a form of practical ethics, it is framed around future workplace experience in a professional setting which students are assumed to have no prior experience of. Yet the current generations of engineering students, who have been described as 'digital natives', do however have immersive personal experience with digital technologies; and experiential learning theory describes how students learn ethics more successfully when they can draw on personal experience which give context and meaning to abstract theories. This paper reviews current teaching practices in engineering ethics; and examines young people's engagement with technologies including cell phones, social networking sites, digital music and computer games to identify social and ethical elements of these practices which have relevance for the engineering ethics curricula. From this analysis three case studies are developed to illustrate how facets of the use of these technologies can be drawn on to teach topics including group work and communication; risk and safety; and engineering as social experimentation. Means for bridging personal experience and professional ethics when teaching these cases are discussed. The paper contributes to research and curriculum development in engineering ethics education, and to wider education research about methods of teaching 'the net generation'.

  12. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2008-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...

  13. STUDENT-DEFINED QUALITY BY KANO MODEL: A CASE STUDY OF ENGINEERING STUDENTS IN INDIA

    Directory of Open Access Journals (Sweden)

    Ismail Wilson Taifa

    2016-09-01

    Full Text Available Engineering Students in India like elsewhere worldwide need well designed classrooms furniture which can enable them to attend lectures without negative impact in the long run. Engineering students from India have not yet been involved in suggesting their requirements for improving the mostly out-dated furniture at their colleges. Among the available improvement techniques, Kano Model is one of the most effective improvement approaches. The main objective of the study was to identify and categorise all the main attributes regarding the classrooms furniture for the purpose of increasing student satisfaction in the long run. Kano Model has been well applied to make an exhaustive list of requirements for redesigning classroom furniture. Cronbach Alpha was computed with the help of SPSS 16.0 for validation purpose and it ranged between 0.8 and 0.9 which is a good internal consistency. Further research can be done by integrating Kano Model with Quality Function Deployment.

  14. Innovative Assessment Paradigm to Enhance Student Learning in Engineering Education

    Science.gov (United States)

    El-Maaddawy, Tamer

    2017-01-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering…

  15. What kind of students should be developed through aeronautical engineering education?

    Science.gov (United States)

    Holloway, R. B.

    1975-01-01

    The educational requirements for future aeronautical engineering students are postulated. The change in aeronautical engineering from increasing aircraft performance without regard to cost is compared with the cost effective aspects of future research. The capabilities of future engineers are discussed with respect to the following areas: (1) problem solving, (2) planning and organizing, (3) communication, and (4) professionalism.

  16. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  17. Impacts of a Summer Bridge Program in Engineering on Student Retention and Graduation

    Science.gov (United States)

    Cançado, Luciana; Reisel, John R.; Walker, Cindy M.

    2018-01-01

    A summer bridge program was developed in an engineering program to advance the preparation of incoming freshmen students, particularly with respect to their math course placement. The program was intended to raise the initial math course placement of students who otherwise would begin their engineering studies in courses below Calculus I. One…

  18. Mentoring program for students newly enrolled in an Engineering Degree

    Directory of Open Access Journals (Sweden)

    Juan Pedro Peña-Martín

    2016-10-01

    Full Text Available This work presents a mentoring program for first year engineering students in the Telecommunications Engineering College (ETSIT at the University of Malaga (UMA. Actors involved in the program are professors from staff, veterans mentoring students and, of course, freshmen. All of them has been organized trough the Moodle based Virtual Learning Environment Platform of the UMA. The program has gone through several phases over three years. This paper shows the main objectives of this mentoring program, the initial design to get them where professors played mentor role, and successive changes made to try to improve the results, including the assumption of the mentor role by senior students (peer mentoring. The tools used for program evaluation are shown too. Despite the low participation, it has been a framework for the development of various educational and socializing activities (for mentors and mentees focused on developing generic competences. Furthermore, it has been a research tool to get a better understanding of problems affecting students newly enrolled.

  19. Narrow-Minded Nerd or Indispensable Source of a Future-Proof Society? Engineering Students on their Profession

    DEFF Research Database (Denmark)

    Haase, Sanne Schioldann

    The unflattering notion “nerd” is often associated with the engineering profession. In this paper engineering descriptions made by future engineers are examined and a far more nuanced and positive understanding of the role of the engineer in a complex, future-oriented society is uncovered...... that the professional engineering identity is disappearing or defragmenting. This paper investigates engineering identity as future engineers describe it. In a nation-wide, webbased survey to a year group of engineering students at the end of their first year the students were asked to describe an engineer...

  20. Examining Experienced Teachers' Noticing of and Responses to Students' Engineering

    Science.gov (United States)

    Johnson, Aaron W.; Wendell, Kristen B.; Watkins, Jessica

    2017-01-01

    Engineering design places unique demands on teachers, as students are coming up with new, unanticipated ideas to problems along often unpredictable trajectories. These demands motivate a responsive approach to teaching, in which teachers attend their students' thinking and flexibly adapt their instructional plans and objectives. A great deal of…

  1. Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering

    Science.gov (United States)

    Agogino, Alice

    2007-04-01

    Review of the report by the National Academies, with a focus on action strategies in the physical sciences. Women face barriers to hiring and promotion in research universities in many fields of science and engineering; a situation that deprives the United States of an important source of talent as the country faces increasingly stiff global competition in higher education, science and technology, and the marketplace. Eliminating gender bias in universities requires immediate, overarching reform and decisive action by university administrators, professional societies, government agencies, and Congress. Forty years ago, women made up only 3 percent of America's scientific and technical workers, but by 2003 they accounted for nearly one-fifth. In addition, women have earned more than half of the bachelor's degrees awarded in science and engineering since 2000. However, their representation on university and college faculties fails to reflect these gains. Among science and engineering Ph.D.s, four times more men than women hold full-time faculty positions. And minority women with doctorates are less likely than white women or men of any racial or ethnic group to be in tenure positions. The report urges higher education organizations and professional societies to form collaborative, self-monitoring body that would recommend standards for faculty recruitment, retention, and promotion; collect data; and track compliance across institutions. A ``report card'' template is provided in the report. To read the report online, add a comment, or purchase hard copy, go to: http://www.engineeringpathway.com/ep/learningresource/summary/index.jhtml?id=94A4929D-F1B2-432E-8167-63335569CB4E.

  2. `They're not girly girls': an exploration of quantitative and qualitative data on engineering and gender in higher education

    Science.gov (United States)

    Barnard, S.; Hassan, T.; Bagilhole, B.; Dainty, A.

    2012-05-01

    Despite sustained efforts to promote engineering careers to young women, it remains the most male-dominated academic discipline in Europe. This paper will provide an overview of UK data and research on women in engineering higher education, within the context of Europe. Comparisons between data from European countries representing various regions of Europe will highlight key differences and similarities between these nations in terms of women in engineering. Also, drawing on qualitative research the paper will explore UK students' experiences of gender, with a particular focus on the decision to study engineering and their experiences in higher education.

  3. Indigenous Women College Students' Perspectives on College, Work, and Family

    Science.gov (United States)

    Bingham, Jennie L.; Adolpho, Quintina Bearchief; Jackson, Aaron P.; Alexitch, Louise R.

    2014-01-01

    Native American and First Nations (herein collectively referred to as Indigenous) women college students are faced with the challenge of balancing their cultural imperatives and the demands of the dominant Western culture in family, school, and work/employment roles. In order to explore these women's experiences and perspectives, this study…

  4. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    Science.gov (United States)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  5. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  6. A hermeneutic phenomenological study of the experiences of female African American undergraduate engineering students at a predominantly White and an historically Black institution

    Science.gov (United States)

    Frillman, Sharron Ann

    2011-12-01

    This phenomenological study examined the experiences of twelve female African Americans enrolled as fulltime undergraduate engineering students at North Carolina Agricultural and Technical State University, an historically Black university, and seven female African Americans enrolled as undergraduate engineering students at Purdue University in West Lafayette, Indiana, a traditionally White institution. Interviews provided insights into the "lived" experiences of these young women and the factors they believe have contributed to their success in their respective engineering programs. Data analysis involved coding each participant's responses to interview questions using Atlas.ti, a powerful qualitative data analysis tool. This generated 181 codes that were further categorized into nine emergent themes, indicating the potential for extensive associations among the variables. The emergent themes are as follows: (1) Demographic information/special circumstances, (2) Personal attributes and characteristics, (3) Personal insights, (4) Sense of mission, (5) Sources of negative stress, (6) Success strategies, (7) Various forms of support, (8) Would/would not have made it to where she is now, and (9) Being African American and female in engineering. Analysis of these themes and their relationships led to the development of the Frillman Model of Emergent Themes in Female African American Engineering Students. Success. In addressing similarities and differences, three overriding theme categories emerged. These were: (1) Four personhood themes and dual social identity theme; (2) Environmental input and response theme; and (3) Outcome emergent theme of Would/Would not have made it to where she is now. Recommendations were made for future research to expand upon this exploratory study.

  7. REASONS FOR STUDENT DISCONTINUATION IN ENGINEERING DEGREE COURSES OFFERED AT A DISTANCE

    Directory of Open Access Journals (Sweden)

    S. Anbahan ARIADURAI

    2009-01-01

    Full Text Available Faculty of Engineering Technology of the Open University of Sri Lanka has been offering engineering programmes at a distance for the last two decades or so. However, completion rates in Faculty of Engineering Technology are lower compared to the other faculties of the University. This paper investigates the reasons for low completion rates in the faculty and suggests ways and means to overcome this problem. The study concludes that increasing student numbers will not necessarily increase percentage of students completing the programme though the number of students completing is increased. It is found that students offering courses for the first time in the system of distance education in their academic career perform poorer because they are not conversant with distance education techniques. It is recommended that the Faculty must offer an orientation programme on distance education to all the students enrolling for the first time, before they commence their regular programmes. Further, it has been found that considerable percentage of students who obtain eligibility to sit the final examination by completing the continuous assessments do not sit the final examination. This has been found to contribute towards non-completion of programmes as students sitting the final examination in the subsequent years perform poorly in their exams. To overcome this problem, it is recommended that current practise of allowing the student to carry forward their eligibility to unlimited period of time must be disbanded.

  8. Hands-on Summer Camp to Attract K-12 Students to Engineering Fields

    Science.gov (United States)

    Yilmaz, Muhittin; Ren, Jianhong; Custer, Sheryl; Coleman, Joyce

    2010-01-01

    This paper explains the organization and execution of a summer engineering outreach camp designed to attract and motivate high school students as well as increase their awareness of various engineering fields. The camp curriculum included hands-on, competitive design-oriented engineering projects from several disciplines: the electrical,…

  9. MOMOWO: Women Designers, Craftswomen, Architects and Engineers between 1918 and 1945

    NARCIS (Netherlands)

    Groot, M.H.; Helena Seražin, Helena Seražin

    2017-01-01

    The book consists of six chapters, which present achievements by European women – pioneers in the fields of architecture, civil engineering, interior and industrial design and arts and crafts, who were active in the period between 1918 and 1945. The chapter Crossing Geographies deals with the

  10. Examining the relationship of ethnicity, gender and social cognitive factors with the academic achievement of first-year engineering students

    Science.gov (United States)

    Carr, Bruce Henry

    The purpose of the study was to examine the relationships of social cognitive factors and their influence on the academic performance of first-year engineering students. The nine social cognitive variables identified were under the groupings of personal support, occupational self-efficacy, academic self-efficacy, vocational interests, coping, encouragement, discouragement, outcome expectations, and perceived stress. The primary student participants in this study were first-year engineering students from underrepresented groups which include African American, Hispanic American students and women. With this in mind, the researcher sought to examine the interactive influence of race/ethnicity and gender based on the aforementioned social cognitive factors. Differences in academic performance (university GPA of first-year undergraduate engineering students) were analyzed by ethnicity and gender. There was a main effect for ethnicity only. Gender was found not to be significant. Hispanics were not found to be significantly different in their GPAs than Whites but Blacks were found to have lower GPAs than Whites. Also, Pearson correlation coefficients were used to examine the relationship between and among the nine identified social cognitive variables. The data from the analysis uncovered ten significant correlations which were as follows: occupational self-efficacy and academic self-efficacy, occupational self-efficacy and vocational interest, occupational self-efficacy and perceived stress, academic self-efficacy and encouragement, academic self-efficacy and outcome expectations, academic self-efficacy and perceived stress, vocational interest and outcome expectations, discouragement and encouragement, coping and perceived stress, outcome expectations and perceived stress. Next, a Pearson correlation coefficient was utilized to examine the relationship between academic performance (college GPA) of first-year undergraduate engineering students and the nine identified

  11. Factors Affecting the Behavior of Engineering Students toward Safety Practices in the Machine Shop

    Directory of Open Access Journals (Sweden)

    Jessie Kristian M. Neria

    2015-08-01

    Full Text Available This study aimed to determine the factors that affect the behavior of engineering student toward safety practices in the machine shop. Descriptive type of research was utilized in the study. Results showed that most of the engineering students clearly understand the signage shown in the machine shop. Students are aware that they should not leave the machines unattended. Most of the engineering students handle and use the machine properly. The respondents have an average extent of safety practices in the machine shop which means that they are applying safety practices in their every activity in machine shop. There is strong relationship between the safety practices and the factors affecting behavior in terms of signage, reminder of teacher and rules and regulation.

  12. Chinese engineering students' cross-cultural adaptation in graduate school

    Science.gov (United States)

    Jiang, Xinquan

    This study explores cross-cultural adaptation experience of Chinese engineering students in the U.S. I interact with 10 Chinese doctoral students in engineering from a public research university through in-depth interviews to describe (1) their perceptions of and responses to key challenges they encountered in graduate school, (2) their perspectives on the challenges that stem from cross-cultural differences, and (3) their conceptualization of cross-cultural adaptation in the context of graduate school. My findings reveal that the major challenges participants encounter during graduate school are academic issues related to cultural differences and difficulties of crossing cultural boundaries and integrating into the university community. These challenges include finding motivation for doctoral study, becoming an independent learner, building a close relationship with faculty, interacting and forming relationships with American people, and gaining social recognition and support. The engineering students in this study believe they are less successful in their social integration than they are in accomplishing academic goals, mainly because of their preoccupation with academics, language barriers and cultural differences. The presence of a large Chinese student community on campus has provided a sense of community and social support for these students, but it also contributes to diminishing their willingness and opportunities to interact with people of different cultural backgrounds. Depending on their needs and purposes, they have different insights into the meaning of cross-cultural adaptation and therefore, and choose different paths to establish themselves in a new environment. Overall, they agree that cross-cultural adaptation involves a process of re-establishing themselves in new academic, social, and cultural communities, and adaptation is necessary for their personal and professional advancement in the U.S. They also acknowledge that encountering and adjusting

  13. Improving female participation in professional engineering geology to bring new perspectives to ethics in the geosciences.

    Science.gov (United States)

    Pereira, Dolores

    2014-09-11

    Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.

  14. An Investigation of First-Year Engineering Student and Instructor Perspectives of Learning Analytics Approaches

    Science.gov (United States)

    Knight, David B.; Brozina, Cory; Novoselich, Brian

    2016-01-01

    This paper investigates how first-year engineering undergraduates and their instructors describe the potential for learning analytics approaches to contribute to student success. Results of qualitative data collection in a first-year engineering course indicated that both students and instructors\temphasized a preference for learning analytics…

  15. Building a Network to Support Girls and Women in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Spears, Jacqueline D.; Dyer, Ruth A.; Franks, Suzanne E.; Montelone, Beth A.

    Women today constitute over half of the U.S. population and almost half of its overall workforce, yet they make up less than a quarter of the science and engineering workforce. Many historical and social factors contribute to this discrepancy, and numerous individual, institutional, and governmental attempts have been made to redress it. However, many of the efforts to promote, include, and engage girls and women in science, technology, engineering, and mathematics (STEM) education and professions have been made in isolation. At Kansas State University, the authors have begun a systemic effort to increase the participation of girls and women in STEM. This article describes the creation and initial activities of a network of partners that includes universities, school districts, corporations, governmental agencies, and nonprofit organizations, assembled under the aegis of a project supported by funding from the National Science Foundation.

  16. Relationships between Locus of Control, Self-Efficacy, Efforts and Academic Achievement among Engineering Students

    Directory of Open Access Journals (Sweden)

    Alias Maizam

    2016-01-01

    Full Text Available The aim of this study is to investigate the relationships between the affective learning needs namely, self-efficacy and locus of control, learning efforts and academic achievement among engineering students. For this purpose, a survey was conducted on first year engineering students from two technical universities in Malaysia. Self-efficacy and locus of control were assessed using existing instruments while learning efforts were assessed using a specifically designed instrument based on Carbonaro’s model of learning effort. Academic achievement data were based on cumulative grade point average (CGPA obtained from self-report by participants. The findings indicate that females engineering students tend to have higher self-efficacy compared to males while both groups have similar locus of control and invest in similar learning efforts. Only locus of control is found to be related to academic achievement while self-efficacy is found to be related to efforts. In conclusion, locus of control seems to be an important factor in predicting academic achievement among engineering students.

  17. Outreach Inside the Library: Attracting and Engaging Millennial Engineering and Science Students

    OpenAIRE

    Shepherd, Susan

    2009-01-01

    This poster displays ways in which the Science & Engineering (S&E) Library at UC San Diego has capitalized on the values of Millennials to attract and engage undergraduates in science and engineering with inside-the-library exhibits and events. Appealing to characteristics of Millennials, the S&E Library showcases various types of student work, sponsors engaging and innovative library events, and freely experiments with new ways to draw students into the library.

  18. The Grad Cohort Workshop: Evaluating an Intervention to Retain Women Graduate Students in Computing.

    Science.gov (United States)

    Stout, Jane G; Tamer, Burçin; Wright, Heather M; Clarke, Lori A; Dwarkadas, Sandhya; Howard, Ayanna M

    2016-01-01

    Women engaged in computing career tracks are vastly outnumbered by men and often must contend with negative stereotypes about their innate technical aptitude. Research suggests women's marginalized presence in computing may result in women psychologically disengaging, and ultimately dropping out, perpetuating women's underrepresentation in computing. To combat this vicious cycle, the Computing Research Association's Committee on the Status of Women in Computing Research (CRA-W) runs a multi-day mentorship workshop for women graduate students called Grad Cohort, which consists of a speaker series and networking opportunities. We studied the long-term impact of Grad Cohort on women Ph.D. students' (a) dedication to becoming well-known in one's field, and giving back to the community ( professional goals ), (b) the degree to which one feels computing is an important element of "who they are" ( computing identity) , and (c) beliefs that computing skills are innate ( entity beliefs ). Of note, entity beliefs are known to be demoralizing and can lead to disengagement from academic endeavors. We compared a propensity score matched sample of women and men Ph.D. students in computing programs who had never participated in Grad Cohort to a sample of past Grad Cohort participants. Grad Cohort participants reported interest in becoming well-known in their field to a greater degree than women non-participants, and to an equivalent degree as men. Also, Grad Cohort participants reported stronger interest in giving back to the community than their peers. Further, whereas women non-participants identified with computing to a lesser degree than men and held stronger entity beliefs than men, Grad Cohort participants' computing identity and entity beliefs were equivalent to men. Importantly, stronger entity beliefs predicted a weaker computing identity among students, with the exception of Grad Cohort participants. This latter finding suggests Grad Cohort may shield students

  19. Arab Women in Science, Technology, Engineering and Mathematics Fields: The Way Forward

    Science.gov (United States)

    Islam, Samira I.

    2017-01-01

    In most countries of the world, 40 to 50 % of students are women. However, there is greater sex imbalance in STEM fields. Indicators show that tertiary education in Arab region is high compared with gender balance in several countries; there is even imbalance in favor of women as in Saudi Arabia & Gulf States. UNESCO and World Bank statistics…

  20. Negative Impact of Employment on Engineering Student Time Management, Time to Degree, and Retention: Faculty, Administrator, and Staff Perspectives

    Science.gov (United States)

    Tyson, Will

    2012-01-01

    Interviews with faculty, administrators, staff, and students at four engineering programs reveal the role of undergraduate student employment on retention and timely degree completion among engineering students. Dueling narratives reveal how student approaches to earning an engineering degree differ greatly from faculty, administrator, and staff…

  1. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  2. Chilean midwives and midwifery students' views of women's midlife health-care needs.

    Science.gov (United States)

    Binfa, Lorena; Pantoja, Loreto; Gonzalez, Hilda; Ransjö-Arvidson, Anna-Berit; Robertson, Eva

    2011-08-01

    to determine Chilean midwives' views with regard to Chilean women's health-care needs in midlife. The aim was also to explore Chilean midwifery students' views on the clinical care provided to women in midlife. a qualitative study using focus group discussions and narratives which were analysed using thematic manifest and latent content analysis. 10 different primary health care (PHC) centres in Santiago, Chile. 22 midwives, working in PHC clinics and 13 (n = 13) midwifery students with PHC clinical experience, attending their fourth or fifth year of midwifery education at the School of Midwifery in Santiago. the midwives felt that women in midlife have special health-care service needs. They also considered themselves to be the most appropriate health staff to provide health care for women in midlife, but recognised that they lacked competence in attending psychological and social health-care needs of women in midlife such as violence, abuse and sexuality issues. The midwifery students remarked that many midwives focused their attention on fulfilling the biomedical requirements. Even if the midwives had knowledge about recent research on menopause, they had difficulties in approaching this issue and including it in their counselling. Some students also questioned the sometimes disrespectful attitude shown, especially towards Peruvian immigrants and women with psychosocial problems. the findings suggest that midwives need more education about women's health-care needs in midlife, and that more focus should be placed on the psychosocial aspects of midwifery. More reflections about the quality of the client-provider relationship in clinical practice are needed. Gender issues, the structure of power relationships, and empowerment should be incorporated and critically discussed during midwifery education and training, and also in clinics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Developing a Dynamics and Vibrations Course for Civil Engineering Students Based on Fundamental-Principles

    Science.gov (United States)

    Barroso, Luciana R.; Morgan, James R.

    2012-01-01

    This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…

  4. Understanding the Changing Dynamics of the Gender Gap in Undergraduate Engineering Majors: 1971-2011

    Science.gov (United States)

    Sax, Linda J.; Kanny, M. Allison; Jacobs, Jerry A.; Whang, Hannah; Weintraub, Dayna S.; Hroch, Amber

    2016-01-01

    In this paper we examine the level and determinants of entering college students' plans to major in engineering. While the overall level of interest in engineering has fluctuated between 1971 and 2011, a very large gender gap in freshman interest remains. We find that the percent of first-year women who plan to major in engineering is roughly the…

  5. Intending to Stay: Images of Scientists, Attitudes Toward Women, and Gender as Influences on Persistence among Science and Engineering Majors

    Science.gov (United States)

    Wyer, Mary

    Contemporary research on gender and persistence in undergraduate education in science and engineering has routinely focused on why students leave their majors rather than asking why students stay. This study compared three common ways of measuring persistence-commitment to major, degree aspirations, and commitment to a science or engineering career-and emphasized factors that would encourage students to persist, including positive images of scientists and engineers, positive attitudes toward gender equity in science and engineering, and positive classroom experiences. A survey was administered in classrooms to a total of 285 female and male students enrolled in two required courses for majors. The results indicate that the different measures of persistence were sensitive to different influences but that students' gender did not interact with their images, attitudes, and experiences in predicted ways. The study concludes that an individual student's gender may be a more important factor in explaining why some female students leave their science and engineering majors than in explaining why others stay.

  6. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  7. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  8. Race, class and gender in engineering education: A quantitative investigation of first year enrollment

    Science.gov (United States)

    Phillips, Canek Moises Luna

    Research explanations for the disparity across both race and gender in engineering education has typically relied on a deficit model, whereby women and people of color lack the requisite knowledge or psychological characteristics that Whites and men have to become engineers in sufficient numbers. Instead of using a deficit model approach to explain gender and race disparity, in the three studies conducted for this dissertation, I approach gender and race disparity as the result of processes of segregation linked to the historic and on-going perpetuation of systemic sources of oppression in the United States. In the first study, I investigate the relationship between the odds ratios of women and men enrolled in first year US engineering programs and institutional characteristics. To do this, I employ linear regression to study data from the American Society of Engineering Education (ASEE) and the National Center for Education Statistics (NCES) to quantify relationships between odds ratios and institutional characteristics. Results of the linear regression models showed significant relationships between the cost of universities and university selectivity and the odds ratios of women choosing engineering. I theorize how the results could be related to the operation of occupational segregation in engineering, particularly how class-based markers have been historically used by women to overcome gender-based segregation in engineering. In the second study, I examine longitudinal patterns of race, gender, and intersectional combinations of race and gender in enrollments of students in first year engineering programs across the United States (US). Using enrollment data from the American Society of Engineering Education and California Post-Secondary Education Commission, I construct measures of segregation to study how trends in the disparity of students by race could be related to increases in public school segregation nationally over the past 25 years. I found that as

  9. Solving the Equation: The Variables for Women's Success in Engineering and Computing

    Science.gov (United States)

    Corbett, Christianne; Hill, Catherine

    2015-01-01

    During the 2014 White House Science Fair, President Barack Obama used a sports metaphor to explain why we must address the shortage of women in science, technology, engineering, and mathematics (STEM), particularly in the engineering and computing fields: "Half our team, we're not even putting on the field. We've got to change those…

  10. Attitudes towards chemistry among engineering students

    Science.gov (United States)

    Olivo Delgado, Carlos J.

    The attitudes towards chemistry of the engineering students enrolled in an introductory course at the Polytechnic University of Puerto Rico were explored (n = 115). A mixed methodology was used in an exploratory-oriented research approach. The first stage consisted of the administration of a Likert scale attitudinal survey which was validated during the study's design process. The survey allowed collecting information about the participant's attitudes towards their personal opinion, their perspectives about peer's or relatives' opinion, relevant aspects of the discipline, and difficulty-increasing factors in the chemistry course. The scale internal reliability was measured in a pilot study with a convenience simple, obtaining an acceptable coefficient (Cronbach alpha = 0.731). Survey results evidenced a mainly neutral attitude towards the chemistry course, not highly negative or highly positive, in contrast with other studies in this field. On the other hand, the normality hypothesis was tested for the scores obtained by participants in the survey. Although the pilot study sample had an approximately normal distribution, the scores in obtained by the participants in the survey failed the normality test criteria. The second stage of the study was accomplished using a case study. Among the survey participants, some students were invited to in-depth interviews to elucidate the reasons why they have certain attitudes towards chemistry. Study time, instructor, motivation, term of study, and course schedule are the factors that interviewees agreed as contributors to success or failure in the chemistry course. Interview's participants emphasized that study time is determinant to pass the class. This methodological approach, quantitative followed by qualitative, was useful in describing the attitudes towards chemistry among university students of engineering.

  11. Using Insights from Applied Moral Psychology to Promote Ethical Behavior Among Engineering Students and Professional Engineers.

    Science.gov (United States)

    Gelfand, Scott D

    2016-10-01

    In this essay I discuss a novel engineering ethics class that has the potential to significantly decrease the likelihood that students (and professionals) will inadvertently or unintentionally act unethically in the future. This class is different from standard engineering ethics classes in that it focuses on the issue of why people act unethically and how students (and professionals) can avoid a variety of hurdles to ethical behavior. I do not deny that it is important for students to develop cogent moral reasoning and ethical decision-making as taught in traditional college-level ethics classes, but as an educator, I aim to help students apply moral reasoning in specific, real-life situations so they are able to make ethical decisions and act ethically in their academic careers and after they graduate. Research in moral psychology provides evidence that many seemingly irrelevant situational factors affect the moral judgment of most moral agents and frequently lead agents to unintentionally or inadvertently act wrongly. I argue that, in addition to teaching college students moral reasoning and ethical decision-making, it is important to: 1. Teach students about psychological and situational factors that affect people's ethical judgments/behaviors in the sometimes stressful, emotion-laden environment of the workplace; 2. Guide students to engage in critical reflection about the sorts of situations they personally might find ethically challenging before they encounter those situations; and 3. Provide students with strategies to help them avoid future unethical behavior when they encounter these situations in school and in the workplace.

  12. Exploration of Engineering Students' Values with Respect to Behaviors in Group Work

    Science.gov (United States)

    Nagel, Robert L.; Pappas, Eric C.; Swain, Matthew S.; Hazard, Gretchen A.

    2015-01-01

    In order to train young professionals, instructional methodologies in engineering need not only teach students knowledge, but must also instill the values and teach the behaviors--"competencies" students can demonstrate--required of professional practice. Herein, we focus on understanding the values and behaviors of students with respect…

  13. Engineering students' and faculty perceptions of teaching methods and the level of faculty involvement that promotes academic success

    Science.gov (United States)

    Karpilo, Lacy N.

    Student academic success is a top priority of higher education institutions in the United States and the trend of students leaving school prior to finishing their degree is a serious concern. Accountability has become a large part of university and college ratings and perceived success. Retention is one component of the accountability metrics used by accreditation agencies. In addition, there are an increasing number of states allocating funds based in part on retention (Seidman, 2005). Institutions have created initiatives, programs, and even entire departments to address issues related to student academic success to promote retention. Universities and colleges have responded by focusing on methods to retain and better serve students. Retention and student academic success is a primary concern for high education institutions; however, engineering education has unique retention issues. The National Science Board (2004) reports a significant decline in the number of individuals in the United States who are training to become engineers, despite the fact that the number of jobs that utilize an engineering background continues to increase. Engineering education has responded to academic success issues by changing curriculum and pedagogical methods (Sheppard, 2001). This descriptive study investigates the perception of engineering students and faculty regarding teaching methods and faculty involvement to create a picture of what is occurring in engineering education. The population was the engineering students and faculty of Colorado State University's College of Engineering. Data from this research suggests that engaging teaching methods are not being used as often as research indicates they should and that there is a lack of student-faculty interaction outside of the classroom. This research adds to the breadth of knowledge and understanding of the current environment of engineering education. Furthermore, the data allows engineering educators and other higher

  14. Women of science, technology, engineering, and mathematics: A qualitative exploration into factors of success

    Science.gov (United States)

    Olund, Jeanine K.

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the number of women declines even further and the attrition rate is high. Studies to explain this phenomenon abound and remedial action has been taken in many institutions. Nonetheless, the problem remains. There are women who have entered this environment, however, who are not only surviving but thriving. Through the lens of positive scholarship, this qualitative study explores characteristics of twelve high-achieving women of STEM to discover if there are common factors that have contributed to their success. The data show that successful women of STEM are enterprising, relational, self-aware, and have a positive perspective. These results suggest that the four factors, particularly through their juxtaposition, are foundational to the success of STEM women within the current culture of science. Furthermore, the behaviors, responses, and values of these women have likely contributed to systemic changes within their immediate environments and perhaps even beyond. Research has shown that positive behaviors and values can be adopted by others and integrated deeply into their psyches. Therefore, the women of this study, and others like them, could serve as role models for colleagues and peers to support the development of these factors of success in others. Women, and men, of STEM may thereby learn new ways to approach difficulties, to create new avenues for success, and to bring forth positive change within themselves and their environments.

  15. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    Science.gov (United States)

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  16. Performance of engineering undergraduate students in mathematics: A case study in UniMAP

    Science.gov (United States)

    Saad, Syafawati Ab.; Azziz, Nor Hizamiyani Abdul; Zakaria, Siti Aisyah; Yazid, Nornadia Mohd

    2015-12-01

    The purpose of this paper is to study the trend performance of the first year engineering students at a public university in Mathematics course: Engineering Mathematics I. We analyze how ethnicity factor influenced students' performance in mathematics course over three years period. The performance of the undergraduate students in this study is measured by their cumulative grade point average (CGPA) in the first semester. Analysis of Variance (ANOVA) will be used to test the significance difference between three variables (Malay, Chinese and Indian). Method of simple linear regression (SLR) is used to test the relationship between the performances and to predict the future performance for this course. The findings of the study show that Chinese students perform better than Malay and Indian students.

  17. Female and male Hispanic students majoring in science or engineering: Their stories describing their educational journeys

    Science.gov (United States)

    Brown, Susan Wightman

    National statistics clearly demonstrate an underrepresentation of minorities in the fields of science and engineering. Blacks, Hispanics, American Indians, and Asians do not typically choose science or engineering as their college major; therefore, there is a very small representation of these minorities in the science and engineering labor force. The decision not to major in science and engineering may begin as soon as the child can begin to recognize role models in the media. News stories, magazine articles, television programs, teachers, parents, administrators, and other agencies have painted the picture of a scientist or engineer as being dominantly a White male. Schools have continued society's portrayal by using curriculum, textbooks, role models, instructional strategies, and counseling that continues to encourage the White male to succeed in science and engineering, but discourages the minority students, male and female, from succeeding in these fields. In this qualitative study, 22 Hispanic students, 12 female and 10 male, who are majoring in science or engineering, were interviewed using Seidman's in-depth interviewing technique. These students were shadowed in their college science or engineering classes; their high school and college transcripts were analyzed; and, a focus group was brought together at the end of the interviewing process in order to allow interaction between the participants. The goal was to explore the educational journeys of the 22 Hispanic students. What made a difference in the journeys of these 22 students so that they could succeed in majors that have historically discouraged minority students? Seven themes emerged: family support, honors program, challenging and interactive curriculum, college preparation in high school courses, caring and kind teachers, small class size, and small communities. Gender comparison of the educational journeys documents these differences between the females and males: college preparation, mentoring

  18. Engineering students' conceptions of entrepreneurial learning as part of their education

    Science.gov (United States)

    Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso

    2016-01-01

    The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group interviews (N = 48) and individual in-depth interviews (N = 16). As a result of the phenomenographic analysis, four qualitatively distinctive conceptions of entrepreneurial learning were discerned. Entrepreneurial learning was seen to involve (1) applying entrepreneurial ideas to engineering, (2) understanding entrepreneurial issues in a new way, (3) action-oriented personal development, and (4) self-realising through collective effort. These qualitatively distinct categories differed from each other in four dimensions of variation: nature of learning, response to pedagogy, relation to teamwork, and learning outcomes.

  19. Peer Mentoring among Doctoral Students of Science and Engineering in Taiwan

    Science.gov (United States)

    Lin, Yii-nii; Hsu, Angela Yi-ping

    2012-01-01

    This study describes the peer mentoring experience from doctoral student mentors' point of view. Twelve science and engineering doctoral students participated in this phenomenology study. The findings suggest doctoral peer mentors served instrumental, psychosocial, buffering, and liaison roles; they passed on their social, professional, and…

  20. Best practices for the retention of women engineers and scientists in the oil and gas sector

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, C.J. [Wise Newfoundland and Labrador, St. John' s, NF (Canada); Williams, F.M. [Petro-Canada Inc., (Canada); Sherk, S. [AMEC Earth and Environmental Ltd., St. John' s, NF (Canada)

    2000-07-06

    This conference paper was the result of a workshop discussion at a national conference that brought together those in industry who work in positions promoting diversity, together with women scientists and engineers from the sector. The objective was to identify effective workplace policies and practices that support and advance women's careers in the sector, and thus enhance retention. The conference paper discusses women in science, engineering and technology fields and in the oil and gas sector. It discusses best practices for the retention of women scientists and engineers in the oil and gas sector. It presents a summary of the workshop, best practices for the industry, and best practices for others. Best practices for the industry that are presented in the paper include: commitment from the top, management training, organizational policy and programs, balancing career and personal life, and career development and training. The paper concluded that companies should be recognized for thoughtful and forward-looking policies and best practice initiatives and that the strongest of the best practices is to make managers accountable for diversity progress in their areas of responsibility. 1 app., 8 refs.

  1. Hands on Workshop on Teaching Forensic Engineering Teaching Students Critical Thinking by Investigative mindset

    NARCIS (Netherlands)

    Saunders, G.N.; Schuurman, M.J.; Rans, C.D.

    2016-01-01

    When teaching Engineering to students it is important that we not only teach about
    how to engineer new things but also look at the failures and performance problems
    from an engineering point-of-view. The field that studies this part of engineering is
    known as Forensic Engineering. The

  2. Female peer mentors early in college increase women’s positive academic experiences and retention in engineering

    Science.gov (United States)

    Dasgupta, Nilanjana

    2017-01-01

    Scientific and engineering innovation is vital for American competitiveness, quality of life, and national security. However, too few American students, especially women, pursue these fields. Although this problem has attracted enormous attention, rigorously tested interventions outside artificial laboratory settings are quite rare. To address this gap, we conducted a longitudinal field experiment investigating the effect of peer mentoring on women’s experiences and retention in engineering during college transition, assessing its impact for 1 y while mentoring was active, and an additional 1 y after mentoring had ended. Incoming women engineering students (n = 150) were randomly assigned to female or male peer mentors or no mentors for 1 y. Their experiences were assessed multiple times during the intervention year and 1-y postintervention. Female (but not male) mentors protected women’s belonging in engineering, self-efficacy, motivation, retention in engineering majors, and postcollege engineering aspirations. Counter to common assumptions, better engineering grades were not associated with more retention or career aspirations in engineering in the first year of college. Notably, increased belonging and self-efficacy were significantly associated with more retention and career aspirations. The benefits of peer mentoring endured long after the intervention had ended, inoculating women for the first 2 y of college—the window of greatest attrition from science, technology, engineering, and mathematics (STEM) majors. Thus, same-gender peer mentoring for a short period during developmental transition points promotes women’s success and retention in engineering, yielding dividends over time. PMID:28533360

  3. A case study of non-traditional students re-entry into college physics and engineering

    Science.gov (United States)

    Langton, Stewart Gordon

    Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access

  4. Persistence of community college engineering science students: The impact of selected cognitive and noncognitive characteristics

    Science.gov (United States)

    Chatman, Lawrence M., Jr.

    If the United States is to remain technologically competitive, persistence in engineering programs must improve. This study on student persistence employed a mixed-method design to identify the cognitive and noncognitive factors which contribute to students remaining in an engineering science curriculum or switching from an engineering curriculum at a community college in the northeast United States. Records from 372 students were evaluated to determine the characteristics of two groups: those students that persisted with the engineering curriculum and those that switched from engineering; also, the dropout phenomenon was evaluated. The quantitative portion of the study used a logistic regression analyses on 22 independent variables, while the qualitative portion of the study used group interviews to investigate the noncognitive factors that influenced persisting or switching. The qualitative portion of the study added depth and credibility to the results from the quantitative portion. The study revealed that (1) high grades in first year calculus, physics and chemistry courses, (2) fewer number of semesters enrolled, (3) attendance with full time status, and (4) not participating in an English as a Second Language (ESL) program were significant variables used to predict student persistence. The group interviews confirmed several of these contributing factors. Students that dropped out of college began with (1) the lowest levels of remediation, (2) the lowest grade point averages, and (3) the fewest credits earned.

  5. Engineering and Humanities Students' Strategies for Vocabulary Acquisition: An Iranian Experience

    Directory of Open Access Journals (Sweden)

    Hassan Soodmand Afshar

    2014-05-01

    Full Text Available The present study set out to investigate the differences between EAP (English for Academic Purposes students of Humanities and Engineering in terms of vocabulary strategy choice and use. One hundred and five undergraduate Iranian students (39 students from Engineering Faculty and 66 from Humanities Faculty studying at Bu-Ali Sina University Hamedan, during the academic year of 2011–2012 participated in this study. For data collection purposes, a pilot-tested factor-analyzed five-point Likert-scale vocabulary learning strategies questionnaire (VLSQ containing 45 statements was adopted. The results of independent samples t-test indicated that, overall, the two groups were not significantly different in the choice and use of vocabulary learning strategies. However, running Chi square analyses, significant differences were found in individual strategy use in 6 out of 45 strategies. That is, while Humanities students used more superficial and straightforward strategies like repetition strategy and seeking help from others, the Engineering students preferred much deeper, thought-provoking and sophisticated strategies like using a monolingual dictionary and learning vocabulary through collocations and coordinates. Further, the most and the least frequently used vocabulary learning strategies by the two groups were specified, out of which only two strategies in each category were commonly shared by both groups. The possible reasons why the results have turned out to be so as well as the implications of the study are discussed in details in the paper.

  6. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    Science.gov (United States)

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  7. Women in Physics in Canada

    Science.gov (United States)

    McKenna, Janis

    2012-10-01

    Here we are in the 21st century in Canada, where most of us would say that young girls and boys have equal access to education, opportunities, and careers of their own choice. In Canada, women currently outnumber men in full-time university enrollment, in Medical Schools and in Law Schools. 48% of the Canadian work force is female, yet women make up only 21% of working professionals in science, engineering and technology. Canada-wide in Physics, the situation is such that only 20% of our BSc graduates are women, and 19% of our PhD graduates are women. It is evident that the ``leaky pipeline'' in Physics leaks most at a young age, before BSc graduation. High school physics statistics in BC indicate that while most of the grade 12 science and math disciplines have roughly equal numbers of young men and women enrolled, this is not the case for high school physics, where province-wide, only 30% of Physics 12 students are women. (Biology is also skewed, but in the other direction: 62% of Biology 12 students are women) This poster will present current statistics and will hopefully be a wake-up call for us all to consider participating in more outreach in science, and especially physics, in our high schools.

  8. Analysis of Daily Life Time in Women's Junior College Students

    OpenAIRE

    樫村, 修生

    1992-01-01

    The purpose of this investigation was understand the correlationship between the energy expenditure of living activity and body structure or physical fitness in the students of a women's junior college. The resulut were as follows; It was shown that the physical activites in the daily life was necessary for prevention of obesity in the students.

  9. Paving the way and passing the torch: mentors' motivation and experience of supporting women in optical engineering

    Science.gov (United States)

    Kodate, Naonori; Kodate, Kashiko; Kodate, Takako

    2014-11-01

    The phenomenon of women's underrepresentation in engineering is well known. However, the slow progress in achieving better gender equality here compared with other domains has accentuated the 'numbers' issue, while the quality aspects have been largely ignored. This study aims to shed light on both these aspects via the lens of mentors, who are at the coalface of guiding female engineers through their education and subsequent careers. Based on data collected from 25 mentors (8 men and 17 women from 8 countries), the paper explores their experiences of being mentors, as well as their views on recommended actions for nurturing female engineers. The findings reveal that the primary motivation for becoming a mentor was personal for men and women. Many mentors from countries with relatively lower female labour participation rates perceive their roles as guarantors of their mentees' successful future career paths, and a similar trend can be found in mentors in academia. The study underscores the need for invigorating mentors' roles in order to secure a more equitable future for engineering education.

  10. An Examination of Computer Engineering Students' Perceptions about Asynchronous Discussion Forums

    Science.gov (United States)

    Ozyurt, Ozcan; Ozyurt, Hacer

    2013-01-01

    This study was conducted in order to reveal the usage profiles and perceptions of Asynchronous Discussion Forums (ADFs) of 126 computer engineering students from the Computer Engineering Department in a university in Turkey. By using a mixed methods research design both quantitative and qualitative data were collected and analyzed. Research…

  11. Persistence of physics and engineering students via peer mentoring, active learning, and intentional advising

    Science.gov (United States)

    McCavit, K.; Zellner, N. E. B.

    2016-11-01

    Albion College, a private, undergraduate-only, liberal arts college in Michigan, USA, has developed and implemented a low-cost peer-mentoring programme that blends personal and academic support to help students achieve academic success in the introductory courses required for the Physics Major or the Dual-Degree Program in Engineering. This enhanced mentoring programme provides much-needed assistance for undergraduate students to master introductory physics and mathematics coursework, to normalise the struggle of learning hard material, and to accept their identity as physics or engineering students (among other goals). Importantly, this programme has increased retention among entering science, technology, engineering and mathematics students at Albion College as they move through the introductory classes, as shown by a 20% increase in retention from first-semester to third-semester physics courses compared to years when this programme was not in place.

  12. Development of Case Stories by Interviewing Students about their Critical Moments in Science, Math, and Engineering Classes

    Directory of Open Access Journals (Sweden)

    Rachel Esselstein

    2008-01-01

    Full Text Available Dartmouth’s Critical Moments project is designed to promote discussions among faculty and graduate students about the retention of students, particularly women and minorities, in science, math, and engineering (SME disciplines. The first phase of the ongoing project has been the development of four case stories, which are fictionalized composites drawn from surveys and interviews of real Dartmouth students. The surveyed population was 125 students in general chemistry. Of the 77 who agreed to be interviewed, 61 reported having experienced a critical moment – i.e., a positive or negative event or time that had a significant impact on the student’s academic life. Leading critical moments were a poor grade on an exam; challenge from group work; excitement from an internship; and falling in love with a non-SME discipline from other coursework. Interviews of 13 students who had negative critical moments led to the development of case stories for: Antoinetta ’09, who had a disappointing group experience; Dalila ’08, who was poorly prepared; Greg ’09, who got in over his head in his first year; and Michelle ’08, who was shocked by her result in the first exam. The case stories are being discussed by graduate students, TA and faculty in various workshops at the Dartmouth Center for the Advancement of Learning.

  13. Explaining Academic Success in Engineering Degree Programs : Do Female and Male Students Differ?

    NARCIS (Netherlands)

    Kamphorst, Jan C.; Hofman, W.H. Adriaan; Jansen, Ellen P.W.A.; Terlouw, Cees

    2015-01-01

    Background In Dutch engineering education, female students outperform male students. Using an interactionalist framework, this study explores factors that contribute to this gender-based difference. Purpose This study aims to answer two questions: Do female and male students differ in background

  14. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    Science.gov (United States)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  15. Breaking Gender Stereotypes: Encouraging more Women to Study Science, Technology and Mathematics

    International Nuclear Information System (INIS)

    Ramos, G.

    2015-01-01

    Why aren’t there more women working in the Nuclear field? OECD data can reveal some of the answers: when students are asked about the kind of career they expect to pursue as young adults even those girls who envision pursuing scientific careers expect to work in fields that are different from boys. Girls are over-represented among students who expect to work in the health and social fields; boys are over-represented among 15-year olds who expect to work as engineers or computer scientists, despite the fact that girls and boys show similar performance in science at school. Parents are also much more likely to expect their sons rather than their daughters to pursue these careers, even when their performance in mathematics is equally good. This has direct consequences: 14% of young women who entered university for the first time in 2012 chose science related fields, including engineering, manufacturing and construction. By contrast, 39% of young men who entered university that year chose to pursue one of those fields of study. These findings have serious implications not only for higher education, where young women are already under-represented in the science, technology, engineering and mathematics fields of study, but also later on, when these young women enter the labour market. (author

  16. Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major

    Science.gov (United States)

    Lyon, Louise Ann

    Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported

  17. Effects of Web-Based Interactive Modules on Engineering Students' Learning Motivations

    Science.gov (United States)

    Bai, Haiyan; Aman, Amjad; Xu, Yunjun; Orlovskaya, Nina; Zhou, Mingming

    2016-01-01

    The purpose of this study is to assess the impact of a newly developed modules, Interactive Web-Based Visualization Tools for Gluing Undergraduate Fuel Cell Systems Courses system (IGLU), on learning motivations of engineering students using two samples (n[subscript 1] = 144 and n[subscript 2] = 135) from senior engineering classes. The…

  18. Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers

    Science.gov (United States)

    Impelluso, Thomas J.

    2009-01-01

    A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…

  19. Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment

    Science.gov (United States)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-01-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…

  20. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  1. Attitudes and Perceptions of Students in a Systems Engineering E-Learnig Course

    Science.gov (United States)

    de Vega, Carolina Armijo; McAnally-Salas, Lewis; Lavigne, Gilles

    2009-01-01

    In this paper is reported the attitudes and perception of students in a systems Engineering e-learning course and a teacher with more than six years of experience teaching online courses. The paper reports the teacher and students' perceptions about the e-learning courses experience. Personalized interviews with some of the students were carried…

  2. Women in Physics: A Comparison to Science, Technology, Engineering, and Math Education over Four Decades

    Science.gov (United States)

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-01-01

    The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…

  3. An examination of undergraduate engineering students' stereotype of scientists and their career intentions

    Science.gov (United States)

    Stara, Michelle M.

    The US Government Accountability Office (GAO) (2013) has acknowledged that additional graduates are needed in engineering and related STEM fields. However, the GAO has also noted that it is difficult to determine if the additional graduates will align with employer demand at the time of entry into the workforce. This research study attempts to examine undergraduate engineering students' perceptions of scientists and if they were related to students' intentions to pursue science by examining the constructs of Stereotypes of Scientists (SOS) and Career Intentions in Science (CIS). While results of data analysis were not significant, patterns were seen that provided valuable information with regard to the variability of undergraduate engineering students and the complexity of what goes into stereotype formation and career choice. As a practitioner, there were pertinent applications that could be implemented from the results of this and related studies. From the perspective of practitioners, the findings may be used to target recruitment, retention, and specific teaching strategies to increase enrollment and graduate numbers in the lesser known engineering and STEM fields.

  4. Teachers' Thoughts on Student Decision Making during Engineering Design Lessons

    Science.gov (United States)

    Meyer, Helen

    2018-01-01

    In this paper, I share the results of a study of teachers' ideas about student decision-making at entry into a professional development program to integrate engineering into their instruction. The framework for the Engineering Design Process (EDP) was based on a Challenge-Based Learning (CBL) model. The EDP embedded within the CBL model suggests…

  5. Retheorizing sexual harassment in medical education: women students' perceptions at five U.S. medical schools.

    Science.gov (United States)

    Wear, Delese; Aultman, Julie M; Borges, Nicole J

    2007-01-01

    The literature consistently reports that sexual harassment occurs with regularity in medical education, mostly in clinical settings, and most of it goes unreported. Reasons for nonreporting include the fear of retaliation, a reluctance to be viewed as a victim, a fear that one is being "too sensitive," and the belief that nothing will be done. We wanted to examine with greater concentration the stories women students tell about sexual harassment, including what they count as sexual harassment, for more or different clues to their persistent nonreporting. We used focus groups to interview 30 women students at 5 U.S. medical schools. We used systematic inductive guidelines to analyze the transcribed data, linking to and building new theoretical frameworks to provide an interpretive understanding of the lived experiences of the women in our study. Consistent with previous literature, most of the students interviewed had either witnessed or observed sexual harassment. We selected 2 theoretical lenses heretofore not used to explain responses to sexual harassment: 3rd-wave feminist theory to think about how current women students conceive sexual harassment and personality theory to explain beliefs about nonreporting. Medical educators need new ways to understand how contemporary women students define and respond to sexual harassment.

  6. Correlation between Sustainability Education and Engineering Students' Attitudes towards Sustainability

    Science.gov (United States)

    Tang, Kuok Ho Daniel

    2018-01-01

    Purpose: The purpose of this study is to investigate the impacts of a sustainable development course on the beliefs, attitudes and intentions of a cohort of engineering students in a university in Miri, Malaysia, towards sustainability. Design/methodology/approach: Questionnaire survey was conducted among the cohort of students encompassing the…

  7. Factors Affecting Students' Satisfaction in Engineering Disciplines: Traditional vs. Blended Approaches

    Science.gov (United States)

    Martinez-Caro, Eva; Campuzano-Bolarin, Francisco

    2011-01-01

    In this paper a two-year field study was carried out to analyse how satisfaction differs across the traditional and blended learning methods. Altogether, 21 courses for graduate and postgraduate engineering students were evaluated. Several variables and their relationship with student satisfaction in the first year, with all courses delivered in…

  8. A Multicultural, Multidisciplinary Short Course to Introduce Recently Graduated Engineers to the Global Nature of Professional Practice

    Science.gov (United States)

    Hazelton, Pam; Malone, Molly; Gardner, Anne

    2009-01-01

    Since 2001, the International Institute of Women in Engineering (IIWE) at EPF, Ecole d'ingenieurs generaliste, Sceaux, France, has conducted a 3 week short course for culturally and discipline diverse, recently graduated and final year engineering students. The aim of this course is to introduce young engineers to broad global concepts and issues…

  9. Enhancing the Programming Experience for First-Year Engineering Students through Hands-On Integrated Computer Experiences

    Science.gov (United States)

    Canfield, Stephen L.; Ghafoor, Sheikh; Abdelrahman, Mohamed

    2012-01-01

    This paper describes the redesign and implementation of the course, "Introduction to Programming for Engineers" using microcontroller (MCU) hardware as the programming target. The objective of this effort is to improve the programming competency for engineering students by more closely relating the initial programming experience to the student's…

  10. Engineering Women’s Attitudes and Goals in Choosing Disciplines with above and Below Average Female Representation

    OpenAIRE

    Dina Verdín; Allison Godwin; Adam Kirn; Lisa Benson; Geoff Potvin

    2018-01-01

    Women’s participation in engineering remains well below that of men at all degree levels. However, despite the low enrollment of women in engineering as a whole, some engineering disciplines report above average female enrollment. We used multiple linear regression to examine the attitudes, beliefs, career outcome expectations, and career choice of first-year female engineering students enrolled in below average, average, and above average female representation disciplines in engineering. Our...

  11. Students' perceptions of the flipped classroom model in an engineering course: a case study

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2017-11-01

    The flipped classroom model is an innovative educational trend that has been widely adopted in the social sciences but not engineering education. In this model, an active instructional approach shifts the educational strategy from a teacher- to a student-centred approach. The purpose of this study is to compare the learning outcomes of engineering students attending a flipped-model section of the Dynamics of Structures course with students attending a traditional, lecture-based section of the same course taught by the same instructor. The results confirm previous research showing that test scores in the flipped course sections were slightly higher than traditional sections. Although the improvement in test scores was statistically insignificant, student statements indicated that the flipped model promoted a deeper, broader perspective on learning, facilitated problem-solving strategies and improved critical-thinking abilities, self-confidence and teamwork skills, which are needed for a successful engineering career.

  12. Information Seeking and Students Studying for Professional Careers: The Cases of Engineering and Law Students in Ireland

    Science.gov (United States)

    Kerins, Gillian; Madden, Ronan; Fulton, Crystal

    2004-01-01

    This paper reports the results of two empirical studies which explored the information seeking behaviour of engineering and law students in Ireland. Findings reveal similar patterns in the information seeking behaviour between students studying to become professionals and information seeking patterns of these groups identified in the Leckie et al.…

  13. Outcomes for engineering students delivering a STEM education and outreach programme

    Science.gov (United States)

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-11-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention, however, is given to what university students delivering the programmes gain from the experience. This paper seeks to illustrate the benefits of engineering students delivering STEM outreach programmes in schools. It reports on a qualitative case study of the experiences of two STEM Education and Outreach team members from a regional university in Australia. Content analysis of interview data highlighted not only the participants' motivations and perceived benefits of being involved in the STEM programme but also revealed the skills and attributes honed throughout the experience. Involvement in the STEM outreach programme resulted in the development of social and personal responsibility generic graduate attribute skills, evidenced through their motivations to be involved, the demonstration of understanding of teaching and learning, and application of science communication skills. This study demonstrates that designing and delivering STEM outreach programmes assists in the development of skills that will be beneficial when pursuing careers in engineering in the future.

  14. Improving Female Participation in Professional Engineering Geology to Bring New Perspectives to Ethics in the Geosciences

    Directory of Open Access Journals (Sweden)

    Dolores Pereira

    2014-09-01

    Full Text Available Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students “leak out” at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students’ preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain. It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man’s world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students’ education and future careers.

  15. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  16. Starring Students: Gender Performance at a Women's College

    Science.gov (United States)

    Hart, Jeni; Lester, Jaime

    2011-01-01

    The purpose of this qualitative study is to better understand how gender is constructed at a women's college. Specifically, the researchers use Judith Butler's (1990) work on performativity to frame how members of the campus community perceive transgender students are integrated into the college. Through semi-structured interviews with faculty,…

  17. Representational contents of domestic violence against women among nursing students

    Directory of Open Access Journals (Sweden)

    Camila Daiane Silva

    2016-12-01

    Full Text Available This study aimed to analyze the representational contents of domestic violence against women among nursing students. This is a qualitative research, based on the Theory of Social Representations. We collected the data from August to November/2014 by semi-structured interviews, analyzed by software. Thirty-three students participated, 16 from the initial grades and 17 from the final grades. We identified two categories: representational content acquired in the pre-university and university years. The initial grades listed high school, cases with family members and colleagues. Among the final grades, knowledge was acquired during academic weeks, research groups, practical activities, and internships. The knowledge of common sense is constant, especially between the students of initial grades and the reified, between the final series. The actions of the future professional life can base on personal experiences, reified common sense knowledge, and practical knowledge generated during graduation. It highlights the impact on training to provide assistance to women/persons in situations of violence.

  18. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2013-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The

  19. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  20. Signaling threat: how situational cues affect women in math, science, and engineering settings.

    Science.gov (United States)

    Murphy, Mary C; Steele, Claude M; Gross, James J

    2007-10-01

    This study examined the cues hypothesis, which holds that situational cues, such as a setting's features and organization, can make potential targets vulnerable to social identity threat. Objective and subjective measures of identity threat were collected from male and female math, science, and engineering (MSE) majors who watched an MSE conference video depicting either an unbalanced ratio of men to women or a balanced ratio. Women who viewed the unbalanced video exhibited more cognitive and physiological vigilance, and reported a lower sense of belonging and less desire to participate in the conference, than did women who viewed the gender-balanced video. Men were unaffected by this situational cue. The implications for understanding vulnerability to social identity threat, particularly among women in MSE settings, are discussed.

  1. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    Science.gov (United States)

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…

  2. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  3. Editors’ Overview Perspectives on Teaching Social Responsibility to Students in Science and Engineering

    DEFF Research Database (Denmark)

    Zandvoort, Henk; Bird, Stephanie J.; Børsen, Tom

    2013-01-01

    . If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples...... of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently...... very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important...

  4. A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses

    Science.gov (United States)

    Ahern, A. A.

    2010-01-01

    This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…

  5. Women's role in the Engineering career: situation in the XXI century

    Science.gov (United States)

    María González-Tirados, Rosa

    2010-05-01

    There is no doubt that women education and attendance to university have facilitated their access to almost all the working sectors. At the same time, it has point out a break point between the traditional scenario and the actual reality, how achievements have been obtained thanks to day by day fight, little steps and advances give impulse to women to a full participation in the working area, diversifying her role in different fields and occupying in work market different roles that recently were exclusive for men. For example: army, truck drivers, miners and airplane pilots among others. However, not everything are lights in this reflection with an optimistic touch, there are shadows too, opposition, obstacles, impediments and difficulties in the society or in women herself that have to be avoided when they incorporate in different labour markets. The difficulties that women have been overcome and the gender inequality that still can be found, even in occidental societies, are something that concerns to all of us. We believe that it is necessary centuries to overcome certain aspects that, in some way, are impregnated in the society, life style, rules of conduct, culture, or simply learned by the people that are really difficult not only to elude them as to avoid them. Throughout this work some examples will be shown that corroborate this comment. This subject is wide, complex and difficult. For this reason, we will put a limit on it and we will focus on the Spanish society as a part of the western advanced societies. With regard to the working area, we will delimited this study to the engineering careers showing some allusive numbers, actual university studies in this field and related them to earlier decades. In this way, a comparative analysis on the evolution of this scenario can be established. There are many papers and manuscripts that talk about different aspects in female success, such as women in sport, highly gifted and women, etc. For this reason we are

  6. Influence of Precollege Experience on Self-Concept among Community College Students in Science, Mathematics, and Engineering

    Science.gov (United States)

    Starobin, Soko S.; Laanan, Frankie Santos

    Female and minority students have historically been underrepresented in the field of science, mathematics, and engineering at colleges and universities. Although a plethora of research has focused on students enrolled in 4-year colleges or universities, limited research addresses the factors that influence gender differences in community college students in science, mathematics, and engineering. Using a target population of 1,599 aspirants in science, mathematics, and engineering majors in public community colleges, this study investigates the determinants of self-concept by examining a hypothetical structural model. The findings suggest that background characteristics, high school academic performance, and attitude toward science have unique contributions to the development of self-concept among female community college students. The results add to the literature by providing new theoretical constructs and the variables that predict students' self-concept.

  7. Recruiting Future Engineers Through Effective Guest Speaking In Elementary School Classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Young

    2007-11-01

    In this paper, the author describes how engineers can increase the number of future engineers by volunteering as guest speakers in the elementary school classroom. The paper is divided into three main subjects. First, the importance of engineers speaking directly with young students is discussed. Next, several best practice techniques for speaking with young students are described. Finally, information on getting started as a guest speaker is presented, and a list of resources available to guest speakers is provided. The guest engineer speaking to an elementary school audience (ages 6-11) performs a critical role in encouraging young students to pursue a career in engineering. Often, he or she is the first engineer these students meet in person, providing a crucial first impression of the engineering career field and a positive visual image of what an engineer really looks like. A dynamic speaker presenting a well-delivered talk creates a lasting, positive impression on students, influencing their future decisions to pursue careers in engineering. By reaching these students early in life, the guest speaker will help dispel the many prevailing stereotypes about engineers which discourage so many students, especially young women, from considering this career. The guest speaker can ensure young students gain a positive first impression of engineers and the engineering career field by following some best practice techniques in preparing for and delivering their presentation. The author, an electrical engineer, developed these best practice techniques over the past 10 years while presenting over 350 talks on engineering subjects to elementary school students as a volunteer speaker with the U.S. Department of Energy, Idaho National Laboratory’s Speakers Bureau. Every engineer can make a meaningful contribution toward reversing the predicted shortfall of future engineers by volunteering to speak with young students at the elementary school level. Elementary school

  8. `Not hard to sway': a case study of student engagement in two large engineering classes

    Science.gov (United States)

    Shekhar, Prateek; Borrego, Maura

    2018-07-01

    Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This paper argues that the level of student engagement in active learning classrooms is an interplay of social and physical classroom characteristics. Using classroom observations and instructor interviews, this study describes the influence of the interaction of student response systems and classroom layout on student engagement in two large active-learning-based engineering classrooms. The findings suggest that the use of different student response systems in combination with cluster-style seating arrangements can increase student engagement in large classrooms.

  9. The Effectiveness of Entrepreneurship Teaching Materials for Engineering Students at Faculty of Engineering of Universitas Negeri Semarang

    Directory of Open Access Journals (Sweden)

    Rina Rachmawati

    2016-12-01

    Full Text Available This research aims to test the effectiveness of entrepreneurship teaching materials for students majoring on Family Wealth Education Department at Faculty of Engineering, Universtas Negeri Semarang. Entrepreneurship teaching materials were developed by researchers by using ADDIE model, and the research only focused on the effectiveness of entrepreneurship teaching materials. It was a quasi-experimental study with a before-after or one group pretest-posttest technique. The research was conducted for 4th semester students of Family Wealth Education Department who studied entrepreneurship subject. In the experimental group, students were taught by teaching materials which were developed by the references of entrepreneurship subject on Higher Education and also was adapted by the conditions of students. Data were collected by using test, questionnaires and learning observation sheets. To test the hypothesis, it used paired t-test analysis and gain-score testing to measure the effectiveness of teaching materials in supporting the Entrepreneurship subject at Family Wealth Education Department of Faculty of Engineering. Findings  show that the entrepreneurship teaching materials are effective and the results of other analysis show that students’ scores are increased from pre-test to post-test who were taught with Entrepreneurship teaching materials.

  10. Affective strategies, attitudes, and a model of speaking performance development for engineering students

    Science.gov (United States)

    Wijirahayu, S.; Dorand, P.

    2018-01-01

    Learning English as a Foreign language (EFL) as one of the challenges especially for students majoring in Telecommunication Engineering to develop their communication skill as a professional could be one of the chances for them to face a more global era. Yet, there are important factors that may influence the progress of the speaking performance and attitude is one of them. Therefore, a survey involving two main psychological variables in language learning namely attitude and affective strategies and the third variable is speaking performance was conducted and a model of affective strategies in language learning developing through the application of Content Language Integrated Learning and multimedia instruction was introduced. This study involved 71 sophomore students and two classes of university students majoring in Telecommunication Engineering and Electrical Engineering. The researchers used both survey and action research method with quantitative as well as qualitative in approach.

  11. Effect of Ergonomic Advice on Neck Pain among Engineering Students of Belagavi City, Karnataka: An Observational Study

    Directory of Open Access Journals (Sweden)

    Naik Prashant P

    2017-06-01

    Full Text Available Background and aim: Neck pain is a common health problem experienced by engineering students. Majority of the times, neck pain is due to poor workstation posture, improper workstation structure. Thus, the aim of the study was to analyze the effect of ergonomic advice on neck pain among engineering students of Belagavi. Materials and methodology: An observational study was carried out among engineering students of all academic levels in local engineering institutes of Belagavi. Data of study was collected in academic year 2016-2017 using Neck pain and disability scale from 331 students. Initially, a baseline data was collected and then booklet consisting of ergonomic advice was given and follow-up was done after 4 weeks by using same questionnaire. Results: Overall 33.96% of reduction in neck pain was seen after ergonomic advice. In accordance with movements associated with neck pain, there was significant pain reduction in relation to up-down movement. Conclusion: Ergonomic advice is effective in terms of reducing neck pain among engineering students and it should be adopted for prevention of neck pain.

  12. The Relationship of the Supportiveness of the Academic Environment to the Self-Confidence and Assertiveness in Academic Work for Men and Women Graduate Students in Science and Engineering.

    Science.gov (United States)

    Stansbury, Kendyll

    Situational influences on self-confidence and assertiveness in female and male graduate students in science and engineering were studied, based on responses from 328 Stanford University students (155 males and 173 females). Two dependent variables were used: an index of items measuring an individual's self-confidence in the ability to perform…

  13. Determinants of career choices among women and men medical students and interns.

    Science.gov (United States)

    Redman, S; Saltman, D; Straton, J; Young, B; Paul, C

    1994-09-01

    Women continue to be poorly represented in medical specialties other than general practice. A cross-sectional design was used to explore the development of career plans as medical training progressed; men and women students were compared in their first (n = 316), final (n = 295) and intern (n = 292) years. Women at each stage of training were significantly more likely to choose general practice as the field in which they were most likely to practise. There was little evidence that these differences were influenced by experience during training: women were as likely to choose general practice in first year as in the intern year. The most important determinant of career choice appeared to be the flexibility of training and of practice of medicine: variables such as the opportunity for part-time training, flexible working hours and part-time practice were important determinants of career choice and were of more importance to women than to men. The study also found high rates of discrimination or harassment reported by women medical students and interns. The results indicate the need for continued debate about these issues within medicine and the development of more flexible styles of medical training and practice.

  14. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  15. The Nuclear Energy Agency Mentoring a Future Generation of Female Leaders in Science and Engineering. Report on the International Mentoring Workshop in Science and Engineering in Chiba, Japan

    International Nuclear Information System (INIS)

    2017-01-01

    Despite progress over the past decades, women remain under-represented in executive positions in science, technology, engineering and mathematics. Female students tend to do very well in math and science early in their academic careers but often take other career paths. Many countries are working to close the gender gap and are developing policies to reverse this trend. However, considering the increasing demand worldwide for skilled workers in all areas of science and technology, including in the nuclear energy sector, more advocacy is needed to encourage the next generation and to capture their interest in these fields. Efforts to motivate young women to pursue careers in science, technology, engineering and mathematics (STEM fields), and to develop policies that support their progression, are worthwhile. Today, many NEA member countries are challenged in stimulating their youth to study in STEM fields. The looming shortfall has serious implications for the future. As part of its overall strategy and mission, the NEA has stated its support to members in their efforts to secure qualified human resources, nuclear skills capability building and the development of a new generation of nuclear experts. It is essential to ensure that all young people, including young women, have the opportunity to explore careers in science and technology. The NEA encourages its membership to explore ways of attracting, recruiting and retaining youth, in particular girls, in science and technology, as well as enhancing the conditions and prospects for women and girls at every stage of their careers and education. It is in this spirit that the NEA partnered with Japan's National Institutes for Quantum and Radiological Science and Technology (QST) to organise a mentoring workshop on July 25-26, 2017 in Chiba, Japan. This International Mentoring Workshop in Science and Engineering was a positive step, offering young Japanese women what was, for some, a life-changing experience. Seven

  16. At Hesitant Doors: The lived experience of women in STEM

    OpenAIRE

    Romina B. da Costa

    2016-01-01

    This phenomenological investigation aims to explore the lived experience of women in Science, Technology, Engineering and Mathematics (STEM) disciplines. As a minority group within a traditionally male-dominated space, women are still underrepresented in the upper echelons of science, even if the number of women in STEM is increasing. The author draws from her experiences as an “undesirable statistic,” a woman who entered college as a STEM student but ended up getting a degree in the social s...

  17. Gender contentedness in aspirations to become engineers or medical doctors

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2017-11-01

    Medical doctor and engineer are highly esteemed STEM professions. This study investigates academic and motivational characteristics of a sample of high school students in Thailand who aspire to become medical doctors or engineers. We used logistic regression to compare maths performance, gender typicality, gender contentedness, and maths and physics self-concepts among students with aspirations for these two professions. We found that high levels of felt gender contentedness in men had positive association with aspirations for engineering irrespective of the levels of maths or physics self-concept. We found that high levels of felt gender contentedness combined with high levels of maths or physics self-concept in women had positive associations with aspirations to become a medical doctor. These findings are evidence that student views of self are associated with uneven gendered patterns in career aspirations and have implications for the potential for future participation.

  18. How Much Do Engineering Students Know about Sustainable Development? The Findings of an International Survey and Possible Implications for the Engineering Curriculum

    Science.gov (United States)

    Azapagic, Adisa; Perdan, Slobodan; Shallcross, David

    2005-01-01

    This paper addresses the issue of engineering education for sustainable development. In an attempt to facilitate a better integration of sustainability teaching into the engineering curriculum, it seeks to provide answers to the following fundamental questions: (1) How much do engineering students know about sustainable development? (2) What are…

  19. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  20. Emotional intelligence among nursing students: Findings from a cross-sectional study.

    Science.gov (United States)

    Štiglic, Gregor; Cilar, Leona; Novak, Žiga; Vrbnjak, Dominika; Stenhouse, Rosie; Snowden, Austyn; Pajnkihar, Majda

    2018-07-01

    Emotional intelligence in nursing is of global interest. International studies identify that emotional intelligence influences nurses' work and relationships with patients. It is associated with compassion and care. Nursing students scored higher on measures of emotional intelligence compared to students of other study programmes. The level of emotional intelligence increases with age and tends to be higher in women. This study aims to measure the differences in emotional intelligence between nursing students with previous caring experience and those without; to examine the effects of gender on emotional intelligence scores; and to test whether nursing students score higher than engineering colleagues on emotional intelligence measures. A cross-sectional descriptive study design was used. The study included 113 nursing and 104 engineering students at the beginning of their first year of study at a university in Slovenia. Emotional intelligence was measured using the Trait Emotional Intelligence Questionnaire (TEIQue) and Schutte Self Report Emotional Intelligence Test (SSEIT). Shapiro-Wilk's test of normality was used to test the sample distribution, while the differences in mean values were tested using Student t-test of independent samples. Emotional intelligence was higher in nursing students (n = 113) than engineering students (n = 104) in both measures [TEIQue t = 3.972; p emotional intelligence scores than male students on both measures, the difference was not statistically significant [TEIQue t = -0.839; p = 0.403; SSEIT t = -1.159; p = 0.249]. EI scores in nursing students with previous caring experience were not higher compared to students without such experience for any measure [TEIQue t = -1.633; p = 0.105; SSEIT t = -0.595; p = 0.553]. Emotional intelligence was higher in nursing than engineering students, and slightly higher in women than men. It was not associated with previous caring experience. Copyright