WorldWideScience

Sample records for wolf-rayet binaries v444

  1. Long GRBs from Binary Stars: Runaway, Wolf-Rayet Progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution - the latter had previously

  2. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    Science.gov (United States)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  3. A study of the moderately wide Wolf-Rayet spectroscopic binary HD 190918

    Science.gov (United States)

    Underhill, Anne B.; Hill, Grant M.

    1994-09-01

    Radial-velocity observations of the Wolf-Rayet spectroscopic binary HD 190918 obtained from 25 spectrograms covering the yellow-green range are presented. In general three absorption lines were measured to determine the line-of-sight motion of the O star and one unblended emission line, He II lambda 5411.52, for the Wolf-Rayet star. A sharp C III lambda 5696 emission line, as seen in most Of type spectra, was detected on each spectrogram and measured. This line follows the predicted radial-velocity curve of the O star fairly well when the radial velocities are shifted by an appropriate amount. New orbital elements have been found for the O star, for the Wolf-Rayet star, and for the C III emission line. The estimated systemic velocity is -20.9 +/- 0.7 km/s for the O star, +70.1 +/- 4.6 km/s for the Wolf-Rayet star, and -34.2 +/- 1.5 km/s for the sharp C III emission line. The systemic velocity of the O star is reasonable considering the expected line-of-sight component of motion due to the peculiar motion of Population I stars, Galactic rotation, and reflex solar motion. We adopt the O-star systemic velocity as a fiducial radial velocity for the binary HD 190918. This shows that the He II lambda 5411 line of the WN4.5 star is displaced longward by 91.1 km/s, while the sharp C III line appears to be formed in a body of gas moving toward the observer by an additional 13.3 km/s. We discuss the implications of each possible solution including the swath traversed by the O star in the outer part of the line emitting region of the Wolf-Rayet star and the possible generation of X-rays. We conclude that our observations of the sharp C III lambda 5696 emission line confirm the hydrodynamic models of Stevens, Blondin, and Pollock which show that extensive, chaotic tongues of cooling plasma are formed perpendicular to the line joining the stars in the case of colliding winds in massive binary systems. We describe observational tests which may be used to confirm what type of

  4. Progenitor models of Wolf-Rayet+O binary systems

    NARCIS (Netherlands)

    Petrovic, J.|info:eu-repo/dai/nl/413316556; Langer, N.|info:eu-repo/dai/nl/304829498

    2007-01-01

    Since close WR+O binaries are the result of a strong interaction of both stars in massive close binary systems, they can be used to constrain the highly uncertain mass and angular momentum budget during the major mass- transfer phase. We explore the progenitor evolution of the three best suited WR+O

  5. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, Univ. of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space Research and Technology Institute, Akad. G. Bonchev Str., Sofia, 1113 (Bulgaria); Güdel, Manuel [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner, E-mail: stephen.skinner@colorado.edu, E-mail: szhekov@space.bas.bg, E-mail: manuel.guedel@univie.ac.at, E-mail: werner.schmutz@pmodwrc.ch [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  6. Wack 2134 (= wr 21a): a new wolf-rayet binary

    OpenAIRE

    Niemela, V. S.; Gamen, R. C.; G. R. Solivella; Benaglia, P.; Reig, P.; Coe, M. J.

    2006-01-01

    Presentamos un estudio de velocidades radiales de la estrella Wack 2134, cuyo espectro optico muestra l neas de emisi on tipo Wolf-Rayet. Esta estrella, catalogada como WR 21a, es una conocida fuente de radiaci on X. Nuestros espectros muestran una variaci on de gran amplitud de la velocidad radial estelar. Hemos determinado un per odo orbital de 31.6 d as. Con este per odo las velocidades radiales de WR 21a describen una orbita sumamente el ptica. El valor de la funci on d...

  7. Establishing Extreme Dynamic Range with JWST: Decoding Smoke Signals in the Glare of a Wolf-Rayet Binary

    Science.gov (United States)

    Lau, Ryan; Hankins, M.; Kasliwal, M.; Sivaramakrishnan, A.; Thatte, D.

    2017-11-01

    Dust is a key ingredient in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are still unclear. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are efficient dust producers in the local Universe, and likely existed in the earliest galaxies. To study these interesting objects, we propose JWST observations of the archetypal colliding-wind binary WR 140 to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS). Our proposed observations will yield high impact scientific results on the dust forming properties WR binaries, and establish a benchmark for key observing modes for imaging bright sources with faint extended emission. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to designing and delivering science-enabling products for the JWST community that address technical issues such as bright source artifacts that will limit the maximum achievable image contrast.

  8. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    Science.gov (United States)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  9. The variability of the BRITE-est Wolf-Rayet binary, γ2 Velorum-I. Photometric and spectroscopic evidence for colliding winds

    Science.gov (United States)

    Richardson, Noel D.; Russell, Christopher M. P.; St-Jean, Lucas; Moffat, Anthony F. J.; St-Louis, Nicole; Shenar, Tomer; Pablo, Herbert; Hill, Grant M.; Ramiaramanantsoa, Tahina; Corcoran, Michael; Hamuguchi, Kenji; Eversberg, Thomas; Miszalski, Brent; Chené, André-Nicolas; Waldron, Wayne; Kotze, Enrico J.; Kotze, Marissa M.; Luckas, Paul; Cacella, Paulo; Heathcote, Bernard; Powles, Jonathan; Bohlsen, Terry; Locke, Malcolm; Handler, Gerald; Kuschnig, Rainer; Pigulski, Andrzej; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.

    2017-11-01

    We report on the first multi-colour precision light curve of the bright Wolf-Rayet binary γ2 Velorum, obtained over six months with the nanosatellites in the BRITE-Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the data sets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analysing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He I λ5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He I to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III λ5696 of the system. These results represent the first in a series of investigations into the winds and properties of γ2 Velorum through multi-technique and multi-wavelength observational campaigns.

  10. Optical spectrophotometry of Wolf-Rayet galaxies

    Science.gov (United States)

    Vacca, William D.; Conti, Peter S.

    1992-01-01

    We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.

  11. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    Science.gov (United States)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  12. Observations of the Wolf Rayet star WR123 with MOST

    Science.gov (United States)

    Lefèvre, L.; Chené, A. N.

    2009-07-01

    We present an analysis of the intensive visual-broadband photometric monitoring of the highly variable WN8 Wolf-Rayet star WR123, obtained by the MOST satellite. The Canadian space telescope observed WR123 for 38 days non-stop during June/July 2004. To complement previous investigations (Lefèvre et al. 2005), we show spectroscopic data taken a year before the MOST observations and a supplementary analysis of the dataset. This work shows that it is possible to fit quite reliably this supposedly unstable signal with a few sinusoidal components and may lead us to new insights in the variability of Wolf-Rayet stars.

  13. AN INFRARED STUDY OF 3 WOLF-RAYET RING NEBULAE

    NARCIS (Netherlands)

    MATHIS, JS; CASSINELLI, JP; VANDERHUCHT, KA; PRUSTI, T; WESSELIUS, PR; WILLIAMS, PM

    1992-01-01

    We have studied the IRAS colors of the ring nebula RCW 58 surrounding the Wolf-Rayet star HD 96548 (= WR 40; type WN 8) by analyzing the IRAS survey data with the Groningen Exportable High-Resolution Analysis system (GEISHA) and by using the Chopped Photometric Channel high-resolution imaging at

  14. The Evolutionary Status of WN3/O3 Wolf-Rayet Stars

    Science.gov (United States)

    Neugent, Kathryn F.; Massey, Phil; Hillier, D. John; Morrell, Nidia I.

    2017-11-01

    As part of a multi-year survey for Wolf-Rayet stars in the Magellanic Clouds, we have discovered a new type of Wolf-Rayet star with both strong emission and absorption. While one might initially classify these stars as WN3+O3V binaries based on their spectra, such a pairing is unlikely given their faint visual magnitudes. Spectral modeling suggests effective temperatures and bolometric luminosities similar to those of other early-type LMC WNs but with mass-loss rates that are three to five times lower than expected. They additionally retain a significant amount of hydrogen, with nitrogen at its CNO-equilibrium value (10× enhanced). Their evolutionary status remains an open question. Here we discuss why these stars did not evolve through quasi-homogeneous evolution. Instead we suggest that based on a link with long-duration gamma ray bursts, they may form in lower metallicity environments. A new survey in M33, which has a large metallicity gradient, is underway.

  15. Multiple Shells Around Wolf-Rayet Stars: Space Based Astrometric Observing

    Science.gov (United States)

    Marston, Anthony P.

    1995-01-01

    The completion of a complementary optical emission-line survey of the nebulae associated with Wolf-Rayet stars in the southern sky is reported, along with the completion of a survey the large-scale environments of Wolf-Rayet stars using IRAS Skyflux data. HIRES IRAS maps in the four IRAS wavebands for appoximately half of all galactic Wolf-Rayet stars are created.

  16. Pulsations in Wolf-Rayet stars: observations with MOST

    Science.gov (United States)

    Chené, André-Nicolas; Moffat, Anthony F. J.

    2011-07-01

    Photometry of Wolf-Rayet (WR) stars obtained with the first Canadian space telescope MOST (Microvariability and Oscillations of STars) has revealed multimode oscillations mainly in continuum light that suggest stellar pulsations could be a significant contributing factor to the mass-loss rates. Since the first clear detection of a pulsation period of P = 9.8h in WR123, two other stars have also shown periods of a few days, which must be related to stellar pulsations.

  17. On the optically thick winds of Wolf-Rayet stars

    Science.gov (United States)

    Gräfener, G.; Owocki, S. P.; Grassitelli, L.; Langer, N.

    2017-12-01

    Context. The classical Wolf-Rayet (WR) phase is believed to mark the end stage of the evolution of massive stars with initial masses higher than 25M⊙. Stars in this phase expose their stripped cores with the products of H- or He-burning at their surface. They develop strong, optically thick stellar winds that are important for the mechanical and chemical feedback of massive stars, and that determine whether the most massive stars end their lives as neutron stars or black holes. The winds of WR stars are currently not well understood, and their inclusion in stellar evolution models relies on uncertain empirical mass-loss relations. Aims: We investigate theoretically the mass-loss properties of H-free WR stars of the nitrogen sequence (WN stars). Methods: We connected stellar structure models for He stars with wind models for optically thick winds and assessed the degree to which these two types of models can simultaneously fulfil their respective sonic-point conditions. Results: Fixing the outer wind law and terminal wind velocity ν∞, we obtain unique solutions for the mass-loss rates of optically thick, radiation-driven winds of WR stars in the phase of core He-burning. The resulting mass-loss relations as a function of stellar parameters agree well with previous empirical relations. Furthermore, we encounter stellar mass limits below which no continuous solutions exist. While these mass limits agree with observations of WR stars in the Galaxy, they contradict observations in the LMC. Conclusions: While our results in particular confirm the slope of often-used empirical mass-loss relations, they imply that only part of the observed WN population can be understood in the framework of the standard assumptions of a smooth transonic flow and compact stellar core. This means that alternative approaches such as a clumped and inflated wind structure or deviations from the diffusion limit at the sonic point may have to be invoked. Qualitatively, the existence of mass

  18. IC 4663: The First Unambiguous [WN] Wolf-Rayet Central Star of a Planetary Nebula

    Science.gov (United States)

    Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.

    2013-01-01

    Several [WC]-type central stars of planetary nebulae (PNe) are known to mimic the spectroscopic appearance of massive carbon-rich or WC-type Wolf-Rayet stars. In stark contrast, no [WN]-type central stars have yet been identified as clear-cut analogues of the common nitrogen-rich or WN-type Wolf-Rayet stars. We have identified the [WN3] central star of IC 4663 to be the first unambiguous example in PNe. The low luminosity nucleus and an asymptotic giant branch (AGB) halo surrounding the main nebula prove the bona-fide PN nature of IC 4663. Model atmosphere analysis reveals the [WN3] star to have an exotic chemical composition of helium (95%), hydrogen (neon (0.2%) and oxygen (0.05%) by mass. Such an extreme helium-dominated composition cannot be predicted by current evolutionary scenarios for hydrogen deficient [WC]-type central stars. Only with the discovery of IC 4663 and its unusual composition can we now connect [WN] central stars to the O(He) central stars in a second H-deficient and He-rich evolutionary sequence, [WN]→O(He), that exists in parallel to the carbon-rich [WC]→PG1159 sequence. This suggests a simpler mechanism, perhaps a binary merger, can better explain H-deficiency in PNe and potentially other H-deficient/He-rich stars. In this respect IC 4663 is the best supported case for a possible merged binary central star of a PN.

  19. The Search for Wolf-Rayet Stars in IC10

    Science.gov (United States)

    Tehrani, Katie; Crowther, Paul; Archer, Isabelle

    2017-11-01

    We present a deep imaging and spectroscopic survey of the Local Group starburst galaxy IC10 using Gemini North/GMOS to unveil the global Wolf-Rayet population. It has previously been suggested that for IC10 to follow the WC/WN versus metallicity dependence seen in other Local Group galaxies, a large WN population must remain undiscovered. Our search revealed 3 new WN stars, and 5 candidates awaiting confirmation, providing little evidence to support this claim. We also compute an updated nebular derived metallicity of log(O/H)+12=8.40 +/- 0.04 for the galaxy using the direct method. Inspection of IC10 WR average line luminosities show these stars are more similar to their LMC, rather than SMC counterparts.

  20. The XMM-Newton View of Wolf-Rayet Bubbles

    Science.gov (United States)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  1. Machine-learning approaches to select Wolf-Rayet candidates

    Science.gov (United States)

    Marston, A. P.; Morello, G.; Morris, P.; van Dyk, S.; Mauerhan, J.

    2017-11-01

    The WR stellar population can be distinguished, at least partially, from other stellar populations by broad-band IR colour selection. We present the use of a machine learning classifier to quantitatively improve the selection of Galactic Wolf-Rayet (WR) candidates. These methods are used to separate the other stellar populations which have similar IR colours. We show the results of the classifications obtained by using the 2MASS J, H and K photometric bands, and the Spitzer/IRAC bands at 3.6, 4.5, 5.8 and 8.0μm. The k-Nearest Neighbour method has been used to select Galactic WR candidates for observational follow-up. A few candidates have been spectroscopically observed. Preliminary observations suggest that a detection rate of 50% can easily be achieved.

  2. Project Runaway: Calibrating the Spectroscopic Distance Scale Using Runaway O and Wolf-Rayet Stars

    Science.gov (United States)

    Hartkopf, William I.; Mason, B. D.

    2009-05-01

    Well-determined O star masses are notoriously difficult to obtain, due to such factors as broad spectral lines, larger and less-reliable average distances, high multiplicity rates, crowded fields, and surrounding nebulosity. Some of these difficulties are reduced for the subset of O stars known as runaways, however. They have escaped some of the nebulosity and crowding, and the event leading to their ejection virtually guarantees that these objects are either single stars or extremely hard spectroscopic binaries. The goal of this project is to increase the sample of known runaway stars, using updated proper motions from the soon-to-be-released UCAC3 catalog, as well as published radial velocities and data from recent duplicity surveys of massive stars using AO and speckle interferometry. Input files include the Galactic O Star Catalog of Maiz-Apellaniz et al. (2004 ApJSS 151, 103) as well as the Seventh Catalogue of Galactic Wolf-Rayet Stars and its more recent Annex (van der Hucht 2001 NewAR 45, 135; 2006 A&A 458, 453). The new runaway star sample will form the basis for a list of SIM targets aimed at improving the distances of Galactic O and WR stars, calibrating the spectroscopic distance scale and leading to more accurate mass estimates for these massive stars.

  3. Physical Properties of Wolf-Rayet Stars at Infra-red Wavelengths

    Science.gov (United States)

    Rosslowe, Christopher

    2016-10-01

    Wolf-Rayet (WR) stars represent the ultimate phase of evolution for the most massive stars in the Universe. Hot and luminous - they drive dense outflows, giving rise to rich emission-line spectra featuring nitrogen, carbon, and/or oxygen, as deeper layers of nuclear-processed material are revealed. This stripped nature implicates them as Type Ib/c supernovae progenitors, yet how the majority reach this state is unclear. The standard view of line-driven mass-loss producing WR stars is seceding to binary processes. The goal of this thesis is to combine statistics for the Galactic WR population, with physical properties of specific objects, to assess how well these can be explained by stellar models - of single and multiple massive stars. This has been achieved through observations in the infra-red - an increasingly important wavelength regime, abetted by low interstellar extinction and rapidly advancing instrumentation. I present a map of 356 Galactic WR stars, created using calibrated (1-8μm) absolute magnitudes by spectral subtype, and a refined near-IR classification scheme. I compare WR subtype variations with metallicity to population synthesis outputs, finding little evidence for ubiquitous fast stellar rotation. I produce a toy model of the total Galactic WR population using spatial information gleaned. Oxygen abundances in 7 WC and WO stars are determined using Herschel PACS scans of [OIII]88.36μm. These are combined with other recent analyses to argue for a reduction in the 12C(α,γ)16O reaction rate in stellar models. I present a spectroscopic analysis of the largest coeval population of WR stars in the Galaxy - that of the Westerlund 1 cluster. The youth of this cluster prohibits <40 Msun progenitors, hence the physical properties derived - particularly low luminosity - suggest a binary origin for most.

  4. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by ...

  5. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the. Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emis- sion closely follows the ultraviolet emission ...

  6. Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars

    NARCIS (Netherlands)

    Chiar, JE; Tielens, AGGM; Peeters, E; Norris, RP; Stootman, FH

    2004-01-01

    Our own solar system and other planetary systems are composed of organic dust created in the outflows in dying stars. Here, we examine an unlikely source of carbonaceous material in interstellar space, the harsh environment of Wolf-Rayet (WR) stars. We have used spectroscopic data from the Short

  7. Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars

    NARCIS (Netherlands)

    Chiar, JE; Tielens, AGGM

    2001-01-01

    We have studied the 5-8.5 mum infrared spectra of the late-type Wolf-Rayet stars WR 118, WR 112, and WR 104, the WN star WR 147, the B5 hypergiant Cygnus OB2 No. 12, and the Galactic center luminous blue variable Pistol Star using the Short Wavelength Spectrometer on the Infrared Space Observatory.

  8. ISO-SWS spectrophotometry of galactic Wolf-Rayet stars: preliminary results.

    NARCIS (Netherlands)

    van der Hucht, K. A.; Morris, P. W.; Williams, P. M.; Setia Gunawan, D. Y. A.; Beintema, D. A.; Boxhoorn, D. R.; de Graauw, T.; Heras, A.; Kester, D. J. M.; Lahuis, F.; Leech, K. J.; Roelfsema, P. R.; Salama, A.; Valentijn, E. A.; Vandenbussche, B.

    1996-01-01

    ISO-SWS spectra of seven late-type galactic Wolf-Rayet stars are discussed. A high resolution spectrum (2.3-29.6μm, λ/{DELTA}λ=~820-1700) of the WC8 star WR11 (γ^2^ Vel) is shown and its Ne abundance is discussed. Medium resolution spectra (λ/{DELTA}λ=~250-600) of the WC8-9 stars WR48a, WR98a,

  9. Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines : II. Post-LBV Wolf-Rayet stars

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Garcia-Segura, G.

    2007-01-01

    Van Marle et al. (2005) showed that circumstellar absorption lines in early Type Ib/c supernova and gamma-ray burst afterglow spectra may reveal the progenitor evolution of the exploding Wolf-Rayet star. While the quoted paper deals with Wolf-Rayet stars which evolved through a red supergiant stage,

  10. The WC6 Wolf-Rayet star MLA 1159 in M31 and its ionization nebula BA 1-642

    OpenAIRE

    Greiner, J.; Tovmassian, G. H.; Komossa, S.; M. Rosado; Arrieta, A.

    1999-01-01

    We report on optical imaging and spectroscopic observations of the Wolf-Rayet candidate star MLA 1159 and the surrounding ionization nebula BA 1-642 in the Andromeda Galaxy. Though both objects have been known for many years, our observations (1) confirm the Wolf-Rayet nature of MLA 1159, (2) allow one to determine the nebula as an ionization nebula, and (3) demonstrate the association of MLA 1159 with the nebula. The supersoft X-ray source RX J0045.5+4206 whose error box encompasses the full...

  11. Dust formation in carbon-rich Wolf-Rayet stars I. Chemistry of small carbon clusters and silicon species

    NARCIS (Netherlands)

    Cherchneff, [No Value; Le Teuff, YH; Williams, PM; Tielens, AGGM

    The formation of small carbon chains and molecular precursors to silicon carbide grains is investigated in the hot, hostile environment of carbon-rich Wolf-Rayet (WC) winds. We consider only WC stars which produce dust on a continuous basis and develop for the first time non-equilibrium, chemical

  12. Estrellas Wolf-Rayet y el medio interestelar: huellas de una fuerte interacción

    Science.gov (United States)

    Cichowolski, S.; Arnal, E. M.

    Se presentan resultados observacionales de un estudio de la distribución de hidrógeno neutro en los alrededores de estrellas Wolf-Rayet (WR) galácticas. Los datos de la línea de 21 cm provienen de observaciones de resolución angular intermedia (9') tomadas con el radiotelescopio de Effelsberg. La muestra está compuesta por cuatro WR de la serie del nitrógeno (WN): WR130, WR131, WR155, WR156 y tres WR de la serie del carbono (WC): WR154, WR117 y WR126. Este análisis ha permitido detectar cavidades y envolturas de HI en expansión presumiblemente vinculadas a dichas estrellas.

  13. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    Science.gov (United States)

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.

  14. Searching for Magnetic Fields in 11 Wolf-Rayet Stars: Analysis of Circular Polarization Measurements from ESPaDOnS

    Science.gov (United States)

    de la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B wind ~ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B_{{wind}}^{{max}}\\sim 1900 G, ~1500 G, and ~1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B_{{wind}}^{{max}}\\sim 500 G. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the

  15. Large-scale Periodic Variability of the Wind of the Wolf-Rayet Star WR 1 (HD 4004)

    Science.gov (United States)

    Chené, A.-N.; St-Louis, N.

    2010-06-01

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9+0.6 -0.3 days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v rot = 6.5, 40, 70, and 275 km s-1 for WR 1, WR 6, WR 134, and WR 137, respectively. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Also based on observations obtained at the Observatoire du Mont Mégantic with is operated by the Centre de Recherche en Astrophysique du Québec and the Observatoire de

  16. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    Science.gov (United States)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  17. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    Energy Technology Data Exchange (ETDEWEB)

    Toala, J. A.; Guerrero, M. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Arthur, S. J. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia, Apartado Postal 3-72, 58090, Morelia, Michoacan (Mexico); Smith, R. C. [NOAO/CTIO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Snowden, S. L., E-mail: toala@iaa.es [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2012-08-10

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43 keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.

  18. X-Ray Emission from the Wolf-Rayet Bubble S 308

    Science.gov (United States)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  19. Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era

    Science.gov (United States)

    Stark, Daniel

    2017-08-01

    The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.

  20. Determinación de abundancia de Hidrógeno en cuatro estrellas Wolf-Rayet

    Science.gov (United States)

    Gamen, R. C.; Niemela, V. S.

    Medium resolution optical CCD spectra of four stars with WN type emission lines, have been obtained with the Cassegrain REOSC spectrograph attached to the 2.15 m telescope at CASLEO (San Juan, Argentina), during March 1999. The spectra cover the wavelength range λλ3800 -- 5500Å. From these spectra we have determined the contribution of Hydrogen, detected by oscillation in the Pickering decrement of HeII emission lines, for 4 galactic Wolf-Rayet stars, namely WR 10 = HD 65865, WR 29 = LSS 1964, WR 54 = LSS 3111 and WR 58 = LSS 3162. Our results agree with those previously published by Smith et al. in 1966 (MNRAS, 281, 163).

  1. Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds

    Science.gov (United States)

    Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge

    2017-11-01

    We compute the thermal X-ray emission from hydrodynamic simulations of the 30 Wolf-Rayet (WR) stars orbiting within a parsec of Sgr A*, with the aim of interpreting the Chandra X-ray observations of this region. The model well reproduces the spectral shape of the observations, indicating that the shocked WR winds are the dominant source of this thermal emission. The model X-ray flux is tied to the strength of the Sgr A* outflow, which clears out hot gas from the vicinity of Sgr A*. A moderate outflow best fits the present-day observations, even though this supermassive black hole (SMBH) outflow ended ~100 yr ago.

  2. Search for a Magnetic Field via Circular Polarization in the Wolf-Rayet Star EZ CMa

    Science.gov (United States)

    de la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; MiMeS Collaboration

    2013-02-01

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the ~0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B ~ 100 G for the intensity of its field in the line-forming regions of the stellar wind. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the

  3. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    Science.gov (United States)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with i) high spatial resolution HST photometry; ii) numbers of W-R stars in nearby galaxies; and iii) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  4. The first optical spectra of Wolf-Rayet stars in M101 revealed with Gemini/GMOS

    Science.gov (United States)

    Pledger, J. L.; Shara, M. M.; Wilde, M.; Crowther, P. A.; Long, K. S.; Zurek, D.; Moffat, A. F. J.

    2018-01-01

    Deep narrow-band Hubble Space Telescope (HST) imaging of the iconic spiral galaxy M101 has revealed over a thousand new Wolf-Rayet (WR) candidates. We report spectrographic confirmation of 10 He II-emission line sources hosting 15 WR stars. We find WR stars present at both sub- and super-solar metallicities with WC stars favouring more metal-rich regions compared to WN stars. We investigate the association of WR stars with H II regions using archival HST imaging and conclude that the majority of WR stars are in or associated with H II regions. Of the 10 emission lines sources, only one appears to be unassociated with a star-forming region. Our spectroscopic survey provides confidence that our narrow-band photometric candidates are in fact bona fide WR stars, which will allow us to characterize the progenitors of any core-collapse supernovae that erupt in the future in M101.

  5. The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class

    Science.gov (United States)

    Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R.

    2014-05-01

    Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 106L⊙ and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L⊙) = 5.3 ... 5.8. Conclusions: While the few extremely luminous stars (log (L/L⊙) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L⊙) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M⊙. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to

  6. Are Wolf-Rayet Stars Able to Pollute the Interstellar Medium of Galaxies? Results from Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Enrique Pérez-Montero

    2013-01-01

    Full Text Available We investigate the spatial distribution of chemical abundances in a sample of low metallicity Wolf-Rayet (WR galaxies selected from the SDSS. We used the integral field spectroscopy technique in the optical spectral range (3700 Å–6850 Å with PMAS attached to the CAHA 3.5 m telescope. Our statistical analysis of the spatial distributions of O/H and N/O, as derived using the direct method or strong-line parameters consistent with it, indicates that metallicity is homogeneous in five out of the six analysed objects in scales of the order of several kpc. Only in the object WR404 is a gradient of metallicity found in the direction of the low surface brightness tail. In contrast, we found an overabundance of N/O in spatial scales of the order of hundreds of pc associated with or close to the positions of the WR stars in 4 out of the 6 galaxies. We exclude possible hydrodynamical causes, such as the metal-poor gas inflow, for this local pollution by means of the analysis of the mass-metallicity relation (MZR and mass-nitrogen-to-oxygen relation (MNOR for the WR galaxies catalogued in the SDSS.

  7. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    Science.gov (United States)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  8. A 10-h period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    Science.gov (United States)

    Chené, A.-N.; Foellmi, C.; Marchenko, S. V.; St-Louis, N.; Moffat, A. F. J.; Ballereau, D.; Chauville, J.; Zorec, J.; Poteet, C. A.

    2011-06-01

    Aims: What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods: In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the λλ 4000-6940 Å domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from ~5 min to months. Results: We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P ~ 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Concil of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Based also on observations made with ESO Telescopes at the La Silla Observatory, under programme ID 271.D-5025.Photometric data presented in Fig. 1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A151

  9. An extensive spectroscopic time-series of three Wolf-Rayet stars. I. The lifetime of large-scale structures in the wind of WR 134

    OpenAIRE

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A.F.J.; Eversberg, T.; Hill, G.M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; KubÁt, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.

    2016-01-01

    During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analyzed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analyzing the variability of the He II $\\lambda$5411 emission line, the previously identified period was refined to P = 2.255 $\\pm$ 0.008 (s.d.) days. The coh...

  10. Sur la nature de la variabilite spectrale et photometrique periodique d'etoiles Wolf-Rayet apparemment isolees

    Science.gov (United States)

    Morel, Thierry

    Il est depuis longtemps suspecté que les étoiles Wolf-Rayet apparemment isolées présentant des variations périodiques dans le profil de leurs raies spectrales, en photométrie ou en polarimétrie sont associées à un compagnon dégénéré (étoile à neutron ou trou noir), et constituent ainsi une phase évolutive dont l'existence, bien que prédite par les modèles évolutifs des systèmes binaires massifs rapprochés, n'a pas encore été catégoriquement confirmée observationnellement. Cependant, de récentes études ayant trait à la variabilité spectrale des étoiles OB laissent émettre quelques doutes quant à la pertinence de ce modèle, en démontrant que des vents largement asphériques peuvent se développer dans les étoiles de type précoce. Le scénario alternatif serait donc de considérer que la variabilité périodique observée n'est pas due à la présence d'un compagnon dégénéré affectant la structure à grande échelle du vent de l'étoile Wolf-Rayet, mais est au contraire induite par la modulation par rotation d'un vent nettement anisotropique. Cet ouvrage présente les résultats d'un vaste programme d'observations spectroscopiques et photométriques (généralement simultanées) se proposant de lever l'ambiguïté sur la nature précise des étoiles Wolf-Rayet apparemment isolées dont la périodicité des variations est. soit depuis longtemps établie (WR 6), soit suspectée (WR 1, WR 134, WR 136). Notre étude a permis de confirmer l'existence d'une périodicité de 2.3 jours pour l'étoile WR 134. En outre, nous présentons des arguments mettant en doute l'éventuelle association de WR 6 et WR 134 avec un compagnon dégénéré. Alternativement, nous proposons que la variabilité périodique observée serait plutôt induite, à l'instar de nombreuses étoiles OB, par la rotation de structures azimutalement étendues dans le vent. Ce modèle est plus à même d'appréhender certains aspects de la variabilité, notamment la

  11. Wolf-Rayet stars, black holes and the first detected gravitational wave source

    Science.gov (United States)

    Bogomazov, A. I.; Cherepashchuk, A. M.; Lipunov, V. M.; Tutukov, A. V.

    2018-01-01

    The recently discovered burst of gravitational waves GW150914 provides a good new chance to verify the current view on the evolution of close binary stars. Modern population synthesis codes help to study this evolution from two main sequence stars up to the formation of two final remnant degenerate dwarfs, neutron stars or black holes (Masevich and Tutukov, 1988). To study the evolution of the GW150914 predecessor we use the ;Scenario Machine; code presented by Lipunov et al. (1996). The scenario modeling conducted in this study allowed to describe the evolution of systems for which the final stage is a massive BH+BH merger. We find that the initial mass of the primary component can be 100÷140M⊙ and the initial separation of the components can be 50÷350R⊙. Our calculations show the plausibility of modern evolutionary scenarios for binary stars and the population synthesis modeling based on it.

  12. A VLT/FLAMES survey for massive binaries in Westerlund 1. II. Dynamical constraints on magnetar progenitor masses

    NARCIS (Netherlands)

    Ritchie, B. W.; Clark, J.S.; Negueruela, I.; Langer, N.

    2010-01-01

    Context. Westerlund 1 is a young, massive Galactic starburst cluster that contains a rich coeval population of Wolf-Rayet stars, hot- and cool-phase transitional supergiants, and a magnetar. Aims. We use spectroscopic and photometric observations of the eclipsing double-lined binary W13 to derive

  13. The spectra of Wolf-Rayet stars. I - Optical line strengths and the hydrogen-to-helium ratios in WN type stars

    Science.gov (United States)

    Conti, P. S.; Leep, M. E.; Perry, D. N.

    1983-05-01

    We begin a series of systematic studies of spectra of Wolf-Rayet stars by examining the optical line strengths of WN stars in the Galaxy and the Large Magellanic Cloud to see what similarities and differences exist among them. Tables of equivalent widths extracted from spectra are presented and some conclusions are drawn. We have found that there is a wide dispersion, up to a factor of 10 or more, in line strengths for all ions even among stars of the same subtype, with WN 7 stars weaker overall than surrounding types. Type-to-type trends are consistent with changing ionization balance in the stellar wind. Nitrogen line ratios indicate that the WN subtypes represent an ionization sequence, but one with considerable overlap: the classification scheme is not single valued; other physical parameters must play a role. The line strength dispersion does not appear to be primarily due to ionization, or luminosity. The Balmer-Pickering decrement has been used to estimate the H/He ratio for most of the WN stars with available spectra; semi-quantitative results are presented. Significant differences in H/He are observed (10 stars may have H/He > 2). At a given subclass, the strongest line stars have no detectable H. The abundance of H probably relates to structural differences in the winds that, in part, give rise to a dispersion in observed line strengths. Finally, we have estimated the C/N ratio from the C IV λ5805/N IV λ4057 line ratio. In most cases our observations suggest that the C/N ratio is consistent with "evolved" models for WN stars. A few stars show strong C IV implying much larger values for C/N, but hydrogen was not detected in them. These stars may be in transition from the WN to WC classes.

  14. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuo; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, 100875 Beijing (China); Covone, Giovanni [Dipartimento di Scienze Fisiche, Università di Napoli " Federico II," Via Cinthia, I-80126 Napoli (Italy); Jullo, Eric [OAMP, Laboratoire d' Astrophysique de Marseille, UMR6110, Traverse du Siphon, F-13012 Marseille (France); Richard, Johan [CRAL, Observatoire de Lyon, Universite Lyon 1, 9 Avenue Ch. Andre, F-69561 Saint Genis Laval Cedex (France); Izzo, Luca, E-mail: zhuzh@bnu.edu.cn [Dip. di Fisica, Sapienza Universit' a di Roma, Piazzale Aldo Moro 5, I-00185 Rome (Italy)

    2015-01-01

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of its counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.

  15. The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star

    Science.gov (United States)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.; hide

    2014-01-01

    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r

  16. Observational properties of massive black hole binary progenitors

    Science.gov (United States)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will

  17. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  18. Particle acceleration in binaries

    Science.gov (United States)

    Sinitsyna, V. G.; Sinitsyna, V. Y.

    2017-06-01

    Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV-85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  19. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    Science.gov (United States)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  20. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.|info:eu-repo/dai/nl/304829498; van Marle, A. -J; Yoon, S.C.|info:eu-repo/dai/nl/266576753

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  1. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    Science.gov (United States)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  2. Improving distances to Galactic Wolf-Rayet stars

    Science.gov (United States)

    Chené, A.-N.; Wyrick, D.; Borissova, J.; Kuhn, M.; Hervé, A.; Ramírez Alegría, S.; Bonatto, C.; Bouret, J.-C.; Kurtev, R.

    Before GAIA improves the HIPPARCOS survey, direct determination of the distance via parallax is only possible for γ Vel, but the analysis of the cluster or association to which WR stars are associated can give distances with a 50% to a 10% accuracy. The list of Galactic clusters, associations and clusters/association candidates has grown significantly in the last decade with the numerous deep, high resolution surveys of the Milky Way. In this work, we revisit the fundamental parameters of known clusters with WR stars, and we present the search for new ones. All our work is based on the catalogs from the VVV (from the VISTA telescope) and the UKIDS (from the UKIRT telescope) near infrared surveys. Finally, the relations between the fundamental parameters of clusters with WR stars are explored.

  3. The planetary nebula IC 4776 and its post-common-envelope binary central star

    Science.gov (United States)

    Sowicka, Paulina; Jones, David; Corradi, Romano L. M.; Wesson, Roger; García-Rojas, Jorge; Santander-García, Miguel; Boffin, Henri M. J.; Rodríguez-Gil, Pablo

    2017-11-01

    We present a detailed analysis of IC 4776, a planetary nebula displaying a morphology believed to be typical of central star binarity. The nebula is shown to comprise a compact hourglass-shaped central region and a pair of precessing jet-like structures. Time-resolved spectroscopy of its central star reveals a periodic radial velocity variability consistent with a binary system. Whilst the data are insufficient to accurately determine the parameters of the binary, the most likely solutions indicate that the secondary is probably a low-mass main-sequence star. An empirical analysis of the chemical abundances in IC 4776 indicates that the common-envelope phase may have cut short the asymptotic giant branch evolution of the progenitor. Abundances calculated from recombination lines are found to be discrepant by a factor of approximately 2 relative to those calculated using collisionally excited lines, suggesting a possible correlation between low-abundance discrepancy factors and intermediate-period post-common-envelope central stars and/or Wolf-Rayet central stars. The detection of a radial velocity variability associated with the binarity of the central star of IC 4776 may be indicative of a significant population of (intermediate-period) post-common-envelope binary central stars that would be undetected by classic photometric monitoring techniques.

  4. The expected spins of gravitational wave sources with isolated field binary progenitors

    Science.gov (United States)

    Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.

    2018-01-01

    We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.

  5. A catalogue of potentially bright close binary gravitational wave sources

    Science.gov (United States)

    Webbink, Ronald F.

    This is a current print-out of results of a survey, undertaken in the spring of 1985, to identify those known binary stars which might produce significant gravitational wave amplitudes at earth, either dimensionless strain amplitudes exceeding a threshold h = 10-21, or energy fluxes exceeding F = 10-12 erg cm-2 s-1. All real or putative binaries brighter than a certain limiting magnitude (calculated as a function of primary spectral type, orbital period, orbital eccentricity, and bandpass) are included. All double degenerate binaries and Wolf-Rayet binaries with known or suspected orbital periods have also been included. The catalog consists of two parts: a listing of objects in ascending order of Right Ascension (Equinox B1950), followed by an index, listing of objects by identification number according to all major stellar catalogs. The object listing is a print-out of the spreadsheets on which the catalog is currently maintained. It should be noted that the use of this spreadsheet program imposes some limitations on the display of entries. Text entries which exceed the cell size may appear in truncated form, or may run into adjacent columns. Greek characters are not available; they are represented here by the first two or three letters of their Roman names, the first letter appearing as a capital or lower-case letter according to whether the capital or lower-case Greek character is represented. Neither superscripts nor subscripts are available; they appear here in normal position and type-face. The index provides the Right Ascension and Declination of objects sorted by catalogue number.

  6. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel, E-mail: gmontes@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-11-10

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  7. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    Science.gov (United States)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  8. Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO

    Science.gov (United States)

    Hotokezaka, Kenta; Piran, Tsvi

    2017-06-01

    We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf-Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintains its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ˜2-3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ˜0.5-1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.

  9. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    Science.gov (United States)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  10. The Two Components of the Evolved Massive Binary LZ Cephei: Testing the Effects of Binarity on Stellar Evolution

    Science.gov (United States)

    Mahy, L.; Martins, F.; Donati, J.-F.; Bouret, J.-C.

    2011-01-01

    We present an in-dep(h study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results.LZ Cep is a O9III+ON9.7V binary. It is as a semi-detailed system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 Stellar Mass (primary) and 6.5 Stellar Mass (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain abe observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  11. WR 110: A Single Wolf-Rayet Star with Corotating Interaction Regions in its Wind?

    Science.gov (United States)

    Chené, A.-N.; Moffat, A. F. J.; Cameron, C.; Fahed, R.; Gamen, R. C.; Lefèvre, L.; Rowe, J. F.; St-louis, N.; Muntean, V.; De La Chevrotière, A.; Guenther, D. B.; Kuschnig, R.; Matthews, J. M.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2011-07-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ≈ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  12. Rapid photometry of EZ Canis Majoris - Searching for flare activity in Wolf-Rayet stars

    Science.gov (United States)

    Matthews, J. M.; Moffat, A. F. J.; Marchenko, S. V.

    1992-12-01

    EZ CMa was chosen for a trial run of high-speed photometry to search for flare activity in W-R stars. Data were collected during UT November 27-December 2, 1991 with the 1.0-telescope + ASCAP photometer and the 0.6-m telescope + manual photometer of the Cerro Tololo Inter-American Observatory. A period near 22.7 min was found. A brightness increase of about 1 percent, lasting for about 10 min in the otherwise smooth light curve, was observed. Fourier analysis of the data sets an upper limit of 0.0005 mag on any variations with periods less than about 10 min.

  13. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  14. The first study of the light-travel time effect in massive LMC eclipsing binaries

    Science.gov (United States)

    Zasche, P.; Wolf, M.; Vraštil, J.; Pilarčík, L.; Juryšek, J.

    2016-05-01

    Aims: New CCD observations for semidetached and detached eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54-m telescope located at the La Silla Observatory in Chile. The selected systems were monitored for their times of minima, which were required to be able to study the period changes taking place in them. In addition, many new times of minima were derived from the photometric surveys OGLE-II, OGLE-III, and MACHO. Methods: The O-C diagrams of minima timings were analysed using the hypothesis of the light-travel time effect, I.e. assuming the orbital motion around a common barycenter with the distant component. Moreover, the light curves of these systems were also analysed using the program PHOEBE, which provided the physical parameters of the stars. Results: For the first time, in this study we derived the relatively short periods of modulation in these systems, which relates to third bodies. The orbital periods resulted from 3.6 to 11.3 yr and the eccentricities were found to be up to 0.64. This is the first time that this kind of analysis for the set of extragalactic sources has been performed. The Wolf-Rayet system OGLE-LMC-ECL-08823 is the most mysterious one, owing to the resultant high mass function. Another system, OGLE-LMC-ECL-19996, was found to contain a third body with a very high mass (M3,min = 26M⊙). One system (OGLE-LMC-ECL-09971) is suspicious because of its eccentricity, and another one (OGLE-LMC-ECL-20162) shows some light curve variability, with a possible flare-like or microlensing-like event. Conclusions: All of these results came only from the photometric observations of the systems and can be considered as a good starting point for future dedicated observations. Based on data collected with the Danish 1.54-m telescope at the ESO La Silla Observatory.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  15. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity

    OpenAIRE

    Gotberg, Y.; de mink, S. E.; Groh, J. H.

    2017-01-01

    Understanding ionizing fluxes of stellar populations is crucial for various astrophysical problems including the epoch of reionization. Massive short-lived Wolf-Rayet stars are generally considered as the main ionizing sources. We examine the role of less massive stars that lose their envelope through interaction with a companion. We use the evolutionary code MESA and the radiative transfer code CMFGEN to investigate stripped stars as a function of metallicity (Z). We show that typical progen...

  16. Multiple variations in the radio light-curve of the colliding wind binary WR 146 (WC6+O) : evidence for a third component

    NARCIS (Netherlands)

    Gunawan, DYAS; de Bruyn, AG; van der Hucht, KA; Williams, PM

    2000-01-01

    The Wolf-Rayet star WR 146 (HM19-3, WC6+O) is the brightest WR star at radio wavelengths. We have been monitoring this system with the Westerbork Synthesis Radio Telescope (WSRT) at 1.4 and 5 GHz (21 and 6 cm) since 1989. The time-averaged spectral index alpha(5-1.4 GHz) similar or equal to -0.62

  17. IPHAS : Surveying the North Galactic Plane in H-alpha

    NARCIS (Netherlands)

    Drew, J.E.; Groot, P.J.; Morales-Rueda, L.; Roelofs, G.H.A.

    2005-01-01

    H-alpha emission is ubiquitous in our Galaxy. It traces ionised gas of assorted nebulae such as HII regions, planetary nebulae, Wolf-Rayet nebulae, and supernova remnants. It is a strong signature of active stars, interacting binaries, very massive stars (especially supergiants, Luminous Blue

  18. MOST Finds No Coherent Oscillations in the Hot Carbon-rich Wolf-Rayet Star HD 165763 (WR 111)

    Science.gov (United States)

    Moffat, A. F. J.; Marchenko, S. V.; Zhilyaev, B. E.; Rowe, J. F.; Muntean, V.; Chené, A.-N.; Matthews, J. M.; Kuschnig, R.; Guenther, D. B.; Rucinski, S. M.; Sasselov, D.; Walker, G. A. H.; Weiss, W. W.

    2008-05-01

    We have photometrically monitored the V = 8 mag Galactic Population I WC5 star WR 111 for 3 weeks nonstop using the MOST microsatellite. Each of the ~27,000 data points has a precision of ~3 mmag. We find no coherent Fourier components above the 50 part per million level over the whole interval for frequencies f > 10 cd-1 (periods P Canadian Space Agency mission, jointly operated by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia with the assistance of the University of Vienna.

  19. Polarization light curve modelling of corotating interaction regions in the wind of the Wolf-Rayet star WR 6

    Science.gov (United States)

    St-Louis, N.; Tremblay, Patrick; Ignace, Richard

    2018-02-01

    The intriguing WN4b star WR 6 has been known to display epoch-dependent spectroscopic, photometric and polarimetric variability for several decades. In this paper, we set out to verify if a simplified analytical model in which corotating interaction regions (CIRs) threading an otherwise spherical wind is able to reproduce the many broad-band continuum light curves from the literature with a reasonable set of parameters. We modified the optically thin model developed by Ignace, St-Louis & Proulx-Giraldeau to approximately account for multiple scattering and used it to fit 13 separate data sets of this star. By including two CIRs in the wind, we obtained reasonable fits for all data sets with coherent values for the inclination of the rotation axis (i0 = 166°) and for its orientation in the plane of the sky, although in the latter case we obtained two equally acceptable values (ψ = 63° and 152°) from the polarimetry. Additional line profile variation simulations using the Sobolev approximation for the line transfer allowed us to eliminate the ψ = 152° solution. With the adopted configuration (i0 = 166° and ψ = 63°), we were able to reproduce all data sets relatively well with two CIRs located near the stellar equator and always separated by ˜90° in longitude. The epoch dependence comes from the fact that these CIRs migrate along the surface of the star. Density contrasts smaller than a factor of 2 and large opening angles for the CIR (β ⪆ 35°) were found to best reproduce the type of spectroscopic variability reported in the literature.

  20. The "21" mu m and "30" mu m emission features in planetary nebulae with Wolf-Rayet central stars

    NARCIS (Netherlands)

    Hony, S; Waters, LBFM; Tielens, AGGM; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    We present mid infrared spectra of two planetary nebulae with H poor central stars that exhibit the "21" and "30" mum emission features. These features are found in carbon rich dust surroundings. The presence of these features shows that these sources have suffered an extended period of carbon rich

  1. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  2. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  3. SN2015bh: NGC2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?

    DEFF Research Database (Denmark)

    Thone, C. C.; de Ugarte Postigo, A.; Leloudas, G.

    2017-01-01

    shell plunging into a dense CSM. The emission lines show a single narrow P Cygni profile during the LBV phase and a double P Cygni profile post maximum suggesting an association of the second component with the possible SN. Since 1994 the star has been redder than an LBV in an S-Dor-like outburst. SN......Very massive stars in the final phases of their lives often show unpredictable outbursts that can mimic supernovae, so-called, "SN impostors", but the distinction is not always straightforward. Here we present observations of a luminous blue variable (LBV) in NGC2770 in outburst over more than 20...... 2015bh lies within a spiral arm of NGC2770 next to several small star-forming regions with a metallicity of similar to 0.5 solar and a stellar population age of 7-10 Myr. SN 2015bh shares many similarities with SN 2009ip and may form a new class of objects that exhibit outbursts a few decades prior...

  4. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    Science.gov (United States)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; hide

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  5. A giant outburst two years before the core-collapse of a massive star.

    Science.gov (United States)

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  6. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility....

  7. Solving a Binary Puzzle

    NARCIS (Netherlands)

    P.H. Utomo (Putranto); R.H. Makarim (Rusydi)

    2017-01-01

    textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and

  8. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  9. PHOEBE: PHysics Of Eclipsing BinariEs

    Science.gov (United States)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  10. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  11. Massive binary evolution

    Science.gov (United States)

    Podsiadlowski, Philipp

    2010-03-01

    Understanding the evolution of massive binaries is essential for understanding many observed classes of stellar systems, ranging from Algols to X-ray binaries, recycled pulsars, double-neutron-star systems and quite possibly gamma-ray burst sources. Here recent progress and some of the main remaining uncertainties are being reviewed, particularly emphasizing stellar mergers and their possible implications for supernovae like SN 1987A, Thorne-Żytkow objects and η Car-like eruptions. It is shown how binary evolution can affect both the envelope and the core structure of a massive star, explaining - at least in part - the observed diversity of core-collapse supernovae and potentially producing different kick distributions for systems in binaries. Various ideas linking gamma-ray bursts to massive binaries are also being discussed.

  12. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  13. Binary and Millisecond Pulsars

    OpenAIRE

    Lorimer, D. R.

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...

  14. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    Science.gov (United States)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  15. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  16. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  17. Binary Neutron Star Mergers.

    Science.gov (United States)

    Faber, Joshua A; Rasio, Frederic A

    2012-01-01

    We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-)hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  18. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  19. Pinwheel Nebula around WR 98a.

    Science.gov (United States)

    Monnier; Tuthill; Danchi

    1999-11-10

    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  20. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  1. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  2. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  3. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Duncan R. Lorimer

    1998-09-01

    Full Text Available Our knowledge of binary and millisecond pulsars has greatly increased in recent years. This is largely due to the success of large-area surveys which have brought the known population of such systems in the Galactic disk to around 50. As well as being interesting as a population of astronomical sources, many pulsars turn out to be superb celestial clocks. In this review we summarise the main properties of binary and millisecond pulsars and highlight some of their applications to relativistic astrophysics.

  4. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  5. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  6. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  7. Astrometric Binaries: White Dwarfs?

    Science.gov (United States)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  8. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  9. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances....

  10. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances...

  11. Binary Masking & Speech Intelligibility

    OpenAIRE

    Boldt, Jesper

    2010-01-01

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...

  12. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  13. Evolution of Close Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  14. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  15. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive...

  16. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  17. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  18. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  19. Signature Visualization of Software Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  20. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  1. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    Science.gov (United States)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  2. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  3. Binary Population and Spectral Synthesis

    Science.gov (United States)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Bray, J. C.; Taylor, G.; Ng, M.

    2017-11-01

    We have recently released version 2.0 of the Binary Population and Spectral Synthesis (BPASS) population synthesis code. This is designed to construct the spectra and related properties of stellar populations built from ~200,000 detailed, individual stellar models of known age and metallicity. The output products enable a broad range of theoretical predictions for individual stars, binaries, resolved and unresolved stellar populations, supernovae and their progenitors, and compact remnant mergers. Here we summarise key applications that demonstrate that binary populations typically reproduce observations better than single star models.

  4. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.

  5. New Orbits for 18 Binaries

    Science.gov (United States)

    Cvetković, Z.; Pavlović, R.

    2017-12-01

    Orbital elements of 18 visual binaries are computed using the measurements collected in the Fourth Catalog of Interferometric Measurements of Binary Stars; 15 orbits are determined for the first time and three orbits are revised. Eleven of the binaries, denoted as HDS, were discovered during the Hipparcos mission. The remaining binaries were discovered a few years earlier or later than 1991. All studied pairs are close, and all measured separations are less than 0\\buildrel{\\prime\\prime}\\over{.} 46. The shortest orbital period is 10 years and the longest orbital period is 127 years. Dynamical parallaxes and total masses of systems are derived from the orbital elements. We also give absolute magnitudes, spectral types, and (O-C) residuals in θ and ρ.

  6. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  7. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics Impact factor: 1.633, year: 2016

  8. New Results on Contact Binary Stars

    Science.gov (United States)

    He, J.; Qian, S.; Zhu, L.; Liu, L.; Liao, W.

    2014-08-01

    Contact binary star is a kind of close binary with the strongest interaction binary system. Their formations and evolutions are unsolved problems in astrophysics. Since 2000, our groups have observed and studied more than half a hundred of contact binaries. In this report, I will summarize our new results of some contact binary stars (e.g. UZ CMi, GSC 03526-01995, FU Dra, GSC 0763-0572, V524 Mon, MR Com, etc.). They are as follow: (1) We discovered that V524 Mon and MR Com are shallow-contact binaries with their period decreasing; (2) GSC 03526-01995 is middle-contact binary without a period increasing or decreasing continuously; (3) UZ CMi, GSC 0763-0572 and FU Dra are middle-contact binaries with the period increasing continuously; (4) UZ CMi, GSC 03526-01995, FU Dra and V524 Mon show period oscillation which may imply the presence of additional components in these contact binaries.

  9. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  10. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  11. Using Binary Code Instrumentation in Computer Security

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2013-01-01

    Full Text Available The paper approaches the low-level details of the code generated by compilers whose format permits outside actions. Binary code modifications are manually done when the internal format is known and understood, or automatically by certain tools developed to process the binary code. The binary code instrumentation goals may be various from security increasing and bug fixing to development of malicious software. The paper highlights the binary code instrumentation techniques by code injection to increase the security and reliability of a software application. Also, the paper offers examples for binary code formats understanding and how the binary code injection may be applied.

  12. Statistical study of visual binaries

    Science.gov (United States)

    Abdel-Rahman, H. I.; Nouh, M. I.; Elsanhoury, W. H.

    2017-04-01

    In this paper, some statistical distributions of wide pairs included in Double Star Catalogue are investigated. Frequency distributions and testing hypothesis are derived for some basic parameters of visual binaries. The results reached indicate that, it was found that the magnitude difference is distributed exponentially, which means that the majority of the component of the selected systems is of the same spectral type. The distribution of the mass ratios is concentrated about 0.7 which agree with Salpeter mass function. The distribution of the linear separation appears to be exponentially, which contradict with previous studies for close binaries.

  13. Chromospheric Activity in Algol Binaries

    Science.gov (United States)

    1992-08-10

    Binaries J ’ st ..icaton...... Project Period: 10-01-91 to 09-30-94 BYDist! ibution I Current Date: August 10, 1992 Availability Codes Avail and I or...brightness of the secondary, )3 Persei is the only Algol binary for which there was strong evidence of starspot activity. In this case, the evidence...mospheric Ha emission on what was formerly assumed to be emission from circunistellar gas. In the study of 3 Persei , the P.I. (Richards 1992b: 1992c) assumed

  14. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  15. The Uses of Binary Thinking.

    Science.gov (United States)

    Elbow, Peter

    1993-01-01

    Argues that oppositional thinking, if handled in the right way, will serve as a way to avoid the very problems that Jonathan Culler and Paul de Mann are troubled by: "purity, order, and hierarchy." Asserts that binary thinking can serve to encourage difference--indeed, encourage nondominance, nontranscendence, instability, and disorder.…

  16. The Colors of Transneptunian Binaries

    Science.gov (United States)

    Benecchi, Susan D.; Noll, K. S.; Grundy, W. M.; Buie, M. W.; Stephens, D. C.; Levison, H. F.

    2008-09-01

    We report resolved photometry of the primary and secondary components of 22 transneptunian binaries obtained with the Hubble Space Telescope. We find the primary and secondary colors to be identical within our measurement uncertainties and correlated with a Spearman rank correlation probability of 99.983%. The V-I colors of the components span the full color range from 0.7 (neutral) to 1.5 (red) with a median uncertainty of 0.05 magnitudes. As a group, the binary colors are indistinguishable from that of the larger population of apparently single transneptunian objects. Whatever mechanism produced the colors of apparently single transneptunian objects acted equally on binary systems. The most likely explanation is that the colors of both single and binary transneptunian objects are primordial and indicative of their origin in a locally homogeneous, globally heterogeneous protoplanetary disk. Support for this research was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  17. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics Impact factor: 1.633, year: 2016

  18. The Meritfactor of Binary Seqences

    DEFF Research Database (Denmark)

    Høholdt, Tom

    1999-01-01

    Binary sequences with small aperiodic correlations play an important role in many applications ranging from radar to modulation and testing of systems. Golay(1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture...

  19. Generating Constant Weight Binary Codes

    Science.gov (United States)

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  20. Tides in Close Binary Systems

    Science.gov (United States)

    Burkart, Joshua

    2014-09-01

    We consider three aspects of tidal interactions in close binary systems. 1) We first develop a framework for predicting and interpreting photometric observations of eccentric binaries, which we term tidal asteroseismology. In such systems, the Fourier transform of the observed lightcurve is expected to consist of pulsations at harmonics of the orbital frequency. We use linear stellar perturbation theory to predict the expected pulsation amplitude spectra. Our numerical model does not assume adiabaticity, and accounts for stellar rotation in the traditional approximation. We apply our model to the recently discovered Kepler system KOI-54, a 42-day face-on stellar binary with e=0.83. Our modeling yields pulsation spectra that are semi-quantitatively consistent with observations of KOI-54. KOI-54's spectrum also contains several nonharmonic pulsations, which can be explained by nonlinear three-mode coupling. 2) We next consider the situation of a white dwarf (WD) binary inspiraling due to the emission of gravitational waves. We show that resonance locks, previously considered in binaries with an early-type star, occur universally in WD binaries. In a resonance lock, the orbital and spin frequencies evolve in lockstep, so that the tidal forcing frequency is approximately constant and a particular normal mode remains resonant, producing efficient tidal dissipation and nearly synchronous rotation. We derive analytic formulas for the tidal quality factor and tidal heating rate during a g-mode resonance lock, and verify our results numerically. We apply our analysis to the 13-minute double-WD binary J0651, and show that our predictions are roughly consistent with observations. 3) Lastly, we examine the general dynamics of resonance locking in more detail. Previous analyses of resonance locking, including my own earlier work, invoke the adiabatic (a.k.a. Lorentzian) approximation for the mode amplitude, valid only in the limit of relatively strong mode damping. We relax

  1. Interactions in Massive Colliding Wind Binaries

    Directory of Open Access Journals (Sweden)

    Michael F. Corcoran

    2012-03-01

    Full Text Available There are observational difficulties determining dynamical masses of binary star components in the upper HR diagram both due to the scarcity of massive binary systems and spectral and photometric contamination produced by the strong wind outflows in these systems. We discuss how variable X-ray emission in these systems produced by wind-wind collisions in massive binaries can be used to constrain the system parameters, with application to two important massive binaries, Eta Carinae and WR 140.

  2. Massive star population synthesis with binaries

    OpenAIRE

    Vanbeveren, D.; Mennekens, N.

    2015-01-01

    We first give a short historical overview with some key facts of massive star population synthesis with binaries. We then discuss binary population codes and focus on two ingredients which are important for massive star population synthesis and which may be different in different codes. Population simulations with binaries is the third part where we consider the initial massive binary frequency, the RSG/WR and WC/WN and SNII/SNIbc number ratio's, the probable initial rotational velocity distr...

  3. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  4. Testing predictive performance of binary choice models

    NARCIS (Netherlands)

    A.C.D. Donkers (Bas); B. Melenberg (Bertrand)

    2002-01-01

    textabstractBinary choice models occur frequently in economic modeling. A measure of the predictive performance of binary choice models that is often reported is the hit rate of a model. This paper develops a test for the outperformance of a predictor for binary outcomes over a naive prediction

  5. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  6. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    CERN Document Server

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this description leads to a binary erasure decoding algorithm of non-binary LDPC codes, whose complexity depends linearly on the cardinality of the alphabet. We also give insights into the structure of stopping sets for non-binary LDPC codes, and discuss several aspects related to upper-layer FEC applications.

  7. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  8. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  9. Mass transfer between binary stars

    Science.gov (United States)

    Modisette, J. L.; Kondo, Y.

    1980-01-01

    The transfer of mass from one component of a binary system to another by mass ejection is analyzed through a stellar wind mechanism, using a model which integrates the equations of motion, including the energy equation, with an initial static atmosphere and various temperature fluctuations imposed at the base of the star's corona. The model is applied to several situations and the energy flow is calculated along the line of centers between the two binary components, in the rotating frame of the system, thereby incorporating the centrifugal force. It is shown that relatively small disturbances in the lower chromosphere or photosphere can produce mass loss through a stellar wind mechanism, due to the amplification of the disturbance propagating into the thinner atmosphere. Since there are many possible sources of the disturbance, the model can be used to explain many mass ejection phenomena.

  10. Binary data regression: Weibull distribution

    Science.gov (United States)

    Caron, Renault; Polpo, Adriano

    2009-12-01

    The problem of estimation in binary response data has receivied a great number of alternative statistical solutions. Generalized linear models allow for a wide range of statistical models for regression data. The most used model is the logistic regression, see Hosmer et al. [6]. However, as Chen et al. [5] mentions, when the probability of a given binary response approaches 0 at a different rate than it approaches 1, symmetric linkages are inappropriate. A class of models based on Weibull distribution indexed by three parameters is introduced here. Maximum likelihood methods are employed to estimate the parameters. The objective of the present paper is to show a solution for the estimation problem under the Weibull model. An example showing the quality of the model is illustrated by comparing it with the alternative probit and logit models.

  11. Slow Rotating Trojans: Tidally Synchronized Binaries?

    Science.gov (United States)

    Noll, Keith

    2017-08-01

    We propose HST observations of six slow-rotating Trojans to search for tidally synchronous binaries similar to the Patroclus binary system. A significant excess of slow rotators over Maxwellian suggests that additional binaries may be present. If any of the targets are binary, they can be resolved by HST. This target selection strategy has recently yielded the third known resolved Trojan binary, detected in a sample of seven slow-rotating Trojans. We wish to extend this successful strategy with another similarly selected sample. Even one additional resolved binary in the Trojans, which would become the fourth, would be of extreme interest. The discovery of no binaries among this group of slow rotators would challenge the understanding of the source of the excess slow rotators in the Trojans.

  12. Binary Multidimensional Scaling for Hashing.

    Science.gov (United States)

    Huang, Yameng; Lin, Zhouchen

    2017-10-04

    Hashing is a useful technique for fast nearest neighbor search due to its low storage cost and fast query speed. Unsupervised hashing aims at learning binary hash codes for the original features so that the pairwise distances can be best preserved. While several works have targeted on this task, the results are not satisfactory mainly due to the oversimplified model. In this paper, we propose a unified and concise unsupervised hashing framework, called Binary Multidimensional Scaling (BMDS), which is able to learn the hash code for distance preservation in both batch and online mode. In the batch mode, unlike most existing hashing methods, we do not need to simplify the model by predefining the form of hash map. Instead, we learn the binary codes directly based on the pairwise distances among the normalized original features by Alternating Minimization. This enables a stronger expressive power of the hash map. In the online mode, we consider the holistic distance relationship between current query example and those we have already learned, rather than only focusing on current data chunk. It is useful when the data come in a streaming fashion. Empirical results show that while being efficient for training, our algorithm outperforms state-of-the-art methods by a large margin in terms of distance preservation, which is practical for real-world applications.

  13. Binary Black Holes from Dense Star Clusters

    Science.gov (United States)

    Rodriguez, Carl

    2017-01-01

    The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.

  14. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  15. SYSTEMATICALLY MISCLASSIFIED BINARY DEPENDENT VARIABLES.

    Science.gov (United States)

    Tennekoon, Vidhura; Rosenman, Robert

    When a binary dependent variable is misclassified, that is, recorded in the category other than where it really belongs, probit and logit estimates are biased and inconsistent. In some cases the probability of misclassification may vary systematically with covariates, and thus be endogenous. In this paper we develop an estimation approach that corrects for endogenous misclassification, validate our approach using a simulation study, and apply it to the analysis of a treatment program designed to improve family dynamics. Our results show that endogenous misclassification could lead to potentially incorrect conclusions unless corrected using an appropriate technique.

  16. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  17. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  18. Speech perception of noise with binary gains

    DEFF Research Database (Denmark)

    Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed by the i......For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed...

  19. Binary and multiple systems of stars

    CERN Document Server

    Batten, Alan H

    1973-01-01

    Binary and Multiple Systems of Stars focuses on spectroscopic observational results and interpretations of binaries, and a few of multiple systems. Organized into 10 chapters, this book begins with the basic concepts and terminologies used in the study of binary and multiple systems of stars. Then, the incidence of both star systems is described. Subsequent chapters explore the properties of individual binaries, as well as the evolution and origin of such star system. This book will be a valuable reference material for astronomers, scientists in related fields, as well as graduate students.

  20. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  1. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    We evaluate the binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery procedure works robustly to induce risk neutrality when subjects are given one risk task defined over...... objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  2. Method of all-optical frequency encoded decimal to binary and binary coded decimal, binary to gray, and gray to binary data conversion using semiconductor optical amplifiers

    Science.gov (United States)

    Garai, Sisir Kumar

    2011-07-01

    Conversion of optical data from decimal to binary format is very important in optical computing and optical signal processing. There are many binary code systems to represent decimal numbers, the most common being the binary coded decimal (BCD) and gray code system. There are a wide choice of BCD codes, one of which is a natural BCD having a weighted code of 8421, by means of which it is possible to represent a decimal number from 0 to 9 with a combination of 4bit binary digits. The reflected binary code, also known as the Gray code, is a binary numeral system where two successive values differ in only 1bit. The Gray code is very important in digital optical communication as it is used to prevent spurious output from optical switches as well as to facilitate error correction in digital communications in an optical domain. Here in this communication, the author proposes an all-optical frequency encoded method of ``:decimal to binary, BCD,'' ``binary to gray,'' and ``gray to binary'' data conversion using the high-speed switching actions of semiconductor optical amplifiers. To convert decimal numbers to a binary form, a frequency encoding technique is adopted to represent two binary bits, 0 and 1. The frequency encoding technique offers advantages over conventional encoding techniques in terms of less probability of bit errors and greater reliability. Here the author has exploited the polarization switch made of a semiconductor optical amplifier (SOA) and a property of nonlinear rotation of the state of polarization of the probe beam in SOA for frequency conversion to develop the method of frequency encoded data conversion.

  3. Binary Representations of Fingerprint Spectral Minutiae Features

    NARCIS (Netherlands)

    Xu, H.; Veldhuis, Raymond N.J.

    A fixed-length binary representation of a fingerprint has the advantages of a fast operation and a small template storage. For many biometric template protection schemes, a binary string is also required as input. The spectral minutiae representation is a method to represent a minutiae set as a

  4. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  5. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...

  6. Binary trees equipped with semivaluations | Pajoohesh ...

    African Journals Online (AJOL)

    Our interest in this lattice stems from its application to binary decision trees. Binary decision trees form a crucial tool for algorithmic time analysis. The lattice properties of Tn are studied and we show that every Tn has a sublattice isomorphic to Tn-1 and prove that Tn is generated by Tn-1. Also we show that the distance from ...

  7. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  8. Binaries with the eyes of CTA

    NARCIS (Netherlands)

    Paredes, J.M.; Bednarek, W.; Bordas, P.; Bosch-Ramon, V.; De Cea del Pozo, E.; Dubus, G.; Funk, S.; Hadasch, D.; Khangulyan, D.; Markoff, S.; Moldón, J.; Munar-Adrover, P.; Nagataki, S.; Naito, T.; de Naurois, M.; Pedaletti, G.; Reimer, O.; Ribó, M.; Szostek, A.; Terada, Y.; Torres, D.F.; Zabalza, V.; Zdziarski, A.A.

    2013-01-01

    The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray

  9. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  10. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  11. Record-Breaking Eclipsing Binary

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  12. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  13. Embedded binaries and their dense cores

    Science.gov (United States)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  14. Spectroscopic Analysis: A Key Tool for Understanding the Universe

    Science.gov (United States)

    Hillier, D.

    2016-10-01

    Spectroscopic analysis is a key tool for understanding the nature of stars and supernovae. To facilitate advances in spectroscopic analysis we will significantly enhance and extend the capabilities of our time-dependent radiative transfer code, CMFGEN. As part of these improvements we will expand one of the associated codes to handle complex photospheric velocity fields, and we will investigate and test new methods to better treat multi-component winds. CMFGEN has been extensively used to study luminous blue variables, O stars, Wolf-Rayet stars, [W-R] central stars of planetary nebulae, and most types of supernovae. All these objects have been extensively observed by HST. CMFGEN, with documentation and sample models, is available at www.pitt.edu/ hillier.O stars, and their descendants, play a crucial role in galaxy evolution. They are a dominant source of ionizing radiation, and through their winds and supernovae explosions they deposit momentum and energy into the interstellar medium. They are also responsible for many of the key elements (e.g., O, Mg, Si) necessary for life. Despite advances we still lack a firm understanding of massive star evolution: What is the role of rotation in massive star evolution and how does it change with metallicity? How does rotation affect surface abundances? What is the origin of turbulence in massive stars? How does the supernova subtype correlate with a star's initial mass? What is the relative importance of single stars compared with binary systems for producing Wolf-Rayet stars and supernovae? We can address many of these questions (or at least provide important constraints) by performing accurate spectroscopic analyses.

  15. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  16. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  17. Calibrating binary lumped parameter models

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike

    2017-04-01

    Groundwater at its discharge point is a mixture of water from short and long flowlines, and therefore has a distribution of ages rather than a single age. Various transfer functions describe the distribution of ages within the water sample. Lumped parameter models (LPMs), which are mathematical models of water transport based on simplified aquifer geometry and flow configuration can account for such mixing of groundwater of different age, usually representing the age distribution with two parameters, the mean residence time, and the mixing parameter. Simple lumped parameter models can often match well the measured time varying age tracer concentrations, and therefore are a good representation of the groundwater mixing at these sites. Usually a few tracer data (time series and/or multi-tracer) can constrain both parameters. With the building of larger data sets of age tracer data throughout New Zealand, including tritium, SF6, CFCs, and recently Halon-1301, and time series of these tracers, we realised that for a number of wells the groundwater ages using a simple lumped parameter model were inconsistent between the different tracer methods. Contamination or degradation of individual tracers is unlikely because the different tracers show consistent trends over years and decades. This points toward a more complex mixing of groundwaters with different ages for such wells than represented by the simple lumped parameter models. Binary (or compound) mixing models are able to represent a more complex mixing, with mixing of water of two different age distributions. The problem related to these models is that they usually have 5 parameters which makes them data-hungry and therefore difficult to constrain all parameters. Two or more age tracers with different input functions, with multiple measurements over time, can provide the required information to constrain the parameters of the binary mixing model. We obtained excellent results using tritium time series encompassing

  18. Dynamical mass transfer in cataclysmic binaries

    Science.gov (United States)

    Melia, Fulvio; Lamb, D. Q.

    1987-01-01

    When a binary comes into contact and mass transfer begins, orbital angular momentum is stored in the accretion disk until the disk couples tidally to the binary system. Taam and McDermott (1987) have suggested that this leads to unstable dynamical mass transfer in many cataclysmic variables in which mass transfer would otherwise be stable, and that it explains the gap between 2 and 3 h in the orbital period distribution of these systems. Here the consequences of this hypothesis for the evolution of cataclysmic binaries are explored. It is found that systems coming into contact longward of the period gap undergo one or more episodes of dynamical mass transfer.

  19. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2014-01-01

    We evaluate a binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Prior research has shown this procedure to robustly induce risk neutrality when subjects are given a single risk task defined over objective probabilities. Drawing a sample from...... the same subject population, we find evidence that the binary lottery procedure also induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation of subjective probabilities in subjects...

  20. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  1. BINARY MINOR PLANETS V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  2. Binary Biometric Representation through Pairwise Polar Quantization

    NARCIS (Netherlands)

    Chen, C.; Veldhuis, Raymond N.J.; Tistarelli, M.; Nixon, M.

    Binary biometric representations have great significance for data compression and template protection. In this paper, we introduce pairwise polar quantization. Furthermore, aiming to optimize the discrimination between the genuine Hamming distance (GHD) and the imposter Hamming distance (IHD), we

  3. On the Maximum Separation of Visual Binaries

    Indian Academy of Sciences (India)

    2016-01-27

    minimum) angular separation ρmax(ρmin), the corresponding apparent position angles (|ρmax , |ρmin) and the individual masses of visual binary systems. The algorithm uses Reed's formulae (1984) for the masses, and a ...

  4. BINARY MINOR PLANETS V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  5. BINARY MINOR PLANETS V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  6. Computer controlled evaluation of binary images

    NARCIS (Netherlands)

    Schouten, Th.E.; van den Broek, Egon

    2010-01-01

    The present invention relates to computer controlled image processing and, in particular, to computer controlled evaluation of two dimensional, 2D, and three dimensional, 3D, binary images including sequences of images using a distance map.

  7. BINARY MINOR PLANETS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a data table giving basic physical and orbital parameters for known binary minor planets in the Solar System (and Pluto/Charon) based on published...

  8. BINARY MINOR PLANETS V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  9. BINARY MINOR PLANETS V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present data tables giving basic orbital and physical parameters for well-observed or suspected binary/multiple minor planets and the Pluto system, based on a...

  10. BINARY MINOR PLANETS V9.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  11. BINARY MINOR PLANETS V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present data tables giving basic orbital and physical parameters for well-observed or suspected binary/multiple minor planets and the Pluto system, based on a...

  12. BINARY MINOR PLANETS V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  13. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis......) BCD addition, the circuit delay of 49 gates is significantly lower than is the number of bits used for the BCD representation. A complete set of reversible half- and full-adders for n-bit binary numbers and m-decimal BCD numbers is presented. The results show that special-purpose design pays off...

  14. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  15. Eclipsing Binary Stars: Modeling and Analysis

    CERN Document Server

    Kallrath, Josef

    2009-01-01

    Eclipsing Binary Stars focuses on the mathematical formulation of astrophysical models for the light curves of eclipsing binaries stars, and on the algorithms for evaluating and exploiting such models. Since information gained from binary systems provides much of what we know of the masses, luminosities, and radii of stars, such modeling is acquiring increasing importance in studies of stellar structure and evolution. As in other areas of science, the computer revolution has given many astronomers tools that previously only specialists could use; anyone with access to a set of data can now expect to be able to model it. This book will provide astronomers, both amateurs and professionals, with a guide for • specifying an astrophysical model for a set of observations • selecting an algorithm to determine the parameters of the model • estimating the errors of the parameters Eclipsing Binary Stars is written for readers familiar with basic calculus and linear algebra; appendices cover mathematical details o...

  16. Serial binary interval ratios improve rhythm reproduction

    OpenAIRE

    Xiang eWu; Anders eWestanmo; Liang eZhou; Junhao ePan

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are bett...

  17. Surface Phases in Binary Liquid Metal Alloys

    OpenAIRE

    Tostmann, Holger; DiMasi, Elaine; Shpyrko, Oleg G.; Ocko, Ben M.; Pershan, Peter S.; Deutsch, Moshe

    2004-01-01

    Surface sensitive x-ray scattering techniques with atomic scale resolution are employed to investigate the microscopic structure of the surface of three classes of liquid binary alloys: (i) Surface segregation in partly miscible binary alloys as predicted by the Gibbs adsorption rule is investigated for Ga-In. The first layer consists of a supercooled In monolayer and the bulk composition is reached after about two atomic diameters. (ii) The Ga-Bi system displays a wetting transition at a cha...

  18. An Introduction to Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1996-01-01

    This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....

  19. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  20. Modelling of binary stars from observations. (Italian Title: Creare modelli di stelle binarie dalle osservazioni)

    Science.gov (United States)

    Marino, G.

    2011-08-01

    A review on basic physical parameters of closed binary stars introduces to modelling observational data. PHOEBE and other modelling software are described. As example of application, for the first time photometric elements of the eclipsing binary V400 Lyr are obtained.

  1. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or thesis.

  2. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  3. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  4. Urey Prize Lecture: Binary Minor Planets

    Science.gov (United States)

    Margot, J. L.

    2004-11-01

    The discovery of binary systems in the near-Earth, main belt, and Kuiper belt populations provides an abundance of new data that expand our knowledge of the physics and chemistry of the solar system. Binary minor planets form as a result of collisional, tidal, and capture processes that are important to study as they play major roles in the formation and evolution of planetary systems. The frequency of occurrence of such processes directly reflects the dynamical environment in the various populations. Observations of binaries provide a powerful way to measure the bulk properties of small bodies, which in turn lead to inferences about their composition and internal structure. These data may offer a rare glimpse of what physical and chemical conditions prevailed when protoplanets formed, and what subsequent evolution took place. In the case of the Kuiper Belt, the study of a handful of binaries forces us to rethink how dense and how bright these bodies are, and to significantly revise our current mass estimates for the entire population. The number of known binary minor planets has increased dramatically over the past few years, with roughly ten new discoveries each year. I will attempt to summarize recent developments, with examples drawn from my observations with the Hubble, Palomar, Keck, Arecibo and Goldstone telescopes.

  5. Satisfiability modulo theory and binary puzzle

    Science.gov (United States)

    Utomo, Putranto

    2017-06-01

    The binary puzzle is a sudoku-like puzzle with values in each cell taken from the set {0, 1}. We look at the mathematical theory behind it. A solved binary puzzle is an n × n binary array where n is even that satisfies the following conditions: (1) No three consecutive ones and no three consecutive zeros in each row and each column, (2) Every row and column is balanced, that is the number of ones and zeros must be equal in each row and in each column, (3) Every two rows and every two columns must be distinct. The binary puzzle had been proven to be an NP-complete problem [5]. Research concerning the satisfiability of formulas with respect to some background theory is called satisfiability modulo theory (SMT). An SMT solver is an extension of a satisfiability (SAT) solver. The notion of SMT can be used for solving various problem in mathematics and industries such as formula verification and operation research [1, 7]. In this paper we apply SMT to solve binary puzzles. In addition, we do an experiment in solving different sizes and different number of blanks. We also made comparison with two other approaches, namely by a SAT solver and exhaustive search.

  6. Stacking Analysis of Binary Systems with HAWC

    Science.gov (United States)

    Brisbois, Chad; HAWC Collaboration

    2017-01-01

    Detecting binary systems at TeV energies is an important problem because only a handful of such systems are currently known. The nature of such systems is typically thought to be composed of a compact object and a massive star. The TeV emission from these systems does not obviously correspond to emission in GeV or X-ray, where many binary systems have previously been found. This study focuses on a stacking method to detect TeV emission from LS 5039, a known TeV binary, to test its efficacy in HAWC data. Stacking is a widely employed method for increasing signal to noise ratio in optical astronomy, but has never been attempted previously with HAWC. HAWC is an ideal instrument to search for TeV binaries, because of its wide field of view and high uptime. Applying this method to the entire sky may allow HAWC to detect binary sources of very short or very long periods not sensitive to current analyses. NSF, DOE, Los Alamos, Michigan Tech, CONACyt, UNAM, BUAP.

  7. Evolution of Motion of a Binary Planet

    Science.gov (United States)

    Vil'ke, V. G.; Shatina, A. V.

    2001-05-01

    A model of a binary planet, consisting of a material point of small mass and a deformable viscoelastic sphere, is suggested. The center of mass of the binary planet moves in the gravitational field of a central body in the plane, which contains planets forming the binary planet. A deformable spherical planet rotates around the axis orthogonal to the plane of planetary motion. Planet deformations are described by the linear theory of viscoelasticity. It is shown that with an appropriate approximation of the gravitational potential, there is a class of quasicircular orbits, when the eccentricities of an orbit of the center of mass of a binary planet and an orbit, describing mutual planet motion, are equal to zero. The further evolution of motion is investigated in this class of orbits with the use of the canonical Poincare-Andoyer variables. Corresponding averaged equations are found, and phase pictures are constructed; the stability of stationary solutions is investigated on the basis of equations in variations. For the Solar system planets with their satellites, forming binary planets, the application of the presented model allows us to conclude that satellites sooner or later will fall on the corresponding planets.

  8. Radiance Data Assimilation for Binary Typhoon Cases

    Science.gov (United States)

    Choi, Y.; Snyder, C.; Cha, D. H.

    2015-12-01

    The predictability of track and intensity for binary tropical cyclones (TCs) is relatively low due to the interaction between two TCs. In this study, radiance data were assimilated using the Three Dimensional Variational (3D-Var) data assimilation method to improve track and intensity forecasts of binary TCs. In detail, a total of three binary TC cases over the Northwestern Pacific from 2010 to 2015, which affected the Korean Peninsula, were selected. Infrared and microwave radiance data from multiple instruments and satellites were assimilated with the appropriate treatments of quality control, channel selection, bias correction, and cloud detection. The Weather Research and Forecasting (WRF) model was used as a forecasting model, and the resolution of the innermost domain was high (2 km) to capture the structure and intensity of TCs. Background error covariance was calculated using the National Meteorological Center (NMC) method, where background error statistics were from the differences between 24-h and 12-h forecasts for a month-long period. Overall, track and intensity errors of three binary TCs are reduced through the assimilation of radiance data. Especially, track forecasts are improved significantly because large-scale environments such as the North Pacific High and mid-latitude trough/ridge are simulated well. Analysis increment and its evolution are investigated to reveal the reason for the improvement of each binary TC's forecast, focusing on TC's internal structure and its environment. Additionally, effects of other observational data (e.g. radiosonde, satellite wind) are analyzed through the sensitivity experiments.

  9. Accreting Black Hole Binaries in Globular Clusters

    Science.gov (United States)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.

  10. Spherical hashing: binary code embedding with hyperspheres.

    Science.gov (United States)

    Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui

    2015-11-01

    Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

  11. Accretion-powered Compact Binaries

    Science.gov (United States)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  12. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  13. Orbit of a Resolved Trojan Binary

    Science.gov (United States)

    Noll, Keith

    2017-08-01

    We have identified the Jupiter Trojan (16974) 1998 WR21 as a binary, making it only the third known resolvable binary in this population. We will use HST to determine its orbit from which we will determine the system mass. Using the mass and WISE-derived albedo, we will derive the density. Density can be used to constrain planetary migration models; low density is characteristic of bodies found in the Kuiper Belt, a remnant of the solar system's protoplanetary disk. Only one undisputed density has been measured in the Trojans, that of the binary (617) Patroclus, which has a low density of 800 kg/m3. The density of WR21 will test whether Patroclus is an anomaly or whether low densities might be the norm, as they are in the Kuiper Belt.

  14. Compact binary hashing for music retrieval

    Science.gov (United States)

    Seo, Jin S.

    2014-03-01

    With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.

  15. On binary channels to anomalous Cepheids

    Science.gov (United States)

    Gautschy, Alfred; Saio, Hideyuki

    2017-07-01

    Anomalous Cepheids are a rather rare family of pulsating variables preferably found in dwarf galaxies. Attempts to model these variable stars via single-star evolution scenarios still leave space for improvements to better grasp their origin. Focusing on the Large Magellanic Cloud with its rich population of anomalous Cepheids to compare against, we probe the role binary stars might play to understand the nature of anomalous Cepheids. The evolution of donors and accretors undergoing Case-B mass transfer along the first red giant branch as well as merger-like models was calculated. First results show that in binary scenarios, a larger range of star masses and metallicities up to Z ≲ 0.008, higher than deemed possible hitherto, enter and pass through the instability strip. If binary stars play a role in anomalous Cepheid populations, mass donors, mass accretors or even mergers are potential candidates to counteract constraints imposed by the single-star approach.

  16. INTEGRAL & RXTE View of Gamma-ray Binaries

    OpenAIRE

    Li, Jian; Torres, Diego F.; Zhang, Shu; Wang, Jianmin

    2013-01-01

    Gamma-ray binaries are X-ray binaries with gamma-ray emissions. Their multi-wavelength emissions range from radio, optical, X-ray and to very high energy (TeV). X-ray emissions are crucial to understand the nature of gamma-ray binaries. INTEGRAL and RXTE have covered and monitored most of the gamma-ray binaries in hard and soft X-rays. Here we report the results of several gamma-ray binaries and possible gamma-ray binaries from INTEGRAL and RXTE.

  17. The Contact Binary System Ty-Booti

    Science.gov (United States)

    Rainger, P. P.; Hilditch, R. W.; Bell, S. A.

    1990-09-01

    Radial velocities of the contact binary system TY Boo are presented for the first time. Orbital solutions for both components are combined with an analysis of the B lightcurve data published by Samec & Bookmyer to yield masses and absolute dimensions for the components. It is shown that the system is a normal W-type shallow-contact binary, with the primary as a main-sequence star and the secondary ≃ 1.4 times larger than expected for its ZAMS mass. A survey of published times of minima confirms that the system has undergone significant changes in orbital period during this century, but that currently it is in a stable state.

  18. Binary systems from quantum cluster equilibrium theory.

    Science.gov (United States)

    Brüssel, Marc; Perlt, Eva; Lehmann, Sebastian B C; von Domaros, Michael; Kirchner, Barbara

    2011-11-21

    An extension of the quantum cluster equilibrium theory to treat binary mixtures is introduced in this work. The necessary equations are derived and a possible implementation is presented. In addition an alternative sampling procedure using widely available experimental data for the quantum cluster equilibrium approach is suggested and tested. An illustrative example, namely, the binary mixture of water and dimethyl sulfoxide, is given to demonstrate the new approach. A basic cluster set is introduced containing the relevant cluster motifs. The populations computed by the quantum cluster equilibrium approach are compared to the experimental data. Furthermore, the excess Gibbs free energy is computed and compared to experiments as well.

  19. Winds from disks in compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  20. Non-binary or genderqueer genders

    OpenAIRE

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O.; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are genderqueer' or non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging ...

  1. Binary Sparse Phase Retrieval via Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  2. Binary Ni-Nb bulk metallic glasses

    Science.gov (United States)

    Xia, L.; Li, W. H.; Fang, S. S.; Wei, B. C.; Dong, Y. D.

    2006-01-01

    We studied the glass forming ability of Ni-Nb binary alloys and found that some of the alloys can be prepared into bulk metallic glasses by a conventional Cu-mold casting. The best glass former within the compositional range studied is off-eutectic Ni62Nb38 alloy, which is markedly different from those predicted by the multicomponent and deep eutectic rules. The glass formation mechanism for binary Ni-Nb alloys was studied from the thermodynamic point of view and a parameter γ* was proposed to approach the ability of glass formation against crystallization.

  3. Inducing Risk Neutral Preferences with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2013-01-01

    We evaluate the binary lottery procedure for inducing risk neutral behavior. We strip the experimental implementation down to bare bones, taking care to avoid any potentially confounding assumptions about behavior having to be made. In particular, our evaluation does not rely on the assumed...... validity of any strategic equilibrium behavior, or even the customary independence axiom. We show that subjects sampled from our population are generally risk averse when lotteries are defined over monetary outcomes, and that the binary lottery procedure does indeed induce a statistically significant shift...... toward risk neutrality. This striking result generalizes to the case in which subjects make several lottery choices and one is selected for payment....

  4. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    Science.gov (United States)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  5. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  6. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  7. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  8. Adiabatic Mass Loss Model in Binary Stars

    Science.gov (United States)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the

  9. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    Science.gov (United States)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  10. Spin frequency distributions of binary millisecond pulsars

    NARCIS (Netherlands)

    Papitto, A.; Torres, D.F.; Rea, N.; Tauris, T.M.

    2014-01-01

    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between

  11. Strong lensing interferometry for compact binaries

    NARCIS (Netherlands)

    Pen, U.L.; Yang, I.S.

    2015-01-01

    We propose a possibility to improve the current precision measurements on compact binaries. When the orbital axis is almost perpendicular to our line of sight, a pulsar behind its companion can form two strong lensing images. These images cannot be resolved, but we can use multiwavelength

  12. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  13. Predicting Social Trust with Binary Logistic Regression

    Science.gov (United States)

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  14. Performance of binary FSK data transmission systems

    Science.gov (United States)

    Batson, B. H.

    1973-01-01

    Matched-filter detection of binary signals is discussed in terms of the probability of bit error. The equations for the probability of error are derived for coherent phase shift keying, and coherent frequency shift keying (FSK). Suboptimum detection of FSK signals is also discussed for discriminators.

  15. Binary alloys for refractory-metal brazing

    Science.gov (United States)

    Morris, J. F.

    1974-01-01

    Data on binary-metal eutectics and melting-point minimums have been assembled for use in selecting brazing filler compositions for refractory metals. Data are presented in four tables for ready reference. Brief discussion of problems and potentials of metallides is included in appendix.

  16. A binary main-belt comet

    Science.gov (United States)

    Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen

    2017-09-01

    Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.

  17. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  18. Cluster selection in binary nuclear models

    CERN Document Server

    Buck, B; Pérez, S M

    2000-01-01

    We present a simple prescription for selecting the cluster and core in a binary cluster-model description of a nucleus. The prescription reproduces the cluster-core combinations used in earlier successful applications of the model, predicts others, and extends the good agreement previously found with observed B(E2; 2 sup + -> 0 sup +) values of actinide nuclei. Refs. 31 (author)

  19. Receptive fields selection for binary feature description.

    Science.gov (United States)

    Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal

    2014-06-01

    Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.

  20. The average size of ordered binary subgraphs

    NARCIS (Netherlands)

    van Leeuwen, J.; Hartel, Pieter H.

    To analyse the demands made on the garbage collector in a graph reduction system, the change in size of an average graph is studied when an arbitrary edge is removed. In ordered binary trees the average number of deleted nodes as a result of cutting a single edge is equal to the average size of a

  1. Non-binary or genderqueer genders.

    Science.gov (United States)

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed.

  2. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Relativistic calculations of coalescing binary neutron stars. JOSHUA FABER, PHILIPPE GRANDCLÉMENT and FREDERIC RASIO. Department of Physics and Astronomy, Northwestern University, Evanston,. IL 60208-0834, USA. E-mail: rasio@mac.com. Abstract. We have designed and tested a new relativistic Lagrangian ...

  3. What's Next? Judging Sequences of Binary Events

    Science.gov (United States)

    Oskarsson, An T.; Van Boven, Leaf; McClelland, Gary H.; Hastie, Reid

    2009-01-01

    The authors review research on judgments of random and nonrandom sequences involving binary events with a focus on studies documenting gambler's fallacy and hot hand beliefs. The domains of judgment include random devices, births, lotteries, sports performances, stock prices, and others. After discussing existing theories of sequence judgments,…

  4. The Kepler Mission and Eclipsing Binaries

    Science.gov (United States)

    2006-01-01

    exoplanets , differential photometry, eclipsing binaries 1. Introduction The Kepler Mission is NASA’s first mission capable of detecting Earth-size and...a star where liquid water can exist on the surface of a 236 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  5. Binary Options as a Modern Fenomenon of Financial Business

    National Research Council Canada - National Science Library

    Andrea Kolková; Lucie Lenertová

    2016-01-01

    Binary options are a new instrument of the financial market. The aim of this paper is to analyze the use of binary options with trading and to illustrate this on the practical example of trades based on Bollinger bands indicator...

  6. A General Construction of Binary Sequences with Optimal Autocorrelation

    OpenAIRE

    Yan, Tongjiang; Chen, Zhixiong; Li, Bao

    2014-01-01

    A general construction of binary sequences with low autocorrelation are considered in the paper. Based on recent progresses about this topic and this construction, several classes of binary sequences with optimal autocorrelation and other low autocorrelation are presented.

  7. Merging Galaxies Create a Binary Quasar

    Science.gov (United States)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  8. Probabilistic seismic history matching using binary images

    Science.gov (United States)

    Davolio, Alessandra; Schiozer, Denis Jose

    2018-02-01

    Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new

  9. Hafnium binary alloys from experiments and first principles

    OpenAIRE

    Levy, Ohad; Hart, Gus L. W.; Curtarolo, Stefano

    2009-01-01

    Despite the increasing importance of hafnium in numerous technological applications, experimental and computational data on its binary alloys is sparse. In particular, data is scant on those binary systems believed to be phase separating. We performed a comprehensive study of 44 hafnium binary systems with alkali metals, alkaline earths, transition metals and metals, using high-throughput first principles calculations. These computations predict novel unsuspected compounds in six binary syste...

  10. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  11. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    Biswajit Paul

    2017-09-07

    Sep 7, 2017 ... Abstract. Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary ...

  12. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba...

  13. Beyond the Binary: Dexterous Teaching and Knowing in Mathematics Education

    Science.gov (United States)

    Adam, Raoul; Chigeza, Philemon

    2015-01-01

    This paper identifies binary oppositions in the discourse of mathematics education and introduces a binary-epistemic model for (re)conceptualising these oppositions and the epistemic-pedagogic problems they represent. The model is attentive to the contextual relationships between pedagogically relevant binaries (e.g., traditional/progressive,…

  14. The Formation of Contact and Very Close Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Kisseleva-Eggleton, L; Eggleton, P P

    2007-08-10

    We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).

  15. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  16. A decoding method of an n length binary BCH code through (n + 1n length binary cyclic code

    Directory of Open Access Journals (Sweden)

    TARIQ SHAH

    2013-09-01

    Full Text Available For a given binary BCH code Cn of length n = 2 s - 1 generated by a polynomial of degree r there is no binary BCH code of length (n + 1n generated by a generalized polynomial of degree 2r. However, it does exist a binary cyclic code C (n+1n of length (n + 1n such that the binary BCH code Cn is embedded in C (n+1n . Accordingly a high code rate is attained through a binary cyclic code C (n+1n for a binary BCH code Cn . Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C (n+1n , while the codes Cn and C (n+1n have the same minimum hamming distance.

  17. Mass transfer in asymptotic-giant-branch binary systems

    Science.gov (United States)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason; Carroll-Nellenback, Jonathan

    2017-10-01

    Binary stars can interact via mass transfer when one member (the primary) ascends onto a giant branch. The amount of gas ejected by the binary and the amount of gas accreted by the secondary over the lifetime of the primary influence the subsequent binary phenomenology. Some of the gas ejected by the binary will remain gravitationally bound and its distribution will be closely related to the formation of planetary nebulae. We investigate the nature of mass transfer in binary systems containing an AGB star by adding radiative transfer to the AstroBEAR AMR Hydro/MHD code.

  18. Induced Ellipticity for Inspiraling Binary Systems

    Science.gov (United States)

    Randall, Lisa; Xianyu, Zhong-Zhi

    2018-01-01

    Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.

  19. Binary Fingerprints at Fluctuation-Enhanced Sensing

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    We developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 25 thousands to 1 million. To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.

  20. Stellivore extraterrestrials? Binary stars as living systems

    Science.gov (United States)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  1. Component Properties of T Tauri Star Binaries

    Science.gov (United States)

    Muzzio, Ryan; L. Prato, T. Allen, N. Wright-Garba, L. Biddle, J. McLane (Lowell Observatory), G. Schaefer (GSU & CHARA)

    2016-01-01

    This poster describes our study of the properties of individual components of young T Tauri binary stars. We observed about 100 multi-star systems in the near-infrared, within the relatively close star forming regions Taurus and Ophiuchus. Here we specifically focus on four systems in the Taurus sample, IS Tau, UZ Tau B, IW Tau, and Haro 6- 37 A. Their spectra were taken with the Keck 2 telescope's NIRSPEC spectrograph and the imaging data with the Keck 2 NIRC2 camera, both with adaptive optics. Properties that we determined include spectral type, radial velocity, vsini, veiling, and near-infrared colors. On the basis of these data, we estimate stellar and circumstellar disk properties for the subset of binaries presented here.

  2. Kilonova Counterparts of Binary Neutron Star Mergers

    Science.gov (United States)

    Metzger, Brian

    2018-01-01

    The merger of a binary neutron star is accompanied by the ejection of neutron-rich matter into space at velocities up to several tenths that of light, which synthesizes rare heavy isotopes through the rapid neutron capture process (r-process). The radioactive decay of these nuclei was predicted by Metzger et al. (2010) to power an optical transient roughly 1000 times more luminous than a classical nova (a "kilonova"), which is among the most promising electromagnetic counterparts to accompany gravitational wave signal from the merger. I will describe how the luminosities, color, and spectra of the kilonova emission inform the properties of the merging binary (neutron star masses/radii and inclination angle) and the long sought origin of the heaviest elements in the Universe. Results will be discussed in the context of recent discoveries by Advanced LIGO/Virgo.

  3. Binary population synthesis and SNIa rates

    Science.gov (United States)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.

    2013-01-01

    Despite the significance of type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. We investigate the potential contribution to the SNeIa rate from the most common progenitor channels using the binary population synthesis (BPS) code SeBa. Using SeBa, we aim constrain binary processes such as the common envelope phase and the efficiency of mass retention of white dwarf accretion. We find that the simulated rates are not sufficient to explain the observed rates. Further, we find that the mass retention efficiency of white dwarf accretion significantly influences the rates, but does not explain all the differences between simulated rates from different BPS codes.

  4. The RIT binary black hole simulations catalog

    Science.gov (United States)

    Healy, James; Lousto, Carlos O.; Zlochower, Yosef; Campanelli, Manuela

    2017-11-01

    The RIT numerical relativity group is releasing a public catalog of black-hole-binary waveforms. The initial release of the catalog consists of 126 recent simulations that include precessing and nonprecessing systems with mass ratios q=m_1/m2 in the range 1/6≤slant q≤slant1 . The catalog contains information about the initial data of the simulation, the waveforms extrapolated to infinity, as well as information about the peak luminosity and final remnant black hole properties. These waveforms can be used to independently interpret gravitational wave signals from laser interferometric detectors and the remnant properties to model the merger of black-hole binaries from initial configurations.

  5. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  6. Memory Vulnerability Diagnosis for Binary Program

    Directory of Open Access Journals (Sweden)

    Tang Feng-Yi

    2016-01-01

    Full Text Available Vulnerability diagnosis is important for program security analysis. It is a further step to understand the vulnerability after it is detected, as well as a preparatory step for vulnerability repair or exploitation. This paper mainly analyses the inner theories of major memory vulnerabilities and the threats of them. And then suggests some methods to diagnose several types of memory vulnerabilities for the binary programs, which is a difficult task due to the lack of source code. The diagnosis methods target at buffer overflow, use after free (UAF and format string vulnerabilities. We carried out some tests on the Linux platform to validate the effectiveness of the diagnosis methods. It is proved that the methods can judge the type of the vulnerability given a binary program.

  7. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  8. Field guide to the binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, V. (Maryland Univ., College Park (USA). Astronomy Program; California Univ., Irvine (USA). Dept. of Physics)

    1983-05-12

    For most of the history of binary star astronomy, systems have been classified largely on the basis of how they were discovered and qualitative appearance of their spectra and light curves. Present understanding of single and double star evolution has now progressed to the point where most of the classes previously identified, and some new ones, can be arranged into evolutionary sequences, depending primarily on the initial masses and separation of the component stars.

  9. Stellivore extraterrestrials? Binary stars as living systems

    OpenAIRE

    Vidal, Clément

    2016-01-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these h...

  10. Nonlinear Tides in Close Binary Systems

    Science.gov (United States)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P appears particularly efficient at draining energy out of the dynamical tide and may be more important than either wave breaking or parametric resonance at determining the nonlinear dissipation of the dynamical tide.

  11. Minimum degree and density of binary sequences

    DEFF Research Database (Denmark)

    Brandt, Stephan; Müttel, J.; Rautenbach, D.

    2010-01-01

    For d,k∈N with k ≤ 2d, let g(d,k) denote the infimum density of binary sequences (x)∈{0,1} which satisfy the minimum degree condition σ(x+) ≥ k for all i∈Z with xi=1. We reduce the problem of computing g(d,k) to a combinatorial problem related to the generalized k-girth of a graph G which...

  12. Binary DNA Nanostructures for Data Encryption

    OpenAIRE

    Halvorsen, Ken; Wong, Wesley P.

    2012-01-01

    We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing "decryption key" causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include auth...

  13. Binary DNA nanostructures for data encryption.

    Science.gov (United States)

    Halvorsen, Ken; Wong, Wesley P

    2012-01-01

    We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing "decryption key" causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include authentication, secure messaging, and barcoding.

  14. Digitizing Villanova University's Eclipsing Binary Card Catalogue

    Science.gov (United States)

    Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej

    2018-01-01

    Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.

  15. Asteroseismic modelling of the Binary HD 176465

    Directory of Open Access Journals (Sweden)

    Nsamba B.

    2017-01-01

    Full Text Available The detection and analysis of oscillations in binary star systems is critical in understanding stellar structure and evolution. This is partly because such systems have the same initial chemical composition and age. Solar-like oscillations have been detected by Kepler in both components of the asteroseismic binary HD 176465. We present an independent modelling of each star in this binary system. Stellar models generated using MESA (Modules for Experiments in Stellar Astrophysics were fitted to both the observed individual frequencies and complementary spectroscopic parameters. The individual theoretical oscillation frequencies for the corresponding stellar models were obtained using GYRE as the pulsation code. A Bayesian approach was applied to find the probability distribution functions of the stellar parameters using AIMS (Asteroseismic Inference on a Massive Scale as the optimisation code. The ages of HD 176465 A and HD 176465 B were found to be 2.81 ± 0.48 Gyr and 2.52 ± 0.80 Gyr, respectively. These results are in agreement when compared to previous studies carried out using other asteroseismic modelling techniques and gyrochronology.

  16. Accreting Binary Populations in the Earlier Universe

    Science.gov (United States)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  17. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  18. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  19. Accuracy of binary black hole waveform models for aligned-spin binaries

    CERN Document Server

    Kumar, Prayush; Fong, Heather; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2016-01-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave (GW) detectors. Reliable GW models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of $84$ high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries ($1\\le m_1/m_2\\le 3$), and samples independently both black hole spins up to dimensionless spin-magnitude of $0.9$ for equal-mass binaries and $0.85$ for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass $\\gtrsim 50M_\\odot$). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5\\% of the recoverable signal-to-noise ratio $\\rho$, except that SEOBNRv2's efficiency drops mildly for both black hole spins aligned with large ma...

  20. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    Science.gov (United States)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the `final parsec' problem regardless of the stellar distribution.

  1. A Survey Design for a Sensitive Binary Variable Correlated with Another Nonsensitive Binary Variable

    Directory of Open Access Journals (Sweden)

    Jun-Wu Yu

    2013-01-01

    Full Text Available Tian et al. (2007 introduced a so-called hidden sensitivity model for evaluating the association of two sensitive questions with binary outcomes. However, in practice, we sometimes need to assess the association between one sensitive binary variable (e.g., whether or not a drug user, the number of sex partner being ⩽1 or >1, and so on and one nonsensitive binary variable (e.g., good or poor health status, with or without cervical cancer, and so on. To address this issue, by sufficiently utilizing the information contained in the non-sensitive binary variable, in this paper, we propose a new survey scheme, called combination questionnaire design/model, which consists of a main questionnaire and a supplemental questionnaire. The introduction of the supplemental questionnaire which is indeed a design of direct questioning can effectively reduce the noncompliance behavior since more respondents will not be faced with the sensitive question. Likelihood-based inferences including maximum likelihood estimates via the expectation-maximization algorithm, asymptotic confidence intervals, and bootstrap confidence intervals of parameters of interest are derived. A likelihood ratio test is provided to test the association between the two binary random variables. Bayesian inferences are also discussed. Simulation studies are performed, and a cervical cancer data set in Atlanta is used to illustrate the proposed methods.

  2. A Novel DBSCAN Based on Binary Local Sensitive Hashing and Binary-KNN Representation

    Directory of Open Access Journals (Sweden)

    Qing He

    2017-01-01

    Full Text Available We revisit the classic DBSCAN algorithm by proposing a series of strategies to improve its robustness to various densities and its efficiency. Unlike the original DBSCAN, we first use the binary local sensitive hashing (LSH which enables faster region query for the k neighbors of a data point. The binary data representation method based on k neighborhood is then proposed to map the dataset into the Hamming space for faster cluster expansion. We define a core point based on binary influence space to enhance the robustness to various densities. Also, we propose a seed point selection method, which is based on influence space and k neighborhood similarity, to select some seed points instead of all the neighborhood during cluster expansion. Consequently, the number of region queries can be decreased. The experimental results show that the improved algorithm can greatly improve the clustering speed under the premise of ensuring better algorithm clustering accuracy, especially for large-scale datasets.

  3. Inclination evolution of protoplanetary discs around eccentric binaries

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-01-01

    It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.

  4. Accuracy of binary black hole waveform models for aligned-spin binaries

    Science.gov (United States)

    Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-05-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

  5. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  6. Learning moment-based fast local binary descriptor

    Science.gov (United States)

    Bellarbi, Abdelkader; Zenati, Nadia; Otmane, Samir; Belghit, Hayet

    2017-03-01

    Recently, binary descriptors have attracted significant attention due to their speed and low memory consumption; however, using intensity differences to calculate the binary descriptive vector is not efficient enough. We propose an approach to binary description called POLAR_MOBIL, in which we perform binary tests between geometrical and statistical information using moments in the patch instead of the classical intensity binary test. In addition, we introduce a learning technique used to select an optimized set of binary tests with low correlation and high variance. This approach offers high distinctiveness against affine transformations and appearance changes. An extensive evaluation on well-known benchmark datasets reveals the robustness and the effectiveness of the proposed descriptor, as well as its good performance in terms of low computation complexity when compared with state-of-the-art real-time local descriptors.

  7. The extreme Kuiper Belt binary 2001 QW322.

    Science.gov (United States)

    Petit, J-M; Kavelaars, J J; Gladman, B J; Margot, J L; Nicholson, P D; Jones, R L; Parker, J Wm; Ashby, M L N; Bagatin, A Campo; Benavidez, P; Coffey, J; Rousselot, P; Mousis, O; Taylor, P A

    2008-10-17

    The study of binary Kuiper Belt objects helps to probe the dynamic conditions present during planet formation in the solar system. We report on the mutual-orbit determination of 2001 QW322, a Kuiper Belt binary with a very large separation whose properties challenge binary-formation and -evolution theories. Six years of tracking indicate that the binary's mutual-orbit period is approximately 25 to 30 years, that the orbit pole is retrograde and inclined 50 degrees to 62 degrees from the ecliptic plane, and, most surprisingly, that the mutual orbital eccentricity is <0.4. The semimajor axis of 105,000 to 135,000 kilometers is 10 times that of other near-equal-mass binaries. Because this weakly bound binary is prone to orbital disruption by interlopers, its lifetime in its present state is probably less than 1 billion years.

  8. Binary Classification Method of Social Network Users

    Directory of Open Access Journals (Sweden)

    I. A. Poryadin

    2017-01-01

    Full Text Available The subject of research is a binary classification method of social network users based on the data analysis they have placed. Relevance of the task to gain information about a person by examining the content of his/her pages in social networks is exemplified. The most common approach to its solution is a visual browsing. The order of the regional authority in our country illustrates that its using in school education is needed. The article shows restrictions on the visual browsing of pupil’s pages in social networks as a tool for the teacher and the school psychologist and justifies that a process of social network users’ data analysis should be automated. Explores publications, which describe such data acquisition, processing, and analysis methods and considers their advantages and disadvantages. The article also gives arguments to support a proposal to study the classification method of social network users. One such method is credit scoring, which is used in banks and credit institutions to assess the solvency of clients. Based on the high efficiency of the method there is a proposal for significant expansion of its using in other areas of society. The possibility to use logistic regression as the mathematical apparatus of the proposed method of binary classification has been justified. Such an approach enables taking into account the different types of data extracted from social networks. Among them: the personal user data, information about hobbies, friends, graphic and text information, behaviour characteristics. The article describes a number of existing methods of data transformation that can be applied to solve the problem. An experiment of binary gender-based classification of social network users is described. A logistic model obtained for this example includes multiple logical variables obtained by transforming the user surnames. This experiment confirms the feasibility of the proposed method. Further work is to define a system

  9. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  10. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  11. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  12. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  13. The Reflection Effect in Eclipsing Binaries

    Science.gov (United States)

    Gropp, Jeffrey D.; Prsa, Andrej

    2016-01-01

    Using a database of eclipsing binaries (EBs) from the Kepler space telescope, we identified star systems which displayed characteristics corresponding to the reflection effect. The reflection effect is the brightening of one star due to irradiation by its companion. We found 40 candidates amongst the nearly 2,800 EBs in the database. We analyze these candidates and derive parameters and properties of each system using the PHOEBE modeling program. We examine each model fit using probabilistic inference in order to statistically evaluate the best fit model. The model critically tests the reflection effect and provides physical constraints on the principal parameters.

  14. Dynamic Binary Modification Tools, Techniques and Applications

    CERN Document Server

    Hazelwood, Kim

    2011-01-01

    Dynamic binary modification tools form a software layer between a running application and the underlying operating system, providing the powerful opportunity to inspect and potentially modify every user-level guest application instruction that executes. Toolkits built upon this technology have enabled computer architects to build powerful simulators and emulators for design-space exploration, compiler writers to analyze and debug the code generated by their compilers, software developers to fully explore the features, bottlenecks, and performance of their software, and even end-users to extend

  15. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)

    1999-11-01

    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  16. Binary quadratic forms an algorithmic approach

    CERN Document Server

    Buchmann, Johannes

    2007-01-01

    The book deals with algorithmic problems related to binary quadratic forms, such as finding the representations of an integer by a form with integer coefficients, finding the minimum of a form with real coefficients and deciding equivalence of two forms. In order to solve those problems, the book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography. It requires only basic mathematical knowledge.

  17. The special symplectic structure of binary cubics

    OpenAIRE

    Slupinski, Marcus J.; Stanton, Robert

    2009-01-01

    Let $k$ be a field of characteristic not $2$ or $3$. Let $V$ be the $k$-space of binary cubic polynomials. The natural symplectic structure on $k^2$ promotes to a symplectic structure $\\omega$ on $V$ and from the natural symplectic action of $\\textrm{Sl}(2,k)$ one obtains the symplectic module $(V,\\omega)$. We give a complete analysis of this symplectic module from the point of view of the associated moment map, its norm square $Q$ (essentially the classical discriminant) and the symplectic g...

  18. Electrostatic collection efficiency in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.; Guardiola, J.; Rincon, J. (Univ. of Alcala de Henares, Madrid (Spain))

    1992-01-01

    Fluidized beds of binary mixtures have been used to clean air streams containing dust particles in the size range 4.4 to 14 {mu}m. All beds were composed of glass beads and plastic granules mixed at different proportions. The effect on the electrostatic collection efficiency of a number of variables, including type of collecting mixture, bed height, and gas velocity, was examined. To calculate the single collection efficiency from experimental results, an early model proposed by Clift et al. was used. The electrostatic collection efficiency was determined by subtracting the other individual mechanism efficiencies from the single particle collection efficiency.

  19. Gas filtration in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, J. (Univ. de Castilla-La Mancha, Ciudad Real (Spain)); Guardiola, J.; Romero, A. (Univ. de Alcala de Henares, Madrid (Spain))

    1992-12-01

    A systematic experimental study of aerosol filtration in a binary fluidized bed of dielectric material is carried out. Measurements of the collection efficiency when such parameters as gas velocity, bed height, collecting mixture, and column diameter are varied over a wide range have been made. Experimental evidence is given to show that charges generated naturally by triboelectrification of the bed dielectric particles can considerably increase the efficiency of such beds. Furthermore, it is demonstrated that a proper choice of the fluidized mixture can significantly improve the performance of such filters.

  20. in Binary Liquid Mixtures of Ethyl benzoate

    Directory of Open Access Journals (Sweden)

    Shaik Babu

    2012-01-01

    Full Text Available Ultrasonic velocity is measured at 2MHz frequency in the binary mixtures of Ethyl Benzoate with 1-Propanol, 1-Butanol, 1-Pentanol and theoretical values of ultrasonic velocity have been evaluated at 303K using Nomoto's relation, Impedance relation, Ideal mixture relation, Junjie's method and free length theory. Theoretical values are compared with the experimental values and the validity of the theories is checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE. A good agreement has been found between experimental and Nomoto’s ultrasonic velocity.

  1. On some electrodynamic properties of binary pulsars

    Science.gov (United States)

    Sironi, Lorenzo

    2006-07-01

    The main purpose of my thesis is to examine some electrodynamic properties of binary pulsars, trying to understand the peculiar physical processes that can happen in their magnetospheres; the ultimate aim is to discuss if such systems can be the source of the observed flux of cosmic rays between the knee and the ankle, since the mechanisms of acceleration for the cosmic rays in this range of energies are still unknown. Attention around binary pulsars has arisen after the recent discovery (December 2003) of the first double neutron star system in which both the stars are visible as pulsars (PSR J0737-3039); the inspection of the physical features of this binary pulsar has led to some intriguing possibilities up to now unexplored. In this thesis I will first of all review what is already known about the main properties of this binary system. I will describe in particular the possibility to go further in the verification of the predictions of general relativity with the so-called post-Keplerian parameters; I will discuss the possibility of studying the optical properties of the magnetospheres, since the inclination angle of the orbit is nearly 90° and some orbital phases show an eclipse of the light from one pulsar due to absorption by the magnetosphere of the companion; I will rapidly summarize how the discovery of that binary pulsar can enlarge our knowledge about the origin and evolution of double neutron star systems; lastly, I will examine the increase in the estimate of the Galactic double neutron star merger rate due to the discovery of PSR J0737-3039. I will then summarize the current knowledge about the magnetosphere of a single pulsar. After describing the Gold-Pacini model for the energy loss of the oblique rotator (in which the magnetic and rotational axes are not parallel), I will discuss the Goldreich-Julian model for the aligned axisymmetric rotator in the force-free approximation in which the inertial and gravitational forces are neglected with

  2. The orbital evolution of binary galaxies

    Science.gov (United States)

    Chan, R.; Junqueira, S.

    2001-02-01

    We present the results of self-consistent numerical simulations performed to study the orbital circularization of binary galaxies. We have generalized a previous model (Junqueira & de Freitas Pacheco 1994) and confirmed partially their results. The orbital evolution of pairs of galaxies is faster when we consider interacting pairs with contacting ``live'' galaxy halos but the circularization time remains larger than the Hubble time. Besides, the time behavior of the orbits has changed in comparison with previous work because of tidal forces and dynamical friction acting on the halos.

  3. The Benchmark Eclipsing Binary V530 Ori

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H. Sandberg; Pavlovski, Kresimir

    2015-01-01

    We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low......-mass stars and ascribed to the effects of magnetic activity and/or spots. We show that models from the Dartmouth series that incorporate magnetic fields are able to match the observations with plausible field strengths of 1-2 kG, consistent with a rough estimate we derive for that star....

  4. Binary DNA nanostructures for data encryption.

    Directory of Open Access Journals (Sweden)

    Ken Halvorsen

    Full Text Available We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing "decryption key" causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include authentication, secure messaging, and barcoding.

  5. Computer Vision Using Local Binary Patterns

    CERN Document Server

    Pietikainen, Matti; Zhao, Guoying; Ahonen, Timo

    2011-01-01

    The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, b

  6. Binary Trees and Parallel Scheduling Algorithms.

    Science.gov (United States)

    1980-09-01

    child of N) and t (N)- t (right child of N) . For bur example, the binary comutation tree together with time intervals is shown in Figure 2.2. A...Operationafle, 10.5, Supp.7-33, 1976. 22. Lenstra, J. K., "Sequencing by enumerative methods," Mathematical Centre Tract 69, Mathematisch Centrum, Amsterdam...Theory of Scheduling and its applications, Lecture Notes -Tn Economics and Mathematical Systems, 86 -34- Springer, Berlin, pp. 393-398, i973. 35. Smith, W

  7. Model for magnetic-nonmagnetic binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Razafimandimby, H. [Departement de Physique, Universite de Toliara, 601 Toliara (Madagascar); Randrianasoloharisoa, D. [LPMR, Universite d' Antananarivo (Madagascar); Rakotomahevitra, A. [Departement des Sciences Exactes, Universite de Mahajanga, BP 155 (Madagascar); Parlebas, J.C. [IPCMS, UMR 7504 CNRS-Universite Louis Pasteur, 23 rue du Loess, BP 43, 67034 Strasbourg (France)

    2007-10-15

    An extension of a mean-field approximation (MFA) developed within standard basis operators (SBO) is used to study magnetism in magnetic-nonmagnetic binary alloys. The Curie temperature is calculated from the free energy within the framework of the present approach. The calculated results are in fair agreement with the theoretical results of other research groups for the same problem but utilizing other methods. Finally, the case of NiPt alloys is briefly examined as an example test for the comparison with experiment. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Improvement of Binary Analysis Components in Automated Malware Analysis Framework

    Science.gov (United States)

    2017-02-21

    AFRL-AFOSR-JP-TR-2017-0018 Improvement of Binary Analysis Components in Automated Malware Analysis Framework Keiji Takeda KEIO UNIVERSITY Final...TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 Nov 2016 4. TITLE AND SUBTITLE Improvement of Binary Analysis Components in Automated Malware ...analyze malicious software ( malware ) with minimum human interaction. The system autonomously analyze malware samples by analyzing malware binary program

  9. Estimation of the Handwritten Text Skew Based on Binary Moments

    OpenAIRE

    D. Brodić, Z. Milivojević

    2012-01-01

    Binary moments represent one of the methods for the text skew estimation in binary images. It has been used widely for the skew identification of the printed text. However, the handwritten text consists of text objects, which are characterized with different skews. Hence, the method should be adapted for the handwritten text. This is achieved with the image splitting into separate text objects made by the bounding boxes. Obtained text objects represent the isolated binary objects. The applica...

  10. Estimation in second order dependency model for multivariate binary data

    Energy Technology Data Exchange (ETDEWEB)

    Ip, E.H.S.

    1995-04-01

    This paper proposes a normal model for multivariate binary data. The normal model is an extension to the bivariate normal model for 2{times}2 contingency table proposed by Pearson. A stochastic algorithm using Gibbs sampler is developed to estimate the parameters for high dimensional binary data. The method is compared to the second order dependency Bahadur-Lazarsfeld representation of binary density. Two examples, one from psychological testing and one from medical science, are used to substantiate the above ideas.

  11. A Survey of Binary Similarity and Distance Measures

    Directory of Open Access Journals (Sweden)

    Seung-Seok Choi

    2010-02-01

    Full Text Available The binary feature vector is one of the most common representations of patterns and measuring similarity and distance measures play a critical role in many problems such as clustering, classification, etc. Ever since Jaccard proposed a similarity measure to classify ecological species in 1901, numerous binary similarity and distance measures have been proposed in various fields. Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence we collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique.

  12. Modern geothermal power: Binary cycle geothermal power plants

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-04-01

    In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100-200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various

  13. Inferences about binary stellar populations using gravitational wave observations

    Science.gov (United States)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  14. Black hole binaries dynamically formed in globular clusters

    Science.gov (United States)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  15. Multilevel Cross-Dependent Binary Longitudinal Data

    KAUST Repository

    Serban, Nicoleta

    2013-10-16

    We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements.

  16. The Binary System Vw-Bootis

    Science.gov (United States)

    Rainger, P. P.; Bell, S. A.; Hilditch, R. W.

    1990-09-01

    Radial velocities for both components of the contact binary system VW Boo are presented for the first time. The orbital analysis is combined with an analysis of Binnendijk's B light curve to yield masses, radii and luminosities for the system. It is shown that the best solution to the light curve is obtained by incorporating a hotspot at the substellar point on the secondary component which is 640+60 K hotter than the surrounding photosphere and is 37±1° in radius. The primary component is a normal main-sequence star, but the secondary is oversized relative to ZAMS stars of the same mass, and hence overluminous. In the HR diagram, the secondary lies mid-way between the secondaries of normal W-type contact binaries (those in true thermal contact), and the increasing number of marginal-contact (or B-type) systems which display EB light curves (those in poor or no thermal contact). Since this is the first such system to be found in such a location, it could suggest that the transition phase from B-type to W-type systems is a short-lived one.

  17. Structure Defect Property Relationships in Binary Intermetallics

    Science.gov (United States)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  18. Electron Capture Supernovae from Close Binary Systems

    Science.gov (United States)

    Poelarends, Arend J. T.; Wurtz, Scott; Tarka, James; Cole Adams, L.; Hills, Spencer T.

    2017-12-01

    We present the first detailed study of the Electron Capture Supernova Channel (ECSN Channel) for a primary star in a close binary star system. Progenitors of ECSN occupy the lower end of the mass spectrum of supernova progenitors and are thought to form the transition between white dwarf progenitors and core-collapse progenitors. The mass range for ECSN from close binary systems is thought to be wider than the range for single stars, because of the effects of mass transfer on the helium core. Using the MESA stellar evolution code, we explored the parameter space of initial primary masses between 8 and 17 {M}⊙ , using a large grid of models. We find that the initial primary mass and the mass transfer evolution are important factors in the final fate of stars in this mass range. Mass transfer due to Roche lobe overflow during and after carbon burning causes the core to cool down so that it avoids neon ignition, even in helium-free cores with masses up to 1.52 {M}⊙ , which in single stars would ignite neon. If the core is able to contract to high enough densities for electron captures to commence, we find that, for the adopted Ledoux convection criterion, the initial mass range for the primary to evolve into an ECSN is between 13.5 and 17.6 {M}⊙ . The mass ratio, initial period, and mass-loss efficiency only marginally affect the predicted ranges.

  19. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  20. A measurement of disorder in binary sequences

    Science.gov (United States)

    Gong, Longyan; Wang, Haihong; Cheng, Weiwen; Zhao, Shengmei

    2015-03-01

    We propose a complex quantity, AL, to characterize the degree of disorder of L-length binary symbolic sequences. As examples, we respectively apply it to typical random and deterministic sequences. One kind of random sequences is generated from a periodic binary sequence and the other is generated from the logistic map. The deterministic sequences are the Fibonacci and Thue-Morse sequences. In these analyzed sequences, we find that the modulus of AL, denoted by |AL | , is a (statistically) equivalent quantity to the Boltzmann entropy, the metric entropy, the conditional block entropy and/or other quantities, so it is a useful quantitative measure of disorder. It can be as a fruitful index to discern which sequence is more disordered. Moreover, there is one and only one value of |AL | for the overall disorder characteristics. It needs extremely low computational costs. It can be easily experimentally realized. From all these mentioned, we believe that the proposed measure of disorder is a valuable complement to existing ones in symbolic sequences.

  1. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  2. Multilevel cross-dependent binary longitudinal data.

    Science.gov (United States)

    Serban, Nicoleta; Staicu, Ana-Maria; Carroll, Raymond J

    2013-12-01

    We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements. © 2013, The International Biometric Society.

  3. High-quality binary interactome mapping.

    Science.gov (United States)

    Dreze, Matija; Monachello, Dario; Lurin, Claire; Cusick, Michael E; Hill, David E; Vidal, Marc; Braun, Pascal

    2010-01-01

    Physical interactions mediated by proteins are critical for most cellular functions and altogether form a complex macromolecular "interactome" network. Systematic mapping of protein-protein, protein-DNA, protein-RNA, and protein-metabolite interactions at the scale of the whole proteome can advance understanding of interactome networks with applications ranging from single protein functional characterization to discoveries on local and global systems properties. Since the early efforts at mapping protein-protein interactome networks a decade ago, the field has progressed rapidly giving rise to a growing number of interactome maps produced using high-throughput implementations of either binary protein-protein interaction assays or co-complex protein association methods. Although high-throughput methods are often thought to necessarily produce lower quality information than low-throughput experiments, we have recently demonstrated that proteome-scale interactome datasets can be produced with equal or superior quality than that observed in literature-curated datasets derived from large numbers of small-scale experiments. In addition to performing all experimental steps thoroughly and including all necessary controls and quality standards, careful verification of all interacting pairs and validation tests using independent, orthogonal assays are crucial to ensure the release of interactome maps of the highest possible quality. This chapter describes a high-quality, high-throughput binary protein-protein interactome mapping pipeline that includes these features. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Local Submodularization for Binary Pairwise Energies.

    Science.gov (United States)

    Gorelick, Lena; Boykov, Yuri; Veksler, Olga; Ayed, Ismail Ben; Delong, Andrew

    2017-10-01

    Many computer vision problems require optimization of binary non-submodular energies. We propose a general optimization framework based on local submodular approximations (LSA). Unlike standard LP relaxation methods that linearize the whole energy globally, our approach iteratively approximates the energy locally. On the other hand, unlike standard local optimization methods (e.g., gradient descent or projection techniques) we use non-linear submodular approximations and optimize them without leaving the domain of integer solutions. We discuss two specific LSA algorithms based on trust region and auxiliary function principles, LSA-TR and LSA-AUX. The proposed methods obtain state-of-the-art results on a wide range of applications such as binary deconvolution, curvature regularization, inpainting, segmentation with repulsion and two types of shape priors. Finally, we discuss a move-making extension to the LSA-TR approach. While our paper is focused on pairwise energies, our ideas extend to higher-order problems. The code is available online.

  5. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  6. LIGO Finds Lightest Black-Hole Binary

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses

  7. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  8. Binary to Octal and Octal to Binary Code Converter Using Mach-Zehnder Interferometer for High Speed Communication

    Science.gov (United States)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-05-01

    Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  9. Converting optical scanning holograms of real objects to binary Fourier holograms using an iterative direct binary search algorithm.

    Science.gov (United States)

    Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun

    2015-02-09

    In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.

  10. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  11. The Cool Surfaces of Binaries Near-Earth Asteroids

    NARCIS (Netherlands)

    Delbo, Marco; Walsh, K.; Mueller, M.

    2008-01-01

    We present results from thermal-infrared observations of binary near-Earth asteroids (NEAs). These objects, in general, have surface temperatures cooler than the average values for non-binary NEAs. We discuss how this may be evidence of higher-than-average surface thermal inertia. The comparison of

  12. Putting Continuous Metaheuristics to Work in Binary Search Spaces

    Directory of Open Access Journals (Sweden)

    Broderick Crawford

    2017-01-01

    Full Text Available In the real world, there are a number of optimization problems whose search space is restricted to take binary values; however, there are many continuous metaheuristics with good results in continuous search spaces. These algorithms must be adapted to solve binary problems. This paper surveys articles focused on the binarization of metaheuristics designed for continuous optimization.

  13. Inclination of the orbital planes of visual binaries

    Directory of Open Access Journals (Sweden)

    Popović G.M.

    1998-01-01

    Full Text Available The inclination of the orbital planes of 78 visual binaries with known orbits with respect to the galactic was examined. No double star groupings were found having approximately equal orientation of their orbital planes. Viewed the orbital plane north poles there are more binary systems with counterclockwise motion than those moving clockwise.

  14. Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    NARCIS (Netherlands)

    Chen, C.; Veldhuis, Raymond N.J.

    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations

  15. Grammar-Based Specification and Parsing of Binary File Formats

    Directory of Open Access Journals (Sweden)

    William Underwood

    2012-03-01

    Full Text Available The capability to validate and view or play binary file formats, as well as to convert binary file formats to standard or current file formats, is critically important to the preservation of digital data and records. This paper describes the extension of context-free grammars from strings to binary files. Binary files are arrays of data types, such as long and short integers, floating-point numbers and pointers, as well as characters. The concept of an attribute grammar is extended to these context-free array grammars. This attribute grammar has been used to define a number of chunk-based and directory-based binary file formats. A parser generator has been used with some of these grammars to generate syntax checkers (recognizers for validating binary file formats. Among the potential benefits of an attribute grammar-based approach to specification and parsing of binary file formats is that attribute grammars not only support format validation, but support generation of error messages during validation of format, validation of semantic constraints, attribute value extraction (characterization, generation of viewers or players for file formats, and conversion to current or standard file formats. The significance of these results is that with these extensions to core computer science concepts, traditional parser/compiler technologies can potentially be used as a part of a general, cost effective curation strategy for binary file formats.

  16. Observer bias in randomised clinical trials with binary outcomes

    DEFF Research Database (Denmark)

    Hróbjartsson, Asbjørn; Thomsen, Ann Sofia Skou; Emanuelsson, Frida

    2012-01-01

    To evaluate the impact of non-blinded outcome assessment on estimated treatment effects in randomised clinical trials with binary outcomes.......To evaluate the impact of non-blinded outcome assessment on estimated treatment effects in randomised clinical trials with binary outcomes....

  17. Binary white dwarfs in the halo of the Milky Way

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the

  18. Dynamical Formation and Merger of Binary Black Holes

    Science.gov (United States)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  19. Mass transfer in white dwarf-neutron star binaries

    Science.gov (United States)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  20. Simultaneous inference of a binary composite endpoint and its components

    DEFF Research Database (Denmark)

    Große Ruse, Mareile; Ritz, Christian; Hothorn, Ludwig A.

    2017-01-01

    Binary composite endpoints offer some advantages as a way to succinctly combine evidence from a number of related binary endpoints recorded in the same clinical trial into a single outcome. However, as some concerns about the clinical relevance as well as the interpretation of such composite endp...

  1. Structured Forms Reference Set of Binary Images (SFRS)

    Science.gov (United States)

    NIST Structured Forms Reference Set of Binary Images (SFRS) (Web, free access)   The NIST Structured Forms Database (Special Database 2) consists of 5,590 pages of binary, black-and-white images of synthesized documents. The documents in this database are 12 different tax forms from the IRS 1040 Package X for the year 1988.

  2. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  3. Research note : Miscibility behaviour of binary mixtures of benzyl ...

    African Journals Online (AJOL)

    Miscibility of binary mixtures of benzyl benzoate and liquid paraffin as functions of temperature and composition has been determined using phase separation method. The binary mixtures demonstrated a critical (upper) solution temperature of 35 °C at 101325 Nm-2 with a mixing gap. A tie-line drawn at 28 °C across the ...

  4. Dielectric studies of binary mixtures of -propyl alcohol and ...

    Indian Academy of Sciences (India)

    Dielectric constant (') and dielectric loss (") of -propyl alcohol (PA), ethylenediamine (EDA) and their binary mixtures, for different mole fractions of ethylenediamine have been experimentally measured at 11.15 GHz microwave frequency. Values of density (), viscosity () and square refractive index ( n D 2 ) of binary ...

  5. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    The knowledge of frequency-dependent dielectric properties of binary liquid mix- tures is important both in fundamental studies of solvent structure determination and its dynamics as well as in the practical application of microwave heating process. [1,2]. At a fundamental .... laminoethanol binary system. Pramana – J. Phys.

  6. excess molar volumes, and refractive index of binary mixtures of ...

    African Journals Online (AJOL)

    Preferred Customer

    product of biodiesel and used in many wide industrial applications. Glycerol can be obtained by ... binary mixtures of glycerol + water and glycerol + methanol covering the whole composition range and at 298.15 K .... 114 the mixture. Excess molar volumes on mixing of the binary systems were fitted to Redlich–. Kister [12 ...

  7. A Comparative Study of the Compaction Properties of Binary and ...

    African Journals Online (AJOL)

    Purpose: To comparatively evaluate the tableting properties of binary mixtures and bilayer tablets containing plastic deformation and brittle fracture excipients. Methods: Binary mixture and bilayer tablets of microcrystalline cellulose (MCC), ethyl cellulose, anhydrous lactose and dextrate were prepared by direct compression ...

  8. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X- ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary sys- tems (XBPs). First, I will discuss soft ...

  9. Formation and Evolution of Binary Systems Containing Collapsed Stars

    Science.gov (United States)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  10. Non-negative Matrix Factorization for Binary Data

    DEFF Research Database (Denmark)

    Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder

    We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though...... this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix...

  11. What fraction of white dwarfs are members of binary systems?

    Science.gov (United States)

    Holberg, J. B.

    2009-06-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  12. Binary classification of items of interest in a repeatable process

    Science.gov (United States)

    Abell, Jeffrey A; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2015-01-06

    A system includes host and learning machines. Each machine has a processor in electrical communication with at least one sensor. Instructions for predicting a binary quality status of an item of interest during a repeatable process are recorded in memory. The binary quality status includes passing and failing binary classes. The learning machine receives signals from the at least one sensor and identifies candidate features. Features are extracted from the candidate features, each more predictive of the binary quality status. The extracted features are mapped to a dimensional space having a number of dimensions proportional to the number of extracted features. The dimensional space includes most of the passing class and excludes at least 90 percent of the failing class. Received signals are compared to the boundaries of the recorded dimensional space to predict, in real time, the binary quality status of a subsequent item of interest.

  13. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  14. Presence of mixed modes in red giants in binary systems

    Science.gov (United States)

    Themeßl, Nathalie; Hekker, Saskia; Elsworth, Yvonne

    2017-10-01

    The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p) and gravity (g) as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  15. An Introduction to the Evolution of Single and Binary Stars

    CERN Document Server

    Benacquista, Matthew

    2013-01-01

    An Introduction to the Evolution of Single and Binary Stars provides physicists with an understanding of binary and single star evolution, beginning with a background and introduction of basic astronomical concepts. Although a general treatment of stellar structure and evolution is included, the text stresses the physical processes that lead to stellar mass compact object binaries that may be sources of observable gravitational radiation. Basic concepts of astronomy, stellar structure and atmospheres, single star evolution, binary systems and mass transfer, compact objects, and dynamical systems are covered in the text. Readers will understand the astrophysics behind the populations of compact object binary systems and have sufficient background to delve deeper into specific areas of interest. In addition, derivations of important concepts and worked examples are included. No previous knowledge of astronomy is assumed, although a familiarity with undergraduate quantum mechanics, classical mechanics, and therm...

  16. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  17. Solitary waves in dimer binary collision model

    Science.gov (United States)

    Ahsan, Zaid; Jayaprakash, K. R.

    2017-01-01

    Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.

  18. Some Bounds on Binary LCD Codes

    OpenAIRE

    Galvez, Lucky; Kim, Jon-Lark; Lee, Nari; Roe, Young Gun; Won, Byung-Sun

    2017-01-01

    A linear code with a complementary dual (or LCD code) is defined to be a linear code $C$ whose dual code $C^{\\perp}$ satisfies $C \\cap C^{\\perp}$= $\\left\\{ \\mathbf{0}\\right\\} $. Let $LCD{[}n,k{]}$ denote the maximum of possible values of $d$ among $[n,k,d]$ binary LCD codes. We give exact values of $LCD{[}n,k{]}$ for $1 \\le k \\le n \\le 12$. We also show that $LCD[n,n-i]=2$ for any $i\\geq2$ and $n\\geq2^{i}$. Furthermore, we show that $LCD[n,k]\\leq LCD[n,k-1]$ for $k$ odd and $LCD[n,k]\\leq LCD[...

  19. Burst Searches for Compact Binary Coalescences

    Science.gov (United States)

    Klimenko, Sergey

    2014-03-01

    Compact Binary coalescences (CBC) are the most promising sources of gravitational waves (GW) for the first detection with advanced GW detectors. Being the most efficient GW emitters among anticipated GW sources, they are also well understood theoretically in the framework of General Relativity. In the talk I'll discuss different flavors of CBC sources and two types of search methods employed in the GW data analysis: template and excess power. While template methods are the most optimal for CBC sources, I will concentrate on the excess power methods, which are typical for searches of generic GW transients (bursts). How to use burst searches for CBC sources? Why would we do this? What can we learn about CBC sources from a burst search? - these and other questions will be discussed in the talk. Supported by NSF grant PHY-1205512.

  20. Local binary patterns new variants and applications

    CERN Document Server

    Jain, Lakhmi; Nanni, Loris; Lumini, Alessandra

    2014-01-01

    This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.

  1. Learning from nature: binary cooperative complementary nanomaterials.

    Science.gov (United States)

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Periodic Spinodal Decomposition in Solid Binary Mixtures

    Science.gov (United States)

    Onuki, A.

    1982-06-01

    Phase separation is studied when the temperature is made to oscillate around a critical value near a second-order phase transition. In such a case the structure factor is calculated for a one-component system with conserved order parameter using a computational method of Langer, Bar-on and Miller. The structure factor tends to a periodic function when the average of the oscillating temperature is higher than a new critical value which is lower than the equilibrium critical temperature. However, its maximum grows without limit when the average temperature is lowered below the critical value. This is a new type of phase transition where the fluctuations are much enhanced above the thermal level. Besides solid binary mixtures the results of this paper are applicable to uniaxial ferromagnets under strong ultra-sounds in which the spin component along the easy axis is conserved.

  3. Phase equilibrium measurements on nine binary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.; Giles, N.F.; Wilson, L.C. [Wiltec Research Co. Inc., Provo, UT (United States)

    1996-11-01

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region exists in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.

  4. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  5. Modeling Flows Around Merging Black Hole Binaries

    Science.gov (United States)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  6. Flexible recalibration of binary clinical prediction models.

    Science.gov (United States)

    Dalton, Jarrod E

    2013-01-30

    Calibration in binary prediction models, that is, the agreement between model predictions and observed outcomes, is an important aspect of assessing the models' utility for characterizing risk in future data. A popular technique for assessing model calibration first proposed by D. R. Cox in 1958 involves fitting a logistic model incorporating an intercept and a slope coefficient for the logit of the estimated probability of the outcome; good calibration is evident if these parameters do not appreciably differ from 0 and 1, respectively. However, in practice, the form of miscalibration may sometimes be more complicated. In this article, we expand the Cox calibration model to allow for more general parameterizations and derive a relative measure of miscalibration between two competing models from this more flexible model. We present an example implementation using data from the US Agency for Healthcare Research and Quality. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Shock waves in binary oxides memristors

    Science.gov (United States)

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  8. Binary Pulse Compression Techniques for MST Radars

    Science.gov (United States)

    Woodman, R. F.; Sulzer, M. P.; Farley, D. T.

    1984-01-01

    In most mesosphere-stratosphere-troposphere (MST) applications pulsed radars are peak power limited and have excess average power capability. Short pulses are required for good range resolution but the problem of range biguity (signals received simultaneously from more than one altitude) sets a minimum limit on the interpulse period (IPP). Pulse compression is a echnique which allows more of the transmitter average power capacity to be used without scarificing range resolution. Binary phase coding methods for pulse compression are discussed. Many aspects of codes and decoding and their applications to MST experiments are addressed; this includes Barker codes and longer individual codes, and then complementary codes and other code sets. Software decoding, hardware decoders, and coherent integrators are also discussed.

  9. Generating quality tetrahedral meshes from binary volumes

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Bærentzen, Jakob Andreas; Larsen, Rasmus

    2010-01-01

    generation algorithm on four examples (torus, Stanford dragon, brain mask, and pig back) and report the dihedral angle, aspect ratio and radius-edge ratio. Even though, the algorithm incorporates none of the mentioned quality measures in the compression stage it receives a good score for all these measures......This paper presents two new quality measures for tetrahedra which are smooth and well-suited for gradient based optimization. Both measures are formulated as a distance from the regular tetrahedron and utilize the fact that the covariance of the vertices of a regular tetrahedron is isotropic. We...... use these measures to generate high quality meshes from signed distance maps. This paper also describes an approach for computing (smooth) signed distance maps from binary volumes as volumetric data in many cases originate from segmentation of objects from imaging techniques such as CT, MRI, etc...

  10. Using High-Mass X-ray Binaries to Probe Massive Binary Evolution

    Science.gov (United States)

    Garofali, Kristen; Williams, Ben

    2018-01-01

    High-mass X-ray binaries (HMXBs) provide an exciting window into the underlying processes of both binary as well as massive star evolution. Because HMXBs are systems containing a compact object accreting from a high-mass star at close orbital separations they are also likely progenitors of gamma-ray bursts and gravitational wave sources. I will present work on the classification and age measurements of HMXBs in M33 using a combination of deep Chandra X-ray imaging, and archival Hubble Space Telescope data. I am able to constrain the ages of the HMXB candidates by fitting the color-magnitude diagrams of the surrounding stars, which yield the star formation histories of the surrounding region. Unlike the age distributions measured for HMXB populations in the Magellenic Clouds, the age distribution for the HMXB population in M33 contains a number of extremely young (properties on the observed HMXB population.

  11. Binary Colloidal Alloy Test Conducted on Mir

    Science.gov (United States)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  12. Contact binaries in the Trans-neptunian Belt

    Science.gov (United States)

    Thirouin, Audrey; Sheppard, Scott S.

    2017-10-01

    A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.

  13. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  14. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  15. Ultra-short Period Binaries from the Catalina Surveys

    Science.gov (United States)

    Drake, A. J.; Djorgovski, S. G.; García-Álvarez, D.; Graham, M. J.; Catelan, M.; Mahabal, A. A.; Donalek, C.; Prieto, J. L.; Torrealba, G.; Abraham, S.; Williams, R.; Larson, S.; Christensen, E.

    2014-08-01

    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.

  16. The close-binary content of massive star clusters

    Science.gov (United States)

    van den Berg, Maureen C.

    2015-08-01

    The fates of star clusters and the binaries in them are closely intertwined. Close binaries support a cluster against core collapse, while stellar encounters in the dense cores of massive star clusters shape the properties and numbers of the binaries. Observations of massive globular clusters with the Chandra X-ray Observatory have revealed hundreds of close binaries. I will present new results from deep HST observations of massive star clusters including 47Tuc, M28, and M4, that are aimed at classifying the X-ray source populations. Besides exotic systems such as low-mass X-ray binaries and millisecond pulsars, more mundane systems such as magnetically active binaries and accreting white dwarfs have been found. I will discuss how a breakdown of sources by class has revealed how the various binary populations bear the imprints of stellar encounters: some are dominated by dynamical creation, others by dynamical destruction. I will also discuss the effects on the integrated X-ray emissivity of massive star clusters, which is suppressed compared to lower-density environments.

  17. On the initial binary population for star cluster simulations

    Science.gov (United States)

    Belloni, Diogo; Askar, Abbas; Giersz, Mirek; Kroupa, Pavel; Rocha-Pinto, Helio J.

    2017-11-01

    Colour-magnitude diagrams (CMDs) are powerful tools that might be used to infer stellar properties in globular clusters (GCs), for example, the binary fraction and their mass ratio (q) distribution. In the past few years, observations have revealed that q distributions of GC main-sequence binaries are generally flat, and a distribution characterized by a strong increase towards q ≈ 1 is not typical in GCs. In numerical simulations of GC evolution with the initial binary population (IBP) described by Kroupa, synthetic CMD colour distributions exhibit a peak associated with binaries that have q ≈ 1. While the Kroupa IBP reproduces binary properties in star-forming regions, clusters and the Galactic field, the peak in the q distribution towards q ≈ 1 observed for GC simulations is not consistent with distributions derived from observations. The objective of this paper is to refine and further improve the physical formulation of pre-main-sequence eigenevolution proposed by Kroupa in order to achieve CMD colour distributions of simulated GC models similar to those observed in real GCs, and to get a similarly good agreement with binary properties for late-type binaries in the Galactic field. We present in this paper a modified Kroupa IBP, in which early-type stars follow observational distributions, and late-type stars are generated according to slightly modified pre-main-sequence eigenevolution prescriptions. Our modifications not only lead to a qualitatively good agreement with respect to long-term observations of late-type binaries in the Galactic field but also resolve the above-mentioned problem related to binary distributions in GC models.

  18. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masaru

    2016-12-15

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  19. Creation of an anti-imaging system using binary optics

    Science.gov (United States)

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  20. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  1. Finding binaries from phase modulation of pulsating stars with Kepler

    Directory of Open Access Journals (Sweden)

    Shibahashi Hiromoto

    2017-01-01

    Full Text Available Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  2. The first light curve analysis of eclipsing binary NR Cam

    Science.gov (United States)

    Tavakkoli, F.; Hasanzadeh, A.; Poro, A.

    2015-05-01

    New observations of the eclipsing binary system NR Cam were carried out using a CCD in B, V, and R filters and new times of light minimum and new ephemeris were obtained. The B, V, and R light curves were analyzed using both the Binary Maker 3.0 and PHOEBE 0.31 programs to determine some geometrical and physical parameters of the system. These results show that NR Cam is an overcontact binary and that both components are Main Sequence stars. The O'Connell effect on NR Cam was studied and some variations in spot parameters were obtained over the different years.

  3. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  4. Diagnostics of disk-magnetosphere interaction in neutron star binaries

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1992-01-01

    The interaction between the magnetospheres of accreting neutron stars and accretion disks plays at key role in determining the properties of many accretion-powered neutron star X-ray sources and the recycled binary and millisecond rotation-powered pulsars. Here we show that the behavior of the horizontal branch quasi-periodic intensity oscillations in low mass X-ray binaries and the correlation between the magnetic fields and periods of binary and millisecond pulsars are sensitive probes of the state of the inner disk.

  5. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...... and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  6. BVRI Photometry of the CX Cephei System (WR 151)

    Science.gov (United States)

    Hutton, Kate; Henden, Arne; Terrell, Dirk

    2009-07-01

    We have obtained 699 new BVRI observations of the O5 + WN5 eclipsing binary system CX Cephei (WR 151), plus 126 more observations in V only. Our light curves are consistent with previous studies, showing a primary minimum (where the O5 star is eclipsed) of approximately 0.1 mag depth and a much smaller secondary minimum with an approximately 0.03 mag depth. Using the PHOEBE interface to the Wilson-Devinney computer code, we were able to obtain a reasonably satisfactory fit to these data, ignoring any possible contribution from atmospheric eclipse phenomena. The best-fit solution has i = 61.1° and results in masses of 36.8 M⊙ for the O5 star and 26.4 M⊙ for the Wolf-Rayet (WR) star. The binary system is detached. There is an asymmetry in the light curve, suggesting that the “leading side” of the O5 star (or the trailing side of the WR star) is brighter than vice versa. We also observed some features in the light curve that were persistent, but which we could not model. residuals relative to the PHOEBE fit reveal time variations with a total range of approximately 12% of the flux. Comparing our data with those of Lipunova & Cherpashchuk (1982), we find that the secondary minimum is less prominent today than it was in the 1980s. We were able to revise their period estimate to 2.12691 days.

  7. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    Science.gov (United States)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  8. CSI in Supernova Remnants

    Science.gov (United States)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  9. Binary particle swarm optimization for operon prediction.

    Science.gov (United States)

    Chuang, Li-Yeh; Tsai, Jui-Hung; Yang, Cheng-Hong

    2010-07-01

    An operon is a fundamental unit of transcription and contains specific functional genes for the construction and regulation of networks at the entire genome level. The correct prediction of operons is vital for understanding gene regulations and functions in newly sequenced genomes. As experimental methods for operon detection tend to be nontrivial and time consuming, various methods for operon prediction have been proposed in the literature. In this study, a binary particle swarm optimization is used for operon prediction in bacterial genomes. The intergenic distance, participation in the same metabolic pathway, the cluster of orthologous groups, the gene length ratio and the operon length are used to design a fitness function. We trained the proper values on the Escherichia coli genome, and used the above five properties to implement feature selection. Finally, our study used the intergenic distance, metabolic pathway and the gene length ratio property to predict operons. Experimental results show that the prediction accuracy of this method reached 92.1%, 93.3% and 95.9% on the Bacillus subtilis genome, the Pseudomonas aeruginosa PA01 genome and the Staphylococcus aureus genome, respectively. This method has enabled us to predict operons with high accuracy for these three genomes, for which only limited data on the properties of the operon structure exists.

  10. Model for convection in binary liquids

    Science.gov (United States)

    Hollinger, St.; Lücke, M.; Müller, H. W.

    1998-04-01

    A minimal, analytically manageable Galerkin type model for convection in binary mixtures subject to realistic boundary conditions is presented. The model elucidates and reproduces the typical bifurcation topology of extended stationary and oscillatory convective states seen for negative Soret coupling: backwards stationary and Hopf bifurcations, saddle node bifurcations to stable strongly nonlinear stationary and traveling wave (TW) states, and merging of the TW solution branch with stationary states. Also unstable standing wave solutions are obtained. A systematic analysis of the concentration balance for liquid mixture parameters has led to a representation of the concentration field in terms of two linear and two nonlinear modes. This truncation captures the important large-scale effects in the laterally averaged concentration field resulting from advective and diffusive mixing. Also the fact that with increasing flow intensity along the TW solution branch the frequency decreases monotonically in the same way as the mixing increases-the variance of the concentration distribution decreases-is ensured and reproduced well. Universal scaling relations between flow intensity, frequency, and variance of the concentration distribution (degree of mixing) in a TW are predicted by the model and have been confirmed by numerical solutions of the full equations. The validity of the model is checked by comparison with numerical solutions of the full field equations.

  11. Entropic Behavior of Binary Carbonaceous Mesophases

    Directory of Open Access Journals (Sweden)

    Alejandro D. Rey

    2008-08-01

    Full Text Available The Maier-Saupe model for binary mixtures of uniaxial discotic nematogens, formulated in a previous study [1], is used to compute and characterize orientational entropy [2] and orientational specific heat. These thermodynamic quantities are used to determine mixture type (ideal or non-ideal which arise due to their different intrinsic properties, determined by the molecular weight asymmetry ΔMw and the molecular interaction parameter β. These molecular properties are also used to characterize the critical concentration where the mixture behaves like a single component system and exhibits the minimum nematic to isotropic (NI transition temperature (pseudo-pure mixture. A transition within the nematic phase takes place at this specific concentration. According to the Maier-Saupe model, in a single mesogen, entropy at NI transition is a universal value; in this work we quantify the mixing effect on this universal property. The results and analysis provide a new tool to characterize molecular interaction and molecular weight differences in mesogenic mixtures using standard calorimetric measurements.

  12. Binary-binary interactions and the formation of the PSR B1620-26 triple system in M4

    Science.gov (United States)

    Rasio, Frederic A.; Mcmillan, Steve; Hut, Piet

    1995-01-01

    The hierarchical triple system containing the millisecond pulsar PSR B1620-26 in M4 is the first star system ever detected in a globular cluster. Such systems should form in globular clusters as a result of dynamical interactions between binaries. We propose that the triple system containing PSR B1620-26 formed through an exchange interaction between a wide primordial binary and a pre-existing binary millisecond pulsar. This scenario would have the advantage of reconciling the approximately 10(exp 9) yr timing age of the pulsar with the much shorter lifetime of the triple system in the core of M4.

  13. Physicochemical characterization of Binary System of Ciprofloxacin HCl - PEG 4000

    Directory of Open Access Journals (Sweden)

    Resva Meinisasti

    2015-12-01

    Full Text Available "Physicochemical Characterization of Binary Systems Ciprofloxacin HCl - PEG 4000" has been reseach. This study aimed to characterize ciprofloxacin HCl formula that was developed to 9, with a comparison between ciprofloxacin - PEG 4000 following formula I (1: 9, formula II (2: 8, formula III (3: 7, formula IV (4: 6, formula V (5: 5, formula VI (6: 4, formula VII (7: 3, formula VIII (8: 2 and formula IX (9: 1. Binary system made by the manufacture of solid dispersion by melting method. The results of the binary System were characterized by analysis Differential Thermal Analysis (DTA, X-ray diffraction, IR spectrophotometry, and Scanning Electron Microscope (SEM. The results of this analysis have results of the binary solid dispersion systems a good formula this VII.

  14. Progenitors of binary black hole mergers detected by LIGO

    Science.gov (United States)

    Postnov, Konstantin; Kuranov, Alexander

    2017-11-01

    Possible formation mechanisms of massive close binary black holes that can merge in the Hubble time to produce powerful gravitational wave bursts detected during advanced LIGO O1 science run are briefly discussed. The pathways include the evolution from field low-metallicity massive binaries, the dynamical formation in globular clusters and primordial black holes. Low effective black hole spins inferred for LIGO GW150914 and LTV151012 events are discussed. Population synthesis calculations of the expected spin and chirp mass distributions from the standard field massive binary formation channel are presented for different metallicities (from zero-metal Population III stars up to solar metal abundance). We conclude that that merging binary black holes can contain systems from different formation channels, discrimination between which can be made with increasing statistics of mass and spin measurements from ongoing and future gravitational wave observations.

  15. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    SPSU) and polyvinyl triazole were studied as binary matrices. The sulfonation of polysulfone was performed with trimethylsilylchlorosulfonate and high degree of sulfonation (140%) was obtained. Ion exchange capacity of SPSU was determined ...

  16. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  17. Analyzing Influenza Virus Sequences using Binary Encoding Approach

    Directory of Open Access Journals (Sweden)

    Ham Ching Lam

    2012-01-01

    Full Text Available Capturing mutation patterns of each individual influenza virus sequence is often challenging; in this paper, we demonstrated that using a binary encoding scheme coupled with dimension reduction technique, we were able to capture the intrinsic mutation pattern of the virus. Our approach looks at the variance between sequences instead of the commonly used p-distance or Hamming distance. We first convert the influenza genetic sequences to a binary strings and form a binary sequence alignment matrix and then apply Principal Component Analysis (PCA to this matrix. PCA also provides identification power to identify reassortant virus by using data projection technique. Due to the sparsity of the binary string, we were able to analyze large volume of influenza sequence data in a very short time. For protein sequences, our scheme also allows the incorporation of biophysical properties of each amino acid. Here, we present various encouraging results from analyzing influenza nucleotide, protein and genome sequences using the proposed approach.

  18. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup ...

    Indian Academy of Sciences (India)

    2016-01-27

    lined spectroscopic binary systems PV Pup, HD 141929, EE Cet and V921 Her, we find both the orbital and the combined spectroscopic elements of these systems. Our numerical results are in good agreement with those obtained ...

  19. STABILITY OF BINARY COMPLEXES OF L-ASPARTIC ACID IN ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Binary complexes, Stability constants, Aspartic acid, Speciation, Dioxan ... Potentiometric study of Fe(II) and Zn(II) was carried out by Ritsma [19], Maker et al. [20],. Gergely and .... The effect of variations in asymmetry potential,.

  20. Population of Nuclei Via 7Li-Induced Binary Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha,Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.

  1. POPCORN: A comparison of binary population synthesis codes

    Science.gov (United States)

    Claeys, J. S. W.; Toonen, S.; Mennekens, N.

    2013-01-01

    We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.

  2. Local difference binary for ultrafast and distinctive feature description.

    Science.gov (United States)

    Yang, Xin; Cheng, Kwang-Ting Tim

    2014-01-01

    The efficiency and quality of a feature descriptor are critical to the user experience of many computer vision applications. However, the existing descriptors are either too computationally expensive to achieve real-time performance, or not sufficiently distinctive to identify correct matches from a large database with various transformations. In this paper, we propose a highly efficient and distinctive binary descriptor, called local difference binary (LDB). LDB directly computes a binary string for an image patch using simple intensity and gradient difference tests on pairwise grid cells within the patch. A multiple-gridding strategy and a salient bit-selection method are applied to capture the distinct patterns of the patch at different spatial granularities. Experimental results demonstrate that compared to the existing state-of-the-art binary descriptors, primarily designed for speed, LDB has similar construction efficiency, while achieving a greater accuracy and faster speed for mobile object recognition and tracking tasks.

  3. Adsorption of hexavalent chromium by graphite–chitosan binary ...

    Indian Academy of Sciences (India)

    . Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was ... Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite.

  4. Flare Activity of Wide Binary Stars with Kepler

    Science.gov (United States)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  5. Binary and Millisecond Pulsars at the New Millennium.

    Science.gov (United States)

    Lorimer, Duncan R

    2001-01-01

    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  6. Binary and Millisecond Pulsars at the New Millennium

    OpenAIRE

    Lorimer Duncan R.

    2001-01-01

    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity com...

  7. The evolution of ultracompact X-ray binaries

    OpenAIRE

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Wood, M. A.; Kuijpers, J.

    2011-01-01

    Context. Ultracompact X-ray binaries (UCXBs) typically consist of a white dwarf donor and a neutron star or black hole accretor. The evolution of UCXBs and very low mass ratio binaries in general is poorly understood. Aims. We investigate the evolution of UCXBs in order to learn for which mass ratios and accretor types these systems can exist, and if they do, what are their orbital and neutron star spin periods, mass transfer rates and evolutionary timescales. Methods. For different assumptio...

  8. Binary and Millisecond Pulsars at the New Millennium

    Science.gov (United States)

    Lorimer, Duncan R.

    2001-06-01

    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  9. Generation and application of pseudorandom binary sequences using virtual instrumentation

    OpenAIRE

    Miljković, Goran S.; Stojković, Ivana S.; Denić, Dragan B.

    2011-01-01

    A very dynamical development of virtual instrumentation in recent years has caused a very good acceptance of this concept and its use in many applications. This concept, as one flexible and cost-effective solution for test and measurement, is used in this paper for implementation and application of maximum length pseudorandom binary sequences generator. Because of their properties, the pseudorandom binary sequences are often used in development and improvement of modern pseudorandom position ...

  10. Hyperspectral image representation and processing with binary partition trees

    OpenAIRE

    Valero Valbuena, Silvia

    2012-01-01

    Premi extraordinari doctorat curs 2011-2012, àmbit Enginyeria de les TIC The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarc...

  11. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  12. Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    OpenAIRE

    Prša, Andrej; Conroy, Kyle E.; Horvat, Martin; Pablo, Herbert; Kochoska, Angela; Bloemen, Steven; Giammarco, Joseph; Hambleton, Kelly M.; Degroote, Pieter

    2016-01-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed...

  13. Pattern 1^j0^i avoiding binary words

    Directory of Open Access Journals (Sweden)

    Stefano Bilotta

    2011-08-01

    Full Text Available In this paper we study the enumeration and the construction, according to the number of ones, of particular binary words avoiding a fixed pattern. The growth of such words can be described by particular jumping and marked succession rules. This approach enables us to obtain an algorithm which constructs all binary words having a fixed number of ones and then kills those containing the forbidden pattern.

  14. Parameter Estimation in Multivariate Logit models with Many Binary Choices

    OpenAIRE

    Bel, Koen; Fok, Dennis; Paap, Richard

    2014-01-01

    markdownabstract__Abstract__ The multivariate choice problem with correlated binary choices is investigated. The Multivariate Logit [MVL] model is a convenient model to describe such choices as it provides a closed-form likelihood function. The disadvantage of the MVL model is that the computation time required for the calculation of choice probabilities increases exponentially with the number of binary choices under consideration. This makes maximum likelihood-based estimation infeasible in ...

  15. A CCD Photometric Study of Close Binary V445 Cep

    Directory of Open Access Journals (Sweden)

    Kyu-Dong Oh

    2010-06-01

    Full Text Available We present new BVR CCD photometric light curves for the close binary star V445 Cep. A new photometric solution and absolute physical dimensions of the system were derived by applying the Wilson-Devinney program to our observed light curves and radial velocity curves published by Pych et al. The evolutional status of V445 Cep was found to coincide with those of the general low mass ratio contact binary systems.

  16. Structured Forms Reference Set of Binary Images II (SFRS2)

    Science.gov (United States)

    NIST Structured Forms Reference Set of Binary Images II (SFRS2) (Web, free access)   The second NIST database of structured forms (Special Database 6) consists of 5,595 pages of binary, black-and-white images of synthesized documents containing hand-print. The documents in this database are 12 different tax forms with the IRS 1040 Package X for the year 1988.

  17. Colloidal rods and spheres in partially miscible binary liquids

    OpenAIRE

    Hijnen, Niek

    2013-01-01

    Different scenarios for assembling rod-like and spherical colloidal particles using binary mixtures of partially miscible liquids were investigated experimentally. Suitable rod-like colloids were developed first. The subsequent studies of colloids in binary liquids consisted, on one hand, of systems where particles were partially wetted by both phases and, on the other hand, of systems where particles were completely wetted by the minority phase. A simple method to prepare l...

  18. Binary and recycled pulsars: 30 years after observational discovery

    OpenAIRE

    Bisnovatyi-Kogan, G. S.

    2006-01-01

    Binary radio pulsars, first discovered by Hulse and Taylor in 1974 [1], are a unique tool for experimentally testing general relativity (GR), whose validity has been confirmed with a precision unavailable in laboratory experiments. In particular, indirect evidence of the existence of gravitational waves has been obtained. Radio pulsars in binary systems (which have come to be known as recycled) have completed the accretion stage, during which neutron star spins reach millisecond periods and t...

  19. Developing Binary Interaction Parameters For Equations Of State

    OpenAIRE

    Moshfeghian, Mahmood; Maddox, R. N.

    1991-01-01

    Binary interaction parameters are routinely developed to improve the accuracy of equation of state estimations for binary mixtures. For a given data set, the numerical value of the vapor-liquid equilibrium constant varies with the kind of equilibrium calculation used for the evaluation. For the same experimental data, a constant temperature bubble point calculation and a constant pressure bubble point calculation will not yield exactly the same value for the vapor-liquid equilibrium constant, K.

  20. Binary CFG Rebuilt of Self-Modifying Codes

    Science.gov (United States)

    2016-10-03

    often observed in a heterogeneous system , e.g., Java web applications querying external SQL servers. In the symbolic execution, this observation enables...including 2 from Google). We are proposing the next NII Shonan meeting opportunity “ Binary code analysis and applications to computer security” on... binary CFG rebuilt, NII Shonan meeting No.65 “Low level code analysis and applications to computer security”, March 2-5 2015. e) Unpublished draft

  1. Thermodynamic analysis of the Ga-Pb binary system

    Directory of Open Access Journals (Sweden)

    Manasijević Dragan

    2003-01-01

    Full Text Available Thermodynamic properties of binary Ga-Pb alloys were investigated experimentally and analytically. Quantitative differential thermal analysis was used for determination of integral mixing enthalpies for the gallium-reach alloys, at the constant temperature inside the liquid two-phase region. Calculation of gallium activities in the temperature range of 800-1000 K was done using Chou’s calculation model developed for binary systems with miscibility gap existence.

  2. Strain-induced ferroelectricity in simple rocksalt binary oxides

    OpenAIRE

    Bousquet, Eric; Spaldin, Nicola A.; Ghosez, Philippe

    2009-01-01

    The alkaline earth binary oxides adopt a simple rocksalt structure and form an important family of compounds because of their large presence in the earth's mantle and their potential use in microelectronic devices. In comparison to the class of multifunctional ferroelectric perovskite oxides, however, their practical applications remain limited and the emergence of ferroelectricity and related functional properties in simple binary oxides seems so unlikely that it was never previously conside...

  3. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  4. A mini binary vector series for plant transformation.

    Science.gov (United States)

    Xiang, C; Han, P; Lutziger, I; Wang, K; Oliver, D J

    1999-07-01

    A streamlined mini binary vector was constructed that is less than 1/2 the size of the pBIN19 backbone (3.5 kb). This was accomplished by eliminating over 5 kb of non-T-DNA sequences from the pBIN19 vector. The vector still retains all the essential elements required for a binary vector. These include a RK2 replication origin, the nptIII gene conferring kanamycin resistance in bacteria, both the right and left T-DNA borders, and a multiple cloning site (MCS) in between the T-DNA borders to facilitate cloning. Due to the reduced size, more unique restriction sites are available in the MCS, thus allowing more versatile cloning. Since the traF region was not included, it is not possible to mobilize this binary vector into Agrobacterium by triparental mating. This problem can be easily resolved by direct transformation. The mini binary vector has been demonstrated to successfully transform Arabidopsis plants. Based on this mini binary vector, a series of binary vectors were constructed for plant transformation.

  5. A New Orbit for the Eclipsing Binary V577 Oph

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, Elizabeth J. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Barnes, Thomas G. III; Montemayor, Thomas J. [The University of Texas at Austin, McDonald Observatory, 1 University Station, C1402, Austin, TX 78712-0259 (United States); Skillen, Ian, E-mail: ejjeffer@calpoly.edu, E-mail: tgb@astro.as.utexas.edu, E-mail: tm@astro.as.utexas.edu, E-mail: wji@ing.iac.es [Isaac Newton Group, Apartado de Correos 321, E-38700 Santa Cruz de La Palma, Canary Islands (Spain)

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  6. Alternation Blindness in the Representation of Binary Sequences.

    Science.gov (United States)

    Yu, Ru Qi; Osherson, Daniel; Zhao, Jiaying

    2017-08-17

    Binary information is prevalent in the environment and contains 2 distinct outcomes. Binary sequences consist of a mixture of alternation and repetition. Understanding how people perceive such sequences would contribute to a general theory of information processing. In this study, we examined how people process alternation and repetition in binary sequences. Across 4 paradigms involving estimation, working memory, change detection, and visual search, we found that the number of alternations is underestimated compared with repetitions (Experiment 1). Moreover, recall for binary sequences deteriorates as the sequence alternates more (Experiment 2). Changes in bits are also harder to detect as the sequence alternates more (Experiment 3). Finally, visual targets superimposed on bits of a binary sequence take longer to process as alternation increases (Experiment 4). Overall, our results indicate that compared with repetition, alternation in a binary sequence is less salient in the sense of requiring more attention for successful encoding. The current study thus reveals the cognitive constraints in the representation of alternation and provides a new explanation for the overalternation bias in randomness perception. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. ON THE LIKELIHOOD OF PLANET FORMATION IN CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah, E-mail: hjangcon@uwyo.edu [Department of Physics and Astronomy, University of Wyoming, 1000 East University, Department 3905, Laramie, WY 82071 (United States)

    2015-02-01

    To date, several exoplanets have been discovered orbiting stars with close binary companions (a ≲ 30 AU). The fact that planets can form in these dynamically challenging environments implies that planet formation must be a robust process. The initial protoplanetary disks in these systems from which planets must form should be tidally truncated to radii of a few AU, which indicates that the efficiency of planet formation must be high. Here, we examine the truncation of circumstellar protoplanetary disks in close binary systems, studying how the likelihood of planet formation is affected over a range of disk parameters. If the semimajor axis of the binary is too small or its eccentricity is too high, the disk will have too little mass for planet formation to occur. However, we find that the stars in the binary systems known to have planets should have once hosted circumstellar disks that were capable of supporting planet formation despite their truncation. We present a way to characterize the feasibility of planet formation based on binary orbital parameters such as stellar mass, companion mass, eccentricity, and semimajor axis. Using this measure, we can quantify the robustness of planet formation in close binaries and better understand the overall efficiency of planet formation in general.

  8. Dynamical evolution of a fictitious population of binary Neptune Trojans

    Science.gov (United States)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  9. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  10. Outbursts In Symbiotic Binaries (FUSE 2000)

    Science.gov (United States)

    Kenyon, Scott J.; Sonneborn, George (Technical Monitor)

    2002-01-01

    During the past year, we made good progress on analysis of FUSE observations of the symbiotic binary Z And. For background, Z And is a binary system composed of a red giant and a hot component of unknown status. The orbital period is roughly 750 days. The hot component undergoes large-scale eruptions every 10-20 yr. An outburst began several years ago, triggering this FUSE opportunity. First, we obtained an excellent set of ground-based optical data in support, of the FUSE observations. We used FAST, a high throughput low resolution spectrograph on the 1.5-m telescope at Mt. Hopkins, Arizona. A 300 g/ mm grating blazed at 4750 A, a 3 in. slit, and a thinned Loral 512 x 2688 CCD gave us spectra covering 3800-7500 A at a resolution of 6 A. The wavelength solution for each spectrum has a probable error of +/- 0.5 A or better. Most of the resulting spectra have moderate signal-to-noise, S/.N approx. greater than 30 per pixel. The time coverage for these spectra is excellent. Typically, we acquired spectra every 1-2 nights during dark runs at Mt. Hopkins. These data cover most of the rise and all of the decline of the recent outburst. The spectra show a wealth of emission lines, including H I, He I, He II, [Fe V11], and the Raman scattering bands at 6830 A and 7088 A. The Raman bands and other high ionization features vary considerably throughout the outburst. These features will enable us to correlate variations in the FUSE spectra with variations in the optical spectra. Second, we began an analysis of FUSE spectra of Z And. We have carefully examined the spectra, identifying real features and defects. We have identified and measured fluxes for all strong emission lines, including the O VI doublet at 1032 A and 1038 A. These and several other strong emission lines display pronounced P Cygni absorption components indicative of outgrowing gas. We will attempt to correlate these velocities with similar profiles observed on optical spectra. The line velocities - together

  11. Detectability of compact binary merger macronovae

    Science.gov (United States)

    Rosswog, S.; Feindt, U.; Korobkin, O.; Wu, M.-R.; Sollerman, J.; Goobar, A.; Martinez-Pinedo, G.

    2017-05-01

    We study the optical and near-infrared luminosities and detectability of radioactively powered electromagnetic transients (‘macronovae’) occuring in the aftermath of binary neutron star and neutron star black hole mergers. We explore the transients that result from the dynamic ejecta and those from different types of wind outflows. Based on full nuclear network simulations we calculate the resulting light curves in different wavelength bands. We scrutinize the robustness of the results by comparing (a) two different nuclear reaction networks and (b) two macronova models. We explore in particular how sensitive the results are to the production of α-decaying trans-lead nuclei. We compare two frequently used mass models: the finite-range Droplet model (FRDM) and the nuclear mass model of Duflo and Zuker (DZ31). We find that the abundance of α-decaying trans-lead nuclei has a significant impact on the observability of the resulting macronovae. For example, the DZ31 model yields considerably larger abundances resulting in larger heating rates and thermalization efficiencies and therefore predicts substantially brighter macronova transients. We find that the dynamic ejecta from NSNS models can reach peak K-band magnitudes in excess of  -15 while those from NSBH cases can reach beyond  -16. Similar values can be reached by some of our wind models. Several of our models (both wind and dynamic ejecta) yield properties that are similar to the transient that was observed in the aftermath of the short GRB 130603B. We further explore the expected macronova detection frequencies for current and future instruments such as VISTA, ZTF and LSST.

  12. Binary supergratings: Aperiodic optics for spectral engineering

    Science.gov (United States)

    Fay, Martin Freestone

    The Binary Supergrating (BSG) is an aperiodic guided-wave optical device which, in parallel to the much-touted Photonic Band Gap, represents the extension of the Bragg grating into frequency space. The result is an easily manufactured two-level refractive index profile offering fully customizable spectral characteristics, including wavelength-dependent control over beam direction, dispersion and power. As a general concept, a BSG can be synthesized using a variety of approaches, ranging from a simple threshold quantization of the emulated ideal analog index profile to more sophisticated delta-sigma modulator (DSM) methods, which preserve diffraction characteristics over a specified band of interest with high fidelity. The comparative advantages of each are explored in the context of their tolerance to manufacturing variances. For most cases, the BSG designs degrade gracefully and retain their functionality under extreme errors in fabrication. However, particular vulnerabilities do emerge, along with strategies to mitigate their effect. The BSG is then demonstrated experimentally, in a first proof-of-concept embodiment employing a lateral satellite grating configuration, which eases fabrication by having both waveguide and grating features defined in the same lithographic sequence. Results from this passive optical device corroborate both the BSG's design flexibility and its particular vulnerabilities, yielding clear directions for subsequent implementations. In the domain of active BSG-enabled devices, the novel self-collimated multi-wavelength laser (SCMWL) outputs low-divergence beams at multiple simultaneous wavelengths. The concept, theory, and design of this invention is presented, followed by experimental results from optically pumped proof-of-concept embodiments. The observed spectra confirm the SCMWL concept, while also revealing the complex dynamics underlying this device. At once simple and subtle, the BSG concept yields itself both for immediate

  13. Tricritical phenomena in quasi-binary mixtures. VI. The binary system ethane + n-eicosane and some revised scaling parameters

    Science.gov (United States)

    Goh, M. Cynthia; Scott, Robert L.; Knobler, Charles M.

    1988-08-01

    The three-phase coexistence curve for the binary system ethane + n-eicosane has been measured and its relation to the tricritical point in the quasi-binary system ethane +(n-heptadecane+n-octadecane) is discussed. In order to fit the curve into the scaling scheme developed from an extended classical theory of tricritical phenomena, it is necessary to include terms derived from a ninth-order free-energy polynomial.

  14. Monte Carlo modelling of globular star clusters - many primordial binaries, IMBH formation

    OpenAIRE

    Giersz, Mirek; Leigh, Nathan; Marks, Michael; Hypki, Arkadiusz; Askar, Abbas

    2014-01-01

    We will discuss the evolution of star clusters with an large initial binary fraction, up to 95%. The initial binary population is chosen to follow the invariant orbital-parameter distributions suggested by Kroupa (1995). The Monte Carlo MOCCA simulations of star cluster evolution are compared to the observations of Milone et al. (2012) for photometric binaries. It is demonstrated that the observed dependence on cluster mass of both the binary fraction and the ratio of the binary fractions ins...

  15. PROSPECTS FOR DETECTING ASTEROSEISMIC BINARIES IN KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Miglio, A.; Chaplin, W. J.; Elsworth, Y.; Handberg, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Farmer, R.; Kolb, U. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Girardi, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR8617, Université Paris XI, Bâtiment 121, F-91405 Orsay Cedex (France)

    2014-03-20

    Asteroseismology may in principle be used to detect unresolved stellar binary systems comprised of solar-type stars and/or red giants. This novel method relies on the detection of the presence of two solar-like oscillation spectra in the frequency spectrum of a single light curve. Here, we make predictions of the numbers of systems that may be detectable in data already collected by the NASA Kepler Mission. Our predictions, which are based upon TRILEGAL and BiSEPS simulations of the Kepler field of view, indicate that as many as 200 or more ''asteroseismic binaries'' may be detectable in this manner. Most of these binaries should be comprised of two He-core-burning red giants. Owing largely to the limited numbers of targets with the requisite short-cadence Kepler data, we expect only a small number of detected binaries containing solar-type stars. The predicted yield of detections is sensitive to the assumed initial mass ratio distribution (IMRD) of the binary components and therefore represents a sensitive calibration of the much debated IMRD near mass ratio unity.

  16. Formation of the wide asynchronous binary asteroid population

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Seth A. [Department of Astrophysical and Planetary Science, UCB 391, University of Colorado, Boulder, CO 80309 (United States); Scheeres, Daniel J.; McMahon, Jay [Department of Aerospace Engineering Sciences, UCB 429, University of Colorado, Boulder, CO 80309 (United States)

    2014-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.

  17. Constraining Binary Asteroid Mass Distributions Based On Mutual Motion

    Science.gov (United States)

    Davis, Alex B.; Scheeres, Daniel J.

    2017-06-01

    The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.

  18. Rotational properties of hypermassive neutron stars from binary mergers

    Science.gov (United States)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  19. Galaxy rotation and supermassive black hole binary evolution

    Science.gov (United States)

    Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.

    2017-09-01

    Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.

  20. Resonant Transneptunian Binaries: Evidence for Slow Migration of Neptune

    Science.gov (United States)

    Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. B.

    2012-01-01

    As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2:1 at 47.7 AU, straddle the core repository of the physically distinct and binary-rich Cold Classicals, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 resonant object properties, with low inclination 2:1s having a high fraction of red binaries, mirroring that of the Cold Classicals while the 3:2 will would have fewer binaries. Rapid migration would generate a more homogeneous result. Resonant objects observed with HST show a higher rate of binaries in the 2:1 relative to the 3:2, significant at the 2cr level. This suggests slow Neptune migration over a large enough distance that the 2:1 swept through the Cold Classical region. Colors are available for only a fraction of these targets but a prevalence of red objects in outer Resonances has been reported. We report here on ongoing observations with HST in cycle 19 targeting all unobserved Resonants with observations that will measure color and search for binary companions using the WFC3.

  1. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    Science.gov (United States)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  2. Dynamical and collisional evolution of Kuiper belt binaries

    Science.gov (United States)

    Brunini, Adrián; Zanardi, Macarena

    2016-02-01

    We present numerical simulations of the evolution of synthetic transneptunian binaries (TNBs) under the influence of the solar perturbation, tidal friction, and collisions with the population of classical Kuiper belt objects (KBOs). We show that these effects, acting together, have strongly sculpted the primordial population of TNBs. If the population of classical KBOs have a power-law size distribution as the ones that are inferred from recent observational surveys, the fraction of surviving binaries at present would be ˜70 per cent of the primordial population. The orbits of the surviving synthetic systems match reasonably well the observed sample. The collisional process excites the mutual orbital eccentricity of the binaries, acting against the effect of tides. Therefore only ˜10 per cent of the objects reach total orbital circularization (e ≤ 10-4). In addition, our results predict that the population of contact binaries in the transneptunian region should be small. Ultrawide binaries are naturally obtained by the combined action of Kozai cycles and tidal friction and collisional evolution, being the number and orbital distribution of them very similar to the ones of the observed population.

  3. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  4. The orbital eccentricities of binary millisecond pulsars in globular clusters

    Science.gov (United States)

    Rasio, Frederic A.; Heggie, Douglas C.

    1995-01-01

    Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.

  5. Precursor Events Involving Plasmas Structures Around Collapsing Black Holes Binaries

    Science.gov (United States)

    Medvedev, M.; Coppi, B.

    2017-10-01

    The plasma structures that can exist around black hole binaries can sustain intrinsic plasma collective modes that have characteristic low frequencies related to the particle rotation frequencies around the binary system. As the collapse approaches, with the loss of angular momentum by emission of gravitational waves from the binary system we have suggested that the frequency of the fluctuating component of the gravitational potential can go through that of the intrinsic modes of the surrounding plasma structure and lead to a sharp amplification of them. Then the precursor to the event reported in Ref., tentatively identified by the Agile X- γ-ray observatory may be associated with the high energy radiation emission due to the fields produced by excitation of the proposed plasma modes. M. Tavani is thanked for bringing Ref. to our attention while Ref. was being completed. Sponsored in part by the U.S. DoE.

  6. Codis binaris no lineals òptims : propietats i construccions

    OpenAIRE

    González Benítez, Victòria

    2016-01-01

    Aquesta recerca té com a objectiu principal estudiar propietats i construccions dels codis binaris no lineals òptims i està dividida en tres parts. En primer lloc, estudiar els codis binaris no lineals 1-perfectes i trobar la relació entre el fet de ser sistemàtics i la dimensió del kernel. El kernel d'un codi és un subcodi lineal que permet mesurar la linearitat del codi. S'ha trobat que els codis amb dimensió del kernel més gran són sistemàtics. En segon lloc, estudiar els codis binaris òpt...

  7. Coalescence of Black Hole-Neutron Star Binaries

    Directory of Open Access Journals (Sweden)

    Masaru Shibata

    2011-08-01

    Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  8. Microstructure and properties of Mg-Al binary alloys

    Directory of Open Access Journals (Sweden)

    ZHENG Wei-chao

    2006-11-01

    Full Text Available The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  9. Spectroscopic Binaries in the Orion Nebula Cluster and NGC 2264

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Tobin, John J.; Mateo, Mario; Bailey, John I., III; Spencer, Meghin

    2016-04-01

    We examine the spectroscopic binary population for two massive nearby regions of clustered star formation, the Orion Nebula Cluster (ONC) and NGC 2264, supplementing the data presented by Tobin et al. with more recent observations and more extensive analysis. The inferred multiplicity fraction up to 10 au based on these observations is 5.3 ± 1.2% for NGC 2264 and 5.8 ± 1.1% for the ONC; these values are consistent with the distribution of binaries in the field in the relevant parameter range. Eight of the multiple systems in the sample have enough epochs to perform an initial fit for the orbital parameters. Two of these sources are double-lined spectroscopic binaries; for them, we determine the mass ratio. Our reanalysis of the distribution of stellar radial velocities toward these clusters presents a significantly better agreement between stellar and gas kinematics than was previously thought.

  10. Stochastic Learning in Oxide Binary Synaptic Device for Neuromorphic Computing

    Directory of Open Access Journals (Sweden)

    Shimeng eYu

    2013-10-01

    Full Text Available Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on transition of metal oxide resistance switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

  11. Topology of Black Hole Binary-Single Interactions

    Science.gov (United States)

    Samsing, Johan; Ilan, Teva

    2018-01-01

    We present a study on how the outcomes of binary-single interactions involving three black hole (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using an N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation-of-motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which General Relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and micro-topological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  12. Influence of binary mask estimation errors on robust speaker identification

    DEFF Research Database (Denmark)

    May, Tobias

    2017-01-01

    and unreliable feature components in the context of automatic speaker identification (SID). A systematic evaluation under ideal and non-ideal conditions demonstrated that the robustness to errors in the binary mask varied substantially across the different missing-data strategies. Moreover, full and bounded......Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different....... Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable...

  13. Coalescence of Black Hole-Neutron Star Binaries.

    Science.gov (United States)

    Shibata, Masaru; Taniguchi, Keisuke

    2011-01-01

    We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS) binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  14. Electromagnetic and gravitational outputs from binary-neutron-star coalescence.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-08-09

    The late stage of an inspiraling neutron-star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magnetohydrodynamic simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develop current sheets. Our results indicate that this power can (i) outshine pulsars in binaries, (ii) display a distinctive angular- and time-dependent pattern, and (iii) radiate within large opening angles. These properties suggest that some binary neutron-star mergers are ideal candidates for multimessenger astronomy.

  15. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  16. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    Science.gov (United States)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; hide

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  17. The highly eccentric detached eclipsing binaries in ACVS and MACC

    Science.gov (United States)

    Shivvers, Isaac; Bloom, Joshua S.; Richards, Joseph W.

    2014-06-01

    Next-generation synoptic photometric surveys will yield unprecedented (for the astronomical community) volumes of data and the processes of discovery and rare-object identification are, by necessity, becoming more autonomous. Such autonomous searches can be used to find objects of interest applicable to a wide range of outstanding problems in astronomy, and in this paper we present the methods and results of a largely autonomous search for highly eccentric detached eclipsing binary systems in the Machine-learned All-Sky Automated Survey Classification Catalog. 106 detached eclipsing binaries with eccentricities of e ≳ 0.1 are presented, most of which are identified here for the first time. We also present new radial-velocity curves and absolute parameters for six of those systems with the long-term goal of increasing the number of highly eccentric systems with orbital solutions, thereby facilitating further studies of the tidal circularization process in binary stars.

  18. SPECTROSCOPIC BINARIES IN THE ORION NEBULA CLUSTER AND NGC 2264

    Energy Technology Data Exchange (ETDEWEB)

    Kounkel, Marina; Hartmann, Lee; Mateo, Mario; Bailey, John I. III; Spencer, Meghin [Department of Astronomy, University of Michigan, 1085 S. University Street, Ann Arbor, MI 48109 (United States); Tobin, John J., E-mail: mkounkel@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands)

    2016-04-10

    We examine the spectroscopic binary population for two massive nearby regions of clustered star formation, the Orion Nebula Cluster (ONC) and NGC 2264, supplementing the data presented by Tobin et al. with more recent observations and more extensive analysis. The inferred multiplicity fraction up to 10 au based on these observations is 5.3 ± 1.2% for NGC 2264 and 5.8 ± 1.1% for the ONC; these values are consistent with the distribution of binaries in the field in the relevant parameter range. Eight of the multiple systems in the sample have enough epochs to perform an initial fit for the orbital parameters. Two of these sources are double-lined spectroscopic binaries; for them, we determine the mass ratio. Our reanalysis of the distribution of stellar radial velocities toward these clusters presents a significantly better agreement between stellar and gas kinematics than was previously thought.

  19. Testing relativistic gravity with binary and millisecond pulsars

    CERN Document Server

    Taylor, J H

    1993-01-01

    Binary and millisecond pulsars oiler unique opportunities for high precision experiments in relativistic gravity, probing well beyond the weak—field, slowimotion limit of all previous experimental tests. 'I‘hey also provide the means for accurate measurements of neutron star masses, plao ing rigorous constraints on the energy density 01' low-frequency gravitational radiation in the universe, and a number of other significant results. The first known binary pulsar, BSR BI913+l6, has now been observed [or more than 18 years. Its timing measurements have conclusively established the ex~ istence, quadrupolar nature, and propagation speed of gravitational waves; the results are presently in accord with general relativity at, the 0.4% level. A more recently discovered binary pulsar, PSR B1534+12, has provided clean access to a test of gravity under stronghold conditions, independent of grav— itational radiation effects. In this paper I summarize and update the status of experiments involving these two pulsar...

  20. Note on naive Bayes based on binary descriptors in cheminformatics.

    Science.gov (United States)

    Townsend, Joe A; Glen, Robert C; Mussa, Hamse Y

    2012-10-22

    A plethora of articles on naive Bayes classifiers, where the chemical compounds to be classified are represented by binary-valued (absent or present type) descriptors, have appeared in the cheminformatics literature over the past decade. The principal goal of this paper is to describe how a naive Bayes classifier based on binary descriptors (NBCBBD) can be employed as a feature selector in an efficient manner suitable for cheminformatics. In the process, we point out a fact well documented in other disciplines that NBCBBD is a linear classifier and is therefore intrinsically suboptimal for classifying compounds that are nonlinearly separable in their binary descriptor space. We investigate the performance of the proposed algorithm on classifying a subset of the MDDR data set, a standard molecular benchmark data set, into active and inactive compounds.

  1. An eccentric binary millisecond pulsar in the galactic plane.

    Science.gov (United States)

    Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter

    2008-06-06

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

  2. Planar optical correlators integrated with binary optical lens.

    Science.gov (United States)

    Xu, Ping; Hong, Chunquan; Cheng, Guanxiao; Zhou, Liang; Sun, Zhilong

    2015-03-09

    Planar optical correlators (POCs) can achieve smaller volume of optical system and hence have important applications to identify dynamic targets in complex scenarios. POCs, however, generally have serious astigmatism and optical efficiency loss introduced by its refractive lens with a zigzag optical beam. To conquer the disadvantages of POCs, we propose a type of binary optical planar-integrated optical correlator. The correlator incorporates two pieces of reflective binary optical lens as Fourier transform lens and one spatial light modulator as a programmable filter. The off-axis aberrations commonly occurred in POCs can be corrected by using reflective binary optical lens instead of refractive lens. As a model of hybrid numerical-optical correlator using optoelectronic interface, the proposal is helpful to improve the integration and flexibility and robustness of POCs.

  3. Fermi-LAT Detection of Gamma-Ray Emission in the Vicinity of the Star Forming Regions W43 and Westerlund 2

    Science.gov (United States)

    Lemoine-Goumard, M.; Ferrara, E.; Grondin, M.-H.; Martin, P.; Renaud, M.

    2011-01-01

    Particle acceleration in massive star forming regions can proceed via a large variety of possible emission scenarios, including high-energy gamma-ray production in the colliding wind zone of the massive Wolf-Rayet binary (here WR 20a and WR I2Ia), collective wind scenarios, diffusive shock acceleration at the boundaries of wind-blown bubbles in the stellar cluster, and outbreak phenomena from hot stellar winds into the interstellar medium. In view of the recent Fermi-LAT detection of HESS JI023-575 (in the vicinity of Westerlund 2), we examine another very high energy (VHE) gamma-ray source, HESS JI848-0145 (in the vicinity ofW43), possibly associated with a massive star cluster. Considering multi-wavelength data, in particular TeV gamma-rays, we examine the available evidence that the gamma-ray emission coincident with Westerlund 2 and W43 could originate in particles accelerated by the above-mentioned mechanisms in massive star clusters.

  4. Observing Massive Stars with MOST: the Enigmatic WN8 Star WR123

    Science.gov (United States)

    Lefevre, L.; Marchenko, S. V.; Moffat, A. F. J.; Acker, A.; Matthews, J. M.; Kuschnig, R.; Guenther, D. B.; Rucinski, S. M.; Sasselov, D.; Walker, G. A. H.; Weiss, W. W.

    We present preliminary results of intense photometric monitoring of the variable WN8 Wolf-Rayet star WR123 (HD177230) obtained by the recently launched MOST (Microvariability and Oscillations of STars) satellite. This first Canadian astronomical space telescope observed WR123 for 39 days non-stop during June/July 2004. A preliminary analysis of the first 30 days of data resulted in a light curve which enabled us to clearly see the chaotic behaviour of this star. Fourier analysis of this data subset shows that no periodic signal is stable for more than ~ 7 days in the low-frequency domain ( f < 1d-1), while there is a relatively stable ~ 10 h periodic component which can be seen throughout the whole 30 days in the mid frequency domain (1d-1 < f < 10d-1). This period is likely too short to be related to an orbiting compact companion (as suspected in some WN8 stars, which tend to be runaways) or too long to be due to pulsations. Rotation of a single star seems most likely, possibly related to the spin-up after the swallowing of the exploded original primary in a Thorne-Zytkow binary scenario. In addition, after detrending the data, we see no significant periodicities above the 99% confidence threshold in the high frequency domain (10d-1 < f < 1400d-1) other than harmonics related to the 101.4-minute orbital period of the satellite.

  5. Point and Compact Hα Sources in the Interior of M33

    Science.gov (United States)

    Moody, J. Ward; Hintz, Eric G.; Joner, Michael D.; Roming, Peter W. A.; Hintz, Maureen L.

    2017-12-01

    A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebulae, X-ray binaries, etc., can be discovered as point or compact sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.‧5 × 6.‧5 of M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than approximately 10-15 erg cm-2s-1. We have effectively recovered previously mapped H II regions and have identified 152 unresolved point sources and 122 marginally resolved compact sources, of which 39 have not been previously identified in any archive. An additional 99 Hα sources were found to have sufficient archival flux values to generate a Spectral Energy Distribution. Using the SED, flux values, Hα flux value, and compactness, we classified 67 of these sources.

  6. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications

    Science.gov (United States)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2017-06-01

    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  7. Luminous blue variables and the fates of very massive stars.

    Science.gov (United States)

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40  M ⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  8. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  9. Case Study of Data Mining in Observational Astronomy: The Search for New OB Stars in the Small Magellanic Cloud

    Science.gov (United States)

    Larkin, Cormac; Vink, Jorick; Kalari, Venu; Groh, Jose

    2018-01-01

    OB stars are the most luminous and massive stars, living short lives and exerting a disproportionate influence on their environments. They are key to understanding progenitors of gravitational wave sources and reionization of the early Universe. To detect new OB stars, we combine photometric catalog data with TLUSTY and ATLAS9 stellar atmospheres. This method is also believed to be sensitive to elusive “stripped” stars, thought to lose their hydrogen envelope through binary interaction.OB stars are intrinsically luminous, so complete populations are assumed for local group galaxies such as the Small Magellanic Cloud. Our findings challenge this, as we find 26 new OB candidates. Spectroscopy of 7 candidates shows a 100% detection rate. Most interestingly, 5 of our candidates are consistent with “stripped” stars.To date only 5 “stripped” candidates have been found serendipitously (e.g. HD 45166) as current methods are not sensitive to them. Our work doubles the sample of detected candidates, highlighting that our approach is the first to identify them in a targeted, systematic way. The finding of “stripped” stars could rewrite our understanding of the early Universe, offering an alternative hypothesis to Wolf-Rayet driven cosmic reionization.

  10. Detecting unresolved binary stars in Euclid VIS images

    Science.gov (United States)

    Kuntzer, T.; Courbin, F.

    2017-10-01

    Measuring a weak gravitational lensing signal to the level required by the next generation of space-based surveys demands exquisite reconstruction of the point-spread function (PSF). However, unresolved binary stars can significantly distort the PSF shape. In an effort to mitigate this bias, we aim at detecting unresolved binaries in realistic Euclid stellar populations. We tested methods in numerical experiments where (I) the PSF shape is known to Euclid requirements across the field of view; and (II) the PSF shape is unknown. We drew simulated catalogues of PSF shapes for this proof-of-concept paper. Following the Euclid survey plan, the objects were observed four times. We propose three methods to detect unresolved binary stars. The detection is based on the systematic and correlated biases between exposures of the same object. One method is a simple correlation analysis, while the two others use supervised machine-learning algorithms (random forest and artificial neural network). In both experiments, we demonstrate the ability of our methods to detect unresolved binary stars in simulated catalogues. The performance depends on the level of prior knowledge of the PSF shape and the shape measurement errors. Good detection performances are observed in both experiments. Full complexity, in terms of the images and the survey design, is not included, but key aspects of a more mature pipeline are discussed. Finding unresolved binaries in objects used for PSF reconstruction increases the quality of the PSF determination at arbitrary positions. We show, using different approaches, that we are able to detect at least binary stars that are most damaging for the PSF reconstruction process. The code corresponding to the algorithms used in this work and all scripts to reproduce the results are publicly available from a GitHub repository accessible via http://lastro.epfl.ch/software

  11. Binary white dwarfs in the halo of the Milky Way

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  12. Compact Binary Progenitors of Short Gamma-Ray Bursts

    Science.gov (United States)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  13. The Post-Newtonian Approximation for Relativistic Compact Binaries

    Directory of Open Access Journals (Sweden)

    Futamase Toshifumi

    2007-03-01

    Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.

  14. Binary and Millisecond Pulsars at the New Millennium

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2001-01-01

    Full Text Available We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  15. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  16. Antitumor efficacy of extracellular complexes with gadolinium in Binary Radiotherapy.

    Science.gov (United States)

    Lipengolts, A A; Cherepanov, A A; Kulakov, V N; Grigorieva, E Yu; Sheino, I N; Klimanov, V A

    2015-12-01

    In this report the efficacy of extracellular pharmaceutical Gd-DTPA in Binary Radiotherapy was studied. The study was carried out in mice bearing transplantable adenocarcinoma Ca755 using X-ray based contrast enhanced radiotherapy as a practical implementation of Binary Radiotherapy. It was shown that intravenous administration of 0.3 ml of 0.5 M water solution of Gd-DTPA followed by X-irradiation at a dose of 10 Gy provides T/C%=10±3% and leads to complete tumor regression in 25% of mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Irradiation and mass transfer in low-mass compact binaries

    OpenAIRE

    Ritter, H.; Kolb, U.; Zhang, Z. -Y.

    2000-01-01

    We study the reaction of low-mass stars to anisotropic irradiation and its importance for the long-term evolution of compact binaries binaries. We show by means of a simple homology model that if the energy outflow through the surface layers of a low-mass main sequence star is blocked over a fraction s_eff < 1 of its surface it will inflate only modestly and that the maximum contribution to mass transfer is s_eff times what one obtains in the isotropic case. The duration of this mass transfer...

  18. XMM-Newton Survey of Globular Cluster Ultracompact Binaries

    Science.gov (United States)

    Chakrabarty, Deepto

    2005-01-01

    Our program consisted of an observation of a single source, 4U 0513-40, which we had previously identified as a candidate ultracompact binary (a system with an orbital period below 1 hour). Several other known or suspected ultracompact binaries have shown unusual elemental abundance ratios in their X-ray spectra. In this program, however, our observation found no unusual abundance ratios in the spectrum of 4U 0513-40. This result was included, along with results from a separate Chandra program, in a paper submitted for publication in the Astrophysical Journal.

  19. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  20. Finger Vein Recognition Using Local Line Binary Pattern

    Directory of Open Access Journals (Sweden)

    Bakhtiar Affendi Rosdi

    2011-11-01

    Full Text Available In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP.

  1. Binary Aggregation by Selection of the Most Representative Voter

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.

    2014-01-01

    In binary aggregation, each member of a group expresses yes/no choices regarding several correlated issues and we need to decide on a collective choice that accurately reflects the views of the group. A good collective choice will minimise the distance to each of the individual choices, but using

  2. Analysis and Design of Binary Message-Passing Decoders

    DEFF Research Database (Denmark)

    Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard

    2012-01-01

    in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary...

  3. Hierarchic structure formation in binary and ternary polymer blends

    NARCIS (Netherlands)

    Sprenger, M; Walheim, S; Budkowski, A; Steiner, U

    The phase morphology of multi-component polymer blends is governed by the interfacial interactions of its components. We discuss here the domain morphology in thin films of model binary and ternary polymer blends containing polystyrene, poly(methyl metacrylate), and poly(2-vinylpyridine) (PS, PMMA,

  4. Synthesis and Characterization of Ni-B Binary Alloys Incorporating ...

    African Journals Online (AJOL)

    The microstructure of a series of binary Ni-B alloys containing various amounts of vanadium additions were investigated by Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Analysis (EDXA). Due to the vanadium addition in the ...

  5. Estimating gravitational radiation from super-emitting compact binary systems

    Science.gov (United States)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  6. Overall plate efficiency of a binary distillation column: new approach ...

    African Journals Online (AJOL)

    New formulae for the determination of both tray and overall plate efficiencies of a binary distillation column are presented. They only require the liquid and vapour phases concentrations of the more volatile component on each tray and assumption of constant relative volatility for their use. The new formulae gave very close ...

  7. The Impact of Gaia and LSST on Binaries and Exoplanets

    DEFF Research Database (Denmark)

    Eyer, L.; Dubath, P.; Mowlavi, N.

    2012-01-01

    Two upcoming large scale surveys, the ESA Gaia and LSST projects, will bring a new era in astronomy. The number of binary systems that will be observed and detected by these projects is enormous, estimations range from millions for Gaia to several tens of millions for LSST. We review some tools t...

  8. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    DEEPAK KUMAR

    datasets show that the proposed method works better than a neural network and the performance is close to that of a support vector machine. Keywords. Quadratic programming; particle swarm optimization; hyperplane; quadratic constraints; binary classification. 1. Introduction. A class of algorithms originated for minimizing ...

  9. Page composer to translate binary electrical data to optical form

    Science.gov (United States)

    Bailey, G. A.; Cosentino, L. S.

    1975-01-01

    Composer converts binary data to optical form for storage as hologram. Device consists of an array of deformable metal membranes controlled by MOSFET's. Device is fast, produces high contrast ratios, does not degrade with extended use, and can be addressed from diverse angles.

  10. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  11. Excess Molar Volumes and Partial Molar Volumes of Binary Systems ...

    African Journals Online (AJOL)

    Excess molar volumes have been evaluated from density measurements over the entire composition range for binary systems of an ionic liquid (IL) and an alcohol at T = (298.15, 303.15 and 313.15) K. The IL is 1-butyl-3-methylimidazolium methylsulphate [BMIM]+[MeSO4]– and the alcohols are methanol, ethanol or ...

  12. Composition dependent non-ideality in aqueous binary mixtures as ...

    Indian Academy of Sciences (India)

    Abstract. We explore the potential energy landscape of structure breaking binary mixtures (SBBM) where two constituents dislike each other, yet remain macroscopically homogeneous at intermediate to high temper- atures. Interestingly, we find that the origin of strong composition dependent non-ideal behaviour lies in its.

  13. Astrometric and photometric observations of nearby binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Kamper, K.W.

    1976-08-01

    Relative positions for 36 nearby binary stars, measured on plates obtained with the Lick 91-cm refractor, are presented. Photovisual magnitude differences for 27 of these are also given along with photoelectric measures for 14 pairs. A short discussion of the precision of photographic double-star measurements with the Lick Automatic Measuring Engine is also included.

  14. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves and ...

  15. Lightcurves from the Initial Discovery of Four Hungaria Binary Asteroids

    Science.gov (United States)

    Warner, Brian D.; Pravec, Petr; Kusnirak, Peter; Harris, Alan W.; Cooney, Walter R., Jr.; Gross, John; Terrell, Dirk; Nudds, Shannon; Vilagi, Josef; Gajdos, Stefan; Masi, Gianluca; Pray, Donald P.; Dyvig, Ron; Reddy, Vishnu

    2011-04-01

    Lightcurves from the initial discovery of four Hungaria binary asteroids are presented: 3309 Brorfeld, (5477) 1989 UH2, 9069 Hovland, and (76818) 2000 RG79. Announcements and some web postings were made at the time of the discoveries but the lightcurves were not formally published.

  16. Constructing Premaximal Binary Cube-free Words of Any Level

    Directory of Open Access Journals (Sweden)

    Elena A. Petrova

    2011-08-01

    Full Text Available We study the structure of the language of binary cube-free words. Namely, we are interested in the cube-free words that cannot be infinitely extended preserving cube-freeness. We show the existence of such words with arbitrarily long finite extensions, both to one side and to both sides.

  17. Multi-messenger Observations of a Binary Neutron Star Merger

    NARCIS (Netherlands)

    Scholten, Olaf; van den Berg, Adriaan

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A)

  18. Electromagnetic Luminosity of the Coalescence of Charged Black Hole Binaries

    CERN Document Server

    Liebling, Steven L

    2016-01-01

    The observation of a possible electromagnetic counterpart by the Fermi GBM group to the aLIGO detection of the merger of a black hole binary has spawned a number of ideas about its source. Furthermore, observations of fast radio bursts (FRBs) have similarly resulted in a range of new models that might endow black hole binaries with electromagnetic signatures. In this context, even the unlikely idea that astrophysical black holes may have significant charge is worth exploring, and here we present results from the simulation of weakly charged black holes as they orbit and merge. Our simulations suggest that a black hole binary with mass comparable to that observed in GW150914 could produce the level of electromagnetic luminosity observed by Fermi GBM ($10^{49}$ ergs/s) with a non-dimensional charge of $q \\equiv Q/M = 10^{-4}$ assuming good radiative efficiency. However even a charge such as this is difficult to imagine avoiding neutralization long enough for the binary to produce its electromagnetic counterpart...

  19. Validation of binary typing for Staphylococcus aureus strains

    NARCIS (Netherlands)

    N. van Leeuwen; M. Heck; A.F. van Belkum (Alex); H.A. Verbrugh (Henri); W.B. van Leeuwen (Willem); J. van der Velden (Jos)

    1999-01-01

    textabstractMost of the DNA-based methods for genetic typing of Staphylococcus aureus strains generate complex banding patterns. Therefore, we have developed a binary typing procedure involving strain-differentiating DNA probes which were generated on the basis of

  20. Construction and characterization of a partial binary bacterial ...

    African Journals Online (AJOL)

    Construction and characterization of a partial binary bacterial artificial chromosome (BIBAC) of Agave tequilana var. azul (2X) and its application for gene identification. ... Our results indicate that the obtained genomic library is suitable for the identification of sequences of interest, for genetic mapping and for studies of gene ...