WorldWideScience

Sample records for wmap science team

  1. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    Science.gov (United States)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  2. Foreground removal from WMAP 7 yr polarization maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik

    2012-01-01

    . As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analyzed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data...

  3. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources

    Science.gov (United States)

    Weiland, J. L.; Odegard, N.; Hill, R. S.; Wollack, E.; Hinshaw, G.; Greason, M. R.; Jarosik, N.; Page, L.; Bennett, C. L.; Dunkley, J.; Gold, B.; Halpern, M.; Kogut, A.; Komatsu, E.; Larson, D.; Limon, M.; Meyer, S. S.; Nolta, M. R.; Smith, K. M.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2011-02-01

    . Where appropriate, WMAP results are compared against previous findings in the literature. With an absolute calibration uncertainty of 0.2%, WMAP data are a valuable asset for calibration work. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  4. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions

    Science.gov (United States)

    Page, L.; Barnes, C.; Hinshaw, G.; Spergel, D. N.; Weiland, J. L.; Wollack, E.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.

    2003-09-01

    Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main-beam intensities have been mapped to the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the prelaunch expectations. The full width at half-maximum is a function of frequency and ranges from 0.82d at 23 GHz to 0.21d at 94 GHz; however, the beams are not Gaussian. We present (a) the beam patterns for all 10 differential radiometers, showing that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAP's compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point-source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter's temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1%-3% accuracy relative to the CMB dipole. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  5. Searching for non-Gaussianity in the WMAP data

    International Nuclear Information System (INIS)

    Bernui, A.; Reboucas, M. J.

    2009-01-01

    Some analyses of recent cosmic microwave background (CMB) data have provided hints that there are deviations from Gaussianity in the WMAP CMB temperature fluctuations. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to determine whether the reported non-Gaussianity is of cosmological origin, and/or extract further information that may be helpful for identifying its causes. We propose two new non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, which provide a measure of departure from Gaussianity on large angular scales. A distinctive feature of these indicators is that they provide sky maps of non-Gaussianity of the CMB temperature data, thus allowing a possible additional window into their origins. Using these indicators, we find no significant deviation from Gaussianity in the three and five-year WMAP Internal Linear Combination (ILC) map with KQ75 mask, while the ILC unmasked map exhibits deviation from Gaussianity, quantifying therefore the WMAP team recommendation to employ the new mask KQ75 for tests of Gaussianity. We also use our indicators to test for Gaussianity the single frequency foreground unremoved WMAP three and five-year maps, and show that the K and Ka maps exhibit a clear indication of deviation from Gaussianity even with the KQ75 mask. We show that our findings are robust with respect to the details of the method.

  6. CORRELATION ANALYSIS BETWEEN TIBET AS-γ TeV COSMIC RAY AND WMAP NINE-YEAR DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Qian-Qing; Zhang, Shuang-Nan, E-mail: zhangsn@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing 100049 (China)

    2015-08-01

    The WMAP team subtracted template-based foreground models to produce foreground-reduced maps, and masked point sources and uncertain sky regions directly; however, whether foreground residuals exist in the WMAP foreground-reduced maps is still an open question. Here, we use Pearson correlation coefficient analysis with AS-γ TeV cosmic ray (CR) data to probe possible foreground residuals in the WMAP nine-year data. The correlation results between the CR and foreground-contained maps (WMAP foreground-unreduced maps, WMAP template-based, and Maximum Entropy Method foreground models) suggest that: (1) CRs can trace foregrounds in the WMAP data; (2) at least some TeV CRs originate from the Milky Way; (3) foregrounds may be related to the existence of CR anisotropy (loss-cone and tail-in structures); (4) there exist differences among different types of foregrounds in the decl. range of <15°. Then, we generate 10,000 mock cosmic microwave background (CMB) sky maps to describe the cosmic variance, which is used to measure the effect of the fluctuations of all possible CMB maps to the correlations between CR and CMB maps. Finally, we do correlation analysis between the CR and WMAP foreground-reduced maps, and find that: (1) there are significant anticorrelations; and (2) the WMAP foreground-reduced maps are credible. However, the significant anticorrelations may be accidental, and the higher signal-to-noise ratio Planck SMICA map cannot reject the hypothesis of accidental correlations. We therefore can only conclude that the foreground residuals exist with ∼95% probability.

  7. BAYESIAN ANALYSIS OF WHITE NOISE LEVELS IN THE FIVE-YEAR WMAP DATA

    International Nuclear Information System (INIS)

    Groeneboom, N. E.; Eriksen, H. K.; Gorski, K.; Huey, G.; Jewell, J.; Wandelt, B.

    2009-01-01

    We develop a new Bayesian method for estimating white noise levels in CMB sky maps, and apply this algorithm to the five-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We assume that the amplitude of the noise rms is scaled by a constant value, α, relative to a pre-specified noise level. We then derive the corresponding conditional density, P(α | s, C l , d), which is subsequently integrated into a general CMB Gibbs sampler. We first verify our code by analyzing simulated data sets, and then apply the framework to the WMAP data. For the foreground-reduced five-year WMAP sky maps and the nominal noise levels initially provided in the five-year data release, we find that the posterior means typically range between α = 1.005 ± 0.001 and α = 1.010 ± 0.001 depending on differencing assembly, indicating that the noise level of these maps are biased low by 0.5%-1.0%. The same problem is not observed for the uncorrected WMAP sky maps. After the preprint version of this letter appeared on astro-ph., the WMAP team has corrected the values presented on their web page, noting that the initially provided values were in fact estimates from the three-year data release, not from the five-year estimates. However, internally in their five-year analysis the correct noise values were used, and no cosmological results are therefore compromised by this error. Thus, our method has already been demonstrated in practice to be both useful and accurate.

  8. Large-scale alignments from WMAP and Planck

    CERN Document Server

    Copi, Craig J.; Schwarz, Dominik J.; Starkman, Glenn D.

    2015-01-01

    We revisit the alignments of the largest structures observed in the cosmic microwave background (CMB) using the seven and nine-year WMAP and first-year Planck data releases. The observed alignments -- the quadrupole with the octopole and their joint alignment with the direction of our motion with respect to the CMB (the dipole direction) and the geometry of the Solar System (defined by the Ecliptic plane) -- are generally in good agreement with results from the previous WMAP data releases. However, a closer look at full-sky data on the largest scales reveals discrepancies between the earlier WMAP data releases (three to seven-year) and the final nine-year release. There are also discrepancies between all the WMAP data releases and the first-year Planck release. Nevertheless, both the WMAP and Planck data confirm the alignments of the largest observable CMB modes in the Universe. In particular, the p-values for the mutual alignment between the quadrupole and octopole, and the alignment of the plane defined by ...

  9. Confronting quasi-exponential inflation with WMAP seven

    International Nuclear Information System (INIS)

    Pal, Barun Kumar; Pal, Supratik; Basu, B.

    2012-01-01

    We confront quasi-exponential models of inflation with WMAP seven years dataset using Hamilton Jacobi formalism. With a phenomenological Hubble parameter, representing quasi exponential inflation, we develop the formalism and subject the analysis to confrontation with WMAP seven using the publicly available code CAMB. The observable parameters are found to fair extremely well with WMAP seven. We also obtain a ratio of tensor to scalar amplitudes which may be detectable in PLANCK

  10. WMAP five-year constraints on lepton asymmetry and radiation energy density: implications for Planck

    International Nuclear Information System (INIS)

    Popa, L A; Vasile, A

    2008-01-01

    In this paper we set bounds on the radiation content of the Universe and neutrino properties by using the WMAP (Wilkinson microwave anisotropy probe) five-year CMB (cosmic microwave background) measurements complemented with most of the existing CMB and LSS (large scale structure) data (WMAP5+All), imposing also self-consistent BBN (big bang nucleosynthesis) constraints on the primordial helium abundance. We consider lepton asymmetric cosmological models parametrized by the neutrino degeneracy parameter ξ ν and the variation of the relativistic degrees of freedom, ΔN eff oth , due to possible other physical processes occurring between BBN and structure formation epochs. We get a mean value of the effective number of relativistic neutrino species of N eff = 2.98  2.27 3.60   1.65 4.37 , providing an important improvement over the similar result obtained from WMAP5+BAO+SN+HST (BAO: baryonic acoustic oscillations; SN: supernovae; HST: Hubble Space Telescope) data (Komatsu et al (WMAP Collaboration), 2008 Astrophys. J. Suppl. submitted [0803.0547]). We also find a strong correlation between Ω m h 2 and z eq , showing that we observe N eff mainly via the effect of z eq , rather than via neutrino anisotropic stress as claimed by the WMAP team (Komatsu et al (WMAP Collaboration), 2008 Astrophys. J. Suppl. submitted [0803.0547]). WMAP5+All data provide a strong bound on the helium mass fraction of Y p = 0.2486 ± 0.0085 (68% CL), that rivals the bound on Y p obtained from the conservative analysis of the present data on helium abundance. For the neutrino degeneracy parameter we find a bound of −0.216≤ξ ν ≤0.226 (68% CL), which represents an important improvement over the similar result obtained by using the WMAP three-year data. The inclusion in the analysis of LSS data reduces the upper limit of the neutrino mass to m ν ν and Y p down to σ(ξ ν )≅0.089 (68% CL) and σ(Y p ) = 0.013 (68% CL) respectively, values fully consistent with the BBN bounds on

  11. Improving Care Teams' Functioning: Recommendations from Team Science.

    Science.gov (United States)

    Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo

    2017-07-01

    Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  12. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    Science.gov (United States)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six

  13. Building the team for team science

    Science.gov (United States)

    Read, Emily K.; O'Rourke, M.; Hong, G. S.; Hanson, P. C.; Winslow, Luke A.; Crowley, S.; Brewer, C. A.; Weathers, K. C.

    2016-01-01

    The ability to effectively exchange information and develop trusting, collaborative relationships across disciplinary boundaries is essential for 21st century scientists charged with solving complex and large-scale societal and environmental challenges, yet these communication skills are rarely taught. Here, we describe an adaptable training program designed to increase the capacity of scientists to engage in information exchange and relationship development in team science settings. A pilot of the program, developed by a leader in ecological network science, the Global Lake Ecological Observatory Network (GLEON), indicates that the training program resulted in improvement in early career scientists’ confidence in team-based network science collaborations within and outside of the program. Fellows in the program navigated human-network challenges, expanded communication skills, and improved their ability to build professional relationships, all in the context of producing collaborative scientific outcomes. Here, we describe the rationale for key communication training elements and provide evidence that such training is effective in building essential team science skills.

  14. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. L.; Larson, D.; Weiland, J. L. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Jarosik, N.; Page, L. [Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708 (United States); Hinshaw, G.; Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Odegard, N.; Hill, R. S. [ADNET Systems, Inc., 7515 Mission Drive, Suite A100, Lanham, MD 20706 (United States); Smith, K. M. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Gold, B. [School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Komatsu, E. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, D-85741 Garching (Germany); Nolta, M. R. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada); Spergel, D. N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States); Wollack, E.; Kogut, A. [Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Dunkley, J. [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Limon, M. [Columbia Astrophysics Laboratory, 550 West 120th Street, Mail Code 5247, New York, NY 10027-6902 (United States); Meyer, S. S. [Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637 (United States); Tucker, G. S., E-mail: cbennett@jhu.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912-1843 (United States); and others

    2013-10-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C {sup –1} weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N {sub eff} = 3.84 ± 0.40). The model fit also implies that the age of the universe is t {sub 0} = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H {sub 0} = 69.32 ± 0.80 km s{sup –1} Mpc{sup –1}. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n{sub s} = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω{sub k} = -0.0027{sup +0.0039}{sub -0.0038}). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor

  15. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    International Nuclear Information System (INIS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jarosik, N.; Page, L.; Hinshaw, G.; Halpern, M.; Odegard, N.; Hill, R. S.; Smith, K. M.; Gold, B.; Komatsu, E.; Nolta, M. R.; Spergel, D. N.; Wollack, E.; Kogut, A.; Dunkley, J.; Limon, M.; Meyer, S. S.; Tucker, G. S.

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C –1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N eff = 3.84 ± 0.40). The model fit also implies that the age of the universe is t 0 = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H 0 = 69.32 ± 0.80 km s –1 Mpc –1 . Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n s = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω k = -0.0027 +0.0039 -0.0038 ). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ΛCDM model

  16. Cosmic microwave background snapshots: pre-WMAP and post-WMAP.

    Science.gov (United States)

    Bond, J Richard; Contaldi, Carlo; Pogosyan, Dmitry

    2003-11-15

    We highlight the remarkable evolution in the cosmic microwave background (CMB) power spectrum C(l) as a function of multipole l over the past few years, and in the cosmological parameters for minimal inflation models derived from it: from anisotropy results before 2000; in 2000 and 2001 from Boomerang, Maxima and the Degree Angular Scale Interferometer (DASI), extending l to approximately 1000; and in 2002 from the Cosmic Background Imager (CBI), Very Small Array (VSA), ARCHEOPS and Arcminute Cosmology Bolometer Array Receiver (ACBAR), extending l to approximately 3000, with more from Boomerang and DASI as well. Pre-WMAP (pre-Wilkinson Microwave Anisotropy Probe) optimal band powers are in good agreement with each other and with the exquisite one-year WMAP results, unveiled in February 2003, which now dominate the l less, similar 600 bands. These CMB experiments significantly increased the case for accelerated expansion in the early Universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with "prior" probabilities on the parameters. The minimal inflation parameter set, [omega(b), omega(cdm), Omega(tot), Omega(Lambda), n(s), tau(C), sigma(8)], is applied in the same way to the evolving data. C(l) database and Monte Carlo Markov Chain (MCMC) methods are shown to give similar values, which are highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated "parameter eigenmodes". Priors applied range from weak ones to stronger constraints from the expansion rate (HST-h), from cosmic acceleration from supernovae (SN1) and from galaxy clustering, gravitational lensing and local cluster abundance (LSS). After marginalizing over the other cosmic and experimental variables for the weak + LSS prior, the pre-WMAP data of January 2003 compared with the post-WMAP data of March 2003 give Omega(tot) = 1.03(-0.04)(+0.05) compared with 1

  17. Science and Team Development

    Directory of Open Access Journals (Sweden)

    Bryan R. Cole

    2006-07-01

    Full Text Available This paper explores a new idea about the future development of science and teams, and predicts its possible applications in science, education, workforce development and research. The inter-relatedness of science and teamwork developments suggests a growing importance of team facilitators’ quality, as well as the criticality of detailed studies of teamwork processes and team consortiums to address the increasing complexity of exponential knowledge growth and work interdependency. In the future, it will become much easier to produce a highly specialised workforce, such as brain surgeons or genome engineers, than to identify, educate and develop individuals capable of the delicate and complex work of multi-team facilitation. Such individuals will become the new scientists of the millennium, having extraordinary knowledge in variety of scientific fields, unusual mix of abilities, possessing highly developed interpersonal and teamwork skills, and visionary ideas in illuminating bold strategies for new scientific discoveries. The new scientists of the millennium, through team consortium facilitation, will be able to build bridges between the multitude of diverse and extremely specialised knowledge and interdependent functions to improve systems for the further benefit of mankind.

  18. WMAP constraints on k-inflation

    International Nuclear Information System (INIS)

    Devi, N. Chandrachani; Sen, Anjan A.; Nautiyal, Akhilesh

    2011-01-01

    We study the k-inflation models where the inflaton field has a noncanonical kinetic term. In particular, we consider the Dirac-Born-Infeld (DBI) form for the kinetic energy of the inflaton field. We consider quadratic and quartic potentials as well as the potential for the natural inflation. We use a modified version of MODECODE[M. J. Mortonson, H. V. Peiris, and R. Easther, Phys. Rev. D 83, 043505 (2011).] to calculate the power spectrum of the primordial perturbations generated by the inflaton field and subsequently use the WMAP7 results to constrain the models. Interestingly, with the DBI type kinetic term, less gravity waves are produced as one approaches scale invariance. This is true for all the potentials considered. Unlike the canonical case, this feature, in particular, helps the quartic (λφ 4 ) potential with the DBI type kinetic term to be consistent with the WMAP data.

  19. Team Science, Justice, and the Co-Production of Knowledge.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2018-06-08

    Science increasingly consists of interdisciplinary team-based research to address complex social, biomedical, public health, and global challenges through a practice known as team science. In this article, I discuss the added value of team science, including participatory team science, for generating scientific knowledge. Participatory team science involves the inclusion of public stakeholders on science teams as co-producers of knowledge. I also discuss how constructivism offers a common philosophical foundation for both community psychology and team science, and how this foundation aligns well with contemporary developments in science that emphasize the co-production of knowledge. I conclude with a discussion of how the co-production of knowledge in team science can promote justice. © Society for Community Research and Action 2018.

  20. Advancing the Science of Team Science

    Science.gov (United States)

    Falk‐Krzesinski, Holly J.; Börner, Katy; Contractor, Noshir; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2010-01-01

    Abstract The First Annual International Science of Team Science (SciTS) Conference was held in Chicago, IL April 22–24, 2010. This article presents a summary of the Conference proceedings. Clin Trans Sci 2010; Volume 3: 263–266. PMID:20973925

  1. Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters

    International Nuclear Information System (INIS)

    Huffenberger, Kevin M.; Seljak, Uros; Makarov, Alexey

    2004-01-01

    We use multifrequency information in first year Wilkinson microwave anisotropy probe (WMAP) data to search for the Sunyaev-Zeldovich (SZ) effect. WMAP has sufficiently broad frequency coverage to constrain the SZ effect without the addition of higher frequency data: the SZ power spectrum amplitude is expected to increase 50% from W to Q frequency band. This, in combination with the low noise in WMAP, allows us to strongly constrain the SZ contribution. We derive an optimal frequency combination of WMAP cross-spectra to extract the SZ effect in the presence of noise, cosmic microwave background (CMB), and radio point sources, which are marginalized over. We find that the SZ contribution is less than 2% (95% C.L.) at the first acoustic peak in W band. Under the assumption that the removed radio point sources are not correlated with the SZ effect this limit implies σ 8 <1.07 at 95% C.L. We investigate the effect on the cosmological parameters of allowing an SZ component. We run Monte Carlo Markov chains with and without an SZ component and find that the addition of the SZ effect does not affect any of the cosmological conclusions. We conclude that the SZ effect does not contaminate the WMAP CMB or change cosmological parameters, refuting the recent claims that they may be corrupted

  2. Bringing the Science of Team Training to School-Based Teams

    Science.gov (United States)

    Benishek, Lauren E.; Gregory, Megan E.; Hodges, Karin; Newell, Markeda; Hughes, Ashley M.; Marlow, Shannon; Lacerenza, Christina; Rosenfield, Sylvia; Salas, Eduardo

    2016-01-01

    Teams are ubiquitous in schools in the 21st Century; yet training for effective teaming within these settings has lagged behind. The authors of this article developed 5 modules, grounded in the science of team training and adapted from an evidence-based curriculum used in medical settings called TeamSTEPPS®, to prepare instructional and…

  3. A LAST LOOK AT THE MICROWAVE HAZE/BUBBLES WITH WMAP

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Gregory, E-mail: dobler@kitp.ucsb.edu [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States)

    2012-05-01

    The microwave 'haze' was first discovered with the initial release of the full sky data from the Wilkinson Microwave Anisotropy Probe (WMAP). It is diffuse emission toward the center of our Galaxy with spectral behavior that makes it difficult to categorize as any of the previously known emission mechanisms at those wavelengths. With now seven years of WMAP data publicly available, we have learned much about the nature of the haze, and with the release of data from the Fermi Gamma-Ray Space Telescope and the discovery of the gamma-ray haze/bubbles, we have had a spectacular confirmation of its existence at other wavelengths. As the WMAP mission winds down and the Planck mission prepares to release data, I take a last look at what WMAP has to tell us about the origin of this unique Galactic feature. Much like the gamma rays, the microwave haze/bubbles is/are elongated in latitude with respect to longitude by a factor of roughly two, and at high latitudes, the microwave emission cuts off sharply above {approx}35 Degree-Sign (compared to {approx}50 Degree-Sign in the gammas). The hard spectrum of electrons required to generate the microwave synchrotron is consistent with that required to generate gamma-ray emission via inverse Compton scattering, though it is likely that these signals result from distinct regions of the spectrum ({approx}10 GeV for the microwaves and {approx}1 TeV for the gammas). While there is no evidence for significant haze polarization in the seven-year WMAP data, I demonstrate explicitly that it is unlikely such a signal would be detectable above the noise.

  4. Natural inflation: Status after WMAP 3-year data

    International Nuclear Information System (INIS)

    Savage, Christopher; Freese, Katherine; Kinney, William H.

    2006-01-01

    The model of natural inflation is examined in light of recent 3-year data from the Wilkinson Microwave Anisotropy Probe and shown to provide a good fit. The inflaton potential is naturally flat due to shift symmetries, and in the simplest version takes the form V(φ)=Λ 4 [1±cos(Nφ/f)]. The model agrees with WMAP3 measurements as long as f>0.7m Pl (where m Pl =1.22x10 19 GeV) and Λ∼m GUT . The running of the scalar spectral index is shown to be small--an order of magnitude below the sensitivity of WMAP3. The location of the field in the potential when perturbations on observable scales are produced is examined; for f>5m Pl , the relevant part of the potential is indistinguishable from a quadratic, yet has the advantage that the required flatness is well-motivated. Depending on the value of f, the model falls into the large field (f≥1.5m Pl ) or small field (f Pl ) classification scheme that has been applied to inflation models. Natural inflation provides a good fit to WMAP3 data

  5. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS

    International Nuclear Information System (INIS)

    Hinshaw, G.; Halpern, M.; Larson, D.; Bennett, C. L.; Weiland, J. L.; Komatsu, E.; Spergel, D. N.; Dunkley, J.; Nolta, M. R.; Hill, R. S.; Odegard, N.; Page, L.; Jarosik, N.; Smith, K. M.; Gold, B.; Kogut, A.; Wollack, E.; Limon, M.; Meyer, S. S.; Tucker, G. S.

    2013-01-01

    We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter ΛCDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities, Ω b h 2 , Ω c h 2 , and Ω Λ , are each determined to a precision of ∼1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5σ level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional ΛCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their ΛCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r k = -0.0027 +0.0039 -0.0038 ; the summed mass of neutrinos is limited to Σm ν eff = 3.84 ± 0.40, when the full data are analyzed. The joint constraint on N eff and the primordial helium abundance, Y He , agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe

  6. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES

    International Nuclear Information System (INIS)

    Weiland, J. L.; Odegard, N.; Hill, R. S.; Greason, M. R.; Wollack, E.; Hinshaw, G.; Kogut, A.; Jarosik, N.; Page, L.; Bennett, C. L.; Gold, B.; Larson, D.; Dunkley, J.; Halpern, M.; Komatsu, E.; Limon, M.; Meyer, S. S.; Nolta, M. R.; Smith, K. M.; Spergel, D. N.

    2011-01-01

    We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23-94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus, and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274, and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1σ of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase (0.2% ± 0.4%), and limits (but no detections) on linear polarization. Observed temperatures for both Mars and Saturn vary significantly with viewing geometry. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 μm, reproduce WMAP seasonally averaged observations of Mars within ∼2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61, and 94 GHz bands; the smallest uncertainty for Neptune is 8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at ∼30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps and are tabulated for Stokes I, Q, and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency-independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A. We present WMAP polarization data with uncertainties of a few percent for Tau

  7. WMAP haze: Directly observing dark matter?

    International Nuclear Information System (INIS)

    Forbes, Michael McNeil; Zhitnitsky, Ariel R.

    2008-01-01

    In this paper, we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 13 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 11 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with - and could entirely explain - the so-called 'WMAP haze': a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (WMAP). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.

  8. Cosmological parameters from SDSS and WMAP

    International Nuclear Information System (INIS)

    Tegmark, Max; Strauss, Michael A.; Bahcall, Neta A.; Schlegel, David; Finkbeiner, Douglas; Gunn, James E.; Ostriker, Jeremiah P.; Seljak, Uros; Ivezic, Zeljko; Knapp, Gillian R.; Lupton, Robert H.; Blanton, Michael R.; Scoccimarro, Roman; Hogg, David W.; Abazajian, Kevork; Xu Yongzhong; Dodelson, Scott; Sandvik, Havard; Wang Xiaomin; Jain, Bhuvnesh

    2004-01-01

    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200 000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with Wilkinson Microwave Anisotropy Probe (WMAP) and other data. Our results are consistent with a 'vanilla' flat adiabatic cold dark matter model with a cosmological constant without tilt (n s =1), running tilt, tensor modes, or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble parameter from h≅0.74 -0.07 +0.18 to h≅0.70 -0.03 +0.04 , on the matter density from Ω m ≅0.25±0.10 to Ω m ≅0.30±0.04 (1σ) and on neutrino masses from 0 ≅16.3 -1.8 +2.3 Gyr to t 0 ≅14.1 -0.9 +1.0 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened

  9. Developing your Career in an Age of Team-Science

    Science.gov (United States)

    Zucker, Deborah

    2013-01-01

    Academic institutions and researchers are becoming increasingly involved in translational research to spur innovation in addressing many complex biomedical and societal problems, and in response to the focus of the NIH and other funders. One approach to translational research is to development interdisciplinary research teams. By bringing together collaborators with diverse research backgrounds and perspectives, these teams seek to blend their science and the workings of the scientists to push beyond the limits of current research. While team-science promises individual and team benefits in creating and implementing innovations, its increased complexity poses challenges. In particular, since academic career advancement commonly focuses on individual achievement, team-science might differentially impact early stage researchers. This need to be recognized for individual accomplishments in order to move forward in an academic career may give rise to research-team conflicts. Raising awareness to career-related aspects of team science will help individuals (particularly trainees and junior faculty) take steps to align their excitement and participation with the success of both the team and their personal career advancement. PMID:22525235

  10. A quantitative perspective on ethics in large team science.

    Science.gov (United States)

    Petersen, Alexander M; Pavlidis, Ioannis; Semendeferi, Ioanna

    2014-12-01

    The gradual crowding out of singleton and small team science by large team endeavors is challenging key features of research culture. It is therefore important for the future of scientific practice to reflect upon the individual scientist's ethical responsibilities within teams. To facilitate this reflection we show labor force trends in the US revealing a skewed growth in academic ranks and increased levels of competition for promotion within the system; we analyze teaming trends across disciplines and national borders demonstrating why it is becoming difficult to distribute credit and to avoid conflicts of interest; and we use more than a century of Nobel prize data to show how science is outgrowing its old institutions of singleton awards. Of particular concern within the large team environment is the weakening of the mentor-mentee relation, which undermines the cultivation of virtue ethics across scientific generations. These trends and emerging organizational complexities call for a universal set of behavioral norms that transcend team heterogeneity and hierarchy. To this end, our expository analysis provides a survey of ethical issues in team settings to inform science ethics education and science policy.

  11. Measuring the cosmological background of relativistic particles with WMAP

    CERN Document Server

    Crotty, P; Pastor, S; Crotty, Patrick; Lesgourgues, Julien; Pastor, Sergio

    2003-01-01

    We show that the first year results of the Wilkinson Microwave Anisotropy Probe (WMAP) constrain very efficiently the energy density in relativistic particles in the universe. We derive new bounds on additional relativistic degrees of freedom expressed in terms of an excess in the effective number of light neutrinos Delta N_eff. Within the flat LambdaCDM scenario, the allowed range is Delta N_eff < 6 (95% CL) using WMAP data only, or -2.6 < Delta N_eff < 4 with the prior H_0= 72 \\pm 8 km/s/Mpc. When other cosmic microwave background and large scale structure experiments are taken into account, the window shrinks to -1.5 < Delta N_eff < 4.2. These results are in perfect agreement with the bounds from primordial nucleosynthesis. Non-minimal cosmological models with extra relativistic degrees of freedom are now severely restricted.

  12. Collaboration and Team Science Field Guide - Center for Research Strategy

    Science.gov (United States)

    Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.

  13. WMAP constraints on inflationary models with global defects

    International Nuclear Information System (INIS)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin

    2004-01-01

    We use the cosmic microwave background angular power spectra to place upper limits on the degree to which global defects may have aided cosmic structure formation. We explore this under the inflationary paradigm, but with the addition of textures resulting from the breaking of a global O(4) symmetry during the early stages of the Universe. As a measure of their contribution, we use the fraction of the temperature power spectrum that is attributed to the defects at a multipole of 10. However, we find a parameter degeneracy enabling a fit to the first-year WMAP data to be made even with a significant defect fraction. This degeneracy involves the baryon fraction and the Hubble constant, plus the normalization and tilt of the primordial power spectrum. Hence, constraints on these cosmological parameters are weakened. Combining the WMAP data with a constraint on the physical baryon fraction from big bang nucleosynthesis calculations and high-redshift deuterium abundance limits the extent of the degeneracy and gives an upper bound on the defect fraction of 0.13 (95% confidence)

  14. Strategies for effective collaborative manuscript development in interdisciplinary science teams

    Science.gov (United States)

    Oliver, Samantha K.; Fergus, C. Emi; Skaff, Nicholas K.; Wagner, Tyler; Tan, Pang-Ning; Cheruvelil, Kendra Spence; Soranno, Patricia A.

    2018-01-01

    Science is increasingly being conducted in large, interdisciplinary teams. As team size increases, challenges can arise during manuscript development, where achieving one team goal (e.g., inclusivity) may be in direct conflict with other goals (e.g., efficiency). Here, we present strategies for effective collaborative manuscript development that draw from our experiences in an interdisciplinary science team writing collaborative manuscripts for six years. These strategies are rooted in six guiding principles that were important to our team: to create a transparent, inclusive, and accountable research team that promotes and protects team members who have less power to influence decision‐making while fostering creativity and productivity. To help alleviate the conflicts that can arise in collaborative manuscript development, we present the following strategies: understand your team composition, create an authorship policy and discuss authorship early and often, openly announce manuscript ideas, identify and communicate the type of manuscript and lead author management style, and document and describe authorship contributions. These strategies can help reduce the probability of group conflict, uphold individual and team values, achieve fair authorship practices, and increase science productivity.

  15. Model independent foreground power spectrum estimation using WMAP 5-year data

    International Nuclear Information System (INIS)

    Ghosh, Tuhin; Souradeep, Tarun; Saha, Rajib; Jain, Pankaj

    2009-01-01

    In this paper, we propose and implement on WMAP 5 yr data a model independent approach of foreground power spectrum estimation for multifrequency observations of the CMB experiments. Recently, a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that the CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 yr maps following a self-contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behavior of synchrotron spectral index variation over different regions of the sky. We use the full sky Haslam map as an external template to increase the degrees of freedom, while computing the synchrotron spectral index over the frequency range from 408 MHz to 94 GHz. We compare our results with those obtained from maximum entropy method foreground maps, which are formed in pixel space. We find that relative to our model independent estimates maximum entropy method maps overestimate the foreground power close to galactic plane and underestimates it at high latitudes.

  16. PROBING THE DARK FLOW SIGNAL IN WMAP 9 -YEAR AND PLANCK COSMIC MICROWAVE BACKGROUND MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Atrio-Barandela, F. [Física Teórica, Universidad de Salamanca, E-37008 Salamanca (Spain); Kashlinsky, A. [NASA Goddard Space Flight Center and SSAI, Observational Cosmology Lab, Greenbelt, MD 20771 (United States); Ebeling, H. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Fixsen, D. J. [NASA Goddard Space Flight Center and UMCP, Observational Cosmology Lab, Greenbelt, MD 20771 (United States); Kocevski, D., E-mail: atrio@usal.es, E-mail: Alexander.Kashlinsky@nasa.gov, E-mail: ebeling@ifa.hawaii.edu, E-mail: Dale.Fixsen@nasa.gov, E-mail: dale.kocevski@colby.edu [Physics and Astronomy, 5800 Mayflower Hill, Waterville, ME 04901 (United States)

    2015-09-10

    The “dark flow” dipole is a statistically significant dipole found at the position of galaxy clusters in filtered maps of Cosmic Microwave Background (CMB) temperature anisotropies. The dipole measured in WMAP 3-, 5-, and 7- year data releases was (1) mutually consistent, (2) roughly aligned with the all-sky CMB dipole, and (3) correlated with clusters’ X-ray luminosities. We analyzed WMAP 9 -year and Planck 1st- year data releases using a catalog of 980 clusters outside of the Kp0 mask to test our earlier findings. The dipoles measured on these new data sets are fully compatible with our earlier estimates, are similar in amplitude and direction to our previous results, and are in disagreement with the results of an earlier study by the Planck Collaboration. Furthermore, in the Planck data sets dipoles are found to be independent of frequency, ruling out the thermal Sunyaev–Zeldovich as the source of the effect. In the data of both WMAP and Planck we find a clear correlation between the dipole measured at the cluster location in filtered maps and the average anisotropy on the original maps, further proving that the dipole is associated with clusters. The dipole signal is dominated by the most massive clusters, with a statistical significance that is better than 99%, slightly larger than in WMAP. Since both data sets differ in foreground contributions, instrumental noise, and other systematics, the agreement between the WMAP and Planck dipoles argues against them being due to systematic effects in either of the experiments.

  17. Pioneering the Transdisciplinary Team Science Approach: Lessons Learned from National Cancer Institute Grantees.

    Science.gov (United States)

    Vogel, Amanda L; Stipelman, Brooke A; Hall, Kara L; Nebeling, Linda; Stokols, Daniel; Spruijt-Metz, Donna

    2014-01-01

    The National Cancer Institute has been a leader in supporting transdisciplinary (TD) team science. From 2005-2010, the NCI supported Transdisciplinary Research on Energetic and Cancer I (TREC I), a center initiative fostering the TD integration of social, behavioral, and biological sciences to examine the relationships among obesity, nutrition, physical activity and cancer. In the final year of TREC I, we conducted qualitative in-depth-interviews with 31 participating investigators and trainees to learn more about their experiences with TD team science, including challenges, facilitating factors, strategies for success, and impacts. Five main challenges emerged: (1) limited published guidance for how to engage in TD team science, when TREC I was implemented; (2) conceptual and scientific challenges inherent to efforts to achieve TD integration; (3) discipline-based differences in values, terminology, methods, and work styles; (4) project management challenges involved in TD team science; and (5) traditional incentive and reward systems that do not recognize or reward TD team science. Four main facilitating factors and strategies for success emerged: (1) beneficial attitudes and beliefs about TD research and team science; (2) effective team processes; (3) brokering and bridge-building activities by individuals holding particular roles in a research center; and (4) funding initiative characteristics that support TD team science. Broad impacts of participating in TD team science in the context of TREC I included: (1) new positive attitudes about TD research and team science; (2) new boundary-crossing collaborations; (3) scientific advances related to research approaches, findings, and dissemination; (4) institutional culture change and resource creation in support of TD team science; and (5) career advancement. Funding agencies, academic institutions, and scholarly journals can help to foster TD team science through funding opportunities, institutional policies on

  18. 2017 Landsat Science Team Summer Meeting Summary

    Science.gov (United States)

    Crawford, Christopher J.; Loveland, Thomas R.; Wulder, Michael A.; Irons, James R.

    2018-01-01

    The summer meeting of the U.S. Geological Survey (USGS)-NASA Landsat Science Team (LST) was held June 11-13, 2017, at the USGS’s Earth Resources Observation and Science (EROS) Center near Sioux Falls, SD. This was the final meeting of the Second (2012-2017) LST.1 Frank Kelly [EROS—Center Director] welcomed the attendees and expressed his thanks to the LST members for their contributions. He then introduced video-recorded messages from South Dakota’s U.S. senators, John Thune and Mike Rounds, in which they acknowledged the efforts of the team in advancing the societal impacts of the Landsat Program.

  19. The running-mass inflation model and WMAP

    OpenAIRE

    Covi, Laura; Lyth, David H.; Melchiorri, Alessandro; Odman, Carolina J.

    2004-01-01

    We consider the observational constraints on the running-mass inflationary model, and in particular on the scale-dependence of the spectral index, from the new Cosmic Microwave Background (CMB) anisotropy measurements performed by WMAP and from new clustering data from the SLOAN survey. We find that the data strongly constraints a significant positive scale-dependence of $n$, and we translate the analysis into bounds on the physical parameters of the inflaton potential. Looking deeper into sp...

  20. Team Mentoring for Interdisciplinary Team Science: Lessons From K12 Scholars and Directors.

    Science.gov (United States)

    Guise, Jeanne-Marie; Geller, Stacie; Regensteiner, Judith G; Raymond, Nancy; Nagel, Joan

    2017-02-01

    Mentoring is critical for academic success. As science transitions to a team science model, team mentoring may have advantages. The goal of this study was to understand the process, benefits, and challenges of team mentoring relating to career development and research. A national survey was conducted of Building Interdisciplinary Research Careers in Women's Health (BIRCWH) program directors-current and former scholars from 27 active National Institutes of Health (NIH)-funded BIRCWH NIH K12 programs-to characterize and understand the value and challenges of the team approach to mentoring. Quantitative data were analyzed descriptively, and qualitative data were analyzed thematically. Responses were received from 25/27 (93%) program directors, 78/108 (72%) current scholars, and 91/162 (56%) former scholars. Scholars reported that team mentoring was beneficial to their career development (152/169; 90%) and research (148/169; 88%). Reported advantages included a diversity of opinions, expanded networking, development of stronger study designs, and modeling of different career paths. Challenges included scheduling and managing conflicting opinions. Advice by directors offered to junior faculty entering team mentoring included the following: not to be intimidated by senior mentors, be willing to navigate conflicting advice, be proactive about scheduling and guiding discussions, have an open mind to different approaches, be explicit about expectations and mentors' roles (including importance of having a primary mentor to help navigate discussions), and meet in person as a team. These findings suggest that interdisciplinary/interprofessional team mentoring has many important advantages, but that skills are required to optimally utilize multiple perspectives.

  1. Mildly mixed coupled models vs. WMAP7 data

    International Nuclear Information System (INIS)

    La Vacca, Giuseppe; Bonometto, Silvio A.

    2011-01-01

    Mildly mixed coupled models include massive ν's and CDM-DE coupling. We present new tests of their likelihood vs. recent data including WMAP7, confirming it to exceed ΛCDM, although at ∼2--σ's. We then show the impact on the physics of the dark components of ν-mass detection in 3 H β-decay or 0νββ-decay experiments.

  2. Dark matter implications of the WMAP-Planck Haze

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, Andrey E.; Pierpaoli, Elena [University of Southern California, 3620 McClintock Ave., SGM 408, Los Angeles, CA 90089 (United States); Gaskins, Jennifer M. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Pietrobon, Davide, E-mail: egorov@usc.edu, E-mail: jgaskins@uva.nl, E-mail: pierpaol@usc.edu, E-mail: daddeptr@gmail.com [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Rd, Berkeley CA 94720 (United States)

    2016-03-01

    Gamma rays and microwave observations of the Galactic Center and surrounding areas indicate the presence of anomalous emission, whose origin remains ambiguous. The possibility of dark matter annihilation explaining both signals through prompt emission at gamma rays and secondary emission at microwave frequencies from interactions of high-energy electrons produced in annihilation with the Galactic magnetic fields has attracted much interest in recent years. We investigate the dark matter interpretation of the Galactic Center gamma-ray excess by searching for the associated synchrotron emission in the WMAP and Planck microwave data. Considering various magnetic field and cosmic-ray propagation models, we predict the synchrotron emission due to dark matter annihilation in our Galaxy, and compare it with the WMAP and Planck data at 23–70 GHz. In addition to standard microwave foregrounds, we separately model the microwave counterpart to the Fermi Bubbles and the signal due to dark matter annihilation, and use component separation techniques to extract the signal associated with each template from the total emission. We confirm the presence of the Haze at the level of ≈7% of the total sky intensity at 23 GHz in our chosen region of interest, with a harder spectrum (I ∼ ν{sup −0.8}) than the synchrotron from regular cosmic-ray electrons. The data do not show a strong preference towards fitting the Haze by either the Bubbles or dark matter emission only. Inclusion of both components provides a better fit with a dark matter contribution to the Haze emission of ≈20% at 23 GHz, however, due to significant uncertainties in foreground modeling, we do not consider this a clear detection of a dark matter signal. We set robust upper limits on the annihilation cross section by ignoring foregrounds, and also report best-fit dark matter annihilation parameters obtained from a complete template analysis. We conclude that the WMAP and Planck data are consistent with a

  3. Dark matter implications of the WMAP-Planck Haze

    International Nuclear Information System (INIS)

    Egorov, Andrey E.; Pierpaoli, Elena; Gaskins, Jennifer M.; Pietrobon, Davide

    2016-01-01

    Gamma rays and microwave observations of the Galactic Center and surrounding areas indicate the presence of anomalous emission, whose origin remains ambiguous. The possibility of dark matter annihilation explaining both signals through prompt emission at gamma rays and secondary emission at microwave frequencies from interactions of high-energy electrons produced in annihilation with the Galactic magnetic fields has attracted much interest in recent years. We investigate the dark matter interpretation of the Galactic Center gamma-ray excess by searching for the associated synchrotron emission in the WMAP and Planck microwave data. Considering various magnetic field and cosmic-ray propagation models, we predict the synchrotron emission due to dark matter annihilation in our Galaxy, and compare it with the WMAP and Planck data at 23–70 GHz. In addition to standard microwave foregrounds, we separately model the microwave counterpart to the Fermi Bubbles and the signal due to dark matter annihilation, and use component separation techniques to extract the signal associated with each template from the total emission. We confirm the presence of the Haze at the level of ≈7% of the total sky intensity at 23 GHz in our chosen region of interest, with a harder spectrum (I ∼ ν −0.8 ) than the synchrotron from regular cosmic-ray electrons. The data do not show a strong preference towards fitting the Haze by either the Bubbles or dark matter emission only. Inclusion of both components provides a better fit with a dark matter contribution to the Haze emission of ≈20% at 23 GHz, however, due to significant uncertainties in foreground modeling, we do not consider this a clear detection of a dark matter signal. We set robust upper limits on the annihilation cross section by ignoring foregrounds, and also report best-fit dark matter annihilation parameters obtained from a complete template analysis. We conclude that the WMAP and Planck data are consistent with a dark

  4. Landsat Science Team meeting: Winter 2015

    Science.gov (United States)

    Schroeder, Todd A.; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2015-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)–NASA Landsat Science Team (LST) was held at the USGS’s Earth Resources Observation and Science (EROS) Center July 7-9, 2015, in Sioux Falls, SD. The LST co-chairs, Tom Loveland [EROS—Senior Scientist] and Jim Irons [NASA’s Goddard Space Flight Center (GSFC)—Landsat 8 Project Scientist], opened the three-day meeting on an upbeat note following the recent successful launch of the European Space Agency’s Sentinel-2 mission on June 23, 2015 (see image on page 14), and the news that work on Landsat 9 has begun, with a projected launch date of 2023.With over 60 participants in attendance, this was the largest LST meeting ever held. Meeting topics on the first day included Sustainable Land Imaging and Landsat 9 development, Landsat 7 and 8 operations and data archiving, the Landsat 8 Thermal Infrared Sensor (TIRS) stray-light issue, and the successful Sentinel-2 launch. In addition, on days two and three the LST members presented updates on their Landsat science and applications research. All presentations are available at landsat.usgs.gov/science_LST_Team_ Meetings.php.

  5. Running-mass inflation model and WMAP

    International Nuclear Information System (INIS)

    Covi, Laura; Lyth, David H.; Melchiorri, Alessandro; Odman, Carolina J.

    2004-01-01

    We consider the observational constraints on the running-mass inflationary model, and, in particular, on the scale dependence of the spectral index, from the new cosmic microwave background (CMB) anisotropy measurements performed by WMAP and from new clustering data from the SLOAN survey. We find that the data strongly constraints a significant positive scale dependence of n, and we translate the analysis into bounds on the physical parameters of the inflaton potential. Looking deeper into specific types of interaction (gauge and Yukawa) we find that the parameter space is significantly constrained by the new data, but that the running-mass model remains viable

  6. 21st Century Science as a Relational Process: From Eureka! to Team Science and a Place for Community Psychology

    Science.gov (United States)

    Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.

    2014-01-01

    In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718

  7. Landsat Science Team: 2017 Winter Meeting Summary

    Science.gov (United States)

    Schroeder, Todd A.; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2017-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)-NASA Landsat Science Team (LST) was held July 26-28, 2016, at South Dakota State University (SDSU) in Brookings, SD. LST co-chair Tom Loveland [USGS’s Earth Resources Observation and Science Center (EROS)] and Kevin Kephart [SDSU] welcomed more than 80 participants to the three-day meeting. That attendance at such meetings continues to increase—likely due to the development of new data products and sensor systems—further highlights the growing interest in the Landsat program. The main objectives of this meeting were to provide a status update on Landsat 7 and 8, review team member research activities, and to begin identifying priorities for future Landsat missions.

  8. Multidisciplinary Teams: The Next Step in Science.

    Directory of Open Access Journals (Sweden)

    Aldo Leal-Egaña.

    2006-07-01

    Full Text Available One of the current characteristics in science, is the high complexity and technical character that becomes over the last years. This has induced the development of a specific type of professionals, highly specialized in the disciplines that they are involved in, which has produced a communicational breach between the scientists involved on different branches of the science. One of the strategies intended to cross this breach, is the generation of multidisciplinary research strategies, in which professionals of every field of the science can take part, being a kind of scientific and human bridge between the different research teams where they are involved in. This new style to do investigation has made possible the generation of new branches in science, such as for example Biotechnology. In this field -Tissue Engineering- becomes to be a very interesting example of the potential to work in multidisciplinary teams. The reason for this is mainly to avoid technical mistakes, which could cause the death of some patients and which can only be solved by developing research under a multidisciplinary strategy. Nevertheless, and in spite of the success working with multidisciplinary teams, this kind of strategy is rarely used in Latin-American, where the reasons seems to be centered in some aspects personal and cultural. This work shows an example of the new style to develop complex research, which could suggest a new way of working in Latin-American, granted that there is the will to enhance current scientific level.

  9. Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG.

    Science.gov (United States)

    Feng, Bo; Li, Mingzhe; Xia, Jun-Qing; Chen, Xuelei; Zhang, Xinmin

    2006-06-09

    We search for signatures of Lorentz and violations in the cosmic microwave background (CMB) temperature and polarization anisotropies by using the Wilkinson Microwave Anisotropy Probe (WMAP) and the 2003 flight of BOOMERANG (B03) data. We note that if the Lorentz and symmetries are broken by a Chern-Simons term in the effective Lagrangian, which couples the dual electromagnetic field strength tensor to an external four-vector, the polarization vectors of propagating CMB photons will get rotated. Using the WMAP data alone, one could put an interesting constraint on the size of such a term. Combined with the B03 data, we found that a nonzero rotation angle of the photons is mildly favored: [Formula: See Text].

  10. A dynamical approach toward understanding mechanisms of team science: change, kinship, tension, and heritage in a transdisciplinary team.

    Science.gov (United States)

    Lotrecchiano, Gaetano R

    2013-08-01

    Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist-grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health-funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis-change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. © 2013 Wiley Periodicals, Inc.

  11. Searching for planar signatures in WMAP

    International Nuclear Information System (INIS)

    Abramo, L. Raul; Bernui, Armando; Pereira, Thiago S.

    2009-01-01

    We search for planar deviations of statistical isotropy in the Wilkinson Microwave Anisotropy Probe (WMAP) data by applying a recently introduced angular-planar statistics both to full-sky and to masked temperature maps, including in our analysis the effect of the residual foreground contamination and systematics in the foreground removing process as sources of error. We confirm earlier findings that full-sky maps exhibit anomalies at the planar (l) and angular (l) scales (l,l) = (2,5),(4,7), and (6,8), which seem to be due to unremoved foregrounds since this features are present in the full-sky map but not in the masked maps. On the other hand, our test detects slightly anomalous results at the scales (l,l) = (10,8) and (2,9) in the masked maps but not in the full-sky one, indicating that the foreground cleaning procedure (used to generate the full-sky map) could not only be creating false anomalies but also hiding existing ones. We also find a significant trace of an anomaly in the full-sky map at the scale (l,l) = (10,5), which is still present when we consider galactic cuts of 18.3% and 28.4%. As regards the quadrupole (l = 2), we find a coherent over-modulation over the whole celestial sphere, for all full-sky and cut-sky maps. Overall, our results seem to indicate that current CMB maps derived from WMAP data do not show significant signs of anisotropies, as measured by our angular-planar estimator. However, we have detected a curious coherence of planar modulations at angular scales of the order of the galaxy's plane, which may be an indication of residual contaminations in the full- and cut-sky maps

  12. Proceedings of the second Atmospheric Radiation Measurement (ARM) Science Team Meeting

    International Nuclear Information System (INIS)

    1992-12-01

    The second Atmospheric Radiation Measurement (ARM) Science Team Meeting was held in Denver, Colorado, in October 1991. The five-day meeting provided a forum for a technical exchange among the members of the ARM Science Team and a discussion of the technical aspects of the project infrastructure. The meeting included several activities: Science Team presentations, discussions of the first site occupation plan, experiment design sessions, and poster sessions. This Proceedings document includes papers presented at the meeting. The papers included are those from the technical sessions, the experiment design sessions, the first site occupation, and descriptions of locales for future sites. Individual projects are processed separately for the database

  13. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  14. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  15. WMAP - A Glimpse of the Early Universe

    Science.gov (United States)

    Wollack, Edward

    2009-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  16. ON THE NATURE OF THE SMALL-SCALE STRUCTURE IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK AND WMAP

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, G. L.; Schmelz, J. T., E-mail: gverschu@naic.edu [Arecibo Observatory, HC-3 Box 53995, Arecibo PR 00612 (Puerto Rico)

    2016-12-01

    Small-scale features observed by Wilkinson Microwave Anisotropy Probe  ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-H isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.

  17. Landsat science team meeting: Summer 2015

    Science.gov (United States)

    Schroeder, Todd; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2015-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)–NASA Landsat Science Team (LST) was held at the USGS’s Earth Resources Observation and Science (EROS) Center July 7-9, 2015, in Sioux Falls, SD. The LST co-chairs, Tom Loveland [EROS—Senior Scientist] and Jim Irons [NASA’s Goddard Space Flight Center (GSFC)—Landsat 8 Project Scientist], opened the three-day meeting on an upbeat note following the recent successful launch of the European Space Agency’s Sentinel-2 mission on June 23, 2015 (see image on page 14), and the news that work on Landsat 9 has begun, with a projected launch date of 2023.

  18. The ecology of team science: understanding contextual influences on transdisciplinary collaboration.

    Science.gov (United States)

    Stokols, Daniel; Misra, Shalini; Moser, Richard P; Hall, Kara L; Taylor, Brandie K

    2008-08-01

    Increased public and private investments in large-scale team science initiatives over the past two decades have underscored the need to better understand how contextual factors influence the effectiveness of transdisciplinary scientific collaboration. Toward that goal, the findings from four distinct areas of research on team performance and collaboration are reviewed: (1) social psychological and management research on the effectiveness of teams in organizational and institutional settings; (2) studies of cyber-infrastructures (i.e., computer-based infrastructures) designed to support transdisciplinary collaboration across remote research sites; (3) investigations of community-based coalitions for health promotion; and (4) studies focusing directly on the antecedents, processes, and outcomes of scientific collaboration within transdisciplinary research centers and training programs. The empirical literature within these four domains reveals several contextual circumstances that either facilitate or hinder team performance and collaboration. A typology of contextual influences on transdisciplinary collaboration is proposed as a basis for deriving practical guidelines for designing, managing, and evaluating successful team science initiatives.

  19. The AGING Initiative experience: a call for sustained support for team science networks.

    Science.gov (United States)

    Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E

    2018-05-18

    Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.

  20. The Perspective of Women Managing Research Teams in Social Sciences

    Science.gov (United States)

    Tomas, Marina; Castro, Diego

    2013-01-01

    This article presents a research study that focuses on how women manage research teams. More specifically, the study aims to ascertain the perception of female researchers who are leaders of research groups in social sciences with regard to the formation, operation and management of their research teams. Fifteen interviews were carried out, eight…

  1. Intermediate inflation in light of the three-year WMAP observations

    International Nuclear Information System (INIS)

    Barrow, John D.; Liddle, Andrew R.; Pahud, Cedric

    2006-01-01

    The three-year observations from the Wilkinson Microwave Anisotropy Probe have been hailed as giving the first clear indication of a spectral index n s s =1 and allowing the tensor-to-scalar ratio r to be nonzero. The combination n s =1 and r>0 is given (within the slow-roll approximation) by a version of the intermediate inflation model with expansion rate H(t)∝t -1/3 . We assess the status of this model in light of the WMAP3 data

  2. Cocitation or Capacity-Building? Defining Success within an Interdisciplinary, Sustainability Science Team

    Directory of Open Access Journals (Sweden)

    Abby J. Roche

    2017-10-01

    Full Text Available To address gaps in knowledge and to tackle complex social–ecological problems, scientific research is moving toward studies that integrate multiple disciplines and ways of knowing to explore all parts of a system. Yet, how these efforts are being measured and how they are deemed successful is an up-and-coming and pertinent conversation within interdisciplinary research spheres. Using a grounded theory approach, this study addresses how members of a sustainability science-focused team at a Northeastern U.S. university funded by a large, National Science Foundation (NSF grant contend with deeply normative dimensions of interdisciplinary research team success. Based on semi-structured interviews (N = 24 with researchers (e.g., faculty and graduate students involved in this expansive, interdisciplinary team, this study uses participants’ narrative accounts to progress our understanding of success on sustainability science teams and addresses the tensions arising between differing visions of success present within the current literature, and perpetuated by U.S. funding agencies like NSF. Study findings reveal that team members are forming definitions of interdisciplinary success that both align with, and depart from, those appearing in the literature. More specifically, some respondents’ notions of team success appear to mirror currently recognized outcomes in traditional academic settings (i.e., purpose driven outcomes—citations, receipt of grant funding, etc.. At the same time, just as many other respondents describe success as involving elements of collaborative research not traditionally acknowledged as a forms of “success” in their own right (i.e., capacity building processes and outcomes—relationship formation, deep understandings of distinct epistemologies, etc.. Study results contribute to more open and informed discussions about how we gauge success within sustainability science collaborations, forming a foundation for

  3. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  4. On the Origins of the CMB: Insight from the COBE, WMAP, and Relikt-1 Satellites

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available The powerful “Cosmic Microwave Background (CMB” signal currently associated with the origins of the Universe is examined from a historical perspective and relative to the experimental context in which it was measured. Results from the COBE satellite are reviewed, with particular emphasis on the systematic error observed in determining the CMB temperature. The nature of the microwave signal emanating from the oceans is also discussed. From this analysis, it is demonstrated that it is improper for the COBE team to model the Earth as a 285 K blackbody source. The assignment of temperatures to objects that fail to meet the requirements set forth in Kirchhoff’s law constitutes a serious overextension of the laws of thermal emission. Using this evidence, and the general rule that powerful signals are associated with proximal sources, the CMB monopole signal is reassigned to the oceans. In turn, through the analysis of COBE, WMAP, and Relikt-1 data, the dipole signal is attributed to motion through a much weaker microwave field present both at the position of the Earth and at the second Lagrange point.

  5. Requirements, Science, and Measurements for Landsat 10 and Beyond: Perspectives from the Landsat Science Team

    Science.gov (United States)

    Crawford, C. J.; Masek, J. G.; Roy, D. P.; Woodcock, C. E.; Wulder, M. A.

    2017-12-01

    The U.S. Geological Survey (USGS) and NASA are currently prioritizing requirements and investing in technology options for a "Landsat 10 and beyond" mission concept as part of the Sustainable Land Imaging (SLI) architecture. Following the successful February 2013 launch of the Landsat 8, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have now added over 1 million images to the USGS Landsat archive. The USGS and NASA support and co-lead a Landsat Science Team made up largely of university and government experts to offer independent insight and guidance of program activities and directions. The rapid development of Landsat 9 reflects, in part, strong input from the 2012-2017 USGS Landsat Science Team (LST). During the last two years of the LST's tenure, individual LST members and within LST team working groups have made significant contributions to Landsat 10 and beyond's science traceability and future requirements justification. Central to this input, has been an effort to identify a trade space for enhanced measurement capabilities that maintains mission continuity with eight prior multispectral instruments, and will extend the Landsat Earth observation record beyond 55+ years with an approximate launch date of 2027. The trade space is framed by four fundamental principles in remote sensing theory and practice: (1) temporal resolution, (2) spatial resolution, (3) radiometric resolution, and (4) spectral coverage and resolution. The goal of this communication is to provide a synopsis of past and present 2012-2017 LST contributions to Landsat 10 and beyond measurement science and application priorities. A particular focus will be to document the links between new science and societal benefit areas with potential technical enhancements to the Landsat mission.

  6. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    Science.gov (United States)

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  7. Team science and the physician-scientist in the age of grand health challenges.

    Science.gov (United States)

    Steer, Clifford J; Jackson, Peter R; Hornbeak, Hortencia; McKay, Catherine K; Sriramarao, P; Murtaugh, Michael P

    2017-09-01

    Despite remarkable advances in medical research, clinicians face daunting challenges from new diseases, variations in patient responses to interventions, and increasing numbers of people with chronic health problems. The gap between biomedical research and unmet clinical needs can be addressed by highly talented interdisciplinary investigators focused on translational bench-to-bedside medicine. The training of talented physician-scientists comfortable with forming and participating in multidisciplinary teams that address complex health problems is a top national priority. Challenges, methods, and experiences associated with physician-scientist training and team building were explored at a workshop held at the Second International Conference on One Medicine One Science (iCOMOS 2016), April 24-27, 2016, in Minneapolis, Minnesota. A broad range of scientists, regulatory authorities, and health care experts determined that critical investments in interdisciplinary training are essential for the future of medicine and healthcare delivery. Physician-scientists trained in a broad, nonlinear, cross-disciplinary manner are and will be essential members of science teams in the new age of grand health challenges and the birth of precision medicine. Team science approaches have accomplished biomedical breakthroughs once considered impossible, and dedicated physician-scientists have been critical to these achievements. Together, they translate into the pillars of academic growth and success. © 2017 New York Academy of Sciences.

  8. NASA Microgravity Science Competition for High-school-aged Student Teams

    Science.gov (United States)

    DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric

    2002-01-01

    NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.

  9. On teams, teamwork, and team performance: discoveries and developments.

    Science.gov (United States)

    Salas, Eduardo; Cooke, Nancy J; Rosen, Michael A

    2008-06-01

    We highlight some of the key discoveries and developments in the area of team performance over the past 50 years, especially as reflected in the pages of Human Factors. Teams increasingly have become a way of life in many organizations, and research has kept up with the pace. We have characterized progress in the field in terms of eight discoveries and five challenges. Discoveries pertain to the importance of shared cognition, the measurement of shared cognition, advances in team training, the use of synthetic task environments for research, factors influencing team effectiveness, models of team effectiveness, a multidisciplinary perspective, and training and technological interventions designed to improve team effectiveness. Challenges that are faced in the coming decades include an increased emphasis on team cognition; reconfigurable, adaptive teams; multicultural influences; and the need for naturalistic study and better measurement. Work in human factors has contributed significantly to the science and practice of teams, teamwork, and team performance. Future work must keep pace with the increasing use of teams in organizations. The science of teams contributes to team effectiveness in the same way that the science of individual performance contributes to individual effectiveness.

  10. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    OpenAIRE

    Forough L. Nowrouzian; Anne Farewell

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may ...

  11. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences.

    Science.gov (United States)

    Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A

    2014-07-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.

  12. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    Science.gov (United States)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  13. An Interdisciplinary Team Project: Psychology and Computer Science Students Create Online Cognitive Tasks

    Science.gov (United States)

    Flannery, Kathleen A.; Malita, Mihaela

    2014-01-01

    We present our case study of an interdisciplinary team project for students taking either a psychology or computer science (CS) course. The project required psychology and CS students to combine their knowledge and skills to create an online cognitive task. Each interdisciplinary project team included two psychology students who conducted library…

  14. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    Directory of Open Access Journals (Sweden)

    Forough L. Nowrouzian

    2013-08-01

    Full Text Available Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may increase productivity, confidence, innovative capacity and improvement of interpersonal skills. Problem-based learning (PBL is an instructional approach focusing on real analytical problems as a means of training an analytical scientist. PBL may have a positive impact on team-work skills that are important for undergraduates and postgraduates to enable effective collaborative work. This survey of the current literature explores the development of the team-work skills in Biomedical Science students using PBL.

  15. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    Science.gov (United States)

    Hinshaw, Gary F.

    2007-01-01

    The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed.

  16. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Science.gov (United States)

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  17. Inflation and WMAP three year data. Features have a feature.

    Energy Technology Data Exchange (ETDEWEB)

    Covi, L.; Hamann, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Melchiorri, A. [INFN, Roma (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Slosar, A. [Ljubljana Univ. (Slovenia). Faculty of Mathematics and Physics; Sorbera, I. [Rome-3 Univ. (Italy). Dipt. di Fisica

    2006-06-15

    The new three year WMAP data seem to confirm the presence of non-standard large scale features in the Cosmic Microwave Anisotropies power spectrum. While these features may hint at uncorrected experimental systematics, it is also possible to generate, in a cosmological way, oscillations on large angular scales by introducing a sharp step in the inflaton potential. Using current cosmological data, we derive constraints on the position, magnitude and gradient of a possible step in the inflaton potential. We show that a step in the potential, while strongly constrained by current data, is still allowed and may provide an interesting explanation to the currently measured deviations from the standard featureless spectrum. (Orig.)

  18. Inflation and WMAP three year data. Features have a future

    International Nuclear Information System (INIS)

    Covi, L.; Hamann, J.; Melchiorri, A.; Rome-3 Univ.; Slosar, A.; Sorbera, I.

    2006-06-01

    The new three year WMAP data seem to confirm the presence of non-standard large scale features in the Cosmic Microwave Anisotropies power spectrum. While these features may hint at uncorrected experimental systematics, it is also possible to generate, in a cosmological way, oscillations on large angular scales by introducing a sharp step in the inflaton potential. Using current cosmological data, we derive constraints on the position, magnitude and gradient of a possible step in the inflaton potential. We show that a step in the potential, while strongly constrained by current data, is still allowed and may provide an interesting explanation to the currently measured deviations from the standard featureless spectrum. (Orig.)

  19. Are all modes created equal? An analysis of the WMAP 5- and 7-year data without inflationary prejudice

    International Nuclear Information System (INIS)

    Gjerloew, Eirik; Elgaroey, Oystein

    2011-01-01

    We submit recent claims of hints of primordial tensor perturbations and a scale-dependent spectral index in the WMAP data to a closer scrutiny. Our approach differs in that we use different best-fit values at which to fix the parameters not to be varied, and in that we use CosmoMC, thus incorporating the WMAP likelihood code and EE and BB mode data. We introduce a new parameter to test the claims of a scale-dependent spectral index. While we do find some hints of a scale-dependent spectral index over the multipole range l=2-220, the change in maximum likelihood is too small to justify introducing a new parameter. We conclude that there is no significant detection of primordial tensor perturbations, and that the assumption of a scale-independent spectral index in this multipole range has little effect on the amount of primordial gravitational waves found.

  20. Communication and relationship skills for rapid response teams at hamilton health sciences.

    Science.gov (United States)

    Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan

    2008-01-01

    Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation.

  1. A Multi-Level Systems Perspective for the Science of Team Science

    Science.gov (United States)

    Börner, Katy; Contractor, Noshir; Falk-Krzesinski, Holly J.; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2012-01-01

    This Commentary describes recent research progress and professional developments in the study of scientific teamwork, an area of inquiry termed the “science of team science” (SciTS, pronounced “sahyts”). It proposes a systems perspective that incorporates a mixed-methods approach to SciTS that is commensurate with the conceptual, methodological, and translational complexities addressed within the SciTS field. The theoretically grounded and practically useful framework is intended to integrate existing and future lines of SciTS research to facilitate the field’s evolution as it addresses key challenges spanning macro, meso, and micro levels of analysis. PMID:20844283

  2. Honorary Authorship Practices in Environmental Science Teams: Structural and Cultural Factors and Solutions.

    Science.gov (United States)

    Elliott, Kevin C; Settles, Isis H; Montgomery, Georgina M; Brassel, Sheila T; Cheruvelil, Kendra Spence; Soranno, Patricia A

    2017-01-01

    Overinclusive authorship practices such as honorary or guest authorship have been widely reported, and they appear to be exacerbated by the rise of large interdisciplinary collaborations that make authorship decisions particularly complex. Although many studies have reported on the frequency of honorary authorship and potential solutions to it, few have probed how the underlying dynamics of large interdisciplinary teams contribute to the problem. This article reports on a qualitative study of the authorship standards and practices of six National Science Foundation-funded interdisciplinary environmental science teams. Using interviews of the lead principal investigator and an early-career member on each team, our study explores the nature of honorary authorship practices as well as some of the motivating factors that may contribute to these practices. These factors include both structural elements (policies and procedures) and cultural elements (values and norms) that cross organizational boundaries. Therefore, we provide recommendations that address the intersection of these factors and that can be applied at multiple organizational levels.

  3. The Potential Improvement of Team-Working Skills in Biomedical and Natural Science Students Using a Problem-Based Learning Approach

    Science.gov (United States)

    Nowrouzian, Forough L.; Farewell, Anne

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled.…

  4. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  5. The National Virtual Observatory Science Definintion Team: Report and Status

    Science.gov (United States)

    Djorgovski, S. G.; NVO SDT Team

    2002-05-01

    Astronomy has become an enormously data-rich science, with numerous multi-Terabyte sky surveys and archives over the full range of wavelengths, and Petabyte-scale data sets already on the horizon. The amount of the available information is growing exponentially, largely driven by the progress in detector and information technology, and the quality and complexity of the data are unprecedented. This great quantitative advance will result in qualitative changes in the way astronomy is done. The Virtual Observatory concept is the astronomy community's organized response to the challenges posed by efficient handling and scientific exploration of new, massive data sets. The NAS Decadal Survey, Astronomy and Astrophysics in the New Millennium, recommends as the first priority in the ``small'' projects category creation of the National Virtual Observatory (NVO). In response to this, the NSF and NASA formed in June 2001 the NVO Science Definition Team (SDT), with a mandate to: (1) Define and formulate a joint NASA/NSF initiative to pursue the NVO goals; (2) Solicit input from the U.S. astronomy community, and incorporate it in the NVO definition documents and recommendations for further actions; and (3) Serve as liaison to broader space science, computer science, and statistics communities for the NVO initiative, and as liaison with the similar efforts in Europe, looking forward towards a truly Global Virtual Observatory. The Team has delivered its report to the agencies and made it publicly available on its website (http://nvosdt.org), where many other relevant links can be found. We will summarize the report, its conclusions, and recommendations.

  6. High-school Student Teams in a National NASA Microgravity Science Competition

    Science.gov (United States)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region

  7. Modeling the Office of Science ten year facilities plan: The PERI Architecture Tiger Team

    International Nuclear Information System (INIS)

    Supinski, Bronis R de; Gamblin, Todd; Schulz, Martin

    2009-01-01

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  8. Organizational and training factors that promote team science: A qualitative analysis and application of theory to the National Institutes of Health's BIRCWH career development program.

    Science.gov (United States)

    Guise, Jeanne-Marie; Winter, Susan; Fiore, Stephen M; Regensteiner, Judith G; Nagel, Joan

    2017-04-01

    Research organizations face challenges in creating infrastructures that cultivates and sustains interdisciplinary team science. The objective of this paper is to identify structural elements of organizations and training that promote team science. We qualitatively analyzed the National Institutes of Health's Building Interdisciplinary Research Careers in Women's Health, K12 using organizational psychology and team science theories to identify organizational design factors for successful team science and training. Seven key design elements support team science: (1) semiformal meta-organizational structure, (2) shared context and goals, (3) formal evaluation processes, (4) meetings to promote communication, (5) role clarity in mentoring, (6) building interpersonal competencies among faculty and trainees, and (7) designing promotion and tenure and other organizational processes to support interdisciplinary team science. This application of theory to a long-standing and successful program provides important foundational elements for programs and institutions to consider in promoting team science.

  9. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    International Nuclear Information System (INIS)

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately

  10. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  11. New natural shapes of non-Gaussianity from high-derivative interactions and their optimal limits from WMAP 9-year data

    International Nuclear Information System (INIS)

    Behbahani, Siavosh R.; Mirbabayi, Mehrdad; Senatore, Leonardo; Smith, Kendrick M.

    2014-01-01

    Given the fantastic experimental effort, it is important to thoroughly explore the signature space of inflationary models. The fact that higher derivative operators do not renormalize lower derivative ones allows us to find a large class of technically natural single-clock inflationary models where, in the context of the Effective Field Theory of Inflation, the leading interactions have many derivatives. We systematically explore the 3-point function induced by these models and their overlap with the standard equilateral and orthogonal templates. We find that in order to satisfactorily cover the signature space of these models, two new additional templates need to be included. We then perform the optimal analysis of the WMAP 9-year data for the resulting four templates, finding that the overall significance of a non-zero signal is between 2–2.5σ, depending on the choice of parameter space, partially driven by the preference for nonzero f NL orth in WMAP9

  12. Transnational organizational considerations for sociocultural differences in ethics and virtual team functioning in laboratory animal science.

    Science.gov (United States)

    Pritt, Stacy L; Mackta, Jayne

    2010-05-01

    Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working with sociocultural differences in ethics and by knowing how to facilitate appropriate virtual team actions. Associated practices include implementing codes and policies transcend cultural, ethnic, or other boundaries and equipping virtual teams with the needed technology, support, and rewards to ensure timely and productive work that ultimately promotes good science and patient safety in drug development.

  13. Mercury Orbiter: Report of the Science Working Team

    Science.gov (United States)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  14. Political Science and Speech Communication--A Team Approach to Teaching Political Communication.

    Science.gov (United States)

    Blatt, Stephen J.; Fogel, Norman

    This paper proposes making speech communication more interdisciplinary and, in particular, combining political science and speech in a team-taught course in election campaigning. The goals, materials, activities, and plan of such a course are discussed. The goals include: (1) gaining new insights into the process of contemporary campaigns and…

  15. Team Science Approach to Developing Consensus on Research Good Practices for Practice-Based Research Networks: A Case Study.

    Science.gov (United States)

    Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria

    2015-12-01

    Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.

  16. Progress Towards AIRS Science Team Version-7 at SRT

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Kouvaris, Louis

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. At the last Science Team Meeting, we described results using SRT AIRS Version-6.22. SRT Version-6.22 is now an official build at JPL called 6.2.4. Version-6.22 results are significantly improved compared to Version-6, especially with regard to water vapor and ozone profiles. We have adapted AIRS Version-6.22 to run with CrIS/ATMS, at the Sounder SIPS which processed CrIS/ATMS data for August 2014. JPL AIRS Version-6.22 uses the Version-6 AIRS tuning coefficients. AIRS Version-6.22 has at least two limitations which must be improved before finalization of Version-7: Version-6.22 total O3 has spurious high values in the presence of Saharan dust over the ocean; and Version-6.22 retrieved upper stratospheric temperatures are very poor in polar winter. SRT Version-6.28 addresses the first concern. John Blaisdell ran the analog of AIRS Version-6.28 in his own sandbox at JPL for the 14th and 15th of every month in 2014 and all of July and October for 2014. AIRS Version-6.28a is hot off the presses and addresses the second concern.

  17. Developing team cognition: A role for simulation

    Science.gov (United States)

    Fernandez, Rosemarie; Shah, Sachita; Rosenman, Elizabeth D.; Kozlowski, Steve W. J.; Parker, Sarah Henrickson; Grand, James A.

    2016-01-01

    SUMMARY STATEMENT Simulation has had a major impact in the advancement of healthcare team training and assessment. To date, the majority of simulation-based training and assessment focuses on the teamwork behaviors that impact team performance, often ignoring critical cognitive, motivational, and affective team processes. Evidence from team science research demonstrates a strong relationship between team cognition and team performance and suggests a role for simulation in the development of this team-level construct. In this article we synthesize research from the broader team science literature to provide foundational knowledge regarding team cognition and highlight best practices for using simulation to target team cognition. PMID:28704287

  18. Using Team-based Learning to teach a Large-enrollment Environmental Science Course Online

    Science.gov (United States)

    Harder, V.

    2013-12-01

    Student enrollment in many online courses is usually limited to small classes, ranging from 20-25 students. Over two summers Environmental Science 1301, with an enrollment of 50, has been piloted online using team-based learning (TBL) methods. Teams, consisting of 7 members, were assigned randomly using the group manager tool found in the learning management system. The course was organized around Learning Modules, which consisted of a quiz (individual) over the reading, a team assignment, which covered a topic from one of the chapters was completed for each learning module, and a class/group discussion. The discussion usually entailed a presentation of findings to the class by each team. This allowed teams to interact with one another and was also designed to encourage competition among the teams. Over the course of the class it was observed that as the students became comfortable with the course procedures they developed a commitment to the goals and welfare of their team. They found that as a team they could accomplish much more than an individual; they discovered strengths in their team mates that they, themselves, lacked, and they helped those team mates who struggled with the material. The teams tackled problems that would be overwhelming to an individual in the time allotted, such as running multiple scenarios with the simulations and tackling a large amount of data. Using TBL shifted the majority of responsibility of learning the material to the student with the instructor functioning as a facilitator instead of dispenser of knowledge. Dividing the class into teams made the course load manageable for the instructor while at the same time created a small-class environment for the students. In comparing this course to other, nonTBL-based online courses taught, the work load was very manageable. There were only 7-10 items to be graded per Learning Module and only 7-10 teams to monitor and provide guidance to instead of 50 individuals. Retention rates (86

  19. Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)

    Science.gov (United States)

    Smith, Michael

    2007-01-01

    NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007

  20. Outreach with Team eS Through Science Festivals and Interactive Art Installations

    Science.gov (United States)

    Yoho, Amanda; Starkman, Glenn

    2014-03-01

    The Team eS project aims to acclimate (pre)teens to scientific concepts subtly, with fun, accessible, and engaging art and activities hosted at public community festivals, online at a dedicated website, and using social media. Our festivals will be centered around an interactive art installation inspired by a scientific concept. We hope to provide a positive experience inspired by science that these teens can reflect upon when encountering similar concepts in the future, especially in settings like a classroom where fear and anxiety can cloud interest or performance. We want to empower teens to not feel lost or out of the loop - we want to remove the fear of facing science.

  1. Climate Action Team

    Science.gov (United States)

    Science Partnerships Contact Us Climate Action Team & Climate Action Initiative The Climate Action programs and the state's Climate Adaptation Strategy. The CAT members are state agency secretaries and the . See CAT reports Climate Action Team Pages CAT Home Members Working Groups Reports Back to Top

  2. Foreground removal from WMAP 5 yr temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik

    2010-01-01

    CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. Methods. The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5...... yr temperature data without using any auxiliary data. Results. A simple multilayer perceptron neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also......, the systematic errors, i.e. errors correlated with the Galactic foregrounds, are very small. Conclusions. With these results the neural network method is well prepared for dealing with the high-quality CMB data from the ESA Planck Surveyor satellite. © ESO, 2010....

  3. Team Structure and Scientific Impact of "Big Science" Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn; Jeppesen, Jacob

    This paper summarizes preliminary results from a project studying how the organizational and cognitive features of research carried out in a Large Scale Research Facility (LSRF) affect scientific impact. The study is based on exhaustive bibliometric mapping of the scientific publications...... of the Neutron Science Department of Oak Ridge National Laboratories in 2006-2009. Given the collaborative nature of research carried out at LSRFs, it is important to understand how its organization affects scientific impact. Diversity of teams along the institutional and cognitive dimensions affects both...... opportunities for combination of knowledge and coordination costs. The way specific collaborative configurations strike this trade-offs between these opportunities and costs have notable effects on research performance. The findings of the paper show that i.) scientists combining affiliations to both...

  4. Science in a Team Environment (AKA, How to Play Nicely with Others)

    Science.gov (United States)

    Platts, S. H.; Primeaux, L.; Swarmer, T.; Yarbough, P. O

    2017-01-01

    So you want to do NASA funded research in a spaceflight analog? There are several things about participating in an HRP managed analog that may be different from the way you normally do work in your laboratory. The purpose of this presentation is to highlight those differences and explain some of the unique aspects of doing this research. Participation in an HRP funded analog study complement, even if initially selected for funding, is not automatic and involves numerous actions from ISSMP, HRP, and the PI. There are steps that have to be taken and processes to follow before approval and ISSMP-FA integration. After the proposal and acceptance process the Investigator works closely with the Flight Analog team to ensure full integration of their study requirements into a compliment. A complement is comprised of a group of studies requiring a common platform and/or scenario that are able to be integrated on a non-interference basis for implementation. Full integration into the analog platform can be broken down into three phases: integration, preparation, and implementation. These phases occur in order with some overlap in the integration and preparation phase. The ISSMP-FA team integrates, plans and implements analog study complements. Properly defining your research requirements and getting them documented is one of the most critical components to ensure successful integration and implementation of your study, but is also one of the most likely to be neglected by PIs. Requirements that are not documented, or that are documented poorly are unlikely to get done, no matter how much you push. The process to document requirements is two-fold, consisting of an initial individual requirements integration and then a compliment requirements integration. Understanding the requirements in detail and early ensures that the science is not compromised by outside influences. This step is vital to the integration, preparation, and implementation phases. The individual requirements

  5. The P50 Research Center in Perioperative Sciences: How the investment by the National Institute of General Medical Sciences in team science has reduced postburn mortality.

    Science.gov (United States)

    Finnerty, Celeste C; Capek, Karel D; Voigt, Charles; Hundeshagen, Gabriel; Cambiaso-Daniel, Janos; Porter, Craig; Sousse, Linda E; El Ayadi, Amina; Zapata-Sirvent, Ramon; Guillory, Ashley N; Suman, Oscar E; Herndon, David N

    2017-09-01

    Since the inception of the P50 Research Center in Injury and Peri-operative Sciences (RCIPS) funding mechanism, the National Institute of General Medical Sciences has supported a team approach to science. Many advances in critical care, particularly burns, have been driven by RCIPS teams. In fact, burns that were fatal in the early 1970s, prior to the inception of the P50 RCIPS program, are now routinely survived as a result of the P50-funded research. The advances in clinical care that led to the reduction in postburn death were made by optimizing resuscitation, incorporating early excision and grafting, bolstering acute care including support for inhalation injury, modulating the hypermetabolic response, augmenting the immune response, incorporating aerobic exercise, and developing antiscarring strategies. The work of the Burn RCIPS programs advanced our understanding of the pathophysiologic response to burn injury. As a result, the effects of a large burn on all organ systems have been studied, leading to the discovery of persistent dysfunction, elucidation of the underlying molecular mechanisms, and identification of potential therapeutic targets. Survival and subsequent patient satisfaction with quality of life have increased. In this review article, we describe the contributions of the Galveston P50 RCIPS that have changed postburn care and have considerably reduced postburn mortality.

  6. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  7. Deploying Team Science Principles to Optimize Interdisciplinary Lung Cancer Care Delivery: Avoiding the Long and Winding Road to Optimal Care.

    Science.gov (United States)

    Osarogiagbon, Raymond U; Rodriguez, Hector P; Hicks, Danielle; Signore, Raymond S; Roark, Kristi; Kedia, Satish K; Ward, Kenneth D; Lathan, Christopher; Santarella, Scott; Gould, Michael K; Krasna, Mark J

    2016-11-01

    The complexity of lung cancer care mandates interaction between clinicians with different skill sets and practice cultures in the routine delivery of care. Using team science principles and a case-based approach, we exemplify the need for the development of real care teams for patients with lung cancer to foster coordination among the multiple specialists and staff engaged in routine care delivery. Achieving coordinated lung cancer care is a high-priority public health challenge because of the volume of patients, lethality of disease, and well-described disparities in quality and outcomes of care. Coordinating mechanisms need to be cultivated among different types of specialist physicians and care teams, with differing technical expertise and practice cultures, who have traditionally functioned more as coactively working groups than as real teams. Coordinating mechanisms, including shared mental models, high-quality communication, mutual trust, and mutual performance monitoring, highlight the challenge of achieving well-coordinated care and illustrate how team science principles can be used to improve quality and outcomes of lung cancer care. To develop the evidence base to support coordinated lung cancer care, research comparing the effectiveness of a diverse range of multidisciplinary care team approaches and interorganizational coordinating mechanisms should be promoted.

  8. Interactive Team Cognition

    Science.gov (United States)

    Cooke, Nancy J.; Gorman, Jamie C.; Myers, Christopher W.; Duran, Jasmine L.

    2013-01-01

    Cognition in work teams has been predominantly understood and explained in terms of shared cognition with a focus on the similarity of static knowledge structures across individual team members. Inspired by the current zeitgeist in cognitive science, as well as by empirical data and pragmatic concerns, we offer an alternative theory of team…

  9. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    Science.gov (United States)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  10. ANALYSIS OF WMAP 7 YEAR TEMPERATURE DATA: ASTROPHYSICS OF THE GALACTIC HAZE

    Energy Technology Data Exchange (ETDEWEB)

    Pietrobon, Davide; Gorski, Krzysztof M.; Bartlett, James; Colombo, Loris P. L.; Jewell, Jeffrey B.; Pagano, Luca; Rocha, Graca; Lawrence, Charles R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Banday, A. J. [Universie de Toulouse, UPS-OMP, IRAP, Toulouse (France); Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States); Hildebrandt, Sergi R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Eriksen, Hans Kristian [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Saha, Rajib, E-mail: davide.pietrobon@jpl.nasa.gov [Physics Department, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462023 (India)

    2012-08-10

    We perform a joint analysis of the cosmic microwave background (CMB) and Galactic emission from the WMAP 7 year temperature data. Using the Commander code, based on Gibbs sampling, we simultaneously derive the CMB and Galactic components on scales larger than 1 Degree-Sign with improved sensitivity over previous work. We conduct a detailed study of the low-frequency Galactic foreground, focusing on the 'microwave haze' emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse Galactic emission when including Haslam 408 MHz data and when jointly modeling the spinning and thermal dust emission. We examine whether the hypothetical Galactic haze can be explained by a spatial variation of the synchrotron spectral index, and find that the excess of emission around the Galactic center is stable with respect to variations of the foreground model. Our results demonstrate that the new Galactic foreground component-the microwave haze-is indeed present.

  11. Team dynamics within quality improvement teams: a scoping review.

    Science.gov (United States)

    Rowland, Paula; Lising, Dean; Sinclair, Lynne; Baker, G Ross

    2018-03-31

    This scoping review examines what is known about the processes of quality improvement (QI) teams, particularly related to how teams impact outcomes. The aim is to provide research-informed guidance for QI leaders and to inform future research questions. Databases searched included: MedLINE, EMBASE, CINAHL, Web of Science and SCOPUS. Eligible publications were written in English, published between 1999 and 2016. Articles were included in the review if they examined processes of the QI team, were related to healthcare QI and were primary research studies. Studies were excluded if they had insufficient detail regarding QI team processes. Descriptive detail extracted included: authors, geographical region and health sector. The Integrated (Health Care) Team Effectiveness Model was used to synthesize findings of studies along domains of team effectiveness: task design, team process, psychosocial traits and organizational context. Over two stages of searching, 4813 citations were reviewed. Of those, 48 full-text articles are included in the synthesis. This review demonstrates that QI teams are not immune from dysfunction. Further, a dysfunctional QI team is not likely to influence practice. However, a functional QI team alone is unlikely to create change. A positive QI team dynamic may be a necessary but insufficient condition for implementing QI strategies. Areas for further research include: interactions between QI teams and clinical microsystems, understanding the role of interprofessional representation on QI teams and exploring interactions between QI team task, composition and process.

  12. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    Science.gov (United States)

    2016-10-01

    chosen for their expertise and to ensure geographical representation. COMPLETED Human Research Protection Office IRB 3 The HRPO has granted exempt... taxonomy (Figure 3) can help guide the selection of appropriate training targets and can help educators target correct task complexity, appropriate...team assessment. We extended this knowledge by investigating the team science, safety science, and human factors literature. Because our work

  13. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions

    Science.gov (United States)

    Hill, R. S.; Weiland, J. L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C. L.; Halpern, M.; Page, L.; Dunkley, J.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Nolta, M. R.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2009-02-01

    Cosmology and other scientific results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  14. Assessing Team Leadership in Emergency Medicine: The Milestones and Beyond.

    Science.gov (United States)

    Rosenman, Elizabeth D; Branzetti, Jeremy B; Fernandez, Rosemarie

    2016-07-01

    Team leadership is a critical skill for emergency medicine physicians that directly affects team performance and the quality of patient care. There exists a robust body of team science research supporting team leadership conceptual models and behavioral skill sets. However, to date, this work has not been widely incorporated into health care team leadership education. This narrative review has 3 aims: (1) to synthesize the team science literature and to translate important concepts and models to health care team leadership; (2) to describe how team leadership is currently represented in the health care literature and in the Accreditation Council for Graduate Medical Education Milestones for emergency medicine; and (3) to propose a novel, evidence-based framework for the assessment of team leadership in emergency medicine. We conducted a narrative review of the team science and health care literature. We summarized our findings and identified a list of team leadership behaviors that were then used to create a framework for team leadership assessment. Current health care team leadership measurement tools do not incorporate evidence-based models of leadership concepts from other established domains. The emergency medicine milestones include several team leadership behaviors as part of a larger resident evaluation program. However, they do not offer a comprehensive or cohesive representation of the team leadership construct. Despite the importance of team leadership to patient care, there is no standardized approach to team leadership assessment in emergency medicine. Based on the results of our review, we propose a novel team leadership assessment framework that is supported by the team science literature.

  15. Role Allocation and Team Structure in Command and Control Teams

    Science.gov (United States)

    2014-06-01

    organizational psychology and management sciences literature show concepts such as empowered self-management and self-regulating work teams (see Cooney, 2004...tankers (FT), search units (S) and rescue units (R). Each unit is represented on the map by a numbered icon. Each type of unit is colour -coded and...Understanding team adaptation: A conceptual analysis and model. Journal of Applied Psychology , 91, 1189-1207. Cannon-Bowers, J. A., Tannenbaum

  16. Assessing Team Leadership in Emergency Medicine: The Milestones and Beyond

    Science.gov (United States)

    Rosenman, Elizabeth D.; Branzetti, Jeremy B.; Fernandez, Rosemarie

    2016-01-01

    Background Team leadership is a critical skill for emergency medicine physicians that directly affects team performance and the quality of patient care. There exists a robust body of team science research supporting team leadership conceptual models and behavioral skill sets. However, to date, this work has not been widely incorporated into health care team leadership education. Objective This narrative review has 3 aims: (1) to synthesize the team science literature and to translate important concepts and models to health care team leadership; (2) to describe how team leadership is currently represented in the health care literature and in the Accreditation Council for Graduate Medical Education Milestones for emergency medicine; and (3) to propose a novel, evidence-based framework for the assessment of team leadership in emergency medicine. Methods We conducted a narrative review of the team science and health care literature. We summarized our findings and identified a list of team leadership behaviors that were then used to create a framework for team leadership assessment. Results Current health care team leadership measurement tools do not incorporate evidence-based models of leadership concepts from other established domains. The emergency medicine milestones include several team leadership behaviors as part of a larger resident evaluation program. However, they do not offer a comprehensive or cohesive representation of the team leadership construct. Conclusions Despite the importance of team leadership to patient care, there is no standardized approach to team leadership assessment in emergency medicine. Based on the results of our review, we propose a novel team leadership assessment framework that is supported by the team science literature. PMID:27413434

  17. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    Science.gov (United States)

    Horowitz, Carol R.; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N.; Smith, Geoffrey W.; Dudley, Joel; Manning, Rachel; Bickell, Nina A.; Galvez, Maida P.

    2017-01-01

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities. PMID:28241508

  18. Comparison of Two Team Learning and Team Entrepreneurship Models at a Finnish University of Applied Sciences. Setting the Scene for Future Development

    Directory of Open Access Journals (Sweden)

    Pasi Juvonen

    2017-02-01

    Full Text Available This team learning and team entre-preneurship model of education has been deployed at the Bachelor’s level in the degree programmes of IT and Business Administration (BA. In BA studies the students who take part in team learning have specialized in marketing since 2009 at the Saimaa University of Applied Sciences (SUAS. The model called ICT entrepreneurship study path (ICT-ESP has been developed for IT education. The ICT-ESP has been built on the theory of experien-tal learning and theories of knowledge creation and knowledge management. The students study and complete their degree as team entrepreneurs. The model has been further developed in the Business Administration Degree Programme with students who specialize in marketing. The Degree Programme in IT at the Bachelor’s level was terminated in 2011 by Finnish Min-istry of Education and Culture. Cur-rently, there are severe discussions on bringing it back – not as an IT but as an ICT Degree Programme. This article makes a cross-section of what has already been explored with the team learning and team entrepreneurship model and what the next steps will be. It makes a comparison of two originally sep-arately developed models and dis-cusses their best practices. The arti-cle also argues whether the upcom-ing ICT education should be orga-nized in a conventional way – as curriculum of courses, or as expan-sion of the current team learning and team entrepreneurship model. The data consists of field notes, meeting memos, and dozens of un-official discussions with colleagues and company representatives. Liter-ature studies made during the ongo-ing research, development, and in-novation (RDI projects offered an extra view of how the business con-text is changing and what should be done to make benefit out of the change. The results suggest that the up-coming ICT Degree Programme at SUAS should be integrated into the existing deployment of team learning and team entrepreneurship learning

  19. Neutrino cosmology after WMAP 7-year data and LHC first Z' bounds.

    Science.gov (United States)

    Anchordoqui, Luis Alfredo; Goldberg, Haim

    2012-02-24

    The gauge-extended U(1)(C)×SU(2)(L)×U(1)(I(R))×U(1)(L) model elevates the global symmetries of the standard model (baryon number B and lepton number L) to local gauge symmetries. The U(1)(L) symmetry leads to three superweakly interacting right-handed neutrinos. This also renders a B-L symmetry nonanomalous. The superweak interactions of these Dirac states permit ν(R) decoupling just above the QCD phase transition: 175 is < or approximately equal to T(ν(R))(dec)/MeV is < or approximately equal to 250. In this transitional region, the residual temperature ratio between ν(L) and ν(R) generates extra relativistic degrees of freedom at BBN and at the CMB epochs. Consistency with both WMAP 7-year data and recent estimates of the primordial 4He mass fraction is achieved for 3

  20. Teacher Design in Teams as a Professional Development Arrangement for Developing Technology Integration Knowledge and Skills of Science Teachers in Tanzania

    Science.gov (United States)

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke

    2016-01-01

    This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in…

  1. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    Directory of Open Access Journals (Sweden)

    Carol R. Horowitz

    2017-02-01

    Full Text Available Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.

  2. Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report

    Science.gov (United States)

    Hand, Kevin P.; Murray, Alison; Garvin, James; and the Europa Lander Science Definition Team, Project Science Team, and Project Engineering Team.

    2017-10-01

    In June of 2016 NASA convened a 21-person team of scientists to establish the science goals, objectives, investigations, measurement requirements, and model payload of a Europa lander mission concept. The NASA HQ Charter goals, in priority order, are as follows:1) Search for evidence of life on Europa, 2) Assess the habitability of Europa via in situ techniques uniquely available to a lander mission, 3) Characterize surface and subsurface properties at the scale of the lander to support future exploration of Europa.Within Goal 1, four Objectives were developed for seeking signs of life. These include the need to: a) detect and characterize any organic indicators of past or present life, b) identify and characterize morphological, textural, and other indicators of life, c) detect and characterize any inorganic indicators of past or present life, and d) determine the provenance of Lander-sampled material. Goal 2 focuses on Europa’s habitability and ensures that even in the absence of the detection of any potential biosignatures, significant ocean world science is still achieved. Goal 3 ensures that the landing site region is quantitatively characterized in the context needed for Goals 1 and 2, and that key measurements about Europa’s ice shell are made to enable future exploration.Critically, scientific success cannot be, and should never be, contingent on finding signs of life - such criteria would be levying requirements on how the universe works. Rather, scientific success is defined here as achieving a suite of measurements such that if convincing signs of life are present on Europa’s surface they could be detected at levels comparable to those found in benchmark environments on Earth, and, further, that even if no potential biosignatures are detected, the science return of the mission will significantly advance our fundamental understanding of Europa’s chemistry, geology, geophysics, and habitability.

  3. Foreground removal from WMAP 5 yr temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.

    2010-09-01

    Aims: One of the main obstacles for extracting the cosmic microwave background (CMB) signal from observations in the mm/sub-mm range is the foreground contamination by emission from Galactic component: mainly synchrotron, free-free, and thermal dust emission. The statistical nature of the intrinsic CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. Methods: The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5 yr temperature data without using any auxiliary data. Results: A simple multilayer perceptron neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also, the systematic errors, i.e. errors correlated with the Galactic foregrounds, are very small. Conclusions: With these results the neural network method is well prepared for dealing with the high - quality CMB data from the ESA Planck Surveyor satellite. unknown author type, collab

  4. Transnational Organizational Considerations for Sociocultural Differences in Ethics and Virtual Team Functioning in Laboratory Animal Science

    OpenAIRE

    Pritt, Stacy L; Mackta, Jayne

    2010-01-01

    Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working wit...

  5. Roles in Innovative Software Teams

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2010-01-01

    With inspiration from role-play and improvisational theater, we are developing a framework for innovation in software teams called Essence. Based on agile principles, Essence is designed for teams of developers and an onsite customer. This paper reports from teaching experiments inspired by design...... science, where we tried to assign differentiated roles to team members. The experiments provided valuable insights into the design of roles in Essence. These insights are used for redesigning how roles are described and conveyed in Essence....

  6. How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts

    Directory of Open Access Journals (Sweden)

    Laurel Smith-Doerr

    2017-04-01

    Full Text Available How the race and gender diversity of team members is related to innovative science and technology outcomes is debated in the scholarly literature. Some studies find diversity is linked to creativity and productivity, other studies find that diversity has no effect or even negative effects on team outcomes. Based on a critical review of the literature, this paper explains the seemingly contradictory findings through careful attention to the organizational contexts of team diversity. We distinguish between representational diversity and full integration of minority scientists. Representational diversity, where organizations have workforces that match the pool of degree recipients in relevant fields, is a necessary but not sufficient condition for diversity to yield benefits. Full integration of minority scientists (i.e., including women and people of color in an interaction context that allows for more level information exchange, unimpeded by the asymmetrical power relationships that are common across many scientific organizations, is when the full potential for diversity to have innovative outcomes is realized. Under conditions of equitable and integrated work environments, diversity leads to creativity, innovation, productivity, and positive reputational (status effects. Thus, effective policies for diversity in science and engineering must also address integration in the organizational contexts in which diverse teams are embedded.

  7. Incorporating Library School Interns on Academic Library Subject Teams

    Science.gov (United States)

    Sargent, Aloha R.; Becker, Bernd W.; Klingberg, Susan

    2011-01-01

    This case study analyzes the use of library school interns on subject-based teams for the social sciences, humanities, and sciences in the San Jose State University Library. Interns worked closely with team librarians on reference, collection development/management, and instruction activities. In a structured focus group, interns reported that the…

  8. The Physics of Teams: Interdependence, Measurable Entropy, and Computational Emotion

    Directory of Open Access Journals (Sweden)

    William F. Lawless

    2017-08-01

    Full Text Available Most of the social sciences, including psychology, economics, and subjective social network theory, are modeled on the individual, leaving the field not only a-theoretical, but also inapplicable to a physics of hybrid teams, where hybrid refers to arbitrarily combining humans, machines, and robots into a team to perform a dedicated mission (e.g., military, business, entertainment or to solve a targeted problem (e.g., with scientists, engineers, entrepreneurs. As a common social science practice, the ingredient at the heart of the social interaction, interdependence, is statistically removed prior to the replication of social experiments; but, as an analogy, statistically removing social interdependence to better study the individual is like statistically removing quantum effects as a complication to the study of the atom. Further, in applications of Shannon's information theory to teams, the effects of interdependence are minimized, but even there, interdependence is how classical information is transmitted. Consequently, numerous mistakes are made when applying non-interdependent models to policies, the law and regulations, impeding social welfare by failing to exploit the power of social interdependence. For example, adding redundancy to human teams is thought by subjective social network theorists to improve the efficiency of a network, easily contradicted by our finding that redundancy is strongly associated with corruption in non-free markets. Thus, built atop the individual, most of the social sciences, economics, and social network theory have little if anything to contribute to the engineering of hybrid teams. In defense of the social sciences, the mathematical physics of interdependence is elusive, non-intuitive and non-rational. However, by replacing determinism with bistable states, interdependence at the social level mirrors entanglement at the quantum level, suggesting the applicability of quantum tools for social science. We report

  9. A social-cognitive framework of multidisciplinary team innovation.

    Science.gov (United States)

    Paletz, Susannah B F; Schunn, Christian D

    2010-01-01

    The psychology of science typically lacks integration between cognitive and social variables. We present a new framework of team innovation in multidisciplinary science and engineering groups that ties factors from both literatures together. We focus on the effects of a particularly challenging social factor, knowledge diversity, which has a history of mixed effects on creativity, most likely because those effects are mediated and moderated by cognitive and additional social variables. In addition, we highlight the distinction between team innovative processes that are primarily divergent versus convergent; we propose that the social and cognitive implications are different for each, providing a possible explanation for knowledge diversity's mixed results on team outcomes. Social variables mapped out include formal roles, communication norms, sufficient participation and information sharing, and task conflict; cognitive variables include analogy, information search, and evaluation. This framework provides a roadmap for research that aims to harness the power of multidisciplinary teams. Copyright © 2009 Cognitive Science Society, Inc.

  10. There’s More to Science than Research: A Team-Based Role Game to Develop School Students’ Understanding of Science Careers in Pharmaceutical Quality Control

    Directory of Open Access Journals (Sweden)

    Rachael Collins

    2015-08-01

    Full Text Available School students lack information about STEM based careers, a subject that is not sufficiently embedded in the national science curriculum. As a result, students feel they receive insufficient advice to support their choice of subjects at GCSE level and beyond. Students struggle to envisage potential career pathways leading on from studying science at school, and especially for younger students it is difficult to convey typical science-based career pictures in a way that is easily accessible to them. To address this need, we developed an interactive team-based activity which uses role play to help students envisage typical work processes within a science-based career—microbial quality control in a pharmaceutical industrial environment. This activity addresses children’s curiosity about science-based careers, by enabling them to experience typical every day work processes in an industrial environment in a hands-on fashion. Additionally, the activity helps to convey abstract concepts, such as the abundance of microbes in the natural environment, microbial contamination and the importance of hygiene, which link to the science curriculum.

  11. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  12. Making Sense of Conflict in Distributed Teams: A Design Science Approach

    Science.gov (United States)

    Zhang, Guangxuan

    2016-01-01

    Conflict is a substantial, pervasive activity in team collaboration. It may arise because of differences in goals, differences in ways of working, or interpersonal dissonance. The specific focus for this research is the conflict in distributed teams. As opposed to traditional teams, participants of distributed teams are geographically dispersed…

  13. Creating Teams Increases Extension Educator Productivity

    Science.gov (United States)

    Chalker-Scott, Linda; Daniels, Catherine H.; Martini, Nicole

    2016-01-01

    The Garden Team at Washington State University is a transdisciplinary group of faculty, staff, and students with expertise in applied plant and soil sciences and an interest in Extension education. The team's primary mission is to create current, relevant, and peer-reviewed materials as Extension publications for home gardeners. The average yearly…

  14. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  15. Mapping the CMB with the Wilkinson Microwave Anisotropy Probe

    Science.gov (United States)

    Hinshaw, Gary F.

    2007-01-01

    The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  16. Features in the primordial spectrum: New constraints from WMAP7 and ACT data and prospects for the Planck mission

    International Nuclear Information System (INIS)

    Benetti, Micol; Lattanzi, Massimiliano; Calabrese, Erminia; Melchiorri, Alessandro

    2011-01-01

    We update the constraints on possible features in the primordial inflationary density perturbation spectrum by using the latest data from the WMAP7 and ACT (Atacama Cosmology Telescope) cosmic microwave background experiments. The inclusion of new data significantly improves the constraints with respect to older work, especially to smaller angular scales. While we found no clear statistical evidence in the data for extensions to the simplest, featureless, inflationary model, models with a step provide a significantly better fit than standard featureless power-law spectra. We show that the possibility of a step in the inflationary potential like the one preferred by current data will soon be tested by the forthcoming temperature and polarization data from the Planck satellite mission.

  17. Sports Biostatistician: a critical member of all sports science and medicine teams for injury prevention.

    Science.gov (United States)

    Casals, Martí; Finch, Caroline F

    2017-12-01

    Sports science and medicine need specialists to solve the challenges that arise with injury data. In the sports injury field, it is important to be able to optimise injury data to quantify injury occurrences, understand their aetiology and most importantly, prevent them. One of these specialty professions is that of Sports Biostatistician. The aim of this paper is to describe the emergent field of Sports Biostatistics and its relevance to injury prevention. A number of important issues regarding this profession and the science of sports injury prevention are highlighted. There is a clear need for more multidisciplinary teams that incorporate biostatistics, epidemiology and public health in the sports injury area. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. The physics of teams: Interdependence, measurable entropy and computational emotion

    Science.gov (United States)

    Lawless, William F.

    2017-08-01

    Most of the social sciences, including psychology, economics and subjective social network theory, are modeled on the individual, leaving the field not only a-theoretical, but also inapplicable to a physics of hybrid teams, where hybrid refers to arbitrarily combining humans, machines and robots into a team to perform a dedicated mission (e.g., military, business, entertainment) or to solve a targeted problem (e.g., with scientists, engineers, entrepreneurs). As a common social science practice, the ingredient at the heart of the social interaction, interdependence, is statistically removed prior to the replication of social experiments; but, as an analogy, statistically removing social interdependence to better study the individual is like statistically removing quantum effects as a complication to the study of the atom. Further, in applications of Shannon’s information theory to teams, the effects of interdependence are minimized, but even there, interdependence is how classical information is transmitted. Consequently, numerous mistakes are made when applying non-interdependent models to policies, the law and regulations, impeding social welfare by failing to exploit the power of social interdependence. For example, adding redundancy to human teams is thought by subjective social network theorists to improve the efficiency of a network, easily contradicted by our finding that redundancy is strongly associated with corruption in non-free markets. Thus, built atop the individual, most of the social sciences, economics and social network theory have little if anything to contribute to the engineering of hybrid teams. In defense of the social sciences, the mathematical physics of interdependence is elusive, non-intuitive and non-rational. However, by replacing determinism with bistable states, interdependence at the social level mirrors entanglement at the quantum level, suggesting the applicability of quantum tools for social science. We report how our quantum

  19. Proceedings of the fifth Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This document contains the summaries of papers presented at the 1995 Atmospheric Radiation Measurement (ARM) Science Team meeting held in San Diego, California. To put these papers in context, it is useful to consider the history and status of the ARM program at the time of the meeting. The history of the project has several themes. First, the Program has from its very beginning attempted to respond to most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. Indeed, the Program reflects an unprecedented collaboration among various elements of the federal research community, among the US Department of Energy`s national laboratories, and between an agency`s research program and the related international programs, such as Global Energy and Water Experiment and TOGA. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically. This introduction covers the first three points--the papers themselves speak to the last point. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Observing Aggression of Teachers in School Teams

    Science.gov (United States)

    Ben Sasson, Dvora; Somech, Anit

    2015-01-01

    To fill the gap in theoretical and empirical knowledge on workplace aggression by teachers working in teams, this study explored its components, its targets, and its contextual determinants. Data were collected through three observations at different schools and at different times on 29 math, homeroom, language, and science studies teams.…

  1. Team Teaching an Interdisciplinary First-Year Seminar on Magic, Religion, and the Origins of Science: A "Pieces-to-Picture" Approach

    Science.gov (United States)

    Nungsari, Melati; Dedrick, Maia; Patel, Shaily

    2017-01-01

    Interdisciplinary teaching has been advocated as a means to foster cooperation between traditionally separate fields and broaden students' perspectives in the classroom. We explored the pedagogical difficulties of interdisciplinary team teaching through a first-year seminar in magic, religion, and the origins of science. Although many accounts in…

  2. Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.

    Science.gov (United States)

    Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R

    2015-08-01

    This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.

  3. Illusions of team working in health care.

    Science.gov (United States)

    West, Michael A; Lyubovnikova, Joanne

    2013-01-01

    The ubiquity and value of teams in healthcare are well acknowledged. However, in practice, healthcare teams vary dramatically in their structures and effectiveness in ways that can damage team processes and patient outcomes. The aim of this paper is to highlight these characteristics and to extrapolate several important aspects of teamwork that have a powerful impact on team effectiveness across healthcare contexts. The paper draws upon the literature from health services management and organisational behaviour to provide an overview of the current science of healthcare teams. Underpinned by the input-process-output framework of team effectiveness, team composition, team task, and organisational support are viewed as critical inputs that influence key team processes including team objectives, leadership and reflexivity, which in turn impact staff and patient outcomes. Team training interventions and care pathways can facilitate more effective interdisciplinary teamwork. The paper argues that the prevalence of the term "team" in healthcare makes the synthesis and advancement of the scientific understanding of healthcare teams a challenge. Future research therefore needs to better define the fundamental characteristics of teams in studies in order to ensure that findings based on real teams, rather than pseudo-like groups, are accumulated.

  4. Scientific retreats with 'speed dating': networking to stimulate new interdisciplinary translational research collaborations and team science.

    Science.gov (United States)

    Ranwala, Damayanthi; Alberg, Anthony J; Brady, Kathleen T; Obeid, Jihad S; Davis, Randal; Halushka, Perry V

    2017-02-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical and Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with 'speed dating' networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat begins with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 min scientific 'speed dating' period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. Copyright © 2016 American Federation for Medical Research.

  5. Interdisciplinarity and Team Teaching

    Science.gov (United States)

    Goodwin, William M.; LeBold, William K.

    1975-01-01

    Describes eight experimental courses in a series called the Man Series, instituted at Purdue University to improve the social dimensions of engineering education. Each course is team taught by engineering, humanities, and social science faculty members and is interdisciplinary in nature. (MLH)

  6. Scientific Retreats with ‘Speed Dating’: Networking to Stimulate New Interdisciplinary Translational Research Collaborations and Team Science

    Science.gov (United States)

    Alberg, Anthony J.; Brady, Kathleen T.; Obeid, Jihad S.; Davis, Randal; Halushka, Perry V.

    2016-01-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical & Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with “speed dating” networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat commences with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 minute scientific “speed dating” period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. PMID:27807146

  7. Interdisciplinary Team Teaching versus Departmentalization in Middle Schools.

    Science.gov (United States)

    Alspaugh, John W.; Harting, Roger D.

    1998-01-01

    Studied the effects of interdisciplinary teaming versus departmentalization on student achievement in middle schools. Found no significant differences for reading, math, science, and social studies achievement. Results suggest that team teaching merits further investigation as a potential strategy for mediating the student achievement loss…

  8. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  9. Imagery Integration Team

    Science.gov (United States)

    Calhoun, Tracy; Melendrez, Dave

    2014-01-01

    The Human Exploration Science Office (KX) provides leadership for NASA's Imagery Integration (Integration 2) Team, an affiliation of experts in the use of engineering-class imagery intended to monitor the performance of launch vehicles and crewed spacecraft in flight. Typical engineering imagery assessments include studying and characterizing the liftoff and ascent debris environments; launch vehicle and propulsion element performance; in-flight activities; and entry, landing, and recovery operations. Integration 2 support has been provided not only for U.S. Government spaceflight (e.g., Space Shuttle, Ares I-X) but also for commercial launch providers, such as Space Exploration Technologies Corporation (SpaceX) and Orbital Sciences Corporation, servicing the International Space Station. The NASA Integration 2 Team is composed of imagery integration specialists from JSC, the Marshall Space Flight Center (MSFC), and the Kennedy Space Center (KSC), who have access to a vast pool of experience and capabilities related to program integration, deployment and management of imagery assets, imagery data management, and photogrammetric analysis. The Integration 2 team is currently providing integration services to commercial demonstration flights, Exploration Flight Test-1 (EFT-1), and the Space Launch System (SLS)-based Exploration Missions (EM)-1 and EM-2. EM-2 will be the first attempt to fly a piloted mission with the Orion spacecraft. The Integration 2 Team provides the customer (both commercial and Government) with access to a wide array of imagery options - ground-based, airborne, seaborne, or vehicle-based - that are available through the Government and commercial vendors. The team guides the customer in assembling the appropriate complement of imagery acquisition assets at the customer's facilities, minimizing costs associated with market research and the risk of purchasing inadequate assets. The NASA Integration 2 capability simplifies the process of securing one

  10. Path to 'Stardom' in Globally Distributed Hybrid Teams

    DEFF Research Database (Denmark)

    Sarker, Suprateek; Hove-Kirkeby, Sarah; Sarker, Saonee

    2011-01-01

    recognition that specific individuals within such teams are often critical to the team's performance. Consequently, existing knowledge about such teams may be enhanced by examining the factors that affect the performance of individual team members. This study attempts to address this need by identifying...... individuals who emerge as “stars” in globally distributed teams involved in knowledge work such as information systems development (ISD). Specifically, the study takes a knowledge-centered view in explaining which factors lead to “stardom” in such teams. Further, it adopts a social network approach consistent......Although distributed teams have been researched extensively in information systems and decision science disciplines, a review of the literature suggests that the dominant focus has been on understanding the factors affecting performance at the team level. There has however been an increasing...

  11. Team Learning Ditinjau dari Team Diversity dan Team Efficacy

    OpenAIRE

    Pohan, Vivi Gusrini Rahmadani; Ancok, Djamaludin

    2010-01-01

    This research attempted to observe team learning from the level of team diversity and team efficacy of work teams. This research used an individual level of analysis rather than the group level. The team members measured the level of team diversity, team efficacy and team learning of the teams through three scales, namely team learning scale, team diversity scale, and team efficacy scale. Respondents in this research were the active team members in a company, PT. Alkindo Mitraraya. The total ...

  12. Team Learning Ditinjau dari Team Diversity dan Team Efficacy

    OpenAIRE

    Vivi Gusrini Rahmadani Pohan; Djamaludin Ancok

    2015-01-01

    This research attempted to observe team learning from the level of team diversity and team efficacy of work teams. This research used an individual level of analysis rather than the group level. The team members measured the level of team diversity, team efficacy and team learning of the teams through three scales, namely team learning scale, team diversity scale, and team efficacy scale. Respondents in this research were the active team members in a company, PT. Alkindo Mitraraya. The total ...

  13. Team science for science communication.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Strauss, Benjamin H

    2014-09-16

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.

  14. Science Operations Management

    Science.gov (United States)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  15. Team Creative Environment as a Mediator Between CWX and R&D Team Performance and Moderating Boundary Conditions.

    Science.gov (United States)

    Bornay-Barrachina, Mar; Herrero, Inés

    2018-01-01

    The purpose of this study was to investigate how high-quality dyadic co-worker relationships (CWXs) favour or hinder team performance. Specifically, we examine the role played by CWX, team creative environment, job complexity and task interdependence to achieve higher levels of team performance. We analyse data from 410 individuals belonging to 81 R&D teams in technology sciences to examine the quality of the dyadic relationships between team members under the same supervisor (co-workers) and team performance measured by the number of publications as their research output. Higher levels of team average CWX relationships are positively related to the establishment of a favourable creative team environment, ending into higher levels of team performance. Specifically, the role played by team average CWX in such relationship is stronger when job complexity and task interdependence are also high. Team's output not only depends on the leader and his/her relationships with subordinates but also on quality relationships among team members. CWXs contribute to creative team environments, but they are essential where jobs are complex and tasks are highly dependent. This study provides evidence of the important role played by CWXs in determining a creative environment, irrespective of their leaders. Previous research has provided information about how leader's role affects team outcomes, but the role of dyadic co-worker relationships in a team remains still relatively unknown. Considering job complexity and task interdependence variables, the study provides with a better understanding about how and when high-quality CWXs should be promoted to achieve higher team performance.

  16. COLLABORATING WITH THE COMMUNITY: THE EXTRA-TERRITORIAL TRANSLATIONAL RESEARCH TEAM.

    Science.gov (United States)

    Kotarba, Joseph A; Croisant, Sharon A; Elferink, Cornelis; Scott, Lauren E

    2014-12-05

    The purpose of the present study is to suggest a revision of the team science concept to the more inclusive extra-territorial research team (ETRT). Translational thinking is largely marked by the perception of the team as a thing-like structure at the center of the scientific activity. Collaboration accordingly involves bringing external others (e.g., scientists, community members, and clinicians) into the team through limited or dependent participation. We suggest that a promising and innovative way to see the team is as an idea : a schema for assembling and managing relationships among otherwise disparate individuals with vested interests in the problem at hand. Thus, the ETRT can be seen as a process as well as an object . We provide a case study derived from a qualitative analysis of the impact of the logic of translational science on a team assessment of environmental health following an off-coast oil disaster. The ETRT in question displayed the following principles of constructive relationship management: a high sense of adventure given the quick pace and timeliness given the relevance of the oil spill to all team members; regular meetings in the community to avoid the appearance of academic hegemony; open access by lay as well as institutional scientists; integration of emergency management coordinators into the group; and the languages of public health, environmental pharmacology/toxicology and coastal culture seamlessly interwoven in discussion. The ETRT model is an appropriate strategy for mobilizing and integrating the knowledge and skills needed for comprehensive science and service responses, especially during crisis.

  17. Naturalistic decision making in forensic science: toward a better understanding of decision making by forensic team leaders.

    Science.gov (United States)

    Helsloot, Ira; Groenendaal, Jelle

    2011-07-01

    This study uses the naturalistic decision-making (NDM) perspective to examine how Dutch forensic team leaders (i.e., the officers in charge of criminal forensic research from the crime scene until the use of laboratory assistance) make decisions in real-life settings and identifies the contextual factors that might influence those decisions. First, a focus group interview was conducted to identify four NDM mechanisms in day-to-day forensic decision making. Second, a serious game was conducted to examine the influence of three of these contextual mechanisms. The results uncovered that forensic team leaders (i) were attracted to obtain further information when more information was initially made available, (ii) were likely to devote more attention to emotionally charged cases, and (iii) used not only forensic evidence in the decision making but also tactical, unverified information of the police inquiry. Interestingly, the measured contextual influences did not deviate significantly from a control group of laypeople. © 2011 American Academy of Forensic Sciences.

  18. Theory and Theorizing in Nursing Science: Commentary from the Nursing Research Special Issue Editorial Team.

    Science.gov (United States)

    Jairath, Nalini N; Peden-McAlpine, Cynthia J; Sullivan, Mary C; Vessey, Judith A; Henly, Susan J

    Articles from three landmark symposia on theory for nursing-published in Nursing Research in 1968-1969-served as a key underpinning for the development of nursing as an academic discipline. The current special issue on Theory and Theorizing in Nursing Science celebrates the 50th anniversary of publication of these seminal works in nursing theory. The purpose of this commentary is to consider the future of nursing theory development in light of articles published in the anniversary issue. The Editorial Team for the special issue identified core questions about continued nursing theory development, as related to the nursing metaparadigm, practice theory, big data, and doctoral education. Using a dialogue format, the editors discussed these core questions. The classic nursing metaparadigm (health, person, environment, nursing) was viewed as a continuing unifying element for the discipline but is in need of revision in today's scientific and practice climates. Practice theory and precision healthcare jointly arise from an emphasis on individualization. Big data and the methods of e-science are challenging the assumptions on which nursing theory development was originally based. Doctoral education for nursing scholarship requires changes to ensure that tomorrow's scholars are prepared to steward the discipline by advancing (not reifying) past approaches to nursing theory. Ongoing reexamination of theory is needed to clarify the domain of nursing, guide nursing science and practice, and direct and communicate the unique and essential contributions of nursing science to the broader health research effort and of nursing to healthcare.

  19. Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics.

    Science.gov (United States)

    Lehner, Thomas; Senthil, Geetha; Addington, Anjené M

    2015-01-01

    After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery. Published by Elsevier Inc.

  20. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  1. Team dynamics in complex projects

    NARCIS (Netherlands)

    Oeij, P.; Vroome, E.E.M. de; Dhondt, S.; Gaspersz, J.B.R.

    2012-01-01

    Complexity of projects is hotly debated and a factor which affects innovativeness of team performance. Much attention in the past is paid to technical complexity and many issues are related to natural and physical sciences. A growing awareness of the importance of socioorganisational issues is

  2. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    Science.gov (United States)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  3. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    Science.gov (United States)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  4. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  5. Exploring Mission Concepts with the JPL Innovation Foundry A-Team

    Science.gov (United States)

    Ziemer, John K.; Ervin, Joan; Lang, Jared

    2013-01-01

    The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.

  6. Study on team evaluation. Team process model for team evaluation

    International Nuclear Information System (INIS)

    Sasou Kunihide; Ebisu, Mitsuhiro; Hirose, Ayako

    2004-01-01

    Several studies have been done to evaluate or improve team performance in nuclear and aviation industries. Crew resource management is the typical example. In addition, team evaluation recently gathers interests in other teams of lawyers, medical staff, accountants, psychiatrics, executive, etc. However, the most evaluation methods focus on the results of team behavior that can be observed through training or actual business situations. What is expected team is not only resolving problems but also training younger members being destined to lead the next generation. Therefore, the authors set the final goal of this study establishing a series of methods to evaluate and improve teams inclusively such as decision making, motivation, staffing, etc. As the first step, this study develops team process model describing viewpoints for the evaluation. The team process is defined as some kinds of power that activate or inactivate competency of individuals that is the components of team's competency. To find the team process, the authors discussed the merits of team behavior with the experienced training instructors and shift supervisors of nuclear/thermal power plants. The discussion finds four team merits and many components to realize those team merits. Classifying those components into eight groups of team processes such as 'Orientation', 'Decision Making', 'Power and Responsibility', 'Workload Management', 'Professional Trust', 'Motivation', 'Training' and 'staffing', the authors propose Team Process Model with two to four sub processes in each team process. In the future, the authors will develop methods to evaluate some of the team processes for nuclear/thermal power plant operation teams. (author)

  7. Are real teams healthy teams?

    NARCIS (Netherlands)

    Buljac, M.; van Woerkom, M.; van Wijngaarden, P.

    2013-01-01

    This study examines the impact of real-team--as opposed to a team in name only--characteristics (i.e., team boundaries, stability of membership, and task interdependence) on team processes (i.e., team learning and emotional support) and team effectiveness in the long-term care sector. We employed a

  8. Team Learning in Teacher Teams: Team Entitativity as a Bridge between Teams-in-Theory and Teams-in-Practice

    Science.gov (United States)

    Vangrieken, Katrien; Dochy, Filip; Raes, Elisabeth

    2016-01-01

    This study aimed to investigate team learning in the context of teacher teams in higher vocational education. As teacher teams often do not meet all criteria included in theoretical team definitions, the construct "team entitativity" was introduced. Defined as the degree to which a group of individuals possesses the quality of being a…

  9. Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields

    Science.gov (United States)

    Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.

    2015-12-01

    STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.

  10. Astronaut Norman Thagard rests on middeck while other team is on duty

    Science.gov (United States)

    1985-01-01

    Astronaut Norman E. Thagard, mission specialist for the 'silver' team, rests on the middeck while the 'gold' team is on duty in the science module. Don L. Lind, left, 'gold' team member, meanwhile participates in autogenic feedback training (AFT), designed to help flight crewmembers overcome the effects of zero-gravity adaptation.

  11. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams.

    Science.gov (United States)

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-04-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader's verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time.

  12. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams

    Science.gov (United States)

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-01-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader’s verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time. PMID:28490856

  13. Creation of Exercises for Team-Based Learning in Business

    Science.gov (United States)

    Timmerman, John E.; Morris, R. Franklin, Jr.

    2015-01-01

    Team-based learning (TBL) is an approach that builds on both the case method and problem-based learning and has been widely adopted in the sciences and healthcare disciplines. In recent years business disciplines have also discovered the value of this approach. One of the key characteristics of the team-based learning approach consists of…

  14. Interprofessional Health Team Communication About Hospital Discharge: An Implementation Science Evaluation Study.

    Science.gov (United States)

    Bahr, Sarah J; Siclovan, Danielle M; Opper, Kristi; Beiler, Joseph; Bobay, Kathleen L; Weiss, Marianne E

    The Consolidated Framework for Implementation Research guided formative evaluation of the implementation of a redesigned interprofessional team rounding process. The purpose of the redesigned process was to improve health team communication about hospital discharge. Themes emerging from interviews of patients, nurses, and providers revealed the inherent value and positive characteristics of the new process, but also workflow, team hierarchy, and process challenges to successful implementation. The evaluation identified actionable recommendations for modifying the implementation process.

  15. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  16. A Systematic Review of Tools Used to Assess Team Leadership in Health Care Action Teams.

    Science.gov (United States)

    Rosenman, Elizabeth D; Ilgen, Jonathan S; Shandro, Jamie R; Harper, Amy L; Fernandez, Rosemarie

    2015-10-01

    To summarize the characteristics of tools used to assess leadership in health care action (HCA) teams. HCA teams are interdisciplinary teams performing complex, critical tasks under high-pressure conditions. The authors conducted a systematic review of the PubMed/MEDLINE, CINAHL, ERIC, EMBASE, PsycINFO, and Web of Science databases, key journals, and review articles published through March 2012 for English-language articles that applied leadership assessment tools to HCA teams in all specialties. Pairs of reviewers assessed identified articles for inclusion and exclusion criteria and abstracted data on study characteristics, tool characteristics, and validity evidence. Of the 9,913 abstracts screened, 83 studies were included. They described 61 team leadership assessment tools. Forty-nine tools (80%) provided behaviors, skills, or characteristics to define leadership. Forty-four tools (72%) assessed leadership as one component of a larger assessment, 13 tools (21%) identified leadership as the primary focus of the assessment, and 4 (7%) assessed leadership style. Fifty-three studies (64%) assessed leadership at the team level; 29 (35%) did so at the individual level. Assessments of simulated (n = 55) and live (n = 30) patient care events were performed. Validity evidence included content validity (n = 75), internal structure (n = 61), relationship to other variables (n = 44), and response process (n = 15). Leadership assessment tools applied to HCA teams are heterogeneous in content and application. Comparisons between tools are limited by study variability. A systematic approach to team leadership tool development, evaluation, and implementation will strengthen understanding of this important competency.

  17. Fermi LAT and WMAP observations of the supernova remnant HB 21

    Energy Technology Data Exchange (ETDEWEB)

    Pivato, G. [Dipartimento di Fisica e Astronomia " G. Galilei," Università di Padova, I-35131 Padova (Italy); Hewitt, J. W. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Tibaldo, L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Acero, F.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); De Palma, F.; Giordano, F. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Janssen, G. H. [University of Manchester, Manchester, M13 9PL (United Kingdom); Jóhannesson, G. [Science Institute, University of Iceland, IS-107 Reykjavik (Iceland); Smith, D. A., E-mail: giovanna.pivato@pd.infn.it, E-mail: john.w.hewitt@nasa.gov, E-mail: ltibaldo@slac.stanford.edu [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France)

    2013-12-20

    We present the analysis of Fermi Large Area Telescope γ-ray observations of HB 21 (G89.0+4.7). We detect significant γ-ray emission associated with the remnant: the flux >100 MeV is 9.4 ± 0.8 (stat) ± 1.6 (syst) × 10{sup –11} erg cm{sup –2} s{sup –1}. HB 21 is well modeled by a uniform disk centered at l = 88.°75 ± 0.°04, b = +4.°65 ± 0.°06 with a radius of 1.°19 ± 0.°06. The γ-ray spectrum shows clear evidence of curvature, suggesting a cutoff or break in the underlying particle population at an energy of a few GeV. We complement γ-ray observations with the analysis of the WMAP 7 yr data from 23 to 93 GHz, achieving the first detection of HB 21 at these frequencies. In combination with archival radio data, the radio spectrum shows a spectral break, which helps to constrain the relativistic electron spectrum, and, in turn, parameters of simple non-thermal radiation models. In one-zone models multiwavelength data favor the origin of γ rays from nucleon-nucleon collisions. A single population of electrons cannot produce both γ rays through bremsstrahlung and radio emission through synchrotron radiation. A predominantly inverse-Compton origin of the γ-ray emission is disfavored because it requires lower interstellar densities than are inferred for HB 21. In the hadronic-dominated scenarios, accelerated nuclei contribute a total energy of ∼3 × 10{sup 49} erg, while, in a two-zone bremsstrahlung-dominated scenario, the total energy in accelerated particles is ∼1 × 10{sup 49} erg.

  18. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    Science.gov (United States)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  19. CERN and Google team up for Science Fair

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN partners up with Google to present the world’s first online global science competition: the Google Science Fair.   The Google Science Fair invites young people aged 13-18 to conduct innovative science projects and present their results for the chance to win once-in-a-lifetime experiences and opportunities. CERN will offer a three-day visit to the Laboratory to one of the winners, and Rolf Heuer, CERN Director-General, will be on the prestigious panel of judges. Nobel laureates, science entrepreneurs, and science communicators will have the difficult task of choosing the winners. “Google is a company that was born from scientific experimentation and in that spirit we are interested in promoting science, technology, engineering and maths (best known as STEM) education all over the world,” says Samantha Peter, Education Product Marketing Manager at Google. “By creating a large competition where students can get immersed in these subjects and have the op...

  20. Team knowledge research: emerging trends and critical needs.

    Science.gov (United States)

    Wildman, Jessica L; Thayer, Amanda L; Pavlas, Davin; Salas, Eduardo; Stewart, John E; Howse, William R

    2012-02-01

    This article provides a systematic review of the team knowledge literature and guidance for further research. Recent research has called attention to the need for the improved study and understanding of team knowledge. Team knowledge refers to the higher level knowledge structures that emerge from the interactions of individual team members. We conducted a systematic review of the team knowledge literature, focusing on empirical work that involves the measurement of team knowledge constructs. For each study, we extracted author degree area, study design type, study setting, participant type, task type, construct type, elicitation method, aggregation method, measurement timeline, and criterion domain. Our analyses demonstrate that many of the methodological characteristics of team knowledge research can be linked back to the academic training of the primary author and that there are considerable gaps in our knowledge with regard to the relationships between team knowledge constructs, the mediating mechanisms between team knowledge and performance, and relationships with criteria outside of team performance, among others. We also identify categories of team knowledge not yet examined based on an organizing framework derived from a synthesis of the literature. There are clear opportunities for expansion in the study of team knowledge; the science of team knowledge would benefit from a more holistic theoretical approach. Human factors researchers are increasingly involved in the study of teams. This review and the resulting organizing framework provide researchers with a summary of team knowledge research over the past 10 years and directions for improving further research.

  1. Spectrum of the Anomalous Microwave Emission in the North Celestial Pole with WMAP 7-Year Data

    Directory of Open Access Journals (Sweden)

    Anna Bonaldi

    2012-01-01

    Full Text Available We estimate the frequency spectrum of the diffuse anomalous microwave emission (AME on the North Celestial Pole (NCP region of the sky with the Correlated Component Analysis (CCA component separation method applied to WMAP 7-yr data. The NCP is a suitable region for this analysis because the AME is weakly contaminated by synchrotron and free-free emission. By modeling the AME component as a peaked spectrum we estimate the peak frequency to be 21.7±0.8 GHz, in agreement with previous analyses which favored νp < 23 GHz. The ability of our method to correctly recover the position of the peak is verified through simulations. We compare the estimated AME spectrum with theoretical spinning dust models to constrain the hydrogen density nH. The best results are obtained with densities around 0.2–0.3 cm−3, typical of warm ionised medium (WIM to warm neutral medium (WNM conditions. The degeneracy with the gas temperature prevents an accurate determination of nH, especially for low hydrogen ionization fractions, where densities of a few cm−3 are also allowed.

  2. Technology as Teammate: Examining the Role of External Cognition in Support of Team Cognitive Processes.

    Science.gov (United States)

    Fiore, Stephen M; Wiltshire, Travis J

    2016-01-01

    In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.

  3. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    Science.gov (United States)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  4. Effective healthcare process redesign through an interdisciplinary team approach.

    Science.gov (United States)

    Snyder, Rita; Huynh, Nathan; Cai, Bo; Vidal, José; Bennett, Kevin

    2013-01-01

    Healthcare process redesign is a complex and often high risk undertaking. Typically, there is a limited understanding of the baseline process and often inadequate tools by which to assess it. This can be confounded by narrow redesign team expertise that can result in unanticipated and/or unintended redesign consequences. Interdisciplinary research teams of healthcare, biostatistics, engineering and computer science experts provide broad support for a more effective and safer approach to healthcare process redesign. We describe an interdisciplinary research team focused on medication administration process (MAP)redesign and its achievements and challenges.

  5. Team flow - The Magic of Collaboration

    NARCIS (Netherlands)

    M. Makowski; Dr. Paul Breman

    2008-01-01

    This paper is about the conceptual framework of team flow and the action research project at the Hogeschool Utrecht (University of Applied Sciences) which has been launched recently. Have you ever linked the performance of The Rolling Stones - as a long - standing successful music business - to

  6. Managing teams performing complex innovation projects

    NARCIS (Netherlands)

    Oeij, P.R.A.; Vroome, E.M.M. de; Dhondt, S.; Gaspersz, J.B.R.

    2012-01-01

    Complexity of projects is hotly debated and a factor which affects innovativeness of team performance. Much attention in the past is paid to technical complexity and many issues are related to natural and physical sciences. A growing awareness of the importance of socio-organisational issues is

  7. Building high reliability teams: progress and some reflections on teamwork training.

    Science.gov (United States)

    Salas, Eduardo; Rosen, Michael A

    2013-05-01

    The science of team training in healthcare has progressed dramatically in recent years. Methodologies have been refined and adapted for the unique and varied needs within healthcare, where once team training approaches were borrowed from other industries with little modification. Evidence continues to emerge and bolster the case that team training is an effective strategy for improving patient safety. Research is also elucidating the conditions under which teamwork training is most likely to have an impact, and what determines whether improvements achieved will be maintained over time. The articles in this special issue are a strong representation of the state of the science, the diversity of applications, and the growing sophistication of teamwork training research and practice in healthcare. In this article, we attempt to situate the findings in this issue within the broader context of healthcare team training, identify high level themes in the current state of the field, and discuss existing needs.

  8. Librarians as Part of Cross-Disciplinary, Multi-Institutional Team Projects: Experiences from the VIVO Collaboration

    Science.gov (United States)

    Garcia-Milian, Rolando; Norton, Hannah F.; Auten, Beth; Davis, Valrie I.; Holmes, Kristi L.; Johnson, Margeaux; Tennant, Michele R.

    2013-01-01

    Cross-disciplinary, team-based collaboration is essential for addressing today’s complex research questions, and librarians are increasingly entering into such collaborations. This study identifies skills needed as librarians integrate into cross-disciplinary teams, based on the experiences of librarians involved in the development and implementation of VIVO, a research discovery and collaboration platform. Participants discussed the challenges, skills gained, and lessons learned throughout the project. Their responses were analyzed in the light of the science of team science literature, and factors affecting collaboration on the VIVO team were identified. Skills in inclusive thinking, communication, perseverance, adaptability, and leadership were found to be essential. PMID:23833333

  9. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure.

    Science.gov (United States)

    Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R; Vodovotz, Yoram; Banerjee, Anirban; Moldawer, Lyle L

    2017-09-01

    The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.

  10. National Science Bowl | NREL

    Science.gov (United States)

    Science Bowl National Science Bowl The Department of Energy's Office of Science sponsors the National Science Bowl competition. This fun, fast-paced academic tournament tests the brainpower of middle and high school student teams on science and math topics. The National Science Bowl provides an

  11. Learning to Fly? First Experiences on Team Learning of Icaros Cooperative

    Science.gov (United States)

    Juvonen, Pasi

    2013-01-01

    Icaros is an information technology (IT) cooperative that was originally owned by 11 IT degree programme students of Saimaa University of Applied Sciences. This article describes experiences and challenges of team building of these students who are called "teampreneurs" during their first year as team entrepreneurs. The findings provided…

  12. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams.

    Science.gov (United States)

    Van Hooft, Edwin A J; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team's life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams' composition in terms of individual-level trait procrastination, as well as the teams' motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members' stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams' collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination.

  13. Development of Environmental Knowledge, Team Working Skills and Desirable Behaviors on Environmental Conservation of Matthayomsuksa 6 Students Using Good Science Thinking Moves Method with Metacognition Techniques

    Science.gov (United States)

    Ladawan, Charinrat; Singseewo, Adisak; Suksringarm, Paitool

    2015-01-01

    The research aimed to investigate environmental knowledge, team working skills, and desirable behaviors of students learning through the good science thinking moves method with metacognition techniques. The sample group included Matthayomsuksa 6 students from Nadoon Prachasan School, Nadoon District, Maha Sarakham Province. The research tools were…

  14. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams

    Science.gov (United States)

    Van Hooft, Edwin A. J.; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team’s life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams’ composition in terms of individual-level trait procrastination, as well as the teams’ motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members’ stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams’ collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination. PMID:29674991

  15. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams

    Directory of Open Access Journals (Sweden)

    Edwin A. J. Van Hooft

    2018-04-01

    Full Text Available Models of team development have indicated that teams typically engage in task delay during the first stages of the team’s life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams’ composition in terms of individual-level trait procrastination, as well as the teams’ motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy predicted team procrastination. Team procrastination related positively to team members’ stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams’ collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination.

  16. Team Learning and Team Composition in Nursing

    Science.gov (United States)

    Timmermans, Olaf; Van Linge, Roland; Van Petegem, Peter; Elseviers, Monique; Denekens, Joke

    2011-01-01

    Purpose: This study aims to explore team learning activities in nursing teams and to test the effect of team composition on team learning to extend conceptually an initial model of team learning and to examine empirically a new model of ambidextrous team learning in nursing. Design/methodology/approach: Quantitative research utilising exploratory…

  17. The Research of Self-Management Team and Superior-Direction Team in Team Learning Influential Factors

    OpenAIRE

    Zhang Wei

    2013-01-01

    Team learning is a cure for bureaucracy; it facilitates team innovation and team performance. But team learning occurs only when necessary conditions were met. This research focused on differences of team learning influential factors between self-management team and superior-direction team. Four variables were chosen as predictors of team learning though literature review and pilot interview. The 4 variables are team motivation, team trust, team conflict and team leadership. Selected 54 self ...

  18. The impact of team familiarity and team leader experience on team coordination errors: A panel analysis of professional basketball teams

    NARCIS (Netherlands)

    Sieweke, Jost; Zhao, B.

    2015-01-01

    To explore the dynamics involved in team coordination, we examine the impact of team familiarity and team leader experience on team coordination errors (TCEs). We argue that team familiarity has a U-shaped effect on TCEs. We study the moderating effects of team leader prior experience and team

  19. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  20. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  1. Geospatial Information Response Team

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  2. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system

  3. Better team management--better team care?

    Science.gov (United States)

    Shelley, P; Powney, B

    1994-01-01

    Team building should not be a 'bolt-on' extra, it should be a well planned, integrated part of developing teams and assisting their leaders. When asked to facilitate team building by a group of NHS managers we developed a framework which enabled individual members of staff to become more effective in the way they communicated with each other, their teams and in turn within the organization. Facing the challenge posed by complex organizational changes, staff were able to use 3 training days to increase and develop their awareness of the principles of teamwork, better team management, and how a process of leadership and team building could help yield better patient care.

  4. Team responsibility structure and team performance

    NARCIS (Netherlands)

    Doorewaard, J.A.C.M.; Hootegem, G. van; Huys, R.

    2002-01-01

    The purpose is to analyse the impact of team responsibility (the division of job regulation tasks between team leader and team members) on team performance. It bases an analysis on 36 case studies in The Netherlands which are known to have implemented team‐based work. The case studies were executed

  5. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  6. Team cohesion and team success in sport.

    Science.gov (United States)

    Carron, Albert V; Bray, Steven R; Eys, Mark A

    2002-02-01

    The main aim of this study was to examine the relationship between task cohesiveness and team success in elite teams using composite team estimates of cohesion. A secondary aim was to determine statistically the consistency (i.e. 'groupness') present in team members' perceptions of cohesion. Elite university basketball teams (n = 18) and club soccer teams (n = 9) were assessed for cohesiveness and winning percentages. Measures were recorded towards the end of each team's competitive season. Our results indicate that cohesiveness is a shared perception, thereby providing statistical support for the use of composite team scores. Further analyses indicated a strong relationship between cohesion and success (r = 0.55-0.67). Further research using multi-level statistical techniques is recommended.

  7. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  8. The Implementation of an Interdisciplinary Co-planning Team Model Among Mathematics and Science Teachers

    Science.gov (United States)

    Brown, Michelle Cetner

    In recent years, Science, Technology, Engineering, and Mathematics (STEM) education has become a significant focus of numerous theoretical and commentary articles as researchers have advocated for active and conceptually integrated learning in classrooms. Drawing connections between previously isolated subjects, especially mathematics and science, has been shown to increase student engagement, performance, and critical thinking skills. However, obstacles exist to the widespread implementation of integrated curricula in schools, such as teacher knowledge and school structure and culture. The Interdisciplinary Co-planning Team (ICT) model, in which teachers of different subjects come together regularly to discuss connections between content and to plan larger interdisciplinary activities and smaller examples and discussion points, offers a method for teachers to create sustainable interdisciplinary experiences for students within the bounds of the current school structure. The ICT model is designed to be an iterative, flexible model, providing teachers with both a regular time to come together as "experts" and "teach" each other important concepts from their separate disciplines, and then to bring their shared knowledge and language back to their own classrooms to implement with their students in ways that fit their individual classes. In this multiple-case study, which aims to describe the nature of the co-planning process, the nature of plans, and changes in teacher beliefs as a result of co-planning, three pairs of secondary mathematics and science teachers participated in a 10-week intervention with the ICT model. Each pair constituted one case. Data included observations, interviews, and artifact collection. All interviews, whole-group sessions, and co-planning sessions were transcribed and coded using both theory-based and data-based codes. Finally, a cross-case comparison was used to present similarities and differences across cases. Findings suggest that the

  9. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  10. Relationships among Team Trust, Team Cohesion, Team Satisfaction and Project Team Effectiveness as Perceived by Project Managers in Malaysia

    OpenAIRE

    Han-Ping Fung

    2014-01-01

    Today, more and more project teams are formed to achieve organizational objectives as organizations generally recognized the importance and benefits of project teams. There is a compelling reason to study what are the team outcome factors that can predict project team effectiveness as it is unclear whether these team outcome factors can yield the same result in project setting whereby there is resource and time constraint compare to normal work teams which are ongoing and operational in natur...

  11. Making Teamwork Work: Team Knowledge for Team Effectiveness.

    Science.gov (United States)

    Guchait, Priyanko; Lei, Puiwa; Tews, Michael J

    2016-01-01

    This study examined the impact of two types of team knowledge on team effectiveness. The study assessed the impact of taskwork knowledge and teamwork knowledge on team satisfaction and performance. A longitudinal study was conducted with 27 service-management teams involving 178 students in a real-life restaurant setting. Teamwork knowledge was found to impact both team outcomes. Furthermore, team learning behavior was found to mediate the relationships between teamwork knowledge and team outcomes. Educators and managers should therefore ensure these types of knowledge are developed in teams along with learning behavior for maximum effectiveness.

  12. Team-Based Development of Medical Devices: An Engineering–Business Collaborative

    Science.gov (United States)

    Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.

    2016-01-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869

  13. Team-Based Development of Medical Devices: An Engineering-Business Collaborative.

    Science.gov (United States)

    Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G

    2016-07-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.

  14. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  15. What’s next in complex networks? Capturing the concept of attacking play in invasive team sports

    OpenAIRE

    Ramos, J.; Lopes, R. J.; Araújo, D.

    2018-01-01

    WOS:000427384700003 (Nº de Acesso Web of Science) The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as ...

  16. TEAM ATTITUDE EVALUATION: AN EVALUATION IN HOSPITAL COMMITTEES.

    Science.gov (United States)

    Hekmat, Somayeh Noori; Dehnavieh, Reza; Rahimisadegh, Rohaneh; Kohpeima, Vahid; Jahromi, Jahromi Kohpeima

    2015-12-01

    Patients' health and safety is not only a function of complex treatments and advanced therapeutic technologies but also a function of a degree based on which health care professionals fulfill their duties effectively as a team. The aim of this study was to determine the attitude of hospital committee members about teamwork in Kerman hospitals. This study was conducted in 2014 on 171 members of clinical teams and committees of four educational hospitals in Kerman University of Medical Sciences. To collect data, the standard "team attitude evaluation" questionnaire was used. This questionnaire consisted of five domains which evaluated the team attitude in areas related to the team structure, leadership, situation monitoring, mutual support, and communication in the form of a 5-point Likert type scale. To analyze data, descriptive statistical tests, T-test, ANOVA, and linear regression were used. The average score of team attitude for hospital committee members was 3.9 out of 5. The findings showed that leadership had the highest score among the subscales of team work attitude, while mutual support had the lowest score. We could also observe that responsibility was an important factor in participants' team work attitude (β = -0.184, p = 0.024). Comparing data in different subgroups revealed that employment, marital status, and responsibility were the variables affecting the participants' attitudes in the team structure domain. Marital status played a role in leadership; responsibility had a role in situation monitoring; and work experience played a role in domains of communication and mutual support. Hospital committee members had a positive attitude towards teamwork. Training hospital staff and paying particular attention to key elements of effectiveness in a health care team can have a pivotal role in promoting the team culture.

  17. Robotics Team Lights Up New Year's Eve

    Science.gov (United States)

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  18. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Issue front cover thumbnail. Volume 125, Issue 4. July 2013, pages 705-958. pp 705-705. Team Change at the Journal of Chemical Sciences · R Ramaswamy · More Details Fulltext PDF. pp 707-714. NO2-induced synthesis of nitrato-iron(III) porphyrin ...

  20. The Impact of Gender Diversity on the Performance of Business Teams: Evidence from a Field Experiment

    OpenAIRE

    Hoogendoorn, Sander; Oosterbeek, Hessel; van Praag, Mirjam

    2011-01-01

    This discussion paper resulted in an article in Management Science . Volume 59 issue 7, pages 1514-1528. This paper reports on a field experiment conducted to estimate the impact of the share of women in business teams on their performance. Teams consisting of undergraduate students in business studies start up a venture as part of their curriculum. We manipulated the gender composition of teams and assigned students randomly to teams, conditional on their gender. We find that teams with an e...

  1. Peer-Led Team Learning Helps Minority Students Succeed.

    Science.gov (United States)

    Snyder, Julia J; Sloane, Jeremy D; Dunk, Ryan D P; Wiles, Jason R

    2016-03-01

    Active learning methods have been shown to be superior to traditional lecture in terms of student achievement, and our findings on the use of Peer-Led Team Learning (PLTL) concur. Students in our introductory biology course performed significantly better if they engaged in PLTL. There was also a drastic reduction in the failure rate for underrepresented minority (URM) students with PLTL, which further resulted in closing the achievement gap between URM and non-URM students. With such compelling findings, we strongly encourage the adoption of Peer-Led Team Learning in undergraduate Science, Technology, Engineering, and Mathematics (STEM) courses.

  2. Groups Meet . . . Teams Improve: Building Teams That Learn

    Science.gov (United States)

    Hillier, Janet; Dunn-Jensen, Linda M.

    2013-01-01

    Although most business students participate in team-based projects during undergraduate or graduate course work, the team experience does not always teach team skills or capture the team members' potential: Students complete the task at hand but the explicit process of becoming a team is often not learned. Drawing from organizational learning…

  3. Teams make it work: how team work engagement mediates between social resources and performance in teams.

    Science.gov (United States)

    Torrente, Pedro; Salanova, Marisa; Llorens, Susana; Schaufeli, Wilmar B

    2012-02-01

    In this study we analyze the mediating role of team work engagement between team social resources (i.e., supportive team climate, coordination, teamwork), and team performance (i.e., in-role and extra-role performance) as predicted by the Job Demands-Resources Model. Aggregated data of 533 employees nested within 62 teams and 13 organizations were used, whereas team performance was assessed by supervisor ratings. Structural equation modeling revealed that, as expected, team work engagement plays a mediating role between social resources perceived at the team level and team performance as assessed by the supervisor.

  4. Quantifying the performance of individual players in a team activity.

    Science.gov (United States)

    Duch, Jordi; Waitzman, Joshua S; Amaral, Luís A Nunes

    2010-06-16

    Teamwork is a fundamental aspect of many human activities, from business to art and from sports to science. Recent research suggest that team work is of crucial importance to cutting-edge scientific research, but little is known about how teamwork leads to greater creativity. Indeed, for many team activities, it is not even clear how to assign credit to individual team members. Remarkably, at least in the context of sports, there is usually a broad consensus on who are the top performers and on what qualifies as an outstanding performance. In order to determine how individual features can be quantified, and as a test bed for other team-based human activities, we analyze the performance of players in the European Cup 2008 soccer tournament. We develop a network approach that provides a powerful quantification of the contributions of individual players and of overall team performance. We hypothesize that generalizations of our approach could be useful in other contexts where quantification of the contributions of individual team members is important.

  5. Quantifying the performance of individual players in a team activity.

    Directory of Open Access Journals (Sweden)

    Jordi Duch

    2010-06-01

    Full Text Available Teamwork is a fundamental aspect of many human activities, from business to art and from sports to science. Recent research suggest that team work is of crucial importance to cutting-edge scientific research, but little is known about how teamwork leads to greater creativity. Indeed, for many team activities, it is not even clear how to assign credit to individual team members. Remarkably, at least in the context of sports, there is usually a broad consensus on who are the top performers and on what qualifies as an outstanding performance.In order to determine how individual features can be quantified, and as a test bed for other team-based human activities, we analyze the performance of players in the European Cup 2008 soccer tournament. We develop a network approach that provides a powerful quantification of the contributions of individual players and of overall team performance.We hypothesize that generalizations of our approach could be useful in other contexts where quantification of the contributions of individual team members is important.

  6. Team Learning Beliefs and Behaviours in Response Teams

    Science.gov (United States)

    Boon, Anne; Raes, Elisabeth; Kyndt, Eva; Dochy, Filip

    2013-01-01

    Purpose: Teams, teamwork and team learning have been the subject of many research studies over the last decades. This article aims at investigating and confirming the Team Learning Beliefs and Behaviours (TLB&B) model within a very specific population, i.e. police and firemen teams. Within this context, the paper asks whether the team's…

  7. Personality and community prevention teams: Dimensions of team leader and member personality predicting team functioning.

    Science.gov (United States)

    Feinberg, Mark E; Kim, Ji-Yeon; Greenberg, Mark T

    2008-11-01

    The predictors and correlates of positive functioning among community prevention teams have been examined in a number of research studies; however, the role of personality has been neglected. In this study, we examined whether team member and leader personality dimensions assessed at the time of team formation predicted local prevention team functioning 2.5-3.5 years later. Participants were 159 prevention team members in 14 communities participating in the PROSPER study of prevention program dissemination. Three aspects of personality, aggregated at the team level, were examined as predictors: Openness to Experience, Conscientiousness, and Agreeableness. A series of multivariate regression analyses were performed that accounted for the interdependency of five categories of team functioning. Results showed that average team member Openness was negatively, and Conscientiousness was positively linked to team functioning. The findings have implications for decisions about the level and nature of technical assistance support provided to community prevention teams.

  8. Teamwork education improves trauma team performance in undergraduate health professional students.

    Science.gov (United States)

    Baker, Valerie O'Toole; Cuzzola, Ronald; Knox, Carolyn; Liotta, Cynthia; Cornfield, Charles S; Tarkowski, Robert D; Masters, Carolynn; McCarthy, Michael; Sturdivant, Suzanne; Carlson, Jestin N

    2015-01-01

    Effective trauma resuscitation requires efficient and coordinated care from a team of providers; however, providers are rarely instructed on how to be effective members of trauma teams. Team-based learning using Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS) has been shown to improve team dynamics among practicing professionals, including physicians and nurses. The impact of TeamSTEPPS on students being trained in trauma management in an undergraduate health professional program is currently unknown. We sought to determine the impact of TeamSTEPPS on team dynamics among undergraduate students being trained in trauma resuscitation. We enrolled teams of undergraduate health professional students from four programs: nursing, physician assistant, radiologic science, and respiratory care. After completing an online training on trauma resuscitation principles, the participants completed a trauma resuscitation scenario. The participants then received teamwork training using TeamSTEPPS and completed a second trauma resuscitation scenario identical to the first. All resuscitations were recorded and scored offline by two blinded research assistants using both the Team Emergency Assessment Measure (TEAM) and Trauma Team Performance Observation Tool (TPOT) scoring systems. Pre-test and post-test TEAM and TPOT scores were compared. We enrolled a total of 48 students in 12 teams. Team leadership, situational monitoring, and overall communication improved with TeamSTEPPS training (P=0.04, P=0.02, and P=0.03, respectively), as assessed by the TPOT scoring system. TeamSTEPPS also improved the team's ability to prioritize tasks and work together to complete tasks in a rapid manner (P<0.01 and P=0.02, respectively) as measured by TEAM. Incorporating TeamSTEPPS into trauma team education leads to improved TEAM and TPOT scores among undergraduate health professionals.

  9. Six world-class research teams to investigate overcoming ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Six world-class research teams to investigate overcoming therapeutic resistance in high fatality cancers. 26 octobre 2017. Together with our partners the Canadian Institutes of Health Research, the Azrieli Foundation and the Israel Science Foundation we are pleased to announce the recipients of the Joint Canada-Israel ...

  10. Teamwork education improves trauma team performance in undergraduate health professional students

    Directory of Open Access Journals (Sweden)

    Valerie O’Toole Baker

    2015-06-01

    Full Text Available Purpose: Effective trauma resuscitation requires efficient and coordinated care from a team of providers; however, providers are rarely instructed on how to be effective members of trauma teams. Team-based learning using Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS has been shown to improve team dynamics among practicing professionals, including physicians and nurses. The impact of TeamSTEPPS on students being trained in trauma management in an undergraduate health professional program is currently unknown. We sought to determine the impact of TeamSTEPPS on team dynamics among undergraduate students being trained in trauma resuscitation. Methods: We enrolled teams of undergraduate health professional students from four programs: nursing, physician assistant, radiologic science, and respiratory care. After completing an online training on trauma resuscitation principles, the participants completed a trauma resuscitation scenario. The participants then received teamwork training using TeamSTEPPS and completed a second trauma resuscitation scenario identical to the first. All resuscitations were recorded and scored offline by two blinded research assistants using both the Team Emergency Assessment Measure (TEAM and Trauma Team Performance Observation Tool (TPOT scoring systems. Pre-test and post-test TEAM and TPOT scores were compared. Results: We enrolled a total of 48 students in 12 teams. Team leadership, situational monitoring, and overall communication improved with TeamSTEPPS training (P=0.04, P=0.02, and P=0.03, respectively, as assessed by the TPOT scoring system. TeamSTEPPS also improved the team’s ability to prioritize tasks and work together to complete tasks in a rapid manner (P<0.01 and P=0.02, respectively as measured by TEAM. Conclusions: Incorporating TeamSTEPPS into trauma team education leads to improved TEAM and TPOT scores among undergraduate health professionals.

  11. Asteroid team

    International Nuclear Information System (INIS)

    Matson, D.L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue

  12. Asteroid team

    Science.gov (United States)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  13. Consequences of team charter quality: Teamwork mental model similarity and team viability in engineering design student teams

    Science.gov (United States)

    Conway Hughston, Veronica

    Since 1996 ABET has mandated that undergraduate engineering degree granting institutions focus on learning outcomes such as professional skills (i.e. solving unstructured problems and working in teams). As a result, engineering curricula were restructured to include team based learning---including team charters. Team charters were diffused into engineering education as one of many instructional activities to meet the ABET accreditation mandates. However, the implementation and execution of team charters into engineering team based classes has been inconsistent and accepted without empirical evidence of the consequences. The purpose of the current study was to investigate team effectiveness, operationalized as team viability, as an outcome of team charter implementation in an undergraduate engineering team based design course. Two research questions were the focus of the study: a) What is the relationship between team charter quality and viability in engineering student teams, and b) What is the relationship among team charter quality, teamwork mental model similarity, and viability in engineering student teams? Thirty-eight intact teams, 23 treatment and 15 comparison, participated in the investigation. Treatment teams attended a team charter lecture, and completed a team charter homework assignment. Each team charter was assessed and assigned a quality score. Comparison teams did not join the lecture, and were not asked to create a team charter. All teams completed each data collection phase: a) similarity rating pretest; b) similarity posttest; and c) team viability survey. Findings indicate that team viability was higher in teams that attended the lecture and completed the charter assignment. Teams with higher quality team charter scores reported higher levels of team viability than teams with lower quality charter scores. Lastly, no evidence was found to support teamwork mental model similarity as a partial mediator of the team charter quality on team viability

  14. When teams fail to self-regulate: Predictors and outcomes of team procrastination among debating teams

    NARCIS (Netherlands)

    E.A.J. van Hooft (Edwin); H. van Mierlo (Heleen)

    2018-01-01

    textabstractModels of team development have indicated that teams typically engage in task delay during the first stages of the team's life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The

  15. Geophysics field school: A team-based learning experience for students and faculty

    Science.gov (United States)

    Karchewski, B.; Innanen, K. A.; Lauer, R. M.; Pidlisecky, A.

    2016-12-01

    The core challenge facing a modern science educator is to deliver a curriculum that reaches broadly and deeply into the technical domain, while also helping students to develop fundamental scientific skills such as inquiry, critical thinking and technical communication. That is, our aim is for students to achieve significant learning at all levels summarized by Bloom's Taxonomy of Educational Objectives. It is not always clear how to achieve the full spectrum of goals, with much debate over which component is more important in a science education. Team-based and experiential learning are research-supported approaches that aim to reach across the spectrum by placing students in a setting where they solve practical problems in teams of peers. This learning mode modifies the role of the instructor to a guide or facilitator, and students take a leadership role in their own education. We present a case study of our team's implementation of team-based learning in a geophysics field school, an inherently experiential learning environment. The core philosophies behind our implementation are to present clearly defined learning outcomes, to recognize that students differ in their learning modalities and to strive to engage students through a range of evidence-based learning experiences. We discuss the techniques employed to create functional teams, the key learning activities involved in a typical day of field school and data demonstrating the learning activities that showed the strongest correlation to overall performance in the course. In the process, we also realized that our team-based approach to course design and implementation also enhanced our skillsets as educators, and our institution recently recognized our efforts with a team teaching award. Therefore, we conclude with some of our observations of best practices for team teaching in a field setting to initiate discussions with colleagues engaged in similar activities.

  16. Team player styles, team design variables and team work effectiveness in Egypt

    OpenAIRE

    El-Kot, Ghada Awed Hassan

    2001-01-01

    The literature has revealed few studies of management in Arab countries in general and particularly in Egypt. Many Egyptian organisations implemented the team concept a number of years ago, however, there do not appear to be any studies investicitaýt inc",D team work effectiveness in Egypt. The literature review and the findings of a pilot study emphasised the need for empirical research in team work in Egypt. Team effectiveness models are examined in order to identify the fact...

  17. Mavericks versus team players: the trade-off between shared glory and making a personal contribution.

    Science.gov (United States)

    Charlton, Bruce G

    2008-08-01

    The modern world is characterized by progressive specialization of function and ever-larger-scale coordination of these ever-more-specialized functions. More and more of science is done by increasing-sized teams of specialists, and the ability to engage in 'teamwork' is regarded as an almost essential attribute for most scientists. But teamwork does not suit all personality types. Some 'maverick' individuals would rather have personal credit for a relatively modest scientific contribution which they achieved (mostly) by themselves, than a share of credit in a much larger scientific contribution generated by a large team. The present system of medical science is organized to discourage mavericks and, on the whole, this is probably justifiable on the basis that scientists are not natural team players. Extra inducements are necessary to get people to adopt the relatively self-effacing behaviours necessary for building the large organizations of complementary specialists that are necessary for tackling many of the most intractable modern scientific problems. However, an ethos of teamwork does carry substantial disadvantages. Although most scientists are dispensable, and do not make a significant personal contribution, the very best scientists do make a difference to the rate of progress of science. And top notch scientists are wasted as team players. The very best scientists can function only as mavericks because they are doing science for vocational reasons. The highest intensity of personal commitment requires individual rewards from distinctive contributions. In conclusion, the current incentive system that encourages teamwork involves a trade-off. The majority of modestly talented scientists can probably achieve more when working as members of a team. But the very best scientists probably need to work as mavericks.

  18. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  19. COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION BY A GAUSSIANIZED BLACKWELL-RAO ESTIMATOR

    International Nuclear Information System (INIS)

    Rudjord, Oe.; Groeneboom, N. E.; Eriksen, H. K.; Huey, Greg; Gorski, K. M.; Jewell, J. B.

    2009-01-01

    We introduce a new cosmic microwave background (CMB) temperature likelihood approximation called the Gaussianized Blackwell-Rao estimator. This estimator is derived by transforming the observed marginal power spectrum distributions obtained by the CMB Gibbs sampler into standard univariate Gaussians, and then approximating their joint transformed distribution by a multivariate Gaussian. The method is exact for full-sky coverage and uniform noise and an excellent approximation for sky cuts and scanning patterns relevant for modern satellite experiments such as the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck. The result is a stable, accurate, and computationally very efficient CMB temperature likelihood representation that allows the user to exploit the unique error propagation capabilities of the Gibbs sampler to high ls. A single evaluation of this estimator between l = 2 and 200 takes ∼0.2 CPU milliseconds, while for comparison, a singe pixel space likelihood evaluation between l = 2 and 30 for a map with ∼2500 pixels requires ∼20 s. We apply this tool to the five-year WMAP temperature data, and re-estimate the angular temperature power spectrum, C l , and likelihood, L(C l ), for l ≤ 200, and derive new cosmological parameters for the standard six-parameter ΛCDM model. Our spectrum is in excellent agreement with the official WMAP spectrum, but we find slight differences in the derived cosmological parameters. Most importantly, the spectral index of scalar perturbations is n s = 0.973 ± 0.014, 1.9σ away from unity and 0.6σ higher than the official WMAP result, n s = 0.965 ± 0.014. This suggests that an exact likelihood treatment is required to higher ls than previously believed, reinforcing and extending our conclusions from the three-year WMAP analysis. In that case, we found that the suboptimal likelihood approximation adopted between l = 12 and 30 by the WMAP team biased n s low by 0.4σ, while here we find that the same approximation

  20. TEAM.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document presents materials covering the television campaign against drunk driving called "TEAM" (Techniques for Effective Alcohol Management). It is noted that TEAM's purpose is to promote effective alcohol management in public facilities and other establishments that serve alcoholic beverages. TEAM sponsors are listed, including…

  1. Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    OpenAIRE

    Lewis, Cara; Darnell, Doyanne; Kerns, Suzanne; Monroe-DeVita, Maria; Landes, Sara J.; Lyon, Aaron R.; Stanick, Cameo; Dorsey, Shannon; Locke, Jill; Marriott, Brigid; Puspitasari, Ajeng; Dorsey, Caitlin; Hendricks, Karin; Pierson, Andria; Fizur, Phil

    2016-01-01

    Table of contents Introduction to the 3rd Biennial Conference of the Society for Implementation Research Collaboration: advancing efficient methodologies through team science and community partnerships Cara Lewis, Doyanne Darnell, Suzanne Kerns, Maria Monroe-DeVita, Sara J. Landes, Aaron R. Lyon, Cameo Stanick, Shannon Dorsey, Jill Locke, Brigid Marriott, Ajeng Puspitasari, Caitlin Dorsey, Karin Hendricks, Andria Pierson, Phil Fizur, Katherine A. Comtois A1: A behavioral economic perspective ...

  2. Increasing Student-Learning Team Effectiveness with Team Charters

    Science.gov (United States)

    Hunsaker, Phillip; Pavett, Cynthia; Hunsaker, Johanna

    2011-01-01

    Because teams are a ubiquitous part of most organizations today, it is common for business educators to use team assignments to help students experientially learn about course concepts and team process. Unfortunately, students frequently experience a number of problems during team assignments. The authors describe the results of their research and…

  3. Effects of team emotional authenticity on virtual team performance

    Directory of Open Access Journals (Sweden)

    Catherine E Connelly

    2016-08-01

    Full Text Available Members of virtual teams lack many of the visual or auditory cues that are usually used as the basis for impressions about fellow team members. We focus on the effects of the impressions formed in this context, and use social exchange theory to understand how these impressions affect team performance. Our pilot study, using content analysis (n = 191 students, suggested that most individuals believe that they can assess others’ emotional authenticity in online settings by focusing on the content and tone of the messages. Our quantitative study examined the effects of these assessments. Structural equation modeling (SEM analysis (n = 81 student teams suggested that team-level trust and teamwork behaviors mediate the relationship between team emotional authenticity and team performance, and illuminate the importance of team emotional authenticity for team processes and outcomes.

  4. The importance of team functioning to natural resource planning outcomes.

    Science.gov (United States)

    Stern, Marc J; Predmore, S Andrew

    2012-09-15

    In its recent history, the U.S. Forest Service is among many federal land management agencies struggling with questions concerning why its planning procedures are sometimes inefficient, perform poorly in the eyes of the public, and fail to deliver outputs that advance agency mission. By examining a representative sample of National Environmental Policy Act (NEPA) processes conducted by the agency between 2007 and 2009, we provide new insights into what drives outcomes in these planning processes. We examined team leaders' perceptions of the following outcomes: achievement of agency goals and NEPA mandates, process efficiency, public relations, and team outcomes. The most consistently important predictors of positive outcomes were team harmony and a clearly empowered team leader. Other factors, such as perceptions of the use of best science, a clear and unambiguous purpose and need, team turnover (personnel changes during the process), extra-agency engagement, and intra-agency relations, were also important, but played a less consistent role. The findings suggest the importance of empowering team leaders and team members through enhancing elements of discretion, responsibility, clear role definition, collaborative interdisciplinary deliberation, and perceived self-efficacy. The results also suggest the importance of genuine concern and respect for participating publics and effective inter-agency coordination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  6. Recommendations for e-learning in New Product Development teams

    NARCIS (Netherlands)

    Bitter-Rijpkema, Marlies; Pannekeet, Kees; Rutjens, Marjo

    2009-01-01

    Bitter-Rijpkema, M., Pannekeet, K., & Rutjens, M. (2009). Recommendations for e-learning in New Product Development teams. In S. Hambach, A. Martens, D. Tavangarian & B. Urban (Eds.), Proceedings of the 2nd International eLBa Science Conference (pp. 135-145). June, 17-19, 2009, Rostock, Germany:

  7. Measuring Team Learning Behaviours through Observing Verbal Team Interaction

    Science.gov (United States)

    Raes, Elisabeth; Boon, Anne; Kyndt, Eva; Dochy, Filip

    2015-01-01

    Purpose: This study aims to explore, as an answer to the observed lack of knowledge about actual team learning behaviours, the characteristics of the actual observed basic team learning behaviours and facilitating team learning behaviours more in-depth of three project teams. Over time, team learning in an organisational context has been…

  8. Factors contributing to nursing team work in an acute care tertiary hospital.

    Science.gov (United States)

    Polis, Suzanne; Higgs, Megan; Manning, Vicki; Netto, Gayle; Fernandez, Ritin

    Effective nursing teamwork is an essential component of quality health care and patient safety. Understanding which factors foster team work ensures teamwork qualities are cultivated and sustained. This study aims to investigate which factors are associated with team work in an Australian acute care tertiary hospital across all inpatient and outpatient settings. All nurses and midwives rostered to inpatient and outpatient wards in an acute care 600 bed hospital in Sydney Australia were invited to participate in a cross sectional survey between September to October 2013. Data were collected, collated, checked and analysed using Statistical Package for the Social Sciences (SPSS) Version 21. Factors reporting a significant correlation with where p team leadership were 3.6 (S.D. 0.57) and 3.8 (SD 0.6) respectively. Leadership and communication between nurses were significant predictors of team work p team work.

  9. The Relationship between Management Team Size and Team Performance: The Mediating Effect of Team Psychological Safety

    OpenAIRE

    Midthaug, Mari Bratterud

    2017-01-01

    The purpose of this thesis is to explore the relationship between team size (number of team members) and team performance in management teams. There is a lack of empirical research exploring the potential links between these two elements within management teams. Further, little attention has been paid to potential mechanisms affecting this relationship. In this study, team psychological safety has been examined as a potential mediator in the size-performance relationship, hypothesizing that t...

  10. THE INCORPORATION OF THE USA ‘SCIENCE MADE SENSIBLE’ PROGRAM IN SOUTH AFRICAN PRIMARY SCHOOLS: A CROSS-CULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2016-02-01

    Full Text Available The Science Made Sensible (SMS program began as a partnership between the University of Miami (UM, Florida, USA, and some public schools in Miami. In this program, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of the SMS program in Miami, it was extended internationally. The SMS team (two Miami Grade 6/7 science teachers and two UM postgraduate students, 195 learners, and five South African teachers at two primary schools in Pretoria, South Africa, participated in this study. A quantitative research design was employed, and learners, teachers and UM postgraduate students used questionnaires to evaluate the SMS program. The results show that the SMS team was successful in reaching the SMS goals in these South African schools. More than 90% of the learners are of opinion that the SMS team from the USA made them more interested in the natural sciences and fostered an appreciation for the natural sciences. All the South African teachers plan to adopt and adapt some of the pedagogical strategies they learned from the SMS team. This article includes a discussion about the benefits of inquiry-based learning and the similarities and dissimilarities of USA and South Africa’s teaching methods in the science classrooms.

  11. Leading Teams of Leaders: What Helps Team Member Learning?

    Science.gov (United States)

    Higgins, Monica; Young, Lissa; Weiner, Jennie; Wlodarczyk, Steven

    2010-01-01

    School districts are moving toward a new form of management in which superintendents need to form and nurture leadership teams. A study of 25 such teams in Connecticut suggests that a team's effectiveness is maximized when the team members are coached by other team members, not the superintendent, and when they are coached on task-related…

  12. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  13. A Project Team: a Team or Just a Group?

    Directory of Open Access Journals (Sweden)

    Kateřina

    2014-06-01

    Full Text Available This paper deals with issues related to work in either teams or groups. The theoretical part discusses a team and a group with regards to its definition, classification and basic distinction, brings in more on the typology of team roles, personality assessment and sociometric methods. The analytical part tests the project (work team of a medical center represented in terms of personality and motivational types, team roles and interpersonal team relations concerning the willingness of cooperation and communication. The main objective of this work is to verify the validity of the assumptions that the analyzed team represents a very disparate group as for its composition from the perspective of personality types, types of motivation, team roles and interpersonal relations in terms of the willingness of cooperation and communication. A separate output shall focus on sociometric investigation of those team members where willingness to work together and communicate is based on the authors’ assumption of tight interdependence.

  14. The Team Climate Inventory: application in hospital teams and methodological considerations.

    Science.gov (United States)

    Ouwens, M; Hulscher, M; Akkermans, R; Hermens, R; Grol, R; Wollersheim, H

    2008-08-01

    To test the validity, reliability and discriminating capacity of an instrument to assess team climate, the Team Climate Inventory (TCI), in a sample of Dutch hospital teams. The TCI is based on a four-factor theory of team climate for innovation. Validation study. Hospital teams in The Netherlands. 424 healthcare professionals; 355 nurses working in 22 nursing teams and 69 nurses and doctors working in 14 quality-improvement teams. Exploratory and confirmatory factor analyses, Pearson's product moment correlations, internal homogeneity of the TCI scales based on Cronbach alpha, and the TCI capability to discriminate between two types of healthcare teams, namely nursing teams and quality-improvement teams. The validity test revealed the TCI's five-factor structure and moderate data fit. The Cronbach alphas of the five scales showed acceptable reliabilities. The TCI discriminated between nursing teams and quality-improvement teams. The mean scores of quality-improvement teams were all significantly higher than those of the nursing teams. Patient care teams are essential for high-quality patient care, and team climate is an important characteristic of successful teams. This study shows that the TCI is a valid, reliable and discriminating self-report measure of team climate in hospital teams. The TCI can be used as a quality-improvement tool or in quality-of-care research.

  15. Team Psychological Safety and Team Learning: A Cultural Perspective

    Science.gov (United States)

    Cauwelier, Peter; Ribière, Vincent M.; Bennet, Alex

    2016-01-01

    Purpose: The purpose of this paper was to evaluate if the concept of team psychological safety, a key driver of team learning and originally studied in the West, can be applied in teams from different national cultures. The model originally validated for teams in the West is applied to teams in Thailand to evaluate its validity, and the views team…

  16. Management Teams

    CERN Document Server

    Belbin, R Meredith Meredith

    2012-01-01

    Meredith Belbin's work on teams has become part of everyday language in organizations all over the world. All kinds of teams and team behaviours are covered. At the end of the book is a self-perception inventory so that readers can match their own personalities to particular team roles. Management Teams is required reading for managers concerned with achieving results by getting the best from their key personnel.

  17. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  18. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    Science.gov (United States)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  19. Reel Science: An Ethnographic Study of Girls' Science Identity Development in and through Film

    Science.gov (United States)

    Chaffee, Rachel L.

    2016-01-01

    This dissertation study contributes to the research on filmmaking and identity development by exploring the ways that film production provided unique opportunities for a team of four girls to engage in science, to develop identities in science, and to see and understand science differently. Using social practice, identity, and feminist theory and…

  20. Putting the "Team" in the Fine Arts Team: An Application of Business Management Team Concepts

    Science.gov (United States)

    Fisher, Ryan

    2007-01-01

    In this article, the author discusses current challenges to the idea of teamwork in fine arts teams, redefines the terms team and collaboration using a business management perspective, discusses the success of effective teams in the business world and the characteristics of those teams, and proposes the implementation of the business model of…

  1. A Project Team: A Team or Just a Group?

    Directory of Open Access Journals (Sweden)

    Katerina Hrazdilova Bockova

    2013-11-01

    Full Text Available This paper deals with issues related to work in either teams or groups. The theoretical part which discusses a team and a group with regards to its definition, classification and basic distinction brings in more on the typology of team roles, personality assessment and sociometric methods. The analytical part tests the project (work team of a medical center represented in terms of personality and motivational types, team roles and interpersonal team relations concerning the willingness of cooperation and communication. The main objective of this work was to determine whether the existing team is not by its nature rather a working group that contributes to the generally perceived stagnation of that field.

  2. Employee Knowledge Sharing in Work Teams: Effects of Team Diversity, Emergent States, and Team Leadership

    Science.gov (United States)

    Noh, Jae Hang

    2013-01-01

    Knowledge sharing in work teams is one of the critical team processes. Without sharing of knowledge, work teams and organizations may not be able to fully utilize the diverse knowledge brought into work teams by their members. The purpose of this study was to investigate antecedents and underlying mechanisms influencing the extent to which team…

  3. [Investigation of team processes that enhance team performance in business organization].

    Science.gov (United States)

    Nawata, Kengo; Yamaguchi, Hiroyuki; Hatano, Toru; Aoshima, Mika

    2015-02-01

    Many researchers have suggested team processes that enhance team performance. However, past team process models were based on crew team, whose all team members perform an indivisible temporary task. These models may be inapplicable business teams, whose individual members perform middle- and long-term tasks assigned to individual members. This study modified the teamwork model of Dickinson and McIntyre (1997) and aimed to demonstrate a whole team process that enhances the performance of business teams. We surveyed five companies (member N = 1,400, team N = 161) and investigated team-level-processes. Results showed that there were two sides of team processes: "communication" and "collaboration to achieve a goal." Team processes in which communication enhanced collaboration improved team performance with regard to all aspects of the quantitative objective index (e.g., current income and number of sales), supervisor rating, and self-rating measurements. On the basis of these results, we discuss the entire process by which teamwork enhances team performance in business organizations.

  4. Individual and team performance in team-handball: a review.

    Science.gov (United States)

    Wagner, Herbert; Finkenzeller, Thomas; Würth, Sabine; von Duvillard, Serge P

    2014-12-01

    Team handball is a complex sport game that is determined by the individual performance of each player as well as tactical components and interaction of the team. The aim of this review was to specify the elements of team-handball performance based on scientific studies and practical experience, and to convey perspectives for practical implication. Scientific studies were identified via data bases of PubMed, Web of Knowledge, SPORT Discus, Google Scholar, and Hercules. A total of 56 articles met the inclusion criteria. In addition, we supplemented the review with 13 additional articles, proceedings and book sections. It was found that the specific characteristics of team-handball with frequent intensity changes, team-handball techniques, hard body confrontations, mental skills and social factors specify the determinants of coordination, endurance, strength and cognition. Although we found comprehensive studies examining individual performance in team-handball players of different experience level, sex or age, there is a lack of studies, particularly for team-handball specific training, as well as cognition and social factors. Key PointsThe specific characteristics of team-handball with frequent intensity changes, specific skills, hard body confrontations, mental skills and social factors define the determinants of coordination, endurance, strength and cognition.To increase individual and team performance in team-handball specific training based on these determinants have been suggested.Although there are comprehensive studies examining individual performance in team-handball players of different experience level, sex, or age are published, there is a lack of training studies, particularly for team-handball specific techniques and endurance, as well as cognition and social factors.

  5. Ready to learn physics: a team-based learning model for first year university

    Science.gov (United States)

    Parappilly, Maria; Schmidt, Lisa; De Ritter, Samantha

    2015-09-01

    Team-based learning (TBL) is an established model of group work which aims to improve students' ability to apply discipline-related content. TBL consists of a readiness assurance process (RAP), student groups and application activities. While TBL has not been implemented widely in science, technology, engineering and mathematics disciplines, it has been effective in improving student learning in other disciplines. This paper describes the incorporation of TBL activities into a non-calculus based introductory level physics topic—Physics for the Modern World. Students were given pre-class preparation materials and an individual RAP online test before the workshops. The pre-workshop individual RAP test ensured that all students were exposed to concept-based questions before their workshops and motivated them to use the preparatory materials in readiness for the workshop. The students were placed into random teams and during the first part of the workshop, the teams went through a subset of the quiz questions (team RAP test) and in the remaining time, teams completed an in-class assignment. After the workshop students were allowed another attempt at the individual RAP test to see if their knowledge had improved. The ability of TBL to promote student learning of key concepts was evaluated by experiment using pre- and post- testing. The students’ perception of TBL was monitored by discussion posts and survey responses. Finally, the ability of TBL to support peer-peer interaction was evaluated by video analysis of the class. We found that the TBL process improved student learning; students did interact with each other in class; and the students had a positive view of TBL. To assess the transferability of this model to other topics, we conducted a comparison study with an environmental science topic which produced similar results. Our study supports the use of this TBL model in science topics.

  6. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  7. The effects on team emotions and team effectiveness of coaching in interprofessional health and social care teams.

    Science.gov (United States)

    Dimas, Isabel Dórdio; Renato Lourenço, Paulo; Rebelo, Teresa

    2016-07-01

    The purpose of this study was to examine the effects of coaching behaviours provided by peers and by the leader on the emotions experienced by interprofessional health and social care teams and on members' satisfaction with the team, as well as on team performance. Data were obtained from a survey among 344 employees working in 52 interprofessional health and social care teams from nine Portuguese organizations. The results show that leader coaching and peer coaching have a positive effect on the level of team members' satisfaction with the team and on positive emotions, and a negative effect on negative emotions. Furthermore, coaching provided by peers presents a positive effect on team performance as assessed by the leader of the team. Our findings put forward the importance of engaging in coaching behaviours to promote quality of the team experience, as well as the achievement of team performance objectives. Further studies should explore how coaching behaviours impact the patient, whose well-being is the ultimate objective of a team in the health and social care system, namely in terms of the patient's perception of quality care or patient outcomes.

  8. Teaming up

    DEFF Research Database (Denmark)

    Warhuus, Jan; Günzel-Jensen, Franziska; Robinson, Sarah

    2016-01-01

    types of team formation: random teacher pre-assigned, student selection, and teacher directed diversity. In each of these modules, ethnographic methods (interviews and observations) were employed. Additionally, we had access to students learning logs, formative and summative assessments, and final exams...... functioning entrepreneurial student teams as most teams lack personal chemistry which makes them anchor their work too much in a pre-defined project. In contrast, we find that students that can form their own teams aim for less diverse teams than what is achieved by random assignment. However, the homophily......Questions we care about (Objectives): When students have to work on challenging tasks, as it is often the case in entrepreneurship classrooms that leverage experiential learning, team success becomes central to the students learning. Yet, the formation of teams is often left up to the students...

  9. Study of connectivity in student teams by observation of their learning processes

    Science.gov (United States)

    Pacheco, Patricio H.; Correa, Rafael D.

    2016-05-01

    A registration procedure based data tracking classroom activities students formed into teams, which are immersed in basic learning processes, particularly physical sciences is presented. For the analysis of the data various mathematical tools to deliver results in numerical indicators linking their learning, performance, quality of relational nexus to transformation their emotions. The range of variables under observation and further study, which is influenced by the evolution of the emotions of the different teams of students, it also covers the traditional approach to information delivery from outside (teaching in lecture) or from inside each team (abilities of pupils) to instructional materials that enhance learning inquiry and persuasion.

  10. Cheap Talk: “Team Factors and Management Practices Influence on Team Trust”

    OpenAIRE

    Doris Padmini Selvaratnam; Aini Aman; Muhamad Maziz Mahyuddin Bin Kamaludin; Gary Lynn; Richard Reilly

    2016-01-01

    Team trust has been cited as a contributing factor towards team performance. This paper looks at the antecedents of team trust and to what extent they influence team trust. The antecedents of team trust are team factors like team autonomy, team stability and team member experience; and the management practices are top management involvement and management support. The results demonstrated that team factors and management practices influence team trust individually. The key find...

  11. Peer Assessment of Elementary Science Teaching Skills

    Science.gov (United States)

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  12. Addressing the paradox of the team innovation process: A review and practical considerations.

    Science.gov (United States)

    Thayer, Amanda L; Petruzzelli, Alexandra; McClurg, Caitlin E

    2018-01-01

    Facilitating team innovation is paramount to promoting progress in the science, technology, engineering, and math fields, as well as advancing national health, safety, prosperity, and welfare. However, innovation teams face a unique set of challenges due to the novelty and uncertainty that is core to the definition of innovation, as well as the paradoxical nature of idea generation and idea implementation processes. These and other challenges must be overcome for innovation teams to realize their full potential for producing change. The purpose of this review is, thus, to provide insight into the unique context that these teams function within and provide an integrative, evidence-based, and practically useful, organizing heuristic that focuses on the most important considerations for facilitating team innovation. Finally, we provide practical guidance for psychologists, organizations, practitioners, scientists, educators, policymakers, and others who employ teams to produce novel, innovative solutions to today's problems. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Team Leadership and Cancer End-of-Life Decision Making.

    Science.gov (United States)

    Waldfogel, Julie M; Battle, Dena J; Rosen, Michael; Knight, Louise; Saiki, Catherine B; Nesbit, Suzanne A; Cooper, Rhonda S; Browner, Ilene S; Hoofring, Laura H; Billing, Lynn S; Dy, Sydney M

    2016-11-01

    End-of-life decision making in cancer can be a complicated process. Patients and families encounter multiple providers throughout their cancer care. When the efforts of these providers are not well coordinated in teams, opportunities for high-quality, longitudinal goals of care discussions can be missed. This article reviews the case of a 55-year-old man with lung cancer, illustrating the barriers and missed opportunities for end-of-life decision making in his care through the lens of team leadership, a key principle in the science of teams. The challenges demonstrated in this case reflect the importance of the four functions of team leadership: information search and structuring, information use in problem solving, managing personnel resources, and managing material resources. Engaging in shared leadership of these four functions can help care providers improve their interactions with patients and families concerning end-of-life care decision making. This shared leadership can also produce a cohesive care plan that benefits from the expertise of the range of available providers while reflecting patient needs and preferences. Clinicians and researchers should consider the roles of team leadership functions and shared leadership in improving patient care when developing and studying models of cancer care delivery.

  14. Superhero science: from fiction to fact

    Science.gov (United States)

    Follows, Michael

    2017-11-01

    At the 2016 Manchester Science Festival, a team of like-minded scientists came together to try to suss out the real-world science behind everything from Wonder Woman's lasso to the Hulk's gigantic transformation. The result is The Secret Science of Superheroes- an eclectic collection of essays.

  15. NIMROD: A Customer Focused, Team Driven Approach for Fusion Code Development

    Science.gov (United States)

    Karandikar, H. M.; Schnack, D. D.

    1996-11-01

    NIMROD is a new code that will be used for the analysis of existing fusion experiments, prediction of operational limits, and design of future devices. An approach called Integrated Product Development (IPD) is being used for the development of NIMROD. It is a dramatic departure from existing practice in the fusion program. Code development is being done by a self-directed, multi-disciplinary, multi-institutional team that consists of experts in plasma theory, experiment, computational physics, and computer science. Customer representatives (ITER, US experiments) are an integral part of the team. The team is using techniques such as Quality Function Deployment (QFD), Pugh Concept Selection, Rapid Prototyping, and Risk Management, during the design phase of NIMROD. Extensive use is made of communication and internet technology to support collaborative work. Our experience with using these team techniques for such a complex software development project will be reported.

  16. Science Me! | 09-10 July | Geneva

    CERN Multimedia

    2016-01-01

    The 11th Nuit de la Science (see here) will happen on July 9 and 10 on the theme "The Rules of the Game" in the gorgeous park of the Perle-du-Lac showcasing the Museum of Science History, organizer of this event that attracts 30-35,000 visitors on each edition.   On this occasion, the Chimiscope and the Museum of Science History invite the public to take part to Science Me!, the first European science show competition. Under a large circus tent, teams of young scientists from all origins and practicing all sciences will compete under the form of 10-minute shows, in French or in English. At the end of each show, the audience will also be able to interact and converse with the participating teams. The success of the demonstrations will be measured by applausemeter, while a jury of neutral and independent scientists will evaluate the qualit...

  17. Enhancing the Effectiveness of Work Groups and Teams: A Reflection.

    Science.gov (United States)

    Kozlowski, Steve W J

    2018-03-01

    Teamwork has been at the core of human accomplishment across the millennia, and it was a focus of social psychological inquiry on small group behavior for nearly half a century. However, as organizations world-wide reorganized work around teams over the past two decades, the nature of teamwork and factors influencing it became a central focus of research in organizational psychology and management. In this article, I reflect on the impetus, strategy, key features, and scientific contribution of "Enhancing the Effectiveness of Work Groups and Teams," by Kozlowski and Ilgen, a review monograph published in Psychological Science in the Public Interest in 2006.

  18. Cohesion in Online Student Teams versus Traditional Teams

    Science.gov (United States)

    Hansen, David E.

    2016-01-01

    Researchers have found that the electronic methods in use for online team communication today increase communication quality in project-based work situations. Because communication quality is known to influence group cohesion, the present research examined whether online student project teams are more cohesive than traditional teams. We tested…

  19. Team Action Imagery and Team Cognition: Imagery of Game Situations and Required Team Actions Promotes a Functional Structure in Players' Representations of Team-Level Tactics.

    Science.gov (United States)

    Frank, Cornelia; Linstromberg, Gian-Luca; Hennig, Linda; Heinen, Thomas; Schack, Thomas

    2018-02-01

    A team's cognitions of interpersonally coordinated actions are a crucial component for successful team performance. Here, we present an approach to practice team action by way of imagery and examine its impact on team cognitions in long-term memory. We investigated the impact of a 4-week team action imagery intervention on futsal players' mental representations of team-level tactics. Skilled futsal players were assigned to either an imagery training group or a no imagery training control group. Participants in the imagery training group practiced four team-level tactics by imagining team actions in specific game situations for three times a week. Results revealed that the imagery training group's representations were more similar to that of an expert representation after the intervention compared with the control group. This study indicates that team action imagery training can have a significant impact on players' tactical skill representations and thus order formation in long-term memory.

  20. science, technology and environment: interchange workshops

    African Journals Online (AJOL)

    of stimulating discourse on pressing issues in science, technology ... the context of Lesotho in collaboration with the selected teachers (the research team),. 2. Explore how ... appropriate teaching methodologies for EE in multi- cultural science ...

  1. NPOESS Preparatory Project (NPP) Science Overview

    Science.gov (United States)

    Butler, James J.

    2011-01-01

    NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.

  2. Interprofessional Education and Team-Based Learning in a Research Methods Course.

    Science.gov (United States)

    Schug, Vicki; Finch-Guthrie, Patricia; Benz, Janet

    2017-12-18

    This article describes team-based pedagogical strategies for a hybrid, four-credit research methods course with students from nursing, exercise, and nutrition science. The research problem of concussion in football, a socially relevant and controversial topic, was used to explore interprofessional perspectives and develop shared problem solving. The course was designed using permanent teams, readiness assurance, application exercises, and peer evaluation to facilitate student achievement of competencies related to interprofessional collaboration and research application. Feedback from students, faculty, and the Readiness for Interprofessional Learning Scale was used to evaluate the learning innovation.

  3. Community Disaster and Sustainability Teams for Civil Protection

    Science.gov (United States)

    Kelman, I.; Cordonnier, B.

    2009-04-01

    Many examples of community-based teams for civil protection and disaster risk reduction exist. Turkey has a Community Disaster Volunteer Training Program while the USA has Community Emergency Response Teams which have been extended into secondary schools as Teen School Emergency Response Training. The principles and practices of these teams further apply directly to other development and sustainability endeavours, all of which are intricately linked to disaster risk reduction and civil protection. An example is keeping local water courses and storm drains clear from rubbish. That improves community health and cleanliness while assisting rainfall drainage to reduce flood risk. The "community teams" concept, as implemented for civil protection and disaster risk reduction, therefore connects with day-to-day living, such as ensuring that all community members have adequate access to water, food, waste management, shelter, health care, education, and energy. Community teams should be based on the best science and pedagogy available to ensure that concepts, training, skills, and implementation are effective and are maintained over the long-term. That entails going beyond the interest that is commonly generated by highlighting high-profile events, such as hurricanes and earthquakes, or high-profile concerns, such as climate change or terrorism. When community teams are focused on high-profile challenges, maintaining interest can be difficult without specific manifestations of the perceived "number one threat". Incorporating day-to-day concerns into civil protection can overcome that. For example, the community teams' talents and energy could be used for picking up rubbish, for educating about health and waste disposal, and for conducting vulnerability assessments in order to inspire action for continual vulnerability reduction. In addition to the examples given above, Japan's Jishu-bosai-soshiki community activities and Asia's "Townwatch" initiative adopt wider and deeper

  4. Robot - a member of (re)habilitation team

    OpenAIRE

    Komazec Zoran; Lemajić-Komazec Slobodanka; Golubović Špela; Mikov Aleksandra; Krasnik Rastislava

    2012-01-01

    Introduction. The rehabilitation process involves a whole team of experts who participate in it over a long period of time. Development of Robotics and its Application in Medicine. The Intensive development of science and technology has made it possible to design a number of robots which are used for therapeutic purposes and participate in the rehabilitation process. Robotics in Medical Rehabilitation. During the long history of technological development of mankind, a number of conceptu...

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We present an overview of the implications of the WMAP data for particle physics. The standard parameter set and characterising the inflaton potential can be related to the power-law indices characterising deviation of the CMB spectrum from the scale invariant form. Different classes of inflation potentials are in turn ...

  6. DIFFERENT DIMENSIONS OF TEAMS

    OpenAIRE

    Goparaju Purna SUDHAKAR

    2013-01-01

    Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...

  7. Beautiful Teams Inspiring and Cautionary Tales from Veteran Team Leaders

    CERN Document Server

    Stellman, Andrew

    2009-01-01

    What's it like to work on a great software development team facing an impossible problem? How do you build an effective team? Beautiful Teams takes you behind the scenes with some of the most interesting teams in software engineering history. You'll learn from veteran team leaders' successes and failures, told through a series of engaging personal stories -- and interviews -- by leading programmers, architects, project managers, and thought leaders.

  8. Team Building e a enfermagem Team Building e enfermería Team Building and nursing

    Directory of Open Access Journals (Sweden)

    Filipa Homem

    2012-07-01

    Full Text Available Num ambiente de insatisfação crescente e de imprevisibilidade como é o da enfermagem, cada vez mais é fundamental motivar as equipas, conferindo-lhes competências pessoais, relacionais, comunicacionais e, acima de tudo, fomentar o trabalho em equipa e consequentemente a produtividade. O Team Building, surge assim como uma estratégia eficaz para obter resultados positivos. Por ser uma estratégia ainda pouco utilizada em Portugal, decidimos realizar este artigo teórico sobre o assunto e refletir sobre a sua pertinência e potencialidades nas equipas de enfermagem, tendo definido como objetivos: aprofundar conhecimentos sobre Team Building, contextualizar o Team Building no âmbito das teorias organizacionais, descrever diferentes modelos de Team Building e refletir sobre a utilidade do Team Building na qualidade da prestação de cuidados de enfermagem. Deste modo, foram pesquisados artigos na plataforma eletrónica de bases de dados EBSCO, assim como consultada literatura relacionada com a psicologia organizacional. Com a presente pesquisa conclui-se que esta estratégia de dinamização de equipas é útil no âmbito da enfermagem, podendo melhorar a comunicação e relações interpessoais, identificar pontos fortes e fracos das equipas, proporcionar maior satisfação no trabalho e, deste modo, aumentar a qualidade dos cuidados de saúde prestados.En un ambiente de creciente descontento y de imprevisibilidad como el de la enfermería, es cada vez más primordial motivar a los equipos, dándoles competencias personales, relacionales, y, sobre todo, fomentar el trabajo en equipo y consecuentemente la productividad. El Team Building surge así como una estrategia eficaz para lograr resultados positivos. Al ser una estrategia aún poco utilizada en Portugal, se decidió realizar este artículo teórico sobre el asunto y reflexionar sobre la pertinencia y el potencial de los equipos de enfermería, para lo que se definieron los objetivos

  9. The Relationship Between Team Psychological Safety and Team Effectiveness in Management Teams: The Mediating Effect of Dialogue.

    OpenAIRE

    Bilstad, Julie Brat

    2016-01-01

    This study is a response to the research and request presented by Bang and Midelfart (2010), to further investigate the effect dialogue can have on management team s effectiveness. The purpose of the study was to investigate and explain the effect of team psychological safety on task performance and team member satisfaction, with dialogue as a mediator in this relationship. 215 Norwegian and Danish management teams in the private and public sector were studied. As expected, team psychological...

  10. Culture and teams.

    Science.gov (United States)

    Kirkman, Bradley L; Shapiro, Debra L; Lu, Shuye; McGurrin, Daniel P

    2016-04-01

    We first review research on culture effects in teams, illustrating that mean levels of team cultural values have main (i.e. direct) effects, indirect effects (i.e. mediated by intervening variables), and moderating influences on team processes and outcomes. Variance in team cultural values or on country of origin (i.e. nationality diversity) also has main effects on team functioning, and we highlight contextual variables that strengthen or weaken these main effects. We next review research examining the effect of variance in team cultural values on global virtual teams, specifically. Finally, we review research on how cultural values shape employees' receptivity to empowering leadership behavior in teams. We conclude by discussing critical areas for future research. Published by Elsevier Ltd.

  11. Effectiveness of teams: Lessons from biomimicry, an ecological inquiry E=MC

    Directory of Open Access Journals (Sweden)

    Sivave Mashingaidze

    2015-07-01

    Full Text Available Team effectiveness in swarms like bees, colonies of ants, schools of fish, flocks of birds, and fireflies flashing synchronously are all as a result of highly coordinated behaviors that emerge from collective, decentralized intelligence. The purpose of this article was to conduct an ecological research inquiry of what lessons business can borrow from biomimicry especially by studying ants’ colonies, swarm of bees and packs of wild African dogs. A systems science theory borrowed from Albeit Einstein E = mc2 was used, where effectiveness of teams was equal to mastery of each individual x coordination x communication (collective intelligence. The author used using secondary data analysis to obtain information on team effectiveness and collective intelligence. The research found out that, team effectiveness is a function of mastery of individual x coordination x communication (collective intelligence. The research further recommended corporate to mimic the biosphere especially to adopt collective intelligence strategies from ants, swarm of bees and wild dogs for business sustainability

  12. "NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams

    Science.gov (United States)

    Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  13. Science and Cooking: Motivating the Study of Freshman Physics

    Science.gov (United States)

    Weitz, David

    2011-03-01

    This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.

  14. The innovative rehabilitation team: an experiment in team building.

    Science.gov (United States)

    Halstead, L S; Rintala, D H; Kanellos, M; Griffin, B; Higgins, L; Rheinecker, S; Whiteside, W; Healy, J E

    1986-06-01

    This article describes an effort by one rehabilitation team to create innovative approaches to team care in a medical rehabilitation hospital. The major arena for implementing change was the weekly patient rounds. We worked to increase patient involvement, developed a rounds coordinator role, used a structured format, and tried to integrate research findings into team decision making. Other innovations included use of a preadmission questionnaire, a discharge check list, and a rounds evaluation questionnaire. The impact of these changes was evaluated using the Group Environment Scale and by analyzing participation in rounds based on verbatim transcripts obtained prior to and 20 months after formation of the Innovative Rehabilitation Team (IRT). The results showed decreased participation by medical personnel during rounds, and increased participation by patients. The rounds coordinator role increased participation rates of staff from all disciplines and the group environment improved within the IRT. These data are compared with similar evaluations made of two other groups, which served as control teams. The problems inherent in making effective, lasting changes in interdisciplinary rehabilitation teams are reviewed, and a plea is made for other teams to explore additional ways to use the collective creativity and resources latent in the team membership.

  15. Harnessing members' positive mood for team-directed learning behaviour and team innovation : The moderating role of perceived team feedback

    NARCIS (Netherlands)

    Walter, Frank; van der Vegt, Gerben S.

    2013-01-01

    This study examines the role of individual team members' positive mood and perceived team feedback for their team-directed learning behaviour. Results obtained in a sample of 186 members from 27 work teams showed that positive mood was positively associated with team-directed learning behaviour if

  16. searchSCF: Using MongoDB to Enable Richer Searches of Locally Hosted Science Data Repositories

    Science.gov (United States)

    Knosp, B.

    2016-12-01

    Science teams today are in the unusual position of almost having too much data available to them. Modern sensors and models are capable of outputting terabytes of data per day, which can make it difficult to find specific subsets of data. The sheer size of files can also make it time consuming to retrieve this big data from national data archive centers. Thus, many science teams choose to store what data they can on their local systems, but they are not always equipped with tools to help them intelligently organize and search their data. In its local data repository, the Aura Microwave Limb Sounder (MLS) science team at NASA's Jet Propulsion Laboratory has collected over 300TB of atmospheric science data from 71 missions/models that aid in validation, algorithm development, and research activities. When the project began, the team developed a MySQL database to aid in data queries, but this database was only designed to keep track of MLS and a few ancillary data sets, leving much of the data uncatalogued. The team has also seen database query time rise over the life of the mission. Even though the MLS science team's data holdings are not the size of a national data center's, team members still need tools to help them discover and utilize the data that they have on-hand. Over the past year, members of the science team have been looking for solutions to (1) store information on all the data sets they have collected in a single database, (2) store more metadata about each data file, (3) develop queries that can find relationships among these disparate data types, and (4) plug any new functions developed around this database into existing analysis, visualization, and web tools, transparently to users. In this presentation, I will discuss the searchSCF package that is currently under development. This package includes a NoSQL database management system (MongoDB) and a set of Python tools that both ingests data into the database and supports user queries. I will also

  17. FMEA team performance in health care: A qualitative analysis of team member perceptions.

    Science.gov (United States)

    Wetterneck, Tosha B; Hundt, Ann Schoofs; Carayon, Pascale

    2009-06-01

    : Failure mode and effects analysis (FMEA) is a commonly used prospective risk assessment approach in health care. Failure mode and effects analyses are time consuming and resource intensive, and team performance is crucial for FMEA success. We evaluate FMEA team members' perceptions of FMEA team performance to provide recommendations to improve the FMEA process in health care organizations. : Structured interviews and survey questionnaires were administered to team members of 2 FMEA teams at a Midwest Hospital to evaluate team member perceptions of FMEA team performance and factors influencing team performance. Interview transcripts underwent content analysis, and descriptive statistics were performed on questionnaire results to identify and quantify FMEA team performance. Theme-based nodes were categorized using the input-process-outcome model for team performance. : Twenty-eight interviews and questionnaires were completed by 24 team members. Four persons participated on both teams. There were significant differences between the 2 teams regarding perceptions of team functioning and overall team effectiveness that are explained by difference in team inputs and process (e.g., leadership/facilitation, team objectives, attendance of process owners). : Evaluation of team members' perceptions of team functioning produced useful insights that can be used to model future team functioning. Guidelines for FMEA team success are provided.

  18. Team Leadership: Leadership Role Achievement in Supervision Teams in Turkey

    OpenAIRE

    Ali Sabanci; Izzet Ozdemir

    2015-01-01

    The purpose of this paper is to explore the views of team leaders and team members of supervision teams about the extent that team leaders achieve their team leadership roles in Turkey. This research was conducted as a survey. The population of the study consisted of approximately 2650 supervisors (inspectors) working in 81 provinces distributed to seven geographical regions in Turkey. The sample consisted of 563 supervisors which were selected out by random sampling. The data were gathered b...

  19. Leader-team complementarity: Exploring the interactive effects of leader personality traits and team power distance values on team processes and performance.

    Science.gov (United States)

    Hu, Jia; Judge, Timothy A

    2017-06-01

    Integrating the leader trait perspective with dominance complementarity theory, we propose team power distance as an important boundary condition for the indirect impact of leader extraversion, agreeableness, and conscientiousness on team performance through a team's potency beliefs and through relational identification with the leader. Using time-lagged, 3-source data from 71 teams, we found that leader extraversion had a positive indirect impact on team in-role and extrarole performance through relational identification, but only for high power distance teams; leader conscientiousness had a positive influence on team in-role performance through team potency, but only for high power distance teams; and leader agreeableness had a positive effect on team in-role and extrarole performance via relational identification and on team in-role performance via team potency, but only for low power distance teams. The findings address prior inconsistencies regarding the relationships between leader traits and team effectiveness, identify an important boundary condition and key team processes that bridge the links, and provide a deeper understanding of the role of leader traits in teams. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. The relationship between servant leadership, affective team commitment and team effectiveness

    Directory of Open Access Journals (Sweden)

    Bright Mahembe

    2013-04-01

    Full Text Available Orientation: Value-based leadership practices play a critical role in teamwork in high-performance organisations.Research purpose: The aim of the study was to empirically validate a theoretical model explicating the structural relationships between servant leadership, affective team commitment and team effectiveness.Motivation for the study: The increased eliance on teams for production calls for an analysis of the role of follower-focused leadership practices in enhancing eam effectiveness.Research design, approach and method: A non-probabilityand multicultural sample consisting of 202 primary and secondary school teachers was drawn from 32 chools in the Western Cape Province of South Africa.Main findings: High levels of reliability were found and uni-dimensionality of the subscales was demonstrated through exploratory factor analyses. Good fit with the data was found for the measurement models through confirmatory factor analyses. Structural equation modelling showed a reasonable fit for the structural model. Positive relationships were found amongst servant leadership, team effectiveness and affective team commitment. Standard multiple regression analysis showed that affective team commitment moderated the relationship between servant leadership and team effectiveness.Practical/managerial implications: The findings emphasise the central role played by servant leadership and affective team commitment in team performance. Servant leadership fosters team effectiveness if employees feel committed to their work team.Contribution/value-add: The servant leadership style alone may not be a sufficient condition for team effectiveness; other variables, such as affective team commitment, also play a role. The study suggested specific variables that may also combine with leadership to positively influence team effectiveness.

  1. The team halo effect: why teams are not blamed for their failures.

    Science.gov (United States)

    Naquin, Charles E; Tynan, Renee O

    2003-04-01

    In this study, the existence of the team halo effect, the phenomenon that teams tend not to be blamed for their failures, is documented. With 2 studies using both real teams and controlled scenarios, the authors found evidence that the nature of the causal attribution processes used to diagnose failure scenarios leads to individuals being more likely to be identified as the cause of team failure than the team as a collective. Team schema development, as indexed by team experience, influences this effect, with individuals who have more team experience being less likely to show the team halo effect

  2. Transforming Virtual Teams

    DEFF Research Database (Denmark)

    Bjørn, Pernille

    2005-01-01

    Investigating virtual team collaboration in industry using grounded theory this paper presents the in-dept analysis of empirical work conducted in a global organization of 100.000 employees where a global virtual team with participants from Sweden, United Kingdom, Canada, and North America were...... studied. The research question investigated is how collaboration is negotiated within virtual teams? This paper presents findings concerning how collaboration is negotiated within a virtual team and elaborate the difficulties due to invisible articulation work and managing multiple communities...... in transforming the virtual team into a community. It is argued that translucence in communication structures within the virtual team and between team and management is essential for engaging in a positive transformation process of trustworthiness supporting the team becoming a community, managing the immanent...

  3. Team Orientations, Interpersonal Relations, and Team Success

    Science.gov (United States)

    Nixon, Howard L.

    1976-01-01

    Contradictions in post research on the concepts of "cohesiveness" and team success seem to arise from the ways in which cohesiveness is measured and the nature of the teams investigated in each study. (MB)

  4. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  5. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  6. Simulating the Multi-Disciplinary Care Team Approach: Enhancing Student Understanding of Anatomy through an Ultrasound-Anchored Interprofessional Session

    Science.gov (United States)

    Luetmer, Marianne T.; Cloud, Beth A.; Youdas, James W.; Pawlina, Wojciech; Lachman, Nirusha

    2018-01-01

    Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi-disciplinary care team. This study aimed to create a modified team-based learning (TBL)…

  7. The relationship between servant leadership, affective team commitment and team effectiveness

    Directory of Open Access Journals (Sweden)

    Bright Mahembe

    2013-04-01

    Full Text Available Orientation: Value-based leadership practices play a critical role in teamwork in high-performance organisations. Research purpose: The aim of the study was to empirically validate a theoretical model explicating the structural relationships between servant leadership, affective team commitment and team effectiveness. Motivation for the study: The increased eliance on teams for production calls for an analysis of the role of follower-focused leadership practices in enhancing eam effectiveness. Research design, approach and method: A non-probabilityand multicultural sample consisting of 202 primary and secondary school teachers was drawn from 32 chools in the Western Cape Province of South Africa. Main findings: High levels of reliability were found and uni-dimensionality of the subscales was demonstrated through exploratory factor analyses. Good fit with the data was found for the measurement models through confirmatory factor analyses. Structural equation modelling showed a reasonable fit for the structural model. Positive relationships were found amongst servant leadership, team effectiveness and affective team commitment. Standard multiple regression analysis showed that affective team commitment moderated the relationship between servant leadership and team effectiveness. Practical/managerial implications: The findings emphasise the central role played by servant leadership and affective team commitment in team performance. Servant leadership fosters team effectiveness if employees feel committed to their work team. Contribution/value-add: The servant leadership style alone may not be a sufficient condition for team effectiveness; other variables, such as affective team commitment, also play a role. The study suggested specific variables that may also combine with leadership to positively influence team effectiveness.

  8. Practice effects on intra-team synergies in football teams.

    Science.gov (United States)

    Silva, Pedro; Chung, Dante; Carvalho, Thiago; Cardoso, Tiago; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-04-01

    Developing synchronised player movements for fluent competitive match play is a common goal for coaches of team games. An ecological dynamics approach advocates that intra-team synchronization is governed by locally created information, which specifies shared affordances responsible for synergy formation. To verify this claim we evaluated coordination tendencies in two newly-formed teams of recreational players during association football practice games, weekly, for fifteen weeks (thirteen matches). We investigated practice effects on two central features of synergies in sports teams - dimensional compression and reciprocal compensation here captured through near in-phase modes of coordination and time delays between coupled players during forward and backwards movements on field while attacking and defending. Results verified that synergies were formed and dissolved rapidly as a result of the dynamic creation of informational properties, perceived as shared affordances among performers. Practising once a week led to small improvements in the readjustment delays between co-positioning team members, enabling faster regulation of coordinated team actions. Mean values of the number of player and team synergies displayed only limited improvements, possibly due to the timescales of practice. No relationship between improvements in dimensional compression and reciprocal compensation were found for number of shots, amount of ball possession and number of ball recoveries made. Findings open up new perspectives for monitoring team coordination processes in sport. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. It's a team game: exploring factors that influence team experience

    OpenAIRE

    Martin, Eleanor

    2015-01-01

    Many multiplayer games feature teams, and whether they are pitted against each other or against the game itself it seems likely that the way these teams bond will affect the players' experience. What are the factors that influence the experience of being a team member in a game? To what extent can the game designer manipulate the cohesion of the teams by changing the game design? How does the satisfaction of the player with their team relate to their feeling of cohesion? How does cohesion dif...

  10. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  11. Collective autonomy and absenteeism within work teams: a team motivation approach.

    Science.gov (United States)

    Rousseau, Vincent; Aubé, Caroline

    2013-01-01

    This study investigates the role of collective autonomy in regard to team absenteeism by considering team potency as a motivational mediator and task routineness as a moderator. The sample consists of 90 work teams (327 members and 90 immediate superiors) drawn from a public safety organization. Results of structural equation modeling indicate that the relationships between collective autonomy and two indicators of team absenteeism (i.e., absence frequency and time lost) are mediated by team potency. Specifically, collective autonomy is positively related to team potency which in turn is negatively related to team absenteeism. Furthermore, results of hierarchical regression analyses show that task routineness moderates the relationships between collective autonomy and the two indicators of team absenteeism such that these relationships are stronger when the level of task routineness is low. On the whole, this study points out that collective autonomy may exercise a motivational effect on attendance at work within teams, but this effect is contingent on task routineness.

  12. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  13. Initiating and utilizing shared leadership in teams: The role of leader humility, team proactive personality, and team performance capability.

    Science.gov (United States)

    Chiu, Chia-Yen Chad; Owens, Bradley P; Tesluk, Paul E

    2016-12-01

    The present study was designed to produce novel theoretical insight regarding how leader humility and team member characteristics foster the conditions that promote shared leadership and when shared leadership relates to team effectiveness. Drawing on social information processing theory and adaptive leadership theory, we propose that leader humility facilitates shared leadership by promoting leadership-claiming and leadership-granting interactions among team members. We also apply dominance complementary theory to propose that team proactive personality strengthens the impact of leader humility on shared leadership. Finally, we predict that shared leadership will be most strongly related to team performance when team members have high levels of task-related competence. Using a sample composed of 62 Taiwanese professional work teams, we find support for our proposed hypothesized model. The theoretical and practical implications of these results for team leadership, humility, team composition, and shared leadership are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  15. Examining care navigation: librarian participation in a team-based approach?

    Science.gov (United States)

    Nix, A Tyler; Huber, Jeffrey T; Shapiro, Robert M; Pfeifle, Andrea

    2016-04-01

    This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample's responsibilities and skill sets. Coordination of patient care and a bachelor's degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  16. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn,N.; White, K.; Stegman, M.

    2009-08-05

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

  17. Hoe teams deadlines halen : een aanzet tot team-timemanagement

    NARCIS (Netherlands)

    Gevers, J.M.P.; Rutte, C.G.

    2014-01-01

    Dit artikel geeft een overzicht van de stand van zaken in de wetenschappelijk literatuur ten aanzien van de vraag hoe teams hun deadlines halen. Het beschikbare materiaal wijst erop dat teams beter in staat zijn om deadlines te halen als teamleden, naast een gemeenschappelijke visie op het team en

  18. Teaming up

    DEFF Research Database (Denmark)

    Warhuus, Jan; Günzel-Jensen, Franziska; Robinson, Sarah

    or pre-arranged at random. Therefore we investigate the importance of team formation in the entrepreneurial classroom and ask: (i) What are the underlying factors that influence outcomes of teamwork in student groups? (ii) How does team formation influence student perception of learning?, and (iii) Do...... different team formation strategies produce different teamwork and learning outcomes? Approach: We employed a multiple case study design comprising of 38 student teams to uncover potential links between team formation and student perception of learning. This research draws on data from three different....... A rigorous coding and inductive analysis process was undertaken. Pattern and relationship coding were used to reveal underlying factors, which helped to unveil important similarities and differences between student in different teams’ project progress and perception of learning. Results: When students...

  19. The effects of team reflexivity on psychological well-being in manufacturing teams.

    Science.gov (United States)

    Chen, Jingqiu; Bamberger, Peter A; Song, Yifan; Vashdi, Dana R

    2018-04-01

    While the impact of team reflexivity (a.k.a. after-event-reviews, team debriefs) on team performance has been widely examined, we know little about its implications on other team outcomes such as member well-being. Drawing from prior team reflexivity research, we propose that reflexivity-related team processes reduce demands, and enhance control and support. Given the centrality of these factors to work-based strain, we posit that team reflexivity, by affecting these factors, may have beneficial implications on 3 core dimensions of employee burnout, namely exhaustion, cynicism, and inefficacy (reduced personal accomplishment). Using a sample of 469 unskilled manufacturing workers employed in 73 production teams in a Southern Chinese factory, we implemented a time lagged, quasi-field experiment, with half of the teams trained in and executing an end-of-shift team debriefing, and the other half assigned to a control condition and undergoing periodic postshift team-building exercises. Our findings largely supported our hypotheses, demonstrating that relative to team members assigned to the control condition, those assigned to the reflexivity condition experienced a significant improvement in all 3 burnout dimensions over time. These effects were mediated by control and support (but not demands) and amplified as a function of team longevity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. The Delta Cooperative Model: a Dynamic and Innovative Team-Work Activity to Develop Research Skills in Microbiology

    Directory of Open Access Journals (Sweden)

    Ivan Baez-Santos

    2006-12-01

    Full Text Available The Delta Cooperative Model (DCM is a dynamic and innovative teamwork design created to develop fundamentals in research skills. High school students in the DCM belong to the Upward Bound Science and Math (UBSM program at the Inter American University, Ponce Campus. After workshops on using the scientific method, students were organized into groups of three students with similar research interests. Each student had to take on a role within the group as either a researcher, data analyst, or research editor. Initially, each research team developed hypothesis-driven ideas on their proposed project. In intrateam research meetings, they emphasized team-specific tasks. Next, interteam meetings were held to present ideas and receive critical input. Finally, oral and poster research presentations were conducted at the UBSM science fair. Several team research projects covered topics in medical, environmental, and general microbiology. The three major assessment areas for the workshop and DCM included: (i student’s perception of the workshops’ effectiveness in developing skills, content, and values; (ii research team self- and group participation evaluation, and (iii oral and poster presentation during the science fair. More than 91% of the students considered the workshops effective in the presentation of scientific method fundamentals. The combination of the workshop and the DCM increased student’s knowledge by 55% from pre- to posttests. Two rubrics were designed to assess the oral presentation and poster set-up. The poster and oral presentation scores averaged 83%and 75%respectively. Finally, we present a team assessment instrument that allows the self- and group evaluation of each research team. While the DCM has educational plasticity and versatility, here we document how this model has been successfully incorporated in training and engaging students in scientific research in microbiology.

  1. The Delta Cooperative Model: a Dynamic and Innovative Team-Work Activity to Develop Research Skills in Microbiology

    Directory of Open Access Journals (Sweden)

    Carlos Rios-Velazquez

    2009-12-01

    Full Text Available The Delta Cooperative Model (DCM is a dynamic and innovative teamwork design created to develop fundamentals in research skills. High school students in the DCM belong to the Upward Bound Science and Math (UBSM program at the Inter American University, Ponce Campus. After workshops on using the scientific method, students were organized into groups of three students with similar research interests. Each student had to take on a role within the group as either a researcher, data analyst, or research editor. Initially, each research team developed hypothesis-driven ideas on their proposed project. In intrateam research meetings, they emphasized team-specific tasks. Next, interteam meetings were held to present ideas and receive critical input. Finally, oral and poster research presentations were conducted at the UBSM science fair. Several team research projects covered topics in medical, environmental, and general microbiology. The three major assessment areas for the workshop and DCM included: (i student’s perception of the workshops’ effectiveness in developing skills, content, and values; (ii research team self- and group participation evaluation, and (iii oral and poster presentation during the science fair. More than 91% of the students considered the workshops effective in the presentation of scientific method fundamentals. The combination of the workshop and the DCM increased student’s knowledge by 55% from pre- to posttests. Two rubrics were designed to assess the oral presentation and poster set-up. The poster and oral presentation scores averaged 83%and 75%respectively. Finally, we present a team assessment instrument that allows the self- and group evaluation of each research team. While the DCM has educational plasticity and versatility, here we document how this model has been successfully incorporated in training and engaging students in scientific research in microbiology.

  2. Leading Teams of Higher Education Administrators: Integrating Goal Setting, Team Role, and Team Life Cycle Theories

    Science.gov (United States)

    Posthuma, Richard; Al-Riyami, Said

    2012-01-01

    Leaders of higher education institutions can create top management teams of academic administrators to guide and improve their organizations. This study illustrates how the leadership of top management teams can be accomplished successfully through a combination of goal setting (Doran, 1981; Locke & Latham, 1990), understanding of team roles…

  3. Leadership Identity Development Through Reflection and Feedback in Team-Based Learning Medical Student Teams.

    Science.gov (United States)

    Alizadeh, Maryam; Mirzazadeh, Azim; Parmelee, Dean X; Peyton, Elizabeth; Mehrdad, Neda; Janani, Leila; Shahsavari, Hooman

    2018-01-01

    Studies on leadership identity development through reflection with Team-Based Learning (TBL) in medical student education are rare. We assumed that reflection and feedback on the team leadership process would advance the progression through leadership identity development stages in medical students within the context of classes using TBL. This study is a quasi-experimental design with pretest-posttest control group. The pretest and posttest were reflection papers of medical students about their experience of leadership during their TBL sessions. In the intervention group, TBL and a team-based, guided reflection and feedback on the team leadership process were performed at the end of all TBL sessions. In the other group, only TBL was used. The Stata 12 software was used. Leadership Identity was treated both as a categorical and quantitative variable to control for differences in baseline and gender variables. Chi-square, t tests, and linear regression analysis were performed. The population was a cohort of 2015-2016 medical students in a TBL setting at Tehran University of Medical Sciences, School of Medicine. Teams of four to seven students were formed by random sorting at the beginning of the academic year (intervention group n = 20 teams, control group n = 19 teams). At baseline, most students in both groups were categorized in the Awareness and Exploration stage of leadership identity: 51 (52%) in the intervention group and 59 (55%) in the control group: uncorrected χ 2 (3) = 15.6, design-based F(2.83, 108) = 4.87, p = .003. In the posttest intervention group, 36 (36%) were in exploration, 33 (33%) were in L-identified, 20 (20%) were in Leadership Differentiated, and 10 (10%) were in the Generativity. None were in the Awareness or Integration stages. In the control group, 3 (20%) were in Awareness, 56 (53%) were in Exploration, 35 (33%) were in Leader Identified, 13 (12%) were in Leadership Differentiated. None were in the Generativity and Integration stages

  4. Extra-team connections for knowledge transfer between staff teams

    Science.gov (United States)

    Ramanadhan, Shoba; Wiecha, Jean L.; Emmons, Karen M.; Gortmaker, Steven L.; Viswanath, Kasisomayajula

    2009-01-01

    As organizations implement novel health promotion programs across multiple sites, they face great challenges related to knowledge management. Staff social networks may be a useful medium for transferring program-related knowledge in multi-site implementation efforts. To study this potential, we focused on the role of extra-team connections (ties between staff members based in different site teams) as potential channels for knowledge sharing. Data come from a cross-sectional study of afterschool childcare staff implementing a health promotion program at 20 urban sites of the Young Men's Christian Association of Greater Boston. We conducted a sociometric social network analysis and attempted a census of 91 program staff members. We surveyed 80 individuals, and included 73 coordinators and general staff, who lead and support implementation, respectively, in this study. A multiple linear regression model demonstrated a positive relationship between extra-team connections (β = 3.41, P knowledge transfer. We also found that intra-team connections (within-team ties between staff members) were also positively related to skill receipt. Connections between teams appear to support knowledge transfer in this network, but likely require greater active facilitation, perhaps via organizational changes. Further research on extra-team connections and knowledge transfer in low-resource, high turnover environments is needed. PMID:19528313

  5. The determination of the attitude and attitude dynamics of TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels

    1999-01-01

    , in space, multiple autonomous processes intended for spacecraft applications such as autonomous star identification, attitude determination and identification and tracking of non-stellar objects, imaging and real-time compression of image and science data for further ground analysis. AVS successfully...... determined the attitude and attitude dynamics of TeamSat....

  6. Job satisfaction among mental healthcare professionals: The respective contributions of professional characteristics, team attributes, team processes, and team emergent states

    Science.gov (United States)

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2017-01-01

    Objectives: The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Methods: Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Results: Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Discussion and Conclusion: Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members. PMID:29276591

  7. Job satisfaction among mental healthcare professionals: The respective contributions of professional characteristics, team attributes, team processes, and team emergent states.

    Science.gov (United States)

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2017-01-01

    The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members.

  8. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  9. The Team Climate Inventory: application in hospital teams and methodological considerations.

    NARCIS (Netherlands)

    Ouwens, M.M.T.J.; Hulscher, M.E.J.L.; Akkermans, R.P.; Hermens, R.P.M.G.; Grol, R.P.T.M.; Wollersheim, H.C.H.

    2008-01-01

    OBJECTIVE: To test the validity, reliability and discriminating capacity of an instrument to assess team climate, the Team Climate Inventory (TCI), in a sample of Dutch hospital teams. The TCI is based on a four-factor theory of team climate for innovation. DESIGN: Validation study. SETTING:

  10. Team Scaffolds: How Minimal Team Structures Enable Role-based Coordination

    OpenAIRE

    Valentine, Melissa A

    2013-01-01

    In this dissertation, I integrate research on role-based coordination with concepts adapted from the team effectiveness literature to theorize how minimal team structures support effective coordination when people do not work together regularly. I argue that role-based coordination among relative strangers can be interpersonally challenging and propose that team scaffolds (minimal team structures that bound groups of roles rather than groups of individuals) may provide occupants with a tempor...

  11. The Australian SKA Pathfinder: First Science Results

    Science.gov (United States)

    Harvey-Smith, Lisa

    2015-08-01

    The Australian SKA Pathfinder (ASKAP) is a precursor and technology demonstrator for the Square Kilometre Array.A specialist wide-field survey instrument, ASKAP compises 36 x 12m dish antennas with a maximum separation of 6km. The array operates in the frequency range 700 - 1800 MHz and has an instantaneous bandwidth of 300 MHz. Each dish is mounted with a 'phased array feed', a radio receiver that dramatically enhances the telescope's field-of-view from 1 to 30 square degrees. ASKAP is located at the Murchison Radio-astronomy Observatory, Australia's core site for the SKA.Ten Science Survey Projects have been established by teams of more than 600 astronomers from around the world. Astronomical research topics tackled by these teams include galaxy evolution, cosmic magnetism, the history of gas in galaxies and cosmology. A program of ASKAP Early Science will commence in late 2015. The 6-antenna Boolardy Engineering Test Array (BETA) is currently being used by the commissioning team and at the time of writing has produced its first scientific discovery paper.In this talk, hear the ASKAP Project Scientist report some of the exciting new capabilities demonstrated by ASKAP and learn about the first scientific discoveries made by the commissioning and early science team.

  12. [Insert Your Science Here] Week: Creating science-driven public awareness campaigns

    Science.gov (United States)

    Mattson, Barbara; Mitchell, Sara; McElvery, Raleigh; Reddy, Francis; Wiessinger, Scott; Skelly, Clare; Saravia, Claire; Straughn, Amber N.; Washington, Dewayne

    2018-01-01

    NASA Goddard’s in-house Astrophysics Communications Team is responsible for facilitating the production of traditional and social media products to provide understanding and inspiration about NASA’s astrophysics missions and discoveries. Our team is largely driven by the scientific news cycle of launches, mission milestones, anniversaries, and discoveries, which can leave a number of topics behind, waiting for a discovery to be highlighted. These overlooked topics include compelling stories about ongoing research, underlying science, and science not tied to a specific mission. In looking for a way to boost coverage of these unsung topics, we struck upon an idea of creating “theme weeks” which bring together the broader scientific community around a topic, object, or scientific concept. This poster will present the first two of our Goddard-led theme weeks: Pulsar Week and Dark Energy Week. We will describe the efforts involved, our metrics, and the benefits and challenges we encountered. We will also suggest a template for doing this for your own science based on our successes.

  13. Teams, Team Motivation, and the Theory of the Firm

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Lindenberg, Siegwart

    A concern with teams was central to early attempts to grasp the nature of the firm, but fell out of favor in later work. We encourage a return to the emphasis on teams, but argue that the idea of teams as central to the nature of the firm needs to be grounded in an appreciation of the importance...

  14. Managing multicultural teams.

    Science.gov (United States)

    Brett, Jeanne; Behfar, Kristin; Kern, Mary C

    2006-11-01

    Multicultural teams offer a number of advantages to international firms, including deep knowledge of different product markets, culturally sensitive customer service, and 24-hour work rotations. But those advantages may be outweighed by problems stemming from cultural differences, which can seriously impair the effectiveness of a team or even bring itto a stalemate. How can managers best cope with culture-based challenges? The authors conducted in-depth interviews with managers and members of multicultural teams from all over the world. Drawing on their extensive research on dispute resolution and teamwork and those interviews, they identify four problem categories that can create barriers to a team's success: direct versus indirect communication, trouble with accents and fluency, differing attitudes toward hierarchy and authority, and conflicting norms for decision making. If a manager--or a team member--can pinpoint the root cause of the problem, he or she is likelier to select an appropriate strategy for solving it. The most successful teams and managers, the authors found, dealt with multicultural challenges in one of four ways: adaptation (acknowledging cultural gaps openly and working around them), structural intervention (changing the shape or makeup of the team), managerial intervention (setting norms early or bringing in a higher-level manager), and exit (removing a team member when other options have failed). Which strategy is best depends on the particular circumstances--and each has potential complications. In general, though, managers who intervene early and set norms; teams and managers who try to engage everyone on the team; and teams that can see challenges as stemming from culture, not personality, succeed in solving culture-based problems with good humor and creativity. They are the likeliest to harvest the benefits inherent in multicultural teams.

  15. A Data Scheduling and Management Infrastructure for the TEAM Network

    Science.gov (United States)

    Andelman, S.; Baru, C.; Chandra, S.; Fegraus, E.; Lin, K.; Unwin, R.

    2009-04-01

    . References • TEAM Network, http://www.teamnetwork.org • Center for Applied Biodiversity Science, Conservation International. http://science.conservation.org/portal/server.pt • TEAM Data Query and Download Application, http://www.teamnetwork.org/en/data/query

  16. Team Effectiveness and Team Development in CSCL

    Science.gov (United States)

    Fransen, Jos; Weinberger, Armin; Kirschner, Paul A.

    2013-01-01

    There is a wealth of research on computer-supported cooperative work (CSCW) that is neglected in computer-supported collaborative learning (CSCL) research. CSCW research is concerned with contextual factors, however, that may strongly influence collaborative learning processes as well, such as task characteristics, team formation, team members'…

  17. Group, Team, or Something in Between? Conceptualising and Measuring Team Entitativity

    Science.gov (United States)

    Vangrieken, Katrien; Boon, Anne; Dochy, Filip; Kyndt, Eva

    2017-01-01

    The current gap between traditional team research and research focusing on non-strict teams or groups such as teacher teams hampers boundary-crossing investigations of and theorising on teamwork and collaboration. The main aim of this study includes bridging this gap by proposing a continuum-based team concept, describing the distinction between…

  18. Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric; Linden, Tim; Profumo, Stefano [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 (United States); Hooper, Dan, E-mail: erccarls@ucsc.edu, E-mail: dhooper@fnal.gov, E-mail: tlinden@ucsc.edu, E-mail: profumo@ucsc.edu [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-07-01

    If the Galactic WMAP radio haze, as recently confirmed by Planck, is produced by dark matter annihilation or decay, similar diffuse radio halos should exist around other galaxies with physical properties comparable to the Milky Way. If instead the haze is due to an astrophysical mechanism peculiar to the Milky Way or to a transient event, a similar halo need not exist around all Milky Way ''twins''. We use radio observations of 66 spiral galaxies to test the dark matter origin of the haze. We select galaxies based on morphological type and maximal rotational velocity, and obtain their luminosities from a 1.49 GHz catalog and additional radio observations at other frequencies. We find many instances of galaxies with radio emission that is less than 5% as bright as naively expected from dark matter models that could produce the Milky Way haze, and at least 3 galaxies that are less than 1% as bright as expected, assuming dark matter distributions, magnetic fields, and cosmic ray propagation parameters equal to those of the Milky Way. For reasonable ranges for the variation of these parameters, we estimate the fraction of galaxies that should be expected to be significantly less bright in radio, and argue that this is marginally compatible with the observed distribution. While our findings therefore cannot rule out a dark matter origin for the radio haze at this time, we find numerous examples (including the Andromeda Galaxy) where, if dark matter is indeed the origin of the Milky Way haze, some mechanism must be in place to suppress the corresponding haze of the external galaxy. We point out that Planck data will offer opportunities to improve this type of constraint in a highly relevant frequency range and for a potentially larger set of candidate galaxies.

  19. Team-training in healthcare: a narrative synthesis of the literature

    Science.gov (United States)

    Weaver, Sallie J; Dy, Sydney M; Rosen, Michael A

    2014-01-01

    Background Patients are safer and receive higher quality care when providers work as a highly effective team. Investment in optimising healthcare teamwork has swelled in the last 10 years. Consequently, evidence regarding the effectiveness for these interventions has also grown rapidly. We provide an updated review concerning the current state of team-training science and practice in acute care settings. Methods A PubMed search for review articles examining team-training interventions in acute care settings published between 2000 and 2012 was conducted. Following identification of relevant reviews with searches terminating in 2008 and 2010, PubMed and PSNet were searched for additional primary studies published in 2011 and 2012. Primary outcomes included patient outcomes and quality indices. Secondary outcomes included teamwork behaviours, knowledge and attitudes. Results Both simulation and classroom-based team-training interventions can improve teamwork processes (eg, communication, coordination and cooperation), and implementation has been associated with improvements in patient safety outcomes. Thirteen studies published between 2011 and 2012 reported statistically significant changes in teamwork behaviours, processes or emergent states and 10 reported significant improvement in clinical care processes or patient outcomes, including mortality and morbidity. Effects were reported across a range of clinical contexts. Larger effect sizes were reported for bundled team-training interventions that included tools and organisational changes to support sustainment and transfer of teamwork competencies into daily practice. Conclusions Overall, moderate-to-high-quality evidence suggests team-training can positively impact healthcare team processes and patient outcomes. Additionally, toolkits are available to support intervention development and implementation. Evidence suggests bundled team-training interventions and implementation strategies that embed effective

  20. Trust in Diverse Teams

    DEFF Research Database (Denmark)

    Clausen, Lisbeth

    , maintaining team cohesiveness in multicultural teams to collaborate effectively presents a number of challenges. The present study employs the concept of trust to explore influences on team collaboration in high performing teams. The study is based on observation of teams in seven multinational corporations...... and interviews with managers from the US, Europe, China and Japan. The study presents a conceptual framework - a ‘trust buffer’ – which enables analysis and exemplification of the dynamics and challenges of teams as drivers of change. Each team has strategically important tasks, unique capacities and deal...... with change in particular ways: Each team is analyzed in relation to its global (HQ) mandate, local (national) stakeholders and organizational context. It is found that communication energy, resources and team mandate underscore the sense of trust in high performing teams. Diversity is understood...

  1. One Big Happy Family? Unraveling the Relationship between Shared Perceptions of Team Psychological Contracts, Person-Team Fit and Team Performance.

    Science.gov (United States)

    Gibbard, Katherine; Griep, Yannick; De Cooman, Rein; Hoffart, Genevieve; Onen, Denis; Zareipour, Hamidreza

    2017-01-01

    With the knowledge that team work is not always associated with high(er) performance, we draw from the Multi-Level Theory of Psychological Contracts, Person-Environment Fit Theory, and Optimal Distinctiveness Theory to study shared perceptions of psychological contract (PC) breach in relation to shared perceptions of complementary and supplementary fit to explain why some teams perform better than other teams. We collected three repeated survey measures in a sample of 128 respondents across 46 teams. After having made sure that we met all statistical criteria, we aggregated our focal variables to the team-level and analyzed our data by means of a longitudinal three-wave autoregressive moderated-mediation model in which each relationship was one-time lag apart. We found that shared perceptions of PC breach were directly negatively related to team output and negatively related to perceived team member effectiveness through a decrease in shared perceptions of supplementary fit. However, we also demonstrated a beneficial process in that shared perceptions of PC breach were positively related to shared perceptions of complementary fit, which in turn were positively related to team output. Moreover, best team output appeared in teams that could combine high shared perceptions of complementary fit with modest to high shared perceptions of supplementary fit. Overall, our findings seem to indicate that in terms of team output there may be a bright side to perceptions of PC breach and that perceived person-team fit may play an important role in this process.

  2. Comparison of injury incidences between football teams playing in different climatic regions

    Directory of Open Access Journals (Sweden)

    Orchard JW

    2013-12-01

    Full Text Available John W Orchard,1 Markus Waldén,2 Martin Hägglund,3 Jessica J Orchard,1 Ian Chivers,4 Hugh Seward,5 Jan Ekstrand21School of Public Health, University of Sydney, Sydney, NSW, Australia; 2Department of Medical and Health Sciences, Division of Community Medicine, Linköping University, Linköping, Sweden; 3Department of Medical and Health Sciences, Division of Physiotherapy, Linköping University, Linköping, Sweden; 4Native Seeds, Cheltenham, VIC, Australia; 5Australian Football League Medical Officers Association, Melbourne, VIC, AustraliaAbstract: Australian Football League (AFL teams in northern (warmer areas generally have higher rates of injury than those in southern (cooler areas. Conversely, in soccer (football in Europe, teams in northern (cooler areas have higher rates of injury than those in southern (warmer areas, with an exception being knee anterior cruciate ligament (ACL injuries, which are more common in the southern (warmer parts of Europe. This study examined relative injury incidence in the AFL comparing 9,477 injuries over 229,827 player-weeks from 1999–2012. There was a slightly higher injury incidence for teams from warmer parts of Australia (relative risk [RR] 1.05, 95% confidence interval [CI] 1.01–1.10 with quadriceps strains (RR 1.32, 95% CI 1.10–1.58, knee cartilage injuries (RR 1.42, 95% CI 1.16–1.74, and ankle sprains (RR 1.17, 95% CI 1.00–1.37 all being more likely in warmer region teams. Achilles injuries followed a reverse pattern, tending to be more common in cooler region teams (RR 0.70, 95% CI 0.47–1.03. In conclusion, common findings from the AFL and European soccer are that ankle sprains and ACL injuries are generally more likely in teams playing in warmer climate zones, whereas Achilles tendinopathy may be more likely in teams playing in cooler zones. These injuries may have climate or surface risk factors (possibly related to types and structure of grass and shoe-surface traction that are

  3. Climate uniformity: its influence on team communication quality, task conflict, and team performance.

    Science.gov (United States)

    González-Romá, Vicente; Hernández, Ana

    2014-11-01

    We investigated whether climate uniformity (the pattern of climate perceptions of organizational support within the team) is related to task conflict, team communication quality, and team performance. We used a sample composed of 141 bank branches and collected data at 3 time points. The results obtained showed that, after controlling for aggregate team climate, climate strength, and their interaction, a type of nonuniform climate pattern (weak dissimilarity) was directly related to task conflict and team communication quality. Teams with weak dissimilarity nonuniform patterns tended to show higher levels of task conflict and lower levels of team communication quality than teams with uniform climate patterns. The relationship between weak dissimilarity patterns and team performance was fully mediated by team communication quality. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. Formation of the Project Team on Introduction of Financial Controlling into Banking Activity

    Directory of Open Access Journals (Sweden)

    Chmutova Iryna M.

    2014-01-01

    Full Text Available The article identifies order and content of stages of formation of the project team of introduction of financial controlling into banking activity. It offers a procedure of identification of the qualitative team composition, which envisages selection of candidates with the use of rules of fuzzy logical conclusion for assessing three groups of competences: personal (initiative, communication ability, creative ability, purposefulness and responsibility; common managerial (ability to work in a team, ability to manage conflicts, ability to manage, strategic thinking ability, ability to plan team work and distribute rights and obligations and co-ordinate work; special managerial (ability to justify and make decisions under conditions of uncertainty and dynamism, analytical abilities, ability to master new directions and methods of work and use them, skills and ability to form justified recommendations, special knowledge – theoretical grounds and recommendations of modern science with respect to introduction of controlling.

  5. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  6. [Developing team reflexivity as a learning and working tool for medical teams].

    Science.gov (United States)

    Riskin, Arieh; Bamberger, Peter

    2014-01-01

    Team reflexivity is a collective activity in which team members review their previous work, and develop ideas on how to modify their work behavior in order to achieve better future results. It is an important learning tool and a key factor in explaining the varying effectiveness of teams. Team reflexivity encompasses both self-awareness and agency, and includes three main activities: reflection, planning, and adaptation. The model of briefing-debriefing cycles promotes team reflexivity. Its key elements include: Pre-action briefing--setting objectives, roles, and strategies the mission, as well as proposing adaptations based on what was previously learnt from similar procedures; Post-action debriefing--reflecting on the procedure performed and reviewing the extent to which objectives were met, and what can be learnt for future tasks. Given the widespread attention to team-based work systems and organizational learning, efforts should be made toward ntroducing team reflexivity in health administration systems. Implementation could be difficult because most teams in hospitals are short-lived action teams formed for a particular event, with limited time and opportunity to consciously reflect upon their actions. But it is precisely in these contexts that reflexive processes have the most to offer instead of the natural impulsive collective logics. Team reflexivity suggests a potential solution to the major problems of iatorgenesis--avoidable medical errors, as it forces all team members to participate in a reflexive process together. Briefing-debriefing technology was studied mainly in surgical teams and was shown to enhance team-based learning and to improve quality-related outcomes and safety.

  7. Team Building: Proven Strategies for Improving Team Performance, 4th Edition”

    Directory of Open Access Journals (Sweden)

    Greg Homan

    2008-12-01

    Full Text Available Team Building is an important issue for Youth Development professionals. We utilize team-focused work to achieve our objectives in educating youth. The team building skills we integrate into programming serve to prepare youth for the dynamic, highly interpersonal work environment of today. “Team Building: Proven Strategies for Improving Team Performance, 4th Edition,” by W. Dyer, W.G. Dyer, and J. Dyer (2007, provides a practical theoretical framework for those interested in team building application, training, and practice in everyday work.

  8. Using Existing Teams to Teach about Teams: How an MBA Course in Managing Teams Helps Students and the Program

    Science.gov (United States)

    Isabella, Lynn A.

    2005-01-01

    This article chronicles the unique manner in which a second-year MBA elective course in managing teams has been crafted using existing first-year learning teams as its core. The design and orchestration of this course are detailed, as are the challenges posed, in delivering a course that not only teaches about teams and team dynamics but does so…

  9. Using artificial team members for team training in virtual environments

    NARCIS (Netherlands)

    Diggelen, J. van; Muller, T.; Bosch, K. van den

    2010-01-01

    In a good team, members do not only perform their individual task, they also coordinate their actions with other members of the team. Developing such team skills usually involves exercises with all members playing their role. This approach is costly and has organizational and educational drawbacks.

  10. One Big Happy Family? Unraveling the Relationship between Shared Perceptions of Team Psychological Contracts, Person-Team Fit and Team Performance

    Directory of Open Access Journals (Sweden)

    Katherine Gibbard

    2017-11-01

    Full Text Available With the knowledge that team work is not always associated with high(er performance, we draw from the Multi-Level Theory of Psychological Contracts, Person-Environment Fit Theory, and Optimal Distinctiveness Theory to study shared perceptions of psychological contract (PC breach in relation to shared perceptions of complementary and supplementary fit to explain why some teams perform better than other teams. We collected three repeated survey measures in a sample of 128 respondents across 46 teams. After having made sure that we met all statistical criteria, we aggregated our focal variables to the team-level and analyzed our data by means of a longitudinal three-wave autoregressive moderated-mediation model in which each relationship was one-time lag apart. We found that shared perceptions of PC breach were directly negatively related to team output and negatively related to perceived team member effectiveness through a decrease in shared perceptions of supplementary fit. However, we also demonstrated a beneficial process in that shared perceptions of PC breach were positively related to shared perceptions of complementary fit, which in turn were positively related to team output. Moreover, best team output appeared in teams that could combine high shared perceptions of complementary fit with modest to high shared perceptions of supplementary fit. Overall, our findings seem to indicate that in terms of team output there may be a bright side to perceptions of PC breach and that perceived person-team fit may play an important role in this process.

  11. Teams as innovative systems: multilevel motivational antecedents of innovation in R&D teams.

    Science.gov (United States)

    Chen, Gilad; Farh, Jiing-Lih; Campbell-Bush, Elizabeth M; Wu, Zhiming; Wu, Xin

    2013-11-01

    Integrating theories of proactive motivation, team innovation climate, and motivation in teams, we developed and tested a multilevel model of motivators of innovative performance in teams. Analyses of multisource data from 428 members of 95 research and development (R&D) teams across 33 Chinese firms indicated that team-level support for innovation climate captured motivational mechanisms that mediated between transformational leadership and team innovative performance, whereas members' motivational states (role-breadth self-efficacy and intrinsic motivation) mediated between proactive personality and individual innovative performance. Furthermore, individual motivational states and team support for innovation climate uniquely promoted individual innovative performance, and, in turn, individual innovative performance linked team support for innovation climate to team innovative performance. (c) 2013 APA, all rights reserved.

  12. Mercury Science Objectives and Traceability Within the BepiColombo Project: Optimising the Science Output of the Next Mission to Mercury

    Science.gov (United States)

    Besse, S.; Benkhoff, J.; Bentley, M.; Cornet, T.; Moissl, R.; Munoz, C.; Zender, J.

    2018-05-01

    The BepiColombo Science Ground Segment is developing, in collaboration with the instrument teams, targeted science traceability matrix of each instrument. They are defined in such a way that they can be tracked during the observation lifecycle.

  13. Study on team evaluation (4). Reliability and validity of questionnaire survey-based team work evaluation method of power plant operator team

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Hirose, Ayako; Misawa, Ryou; Yamaguchi, Hiroyuki

    2006-01-01

    The series of this study describes the necessity of the evaluation of team work from two aspects of operator's behavior and operators' mind. The authors propose Team Work Element Model which consists of necessary elements to build high performance team. This report discusses a method to evaluate team work from the second aspect, that is, competency trust, competition, for-the team spirit, etc. The authors survey the previous studies on psychological measures and organize a set of questions to evaluate 10 team work sub elements that are the parts of Team Work Element Model. The factor analysis shows that this set of questions is consists of 13 factors such as task-oriented leadership, harmony-oriented team atmosphere, etc. Close examination of the questions in each factor shows that 8 of 10 team work sub elements can be evaluated by this questionnaire. In addition, this questionnaire comprises scales additional 8 scales such as job satisfaction, leadership, etc. As a result, it is possible to evaluate team work from more comprehensive view points. (author)

  14. Statistical Literacy in the Data Science Workplace

    Science.gov (United States)

    Grant, Robert

    2017-01-01

    Statistical literacy, the ability to understand and make use of statistical information including methods, has particular relevance in the age of data science, when complex analyses are undertaken by teams from diverse backgrounds. Not only is it essential to communicate to the consumers of information but also within the team. Writing from the…

  15. How MESSENGER Meshes Simulations and Games with Citizen Science

    Science.gov (United States)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team

    2010-12-01

    How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science

  16. Does team stability mediate the relationship between leadership and team learning? An empirical study among Dutch project teams

    NARCIS (Netherlands)

    Savelsbergh, Chantal M.J.H.; Poell, Rob F.; van der Heijden, Beatrice

    2014-01-01

    An exploratory field study was conducted among 30 project teams in the sectors of building and utilities, engineering and construction, infrastructure, and area decontamination and development in the Netherlands. It examined the influence of leadership on team learning behaviors and included team

  17. Does team stability mediate the relationship between leadership and team learning? : An empirical study among Dutch project teams

    NARCIS (Netherlands)

    Savelsbergh, C.; Poell, R.F.; van der Heijden, B.

    2015-01-01

    An exploratory field study was conducted among 30 project teams in the sectors of building and utilities, engineering and construction, infrastructure, and area decontamination and development in the Netherlands. It examined the influence of leadership on team learning behaviors and included team

  18. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit.

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamwork and leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams.

  19. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. Practitioner Summary: This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams PMID:24837514

  20. Quality charters or quality members? A control theory perspective on team charters and team performance.

    Science.gov (United States)

    Courtright, Stephen H; McCormick, Brian W; Mistry, Sal; Wang, Jiexin

    2017-10-01

    Though prevalent in practice, team charters have only recently received scholarly attention. However, most of this work has been relatively devoid of theory, and consequently, key questions about why and under what conditions team charter quality affects team performance remain unanswered. To address these gaps, we draw on macro organizational control theory to propose that team charter quality serves as a team-level "behavior" control mechanism that builds task cohesion through a structured exercise. We then juxtapose team charter quality with an "input" team control mechanism that influences the emergence of task cohesion more organically: team conscientiousness. Given their redundant effects on task cohesion, we propose that the effects of team charter quality and team conscientiousness on team performance (through task cohesion) are substitutive such that team charter quality primarily impacts team performance for teams that are low (vs. high) on conscientiousness. We test and find support for our hypotheses in a sample of 239 undergraduate self-managing project teams. Our study contributes to the groups and teams literature in the following ways: first, relative to previous studies, we take a more theory-driven approach toward understanding team charters, and in doing so, uncover when and why team charter quality impacts team performance; second, we integrate two normally disparate perspectives on team effectiveness (team development and team selection) to offer a broader perspective on how teams are "built"; and third, we introduce team charter quality as a performance-enhancing mechanism for teams lower on conscientiousness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. AFSC/REFM: Beaufort Sea Marine Fish Survey, Beaufort Sea, Alaska, August 2008, Fisheries Interaction Team

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Fisheries Science Center's Status of Stocks and Multispecies Assessment (SSMA) Programs Fishery Interaction Team (FIT) conducted a fish survey in the...

  2. Team health, an assessment approach to engage first year students in cross-cultural and cross-discipline teams towards more effective team-working

    Directory of Open Access Journals (Sweden)

    Kathy Egea

    Full Text Available Specialists who work in a globalised environment, need to work in teams, if they are to be continuously effective. The challenge for IT educators is to design and implement inter-cultural teamwork practices into their curriculum. Investigating this challenge, this case study describes Team Health, an assessment approach designed to skill students to be more effective in team working in cross-cultural and cross-discipline teams. The educational context is teamwork practice within a first year introductory web design course. Framed by Saunders\\'s virtual team lifecycle model (relationship building and team processes and Hofstede\\'s cultural dimensions (communication and working cross-culturally, the assessment approach utilises reflective and iterative strategies to support team working. At three points in the semester, students complete a survey on these four concepts, identify team strengths and weaknesses from the results of the surveys and work towards addressing one team weakness. The final assessment activity requires students to reflect on team working for the semester. Key attributes for effective team working are identified from the three surveys and the final reflective summaries. This paper compares course outcomes such as team cohesion and student grades to the previous course offering and shows that with the introduction of Team Health, the more complex student cohorts under this study achieve equally well. It is concluded that the guided reflective practices underpinning Team Health can prepare students for first year approaches to teamwork, and thereby provide starting points for working in future global teams where members are both culturally diverse and from different discipline areas.

  3. The Relationships between Work Team Strategic Intent and Work Team Performance

    National Research Council Canada - National Science Library

    Edison, Thomas R

    2007-01-01

    ...) executive level, six- week program management class in six different locations. The study not only underscores the significance of team focus on performance but also highlights how team characteristics affect team focus and performance...

  4. Doing Interdisciplinary Mixed Methods Health Care Research: Working the Boundaries, Tensions, and Synergistic Potential of Team-Based Research.

    Science.gov (United States)

    Hesse-Biber, Sharlene

    2016-04-01

    Current trends in health care research point to a shift from disciplinary models to interdisciplinary team-based mixed methods inquiry designs. This keynote address discusses the problems and prospects of creating vibrant mixed methods health care interdisciplinary research teams that can harness their potential synergy that holds the promise of addressing complex health care issues. We examine the range of factors and issues these types of research teams need to consider to facilitate efficient interdisciplinary mixed methods team-based research. It is argued that concepts such as disciplinary comfort zones, a lack of attention to team dynamics, and low levels of reflexivity among interdisciplinary team members can inhibit the effectiveness of a research team. This keynote suggests a set of effective strategies to address the issues that emanate from the new field of research inquiry known as team science as well as lessons learned from tapping into research on organizational dynamics. © The Author(s) 2016.

  5. Building Science Identity in Disadvantaged Teenage Girls using an Apprenticeship Model

    Science.gov (United States)

    Pettit, E. C.; Conner, L.; Tzou, C.

    2015-12-01

    Expeditionary science differs from laboratory science in that expeditionary science teams conduct investigations in conditions that are often physically and socially, as well as intellectually, challenging. Team members live in close quarters for extended periods of time, team building and leadership affect the scientific process, and research tools are limited to what is available on site. Girls on Ice is an expeditionary science experience primarily for disadvantaged girls; it fully immerses girls in a mini scientific expedition to study alpine, glacierized environments. In addition to mentoring the girls through conducting their own scientific research, we encourage awareness and discussion of different sociocultural perspectives on the relation between the natural world, science, and society. The experience aligns closely with the apprenticeship model of learning, which can be effective in enhancing identification with science. Using a mixed-methods approach, we show that the Girls on Ice model helps girls (1) increase their interest and engagement in science and build a stronger science identity, (2) develop confidence, importantly they develop a combined physical and intellectual confidence; (3) engage in authentic scientific thinking, including critical thinking and problem solving; and (4) enhance leadership self-confidence. We discuss these results in a learning sciences framework, which posits that learning is inseparable from the social and physical contexts in which it takes place.

  6. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  7. Investigative Labs in Biology: The Importance of Attending to Team Dynamics

    Science.gov (United States)

    Phillips, Martha; Gildensoph, Lynne H.; Myers, Marcella J.; Norton, Cynthia G.; Olson, Andrea M.; Wygal, Deborah D.; Tweeten, Kathleen A.

    2007-01-01

    This article provides some tips for success in facilitating teamwork. Working collaboratively is common in science and the functioning of teams has a large impact on both the implementation of a research project and student satisfaction with the experience. The strategies are divided into what can be done to minimize problems from the start and…

  8. We will be champions: Leaders' confidence in 'us' inspires team members' team confidence and performance.

    Science.gov (United States)

    Fransen, K; Steffens, N K; Haslam, S A; Vanbeselaere, N; Vande Broek, G; Boen, F

    2016-12-01

    The present research examines the impact of leaders' confidence in their team on the team confidence and performance of their teammates. In an experiment involving newly assembled soccer teams, we manipulated the team confidence expressed by the team leader (high vs neutral vs low) and assessed team members' responses and performance as they unfolded during a competition (i.e., in a first baseline session and a second test session). Our findings pointed to team confidence contagion such that when the leader had expressed high (rather than neutral or low) team confidence, team members perceived their team to be more efficacious and were more confident in the team's ability to win. Moreover, leaders' team confidence affected individual and team performance such that teams led by a highly confident leader performed better than those led by a less confident leader. Finally, the results supported a hypothesized mediational model in showing that the effect of leaders' confidence on team members' team confidence and performance was mediated by the leader's perceived identity leadership and members' team identification. In conclusion, the findings of this experiment suggest that leaders' team confidence can enhance members' team confidence and performance by fostering members' identification with the team. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Developing high-performance cross-functional teams: Understanding motivations, functional loyalties, and teaming fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.A.

    1996-08-01

    Teamwork is the key to the future of effective technology management. Today`s technologies and markets have become too complex for individuals to work alone. Global competition, limited resources, cost consciousness, and time pressures have forced organizations and project managers to encourage teamwork. Many of these teams will be cross-functional teams that can draw on a multitude of talents and knowledge. To develop high-performing cross-functional teams, managers must understand motivations, functional loyalties, and the different backgrounds of the individual team members. To develop a better understanding of these issues, managers can learn from experience and from literature on teams and teaming concepts. When studying the literature to learn about cross-functional teaming, managers will find many good theoretical concepts, but when put into practice, these concepts have varying effects. This issue of varying effectiveness is what drives the research for this paper. The teaming concepts were studied to confirm or modify current understanding. The literature was compared with a {open_quotes}ground truth{close_quotes}, a survey of the reality of teaming practices, to examine the teaming concepts that the literature finds to be critical to the success of teams. These results are compared to existing teams to determine if such techniques apply in real-world cases.

  10. The Importance of Team Sex Composition in Team-Training Research Employing Complex Psychomotor Tasks.

    Science.gov (United States)

    Jarrett, Steven M; Glaze, Ryan M; Schurig, Ira; Arthur, Winfred

    2017-08-01

    The relationship between team sex composition and team performance on a complex psychomotor task was examined because these types of tasks are commonly used in the lab-based teams literature. Despite well-documented sex-based differences on complex psychomotor tasks, the preponderance of studies-mainly lab based-that use these tasks makes no mention of the sex composition of teams across or within experimental conditions. A sample of 123 four-person teams with varying team sex composition learned and performed a complex psychomotor task, Steal Beasts Pro PE. Each team completed a 5-hr protocol whereby they conducted several performance missions. The results indicated significant large mean differences such that teams with larger proportions of males had higher performance scores. These findings demonstrate the potential effect of team sex composition on the validity of studies that use complex psychomotor tasks to explore and investigate team performance-related phenomena when (a) team sex composition is not a focal variable of interest and (b) it is not accounted for or controlled. Given the proclivity of complex psychomotor action-based tasks used in lab-based team studies, it is important to understand and control for the impact of team sex composition on team performance. When team sex composition is not controlled for, either methodologically or statistically, it may affect the validity of the results in teams studies using these types of tasks.

  11. The impact of team characteristics and context on team communication: An integrative literature review.

    Science.gov (United States)

    Tiferes, Judith; Bisantz, Ann M

    2018-04-01

    Many studies on teams report measures of team communication; however, these studies vary widely in terms of the team characteristics, situations, and tasks studied making it difficult to understand impacts on team communication more generally. The objective of this review is systematically summarize relationships between measures of team communication and team characteristics and situational contexts. A literature review was conducted searching in four electronic databases (PsycINFO, MEDLINE, Ergonomics Abstracts, and SocINDEX). Additional studies were identified by cross-referencing. Articles included for final review had reported at least one team communication measure associated with some team and/or context dimension. Ninety-nine of 727 articles met the inclusion criteria. Data extracted from articles included characteristics of the studies and teams and the nature of each of the reported team and/or context dimensions-team communication properties relationships. Some dimensions (job role, situational stressors, training strategies, cognitive artifacts, and communication media) were found to be consistently linked to changes in team communication. A synthesized diagram that describes the possible associations between eleven team and context dimensions and nine team communication measures is provided along with research needs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  13. Advancing Pre-college Science and Mathematics Education

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rick [General Atomics, San Diego, CA (United States)

    2015-05-06

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter, the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.

  14. Toward Learning Teams

    DEFF Research Database (Denmark)

    Hoda, Rashina; Babb, Jeff; Nørbjerg, Jacob

    2013-01-01

    to sacrifice learning-focused practices. Effective learning under pressure involves conscious efforts to implement original agile practices such as retrospectives and adapted strategies such as learning spikes. Teams, their management, and customers must all recognize the importance of creating learning teams......Today's software development challenges require learning teams that can continuously apply new engineering and management practices, new and complex technical skills, cross-functional skills, and experiential lessons learned. The pressure of delivering working software often forces software teams...

  15. MANAGING MULTICULTURAL PROJECT TEAMS

    Directory of Open Access Journals (Sweden)

    Cezar SCARLAT

    2014-06-01

    Full Text Available The article is based on literature review and authors’ own recent experience in managing multicultural project teams, in international environment. This comparative study considers two groups of projects: technical assistance (TA projects versus information technology (IT projects. The aim is to explore the size and structure of the project teams – according to the team formation and its lifecycle, and to identify some distinctive attributes of the project teams – both similarities and differences between the above mentioned types of projects. Distinct focus of the research is on the multiculturalism of the project teams: how the cultural background of the team members influences the team performance and team management. Besides the results of the study are the managerial implications: how the team managers could soften the cultural clash, and avoid inter-cultural misunderstandings and even conflicts – in order to get a better performance. Some practical examples are provided as well.

  16. Task versus relationship conflict, team performance, and team member satisfaction: a meta-analysis.

    Science.gov (United States)

    De Dreu, Carsten K W; Weingart, Laurie R

    2003-08-01

    This study provides a meta-analysis of research on the associations between relationship conflict, task conflict, team performance, and team member satisfaction. Consistent with past theorizing, results revealed strong and negative correlations between relationship conflict, team performance, and team member satisfaction. In contrast to what has been suggested in both academic research and introductory textbooks, however, results also revealed strong and negative (instead of the predicted positive) correlations between task conflict team performance, and team member satisfaction. As predicted, conflict had stronger negative relations with team performance in highly complex (decision making, project, mixed) than in less complex (production) tasks. Finally, task conflict was less negatively related to team performance when task conflict and relationship conflict were weakly, rather than strongly, correlated.

  17. Team Sports

    Science.gov (United States)

    ... Games. USA Hockey offers additional information and resources. Softball It's not easy to field full teams of ... an annual tournament sponsored by the National Wheelchair Softball Association , where thirty or so teams show up ...

  18. Study on dynamic team performance evaluation methodology based on team situation awareness model

    International Nuclear Information System (INIS)

    Kim, Suk Chul

    2005-02-01

    The purpose of this thesis is to provide a theoretical framework and its evaluation methodology of team dynamic task performance of operating team at nuclear power plant under the dynamic and tactical environment such as radiological accident. This thesis suggested a team dynamic task performance evaluation model so called team crystallization model stemmed from Endsely's situation awareness model being comprised of four elements: state, information, organization, and orientation and its quantification methods using system dynamics approach and a communication process model based on a receding horizon control approach. The team crystallization model is a holistic approach for evaluating the team dynamic task performance in conjunction with team situation awareness considering physical system dynamics and team behavioral dynamics for a tactical and dynamic task at nuclear power plant. This model provides a systematic measure to evaluate time-dependent team effectiveness or performance affected by multi-agents such as plant states, communication quality in terms of transferring situation-specific information and strategies for achieving the team task goal at given time, and organizational factors. To demonstrate the applicability of the proposed model and its quantification method, the case study was carried out using the data obtained from a full-scope power plant simulator for 1,000MWe pressurized water reactors with four on-the-job operating groups and one expert group who knows accident sequences. Simulated results team dynamic task performance with reference key plant parameters behavior and team-specific organizational center of gravity and cue-and-response matrix illustrated good symmetry with observed value. The team crystallization model will be useful and effective tool for evaluating team effectiveness in terms of recruiting new operating team for new plant as cost-benefit manner. Also, this model can be utilized as a systematic analysis tool for

  19. Study on dynamic team performance evaluation methodology based on team situation awareness model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Chul

    2005-02-15

    The purpose of this thesis is to provide a theoretical framework and its evaluation methodology of team dynamic task performance of operating team at nuclear power plant under the dynamic and tactical environment such as radiological accident. This thesis suggested a team dynamic task performance evaluation model so called team crystallization model stemmed from Endsely's situation awareness model being comprised of four elements: state, information, organization, and orientation and its quantification methods using system dynamics approach and a communication process model based on a receding horizon control approach. The team crystallization model is a holistic approach for evaluating the team dynamic task performance in conjunction with team situation awareness considering physical system dynamics and team behavioral dynamics for a tactical and dynamic task at nuclear power plant. This model provides a systematic measure to evaluate time-dependent team effectiveness or performance affected by multi-agents such as plant states, communication quality in terms of transferring situation-specific information and strategies for achieving the team task goal at given time, and organizational factors. To demonstrate the applicability of the proposed model and its quantification method, the case study was carried out using the data obtained from a full-scope power plant simulator for 1,000MWe pressurized water reactors with four on-the-job operating groups and one expert group who knows accident sequences. Simulated results team dynamic task performance with reference key plant parameters behavior and team-specific organizational center of gravity and cue-and-response matrix illustrated good symmetry with observed value. The team crystallization model will be useful and effective tool for evaluating team effectiveness in terms of recruiting new operating team for new plant as cost-benefit manner. Also, this model can be utilized as a systematic analysis tool for

  20. Attributions by Team Members for Team Outcomes in Finnish Working Life

    OpenAIRE

    Valo, Maarit; Hurme, Pertti

    2010-01-01

    This study focuses on teamwork in Finnish working life. Through a wide cross-section of teams the study examines the causes to which team members attribute the outcomes of their teams. Qualitative data was collected from 314 respondents. They wrote 616 stories to describe memorable experiences of success and failure in teamwork. The stories revealed 1930 explanations. The findings indicate that both favorable and unfavorable team outcomes are perceived as being caused by ...

  1. Making USGS Science Data more Open, Accessible, and Usable: Leveraging ScienceBase for Success

    Science.gov (United States)

    Chang, M.; Ignizio, D.; Langseth, M. L.; Norkin, T.

    2016-12-01

    In 2013, the White House released initiatives requiring federally funded research to be made publicly available and machine readable. In response, the U.S. Geological Survey (USGS) has been developing a unified approach to make USGS data available and open. This effort has involved the establishment of internal policies and the release of a Public Access Plan, which outlines a strategy for the USGS to move forward into the modern era in scientific data management. Originally designed as a catalog and collaborative data management platform, ScienceBase (www.sciencebase.gov) is being leveraged to serve as a robust data hosting solution for USGS researchers to make scientific data accessible. With the goal of maintaining persistent access to formal data products and developing a management approach to facilitate stable data citation, the ScienceBase Data Release Team was established to ensure the quality, consistency, and meaningful organization of USGS data through standardized workflows and best practices. These practices include the creation and maintenance of persistent identifiers for data, improving the use of open data formats, establishing permissions for read/write access, validating the quality of standards compliant metadata, verifying that data have been reviewed and approved prior to release, and connecting to external search catalogs such as the USGS Science Data Catalog (data.usgs.gov) and data.gov. The ScienceBase team is actively building features to support this effort by automating steps to streamline the process, building metrics to track site visits and downloads, and connecting published digital resources in line with USGS and Federal policy. By utilizing ScienceBase to achieve stewardship quality and employing a dedicated team to help USGS scientists improve the quality of their data, the USGS is helping to meet today's data quality management challenges and ensure that reliable USGS data are available to and reusable for the public.

  2. A Measure of Team Resilience: Developing the Resilience at Work Team Scale.

    Science.gov (United States)

    McEwen, Kathryn; Boyd, Carolyn M

    2018-03-01

    This study develops, and initial evaluates, a new measure of team-based resilience for use in research and practice. We conducted preliminary analyses, based on a cross-sectional sample of 344 employees nested within 31 teams. Seven dimensions were identified through exploratory and confirmatory factor analyses. The measure had high reliability and significant discrimination to indicate the presence of a unique team-based aspect of resilience that contributed to higher work engagement and higher self-rated team performance, over and above the effects of individual resilience. Multilevel analyses showed that team, but not individual, resilience predicted self-rated team performance. Practice implications include a need to focus on collective as well as individual behaviors in resilience-building. The measure provides a diagnostic instrument for teams and a scale to evaluate organizational interventions and research the relationship of resilience to other constructs.

  3. Primary care teams in Ireland: a qualitative mapping review of Irish grey and published literature.

    Science.gov (United States)

    O'Sullivan, M; Cullen, W; MacFarlane, A

    2015-03-01

    The Irish government published its primary care strategy, Primary Care: A New Direction in 2001. Progress with the implementation of Primary care teams is modest. The aim of this paper is to map the Irish grey literature and peer-reviewed publications to determine what research has been carried out in relation to primary care teams, the reform process and interdisciplinary working in primary care in Ireland. This scoping review employed three methods: a review of Web of Science, Medline and Embase databases, an email survey of researchers across academic institutions, the HSE and independent researchers and a review of Lenus and the Health Well repository. N = 123 outputs were identified. N = 14 were selected for inclusion. A thematic analysis was undertaken. Common themes identified were resources, GP participation, leadership, clarity regarding roles in primary care teams, skills and knowledge for primary care team working, communication and community. There is evidence of significant problems that disrupt team formation and functioning that warrants more comprehensive research.

  4. A Conceptual Framework for Team Social Capital as Basis for Organizational Team Synergy

    OpenAIRE

    Raluca ZOLTAN

    2012-01-01

    The purpose of this paper is to outline a conceptual framework of team social capital as a basis for reaching organizational team synergy. The dimensions of team social capital and the basic conditions required for organizational team synergy enable the extension of current model of team social capital by including of other variables. Today’s managers must consider these variables since the team tends to be the basic structural unit of current organizations and synergy, the key to achieving h...

  5. An interdisciplinary team communication framework and its application to healthcare 'e-teams' systems design.

    Science.gov (United States)

    Kuziemsky, Craig E; Borycki, Elizabeth M; Purkis, Mary Ellen; Black, Fraser; Boyle, Michael; Cloutier-Fisher, Denise; Fox, Lee Ann; MacKenzie, Patricia; Syme, Ann; Tschanz, Coby; Wainwright, Wendy; Wong, Helen

    2009-09-15

    There are few studies that examine the processes that interdisciplinary teams engage in and how we can design health information systems (HIS) to support those team processes. This was an exploratory study with two purposes: (1) To develop a framework for interdisciplinary team communication based on structures, processes and outcomes that were identified as having occurred during weekly team meetings. (2) To use the framework to guide 'e-teams' HIS design to support interdisciplinary team meeting communication. An ethnographic approach was used to collect data on two interdisciplinary teams. Qualitative content analysis was used to analyze the data according to structures, processes and outcomes. We present details for team meta-concepts of structures, processes and outcomes and the concepts and sub concepts within each meta-concept. We also provide an exploratory framework for interdisciplinary team communication and describe how the framework can guide HIS design to support 'e-teams'. The structures, processes and outcomes that describe interdisciplinary teams are complex and often occur in a non-linear fashion. Electronic data support, process facilitation and team video conferencing are three HIS tools that can enhance team function.

  6. An interdisciplinary team communication framework and its application to healthcare 'e-teams' systems design

    Directory of Open Access Journals (Sweden)

    MacKenzie Patricia

    2009-09-01

    Full Text Available Abstract Background There are few studies that examine the processes that interdisciplinary teams engage in and how we can design health information systems (HIS to support those team processes. This was an exploratory study with two purposes: (1 To develop a framework for interdisciplinary team communication based on structures, processes and outcomes that were identified as having occurred during weekly team meetings. (2 To use the framework to guide 'e-teams' HIS design to support interdisciplinary team meeting communication. Methods An ethnographic approach was used to collect data on two interdisciplinary teams. Qualitative content analysis was used to analyze the data according to structures, processes and outcomes. Results We present details for team meta-concepts of structures, processes and outcomes and the concepts and sub concepts within each meta-concept. We also provide an exploratory framework for interdisciplinary team communication and describe how the framework can guide HIS design to support 'e-teams'. Conclusion The structures, processes and outcomes that describe interdisciplinary teams are complex and often occur in a non-linear fashion. Electronic data support, process facilitation and team video conferencing are three HIS tools that can enhance team function.

  7. Continuous outreach activities performed by a student project team of undergraduates and their program topics in optics and photonics

    Science.gov (United States)

    Hasegawa, Makoto; Tokumitsu, Seika

    2016-09-01

    The out-of-curriculum project team "Rika-Kobo", organized by undergraduate students, has been actively engaged in a variety of continuous outreach activities in the fields of science and technology including optics and photonics. The targets of their activities cover wide ranges of generations from kids to parents and elderly people, with aiming to promote their interests in various fields of science and technologies. This is an out-of-curriculum project team with about 30 to 40 undergraduate students in several grades and majors. The total number of their activities per year tends to reach 80 to 90 in recent years. Typical activities to be performed by the project team include science classes in elementary and/or secondary schools, science classes at other educational facilities such as science museums, and experiment demonstrations at science events. Popular topics cover wide ranges from explanations and demonstrations of nature phenomena, such as rainbow colors, blue sky, sunset color, to demonstration experiments related to engineering applications, such as polarization of light, LEDs, and optical communications. Experimental topics in optics and photonics are especially popular to the audiences. Those activities are very effective to enhance interests of the audiences in learning related knowledges, irrespective of their generations. Those activities are also helpful for the student members to achieve and/or renew scientific knowledges. In addition, each of the activities provides the student members with effective and advantageous Project-Based-Learning (PBL) style experiences including manufacturing experiences, which are advantageous to cultivate their engineering skills.

  8. Travelling with football teams

    African Journals Online (AJOL)

    ultimately on the performance of the teams on the playing field and not so much ... However, travelling with a football team presents the team physician .... physician to determine the nutritional ..... diarrhoea in elite athletes: an audit of one team.

  9. Developing Your Dream Team

    Science.gov (United States)

    Gatlin, Kenda

    2005-01-01

    Almost anyone has held various roles on a team, be it a family unit, sports team, or a project-oriented team. As an educator, one must make a conscious decision to build and invest in a team. Gathering the best team possible will help one achieve one's goals. This article explores some of the key reasons why it is important to focus on the team…

  10. Social Science Collaboration with Environmental Health.

    Science.gov (United States)

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health

  11. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  12. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  13. Minerva: An Integrated Geospatial/Temporal Toolset for Real-time Science Decision Making and Data Collection

    Science.gov (United States)

    Lees, D. S.; Cohen, T.; Deans, M. C.; Lim, D. S. S.; Marquez, J.; Heldmann, J. L.; Hoffman, J.; Norheim, J.; Vadhavk, N.

    2016-12-01

    Minerva integrates three capabilities that are critical to the success of NASA analogs. It combines NASA's Exploration Ground Data Systems (xGDS) and Playbook software, and MIT's Surface Exploration Traverse Analysis and Navigation Tool (SEXTANT). Together, they help to plan, optimize, and monitor traverses; schedule and track activity; assist with science decision-making and document sample and data collection. Pre-mission, Minerva supports planning with a priori map data (e.g., UAV and satellite imagery) and activity scheduling. During missions, xGDS records and broadcasts live data to a distributed team who take geolocated notes and catalogue samples. Playbook provides live schedule updates and multi-media chat. Post-mission, xGDS supports data search and visualization for replanning and analysis. NASA's BASALT (Biologic Analog Science Associated with Lava Terrains) and FINESSE (Field Investigations to Enable Solar System Science and Exploration) projects use Minerva to conduct field science under simulated Mars mission conditions including 5 and 15 minute one-way communication delays. During the recent BASALT-FINESSE mission, two field scientists (EVA team) executed traverses across volcanic terrain to characterize and sample basalts. They wore backpacks with communications and imaging capabilities, and carried field portable spectrometers. The Science Team was 40 km away in a simulated mission control center. The Science Team monitored imaging (video and still), spectral, voice, location and physiological data from the EVA team via the network from the field, under communication delays. Minerva provided the Science Team with a unified context of operations at the field site, so they could make meaningful remote contributions to the collection of 10's of geotagged samples. Minerva's mission architecture will be presented with technical details and capabilities. Through the development, testing and application of Minerva, we are defining requirements for the

  14. A Conceptual Framework for Team Social Capital as Basis for Organizational Team Synergy

    Directory of Open Access Journals (Sweden)

    Raluca ZOLTAN

    2012-08-01

    Full Text Available The purpose of this paper is to outline a conceptual framework of team social capital as a basis for reaching organizational team synergy. The dimensions of team social capital and the basic conditions required for organizational team synergy enable the extension of current model of team social capital by including of other variables. Today’s managers must consider these variables since the team tends to be the basic structural unit of current organizations and synergy, the key to achieving high performance in global competition.

  15. The impact of brief team communication, leadership and team behavior training on ad hoc team performance in trauma care settings.

    Science.gov (United States)

    Roberts, Nicole K; Williams, Reed G; Schwind, Cathy J; Sutyak, John A; McDowell, Christopher; Griffen, David; Wall, Jarrod; Sanfey, Hilary; Chestnut, Audra; Meier, Andreas H; Wohltmann, Christopher; Clark, Ted R; Wetter, Nathan

    2014-02-01

    Communication breakdowns and care coordination problems often cause preventable adverse patient care events, which can be especially acute in the trauma setting, in which ad hoc teams have little time for advanced planning. Existing teamwork curricula do not address the particular issues associated with ad hoc emergency teams providing trauma care. Ad hoc trauma teams completed a preinstruction simulated trauma encounter and were provided with instruction on appropriate team behaviors and team communication. Teams completed a postinstruction simulated trauma encounter immediately afterward and 3 weeks later, then completed a questionnaire. Blinded raters rated videotapes of the simulations. Participants expressed high levels of satisfaction and intent to change practice after the intervention. Participants changed teamwork and communication behavior on the posttest, and changes were sustained after a 3-week interval, though there was some loss of retention. Brief training exercises can change teamwork and communication behaviors on ad hoc trauma teams. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Collective-efficacy as a mediator of the relationship of leaders' personality traits and team performance: A cross-level analysis.

    Science.gov (United States)

    Li, Xiaoshan; Zhou, Mingjie; Zhao, Na; Zhang, Shanshan; Zhang, Jianxin

    2015-06-01

    The relationship between a leader's personality and his team's performance has been established in organisational research, but the underlying process and mechanism responsible for this effect have not been fully explored. Both the traditional multiple linear regression and the multilevel structural equation model approaches were used in this study to test a proposed mediating model of subordinates' perception of collective efficacy between leader personality and team performance. The results show that the team leader's extraversion and conscientiousness personality traits were related positively to both the team-average (individual) perception of collective efficacy and team performance, and the collective efficacy mediated the relationship of the leader's personality traits and team performance. This study also discusses how Chinese cultural elements play a role in such a mediating model. © 2014 International Union of Psychological Science.

  17. Future Time Perspective in Occupational Teams: Do Older Workers Prefer More Familiar Teams?

    Directory of Open Access Journals (Sweden)

    Laura U. A. Gärtner

    2017-09-01

    Full Text Available Working in teams is quite popular across different industries and cultures. While some of these teams exist for longer time periods, other teams collaborate only for short periods and members switch into new teams after goals are accomplished. However, workers’ preferences for joining a new team might vary in different ways. Based on Carstensen’s socioemotional selectivity theory, we predict that emotionally meaningful teams are prioritized when occupational future time perspective (OFTP is perceived as limited. Building and expanding on studies outside of the work context, we expected that older as compared to younger workers prefer more familiar teams, and that this effect is mediated by workers’ OFTP. Moreover, we assumed that experimentally manipulated OFTP can change such team preferences. The hypotheses were tested in an online scenario study using three experimental conditions (within-person design. Four hundred and fifty-four workers (57% female, age M = 45.98, SD = 11.46 were asked to choose between a familiar and a new team in three consecutive trials: under an unspecified OFTP (baseline, under an expanded OFTP (amendment of retirement age, and under a restricted OFTP (insolvency of the current company. Whereas the baseline condition was always first, the order of the second and third conditions was randomized among participants. In the baseline condition, results showed the expected mediation effect of workers’ OFTP on the relation between workers’ age and preference for a familiar over a new team. Higher age was associated with more limited OFTP, which in turn was associated with higher preference for a familiar over a new team. Moreover, experimentally restricting OFTP increased preference for a familiar team over a new team regardless of workers’ age, providing further evidence for the assumed causal processes and showing interesting avenues for practical interventions in occupational teams.

  18. Future Time Perspective in Occupational Teams: Do Older Workers Prefer More Familiar Teams?

    Science.gov (United States)

    Gärtner, Laura U. A.; Hertel, Guido

    2017-01-01

    Working in teams is quite popular across different industries and cultures. While some of these teams exist for longer time periods, other teams collaborate only for short periods and members switch into new teams after goals are accomplished. However, workers’ preferences for joining a new team might vary in different ways. Based on Carstensen’s socioemotional selectivity theory, we predict that emotionally meaningful teams are prioritized when occupational future time perspective (OFTP) is perceived as limited. Building and expanding on studies outside of the work context, we expected that older as compared to younger workers prefer more familiar teams, and that this effect is mediated by workers’ OFTP. Moreover, we assumed that experimentally manipulated OFTP can change such team preferences. The hypotheses were tested in an online scenario study using three experimental conditions (within-person design). Four hundred and fifty-four workers (57% female, age M = 45.98, SD = 11.46) were asked to choose between a familiar and a new team in three consecutive trials: under an unspecified OFTP (baseline), under an expanded OFTP (amendment of retirement age), and under a restricted OFTP (insolvency of the current company). Whereas the baseline condition was always first, the order of the second and third conditions was randomized among participants. In the baseline condition, results showed the expected mediation effect of workers’ OFTP on the relation between workers’ age and preference for a familiar over a new team. Higher age was associated with more limited OFTP, which in turn was associated with higher preference for a familiar over a new team. Moreover, experimentally restricting OFTP increased preference for a familiar team over a new team regardless of workers’ age, providing further evidence for the assumed causal processes and showing interesting avenues for practical interventions in occupational teams. PMID:29018376

  19. Future Time Perspective in Occupational Teams: Do Older Workers Prefer More Familiar Teams?

    Science.gov (United States)

    Gärtner, Laura U A; Hertel, Guido

    2017-01-01

    Working in teams is quite popular across different industries and cultures. While some of these teams exist for longer time periods, other teams collaborate only for short periods and members switch into new teams after goals are accomplished. However, workers' preferences for joining a new team might vary in different ways. Based on Carstensen's socioemotional selectivity theory, we predict that emotionally meaningful teams are prioritized when occupational future time perspective (OFTP) is perceived as limited. Building and expanding on studies outside of the work context, we expected that older as compared to younger workers prefer more familiar teams, and that this effect is mediated by workers' OFTP. Moreover, we assumed that experimentally manipulated OFTP can change such team preferences. The hypotheses were tested in an online scenario study using three experimental conditions (within-person design). Four hundred and fifty-four workers (57% female, age M = 45.98, SD = 11.46) were asked to choose between a familiar and a new team in three consecutive trials: under an unspecified OFTP (baseline), under an expanded OFTP (amendment of retirement age), and under a restricted OFTP (insolvency of the current company). Whereas the baseline condition was always first, the order of the second and third conditions was randomized among participants. In the baseline condition, results showed the expected mediation effect of workers' OFTP on the relation between workers' age and preference for a familiar over a new team. Higher age was associated with more limited OFTP, which in turn was associated with higher preference for a familiar over a new team. Moreover, experimentally restricting OFTP increased preference for a familiar team over a new team regardless of workers' age, providing further evidence for the assumed causal processes and showing interesting avenues for practical interventions in occupational teams.

  20. The impact of athlete leaders on team members’ team outcome confidence: A test of mediation by team identification and collective efficacy

    OpenAIRE

    Fransen, Katrien; Coffee, Pete; Vanbeselaere, Norbert; Slater, Matthew; De Cuyper, Bert; Boen, Filip

    2014-01-01

    Research on the effect of athlete leadership on pre-cursors of team performance such as team confidence is sparse. To explore the underlying mechanisms of how athlete leaders impact their team’s confidence, an online survey was completed by 2,867 players and coaches from nine different team sports in Flanders (Belgium). We distinguished between two types of team confidence: collective efficacy, assessed by the CEQS subscales of Effort, Persistence, Preparation, and Unity; and team outcome con...

  1. Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands.

    Science.gov (United States)

    Hagemann, Vera; Kluge, Annette

    2017-01-01

    Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high ( n = 58) or low ( n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as

  2. How Science Works: Bringing the World of Science into the Classroom through Innovative Blended Media Approaches

    Science.gov (United States)

    Windale, Mark

    2010-01-01

    During the past three years, a team from the Centre for Science Education at Sheffield Hallam University, the University of Salford, the University of York, Glasshead and Teachers TV, has been working in collaboration to develop a series of blended media resources to support the teaching and learning of How Science Works (HSW) at Key Stages 3 and…

  3. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven "closing the loop" feedback discussion. For teambuilding, a set of clue sheets or manufacturer's drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams' impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators' interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.   Type: Case Study

  4. Leading team learning: what makes interprofessional teams learn to work well?

    Science.gov (United States)

    Chatalalsingh, Carole; Reeves, Scott

    2014-11-01

    This article describes an ethnographic study focused on exploring leaders of team learning in well-established nephrology teams in an academic healthcare organization in Canada. Employing situational theory of leadership, the article provides details on how well established team members advance as "learning leaders". Data were gathered by ethnographic methods over a 9-month period with the members of two nephrology teams. These learning to care for the sick teams involved over 30 regulated health professionals, such as physicians, nurses, social workers, pharmacists, dietitians and other healthcare practitioners, staff, students and trainees, all of whom were collectively managing obstacles and coordinating efforts. Analysis involved an inductive thematic analysis of observations, reflections, and interview transcripts. The study indicated how well established members progress as team-learning leaders, and how they adapt to an interprofessional culture through the activities they employ to enable day-to-day learning. The article uses situational theory of leadership to generate a detailed illumination of the nature of leaders' interactions within an interprofessional context.

  5. The systematic review team: contributions of the health sciences librarian.

    Science.gov (United States)

    Dudden, Rosalind F; Protzko, Shandra L

    2011-01-01

    While the role of the librarian as an expert searcher in the systematic review process is widely recognized, librarians also can be enlisted to help systematic review teams with other challenges. This article reviews the contributions of librarians to systematic reviews, including communicating methods of the review process, collaboratively formulating the research question and exclusion criteria, formulating the search strategy on a variety of databases, documenting the searches, record keeping, and writing the search methodology. It also discusses challenges encountered such as irregular timelines, providing education, communication, and learning new technologies for record keeping. Rewards include building relationships with researchers, expanding professional expertise, and receiving recognition for contributions to health care outcomes.

  6. Capstone Interdisciplinary Team Project: A Requirement for the MS in Sustainability Degree

    Science.gov (United States)

    Jiji, Latif M.; Schonfeld, Irvin Sam; Smith, George A.

    2015-01-01

    Purpose: This paper aims to describe experience gained with a required six-credit year-long course, the Capstone Interdisciplinary Team Project, a key component of the Master of Science (MS) in Sustainability degree at the City College of New York. A common feature of sustainability problems is their interdisciplinary nature. Solutions to…

  7. Collocation Impact on Team Effectiveness

    Directory of Open Access Journals (Sweden)

    M Eccles

    2010-11-01

    Full Text Available The collocation of software development teams is common, specially in agile software development environments. However little is known about the impact of collocation on the team’s effectiveness. This paper explores the impact of collocating agile software development teams on a number of team effectiveness factors. The study focused on South African software development teams and gathered data through the use of questionnaires and interviews. The key finding was that collocation has a positive impact on a number of team effectiveness factors which can be categorised under team composition, team support, team management and structure and team communication. Some of the negative impact collocation had on team effectiveness relate to the fact that team members perceived that less emphasis was placed on roles, that morale of the group was influenced by individuals, and that collocation was invasive, reduced level of privacy and increased frequency of interruptions. Overall through it is proposed that companies should consider collocating their agile software development teams, as collocation might leverage overall team effectiveness.

  8. Exploring effectiveness of team communication: Balancing synchronous and asynchronous communication in design teams

    NARCIS (Netherlands)

    Otter, den A.F.H.J.; Emmitt, S.

    2007-01-01

    Purpose – Effective teams use a balance of synchronous and asynchronous communication. Team communication is dependent on the communication acts of team members and the ability of managers to facilitate, stimulate and motivate them. Team members from organizations using different information systems

  9. Managing Geographically Dispersed Teams: From Temporary to Permanent Global Virtual Teams

    DEFF Research Database (Denmark)

    Svane Hansen, Tine; Hope, Alexander John; Moehler, Robert C.

    2012-01-01

    for organisations to move towards establishing permanent Global Virtual Teams in order to leverage knowledge sharing and cooperation across distance. To close this gap, this paper will set the scene for a research project investigating the changed preconditions for organisations. As daily face-to-face communication......The rise and spread of information communication technologies (ICT) has enabled increasing use of geographically dispersed work teams (Global Virtual Teams). Originally, Global Virtual Teams were mainly organised into temporary projects. Little research has focused on the emergent challenge...... generation of self-lead digital natives, who are already practising virtual relationships and a new approach to work, and currently joining the global workforce; and improved communication technologies. Keywords: Global Virtual teams, ICT, leadership, motivation, self-management, millenials....

  10. Network Science Center Research Team’s Visit to Kampala, Uganda

    Science.gov (United States)

    2013-04-15

    TERMS Network Analysis, Economic Networks, Entrepreneurial Ecosystems , Economic Development, Data Collection 16. SECURITY CLASSIFICATION OF: 17...the Project Synopsis, Developing Network Models of Entrepreneurial Ecosystems in Developing Economies, on the Network Science Center web site.) A...Thomas visited Kampala, Uganda in support of an ongoing Network Science Center project to develop models of entrepreneurial networks. Our Center has

  11. How Team-Level and Individual-Level Conflict Influences Team Commitment: A Multilevel Investigation

    Science.gov (United States)

    Lee, Sanghyun; Kwon, Seungwoo; Shin, Shung J.; Kim, MinSoo; Park, In-Jo

    2018-01-01

    We investigate how two different types of conflict (task conflict and relationship conflict) at two different levels (individual-level and team-level) influence individual team commitment. The analysis was conducted using data we collected from 193 employees in 31 branch offices of a Korean commercial bank. The relationships at multiple levels were tested using hierarchical linear modeling (HLM). The results showed that individual-level relationship conflict was negatively related to team commitment while individual-level task conflict was not. In addition, both team-level task and relationship conflict were negatively associated with team commitment. Finally, only team-level relationship conflict significantly moderated the relationship between individual-level relationship conflict and team commitment. We further derive theoretical implications of these findings. PMID:29387033

  12. How Team-Level and Individual-Level Conflict Influences Team Commitment: A Multilevel Investigation

    Directory of Open Access Journals (Sweden)

    Sanghyun Lee

    2018-01-01

    Full Text Available We investigate how two different types of conflict (task conflict and relationship conflict at two different levels (individual-level and team-level influence individual team commitment. The analysis was conducted using data we collected from 193 employees in 31 branch offices of a Korean commercial bank. The relationships at multiple levels were tested using hierarchical linear modeling (HLM. The results showed that individual-level relationship conflict was negatively related to team commitment while individual-level task conflict was not. In addition, both team-level task and relationship conflict were negatively associated with team commitment. Finally, only team-level relationship conflict significantly moderated the relationship between individual-level relationship conflict and team commitment. We further derive theoretical implications of these findings.

  13. The Impact of Environmental Complexity and Team Training on Team Processes and Performance in Multi-Team Environments

    National Research Council Canada - National Science Library

    Cobb, Marshall

    1999-01-01

    This study examined how manipulating the level of environmental complexity and the type of team training given to subject volunteers impacted important team process behaviors and performance outcomes...

  14. 76 FR 42683 - Establishment of a Team Under the National Construction Safety Team Act

    Science.gov (United States)

    2011-07-19

    ...-01] Establishment of a Team Under the National Construction Safety Team Act AGENCY: National..., announces the establishment of a National Construction Safety Team pursuant to the National Construction Safety Team Act. The Team was established to study the effects of the tornado that touched down in Joplin...

  15. Netball team members, but not hobby group members, distinguish team characteristics from group characteristics.

    Science.gov (United States)

    Stillman, Jennifer A; Fletcher, Richard B; Carr, Stuart C

    2007-04-01

    Research on groups is often applied to sport teams, and research on teams is often applied to groups. This study investigates the extent to which individuals have distinct schemas for groups and teams. A list of team and group characteristics was generated from 250 individuals, for use in this and related research. Questions about teams versus groups carry an a priori implication that differences exist; therefore, list items were presented to new participants and were analyzed using signal detection theory, which can accommodate a finding of no detectable difference between a nominated category and similar items. Participants were 30 members from each of the following: netball teams, the general public, and hobby groups. Analysis revealed few features that set groups apart from teams; however, teams were perceived as more structured and demanding, requiring commitment and effort toward shared goals. Team and group characteristics were more clearly defined to team members than they were to other participant groups. The research has implications for coaches and practitioners.

  16. Leading multiple teams: average and relative external leadership influences on team empowerment and effectiveness.

    Science.gov (United States)

    Luciano, Margaret M; Mathieu, John E; Ruddy, Thomas M

    2014-03-01

    External leaders continue to be an important source of influence even when teams are empowered, but it is not always clear how they do so. Extending research on structurally empowered teams, we recognize that teams' external leaders are often responsible for multiple teams. We adopt a multilevel approach to model external leader influences at both the team level and the external leader level of analysis. In doing so, we distinguish the influence of general external leader behaviors (i.e., average external leadership) from those that are directed differently toward the teams that they lead (i.e., relative external leadership). Analysis of data collected from 451 individuals, in 101 teams, reporting to 25 external leaders, revealed that both relative and average external leadership related positively to team empowerment. In turn, team empowerment related positively to team performance and member job satisfaction. However, while the indirect effects were all positive, we found that relative external leadership was not directly related to team performance, and average external leadership evidenced a significant negative direct influence. Additionally, relative external leadership exhibited a significant direct positive influence on member job satisfaction as anticipated, whereas average external leadership did not. These findings attest to the value in distinguishing external leaders' behaviors that are exhibited consistently versus differentially across empowered teams. Implications and future directions for the study and management of external leaders overseeing multiple teams are discussed.

  17. Staff Turnover in Assertive Community Treatment (Act) Teams: The Role of Team Climate.

    Science.gov (United States)

    Zhu, Xi; Wholey, Douglas R; Cain, Cindy; Natafgi, Nabil

    2017-03-01

    Staff turnover in Assertive Community Treatment (ACT) teams can result in interrupted services and diminished support for clients. This paper examines the effect of team climate, defined as team members' shared perceptions of their work environment, on turnover and individual outcomes that mediate the climate-turnover relationship. We focus on two climate dimensions: safety and quality climate and constructive conflict climate. Using survey data collected from 26 ACT teams, our analyses highlight the importance of safety and quality climate in reducing turnover, and job satisfaction as the main mediator linking team climate to turnover. The findings offer practical implications for team management.

  18. What is happening under the surface? Power, conflict and the performance of medical teams.

    Science.gov (United States)

    Janss, Rozemarijn; Rispens, Sonja; Segers, Mien; Jehn, Karen A

    2012-09-01

    The effect of teamwork on team performance is broadly recognised in the medical field. This recognition is manifested in educational programmes in which attention to interpersonal behaviours during teamwork is growing. Conflict and power differences influence interpersonal behaviours and are marked topics in studies of group functioning in the social and organisational psychology literature. Insights from the domain of social sciences put the ongoing improvement of teamwork into broader perspective. This paper shows how knowledge from the domain of social and organisational psychology contributes to the understanding of teamwork in the medical environment. More specifically, this paper suggests that unfolding the underlying issues of power and conflict within medical teams can be of extra help in the development of educational interventions aimed at improving team performance. We review the key social psychology and organisational behaviour literature concerning power and conflict, and relate the insights derived from this to the team process of ad hoc medical action teams. We present a theoretical framework in which insights into power and conflict are used to explain and predict team dynamics in ad hoc medical action teams. Power and conflict strongly influence interpersonal behaviour. Characteristics of medical action teams give rise to all kinds of issues of disagreement and are accompanied by complex issues of intra-team power distribution. We argue that how team members coordinate, cooperate and communicate is steered by members' personal motivations, which, in turn, strongly depend on their perceptions of power and conflict. Given the importance of the performance of these teams, we suggest future directions for the development of training interventions building on knowledge and theories derived from social and organisational psychology. © Blackwell Publishing Ltd 2012.

  19. NASA Education Recommendation Report - Education Design Team 2011

    Science.gov (United States)

    Pengra, Trish; Stofan, James

    2011-01-01

    NASA people are passionate about their work. NASA's missions are exciting to learners of all ages. And since its creation in 1958, NASA's people have been passionate about sharing their inspiring discoveries, research and exploration with students and educators. In May 2010, NASA administration chartered an Education Design Team composed of 12 members chosen from the Office of Education, NASA's Mission Directorates and Centers for their depth of knowledge and education expertise, and directed them to evaluate the Agency's program in the context of current trends in education. By improving NASA's educational offerings, he was confident that the Agency can play a leading role in inspiring student interest in science, technology, engineering and mathematics (STEM) as few other organizations can. Through its unique workforce, facilities, research and innovations, NASA can expand its efforts to engage underserved and underrepresented communities in science and mathematics. Through the Agency's STEM education efforts and science and exploration missions, NASA can help the United States successfully compete, prosper and be secure in the 21st century global community. After several months of intense effort, including meeting with education experts; reviewing Administration policies, congressional direction and education research; and seeking input from those passionate about education at NASA, the Education Design Team made six recommendations to improve the impact of NASA's Education Program: (1) Focus the NASA Education Program to improve its impact on areas of greatest national need (2) Identify and strategically manage NASA Education partnerships (3) Participate in National and State STEM Education policy discussions (4) Establish a structure to allow the Office of Education, Centers and Mission Directorates to implement a strategically integrated portfolio (5) Expand the charter of the Education Coordinating Committee to enable deliberate Education Program design (6

  20. Leadership in science.

    Science.gov (United States)

    Broome, Marion E

    2015-04-01

    In this article, there is a leadership discussion related to the development of leaders in nursing science-a topic rarely discussed. Given the recent dramatic shifts in funding as well as changes in methods of inquiry and data models, there is a clear need for individuals in nursing science who can not only negotiate the turbulent waters of funding but can also lead teams of others, and the discipline, to generate and translate knowledge that will truly be useful to providers, patients, and families. This requires leaders in science who can challenge the prevailing views and traditional paths to excellence held sacred by some. © The Author(s) 2015.

  1. Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands

    Science.gov (United States)

    Hagemann, Vera; Kluge, Annette

    2017-01-01

    Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high (n = 58) or low (n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as

  2. Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands

    Directory of Open Access Journals (Sweden)

    Vera Hagemann

    2017-09-01

    Full Text Available Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes, the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high (n = 58 or low (n = 58 collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes

  3. Team-based global organizations

    DEFF Research Database (Denmark)

    Zander, Lena; Butler, Christina; Mockaitis, Audra

    2015-01-01

    diversity in enhancing team creativity and performance, and 2) the sharing of knowledge in team-based organizations, while the other two themes address global team leadership: 3) the unprecedented significance of social capital for the success of global team leader roles; and 4) the link between shared......This chapter draws on a panel discussion of the future of global organizing as a team-based organization at EIBA 2014 in Uppsala, Sweden. We began by discussing contemporary developments of hybrid forms of hierarchy and teams-based organizing, but we venture to propose that as organizations become...... characterized by decreased importance of hierarchal structures, more fluidity across borders, even a possible dissolution of firm boundaries, we move towards team-based organizing as an alternative to more traditional forms of hierarchical-based organizing in global firms. To provide input for a discussion...

  4. Team Creativity: The Effects of Perceived Learning Culture, Developmental Feedback and Team Cohesion

    Science.gov (United States)

    Joo, Baek-Kyoo; Song, Ji Hoon; Lim, Doo Hun; Yoon, Seung Won

    2012-01-01

    This study investigates the influence of perceived learning culture, developmental feedback and team cohesion on team creativity. The results showed that the demographic variables, the three antecedents and their interactions explained 41 per cent of variance in team creativity. Team creativity was positively correlated with a higher level of…

  5. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  6. The bigger they are, the harder they fall: linking team power, team conflict, and performance

    NARCIS (Netherlands)

    Greer, L.L.; Caruso, H.M.; Jehn, K.A.

    2011-01-01

    Across two field studies, we investigate the impact of team power on team conflict and performance. Team power is based on the control of resources that enables a team to influence others in the company. We find across both studies that low-power teams outperform high-power teams. In both studies,

  7. Stimulating teachers’ team performance through team-oriented HR practices

    NARCIS (Netherlands)

    Bouwmans, Machiel; Runhaar, Piety; Wesselink, Renate; Mulder, Martin

    2017-01-01

    Teams of teachers are increasingly held accountable for the quality of education and educational reforms in vocational education and training institutions. However, historically teachers have not been required to engage in deep-level collaboration, thus team-oriented HR practices are being used

  8. Ability Dispersion and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Parker, Simon C.; Van Praag, Mirjam

    What is the effect of dispersed levels of cognitive ability of members of a (business) team on their team's performance? This paper reports the results of a field experiment in which 573 students in 49 (student) teams start up and manage real companies under identical circumstances for one year. We...... ensured exogenous variation in otherwise random team composition by assigning students to teams based on their measured cognitive abilities. Each team performs a variety of tasks, often involving complex decision making. The key result of the experiment is that the performance of business teams first...... increases and then decreases with ability dispersion. We seek to understand this finding by developing a model in which team members of different ability levels form sub- teams with other team members with similar ability levels to specialize in different productive tasks. Diversity spreads production over...

  9. Speeding Up Team Learning.

    Science.gov (United States)

    Edmondson, Amy; Bohmer, Richard; Pisano, Gary

    2001-01-01

    A study of 16 cardiac surgery teams looked at how the teams adapted to new ways of working. The challenge of team management is to implement new processes as quickly as possible. Steps for creating a learning team include selecting a mix of skills and expertise, framing the challenge, and creating an environment of psychological safety. (JOW)

  10. One more thing: Faculty response to increased emphasis on project teams in undergraduate engineering education

    Science.gov (United States)

    Hunter, Jane

    Tenured and tenure-track faculty members at institutions of higher education, especially those at Research I institutions, are being asked to do more than ever before. With rapidly changing technology, significant decreases in public funding, the shift toward privately funded research, and the ever increasing expectations of students for an education that adequately prepares them for professional careers, engineering faculty are particularly challenged by the escalating demands on their time. In 1996, the primary accreditation organization for engineering programs (ABET) adopted new criteria that required, among other things, engineering programs to teach students to function on multidisciplinary teams and to communicate effectively. In response, most engineering programs utilize project teams as a strategy for teaching these skills. The purpose of this qualitative study of tenured and tenure track engineering faculty at a Research I institution in the southwestern United States was to explore the variety of ways in which the engineering faculty responded to the demands placed upon them as a result of the increased emphasis on project teams in undergraduate engineering education. Social role theory and organizational climate theory guided the study. Some faculty viewed project teams as an opportunity for students to learn important professional skills and to benefit from collaborative learning but many questioned the importance and feasibility of teaching teamwork skills and had concerns about taking time away from other essential fundamental material such as mathematics, basic sciences and engineering sciences. Although the administration of the College of Engineering articulated strong support for the use of project teams in undergraduate education, the prevailing climate did little to promote significant efforts related to effective utilization of project teams. Too often, faculty were unwilling to commit sufficient time or effort to make project teamwork a

  11. The academic librarian as co-investigator on an interprofessional primary research team: a case study.

    Science.gov (United States)

    Janke, Robert; Rush, Kathy L

    2014-06-01

    The objective of this study was to explore the role librarians play on research teams. The experiences of a librarian and a faculty member are situated within the wider literature addressing collaborations between health science librarians and research faculty. A case study approach is used to outline the involvement of a librarian on a team created to investigate the best practices for integrating nurses into the workplace during their first year of practice. Librarians contribute to research teams including expertise in the entire process of knowledge development and dissemination including the ability to navigate issues related to copyright and open access policies of funding agencies. The librarian reviews the various tasks performed as part of the research team ranging from the grant application, to working on the initial literature review as well as the subsequent manuscripts that emerged from the primary research. The motivations for joining the research team, including authorship and relationship building, are also discussed. Recommendations are also made in terms of how librarians could increase their participation on research teams. The study shows that librarians can play a key role on interprofessional primary research teams. © 2014 The authors. Health Information and Libraries Journal © 2014 Health Libraries Group.

  12. What is optimal timing for trauma team alerts? A retrospective observational study of alert timing effects on the initial management of trauma patients

    Directory of Open Access Journals (Sweden)

    Lillebo B

    2012-08-01

    Full Text Available Borge Lillebo,1 Andreas Seim,2 Ole-Petter Vinjevoll,3 Oddvar Uleberg31Norwegian EHR Research Centre, Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; 2Department of Computer and Information Science, Faculty of Information Technology, Mathematics and Electrical Engineering, NTNU, Trondheim, Norway; 3Department of Anaesthesia and Emergency Medicine, St Olav's University Hospital, Trondheim, NorwayBackground: Trauma teams improve the initial management of trauma patients. Optimal timing of trauma alerts could improve team preparedness and performance while also limiting adverse ripple effects throughout the hospital. The purpose of this study was to evaluate how timing of trauma team activation and notification affects initial in-hospital management of trauma patients.Methods: Data from a single hospital trauma care quality registry were matched with data from a trauma team alert log. The time from patient arrival to chest X-ray, and the emergency department length of stay were compared with the timing of trauma team activations and whether or not trauma team members received a preactivation notification.Results: In 2009, the trauma team was activated 352 times; 269 times met the inclusion criteria. There were statistically significant differences in time to chest X-ray for differently timed trauma team activations (P = 0.003. Median time to chest X-ray for teams activated 15–20 minutes prearrival was 5 minutes, and 8 minutes for teams activated <5 minutes before patient arrival. Timing had no effect on length of stay in the emergency department (P = 0.694. We found no effect of preactivation notification on time to chest X-ray (P = 0.474 or length of stay (P = 0.684.Conclusion: Proactive trauma team activation improved the initial management of trauma patients. Trauma teams should be activated prior to patient arrival.Keywords: emergency medical service communication systems

  13. The influence of personality and ability on undergraduate teamwork and team performance.

    Science.gov (United States)

    Rhee, Jinny; Parent, David; Basu, Anuradha

    2013-12-01

    The ability to work effectively on a team is highly valued by employers, and collaboration among students can lead to intrinsic motivation, increased persistence, and greater transferability of skills. Moreover, innovation often arises from multidisciplinary teamwork. The influence of personality and ability on undergraduate teamwork and performance is not comprehensively understood. An investigation was undertaken to explore correlations between team outcomes, personality measures and ability in an undergraduate population. Team outcomes included various self-, peer- and instructor ratings of skills, performance, and experience. Personality measures and ability involved the Five-Factor Model personality traits and GPA. Personality, GPA, and teamwork survey data, as well as instructor evaluations were collected from upper division team project courses in engineering, business, political science, and industrial design at a large public university. Characteristics of a multidisciplinary student team project were briefly examined. Personality, in terms of extraversion scores, was positively correlated with instructors' assessment of team performance in terms of oral and written presentation scores, which is consistent with prior research. Other correlations to instructor-, students' self- and peer-ratings were revealed and merit further study. The findings in this study can be used to understand important influences on successful teamwork, teamwork instruction and intervention and to understand the design of effective curricula in this area moving forward. The online version of this article (doi:10.1186/2193-1801-2-16) contains supplementary material, which is available to authorized users.

  14. Diversity in goal orientation, team reflexivity, and team performance

    NARCIS (Netherlands)

    Pieterse, Anne Nederveen; van Knippenberg, Daan; van Ginkel, Wendy P.

    Although recent research highlights the role of team member goal orientation in team functioning, research has neglected the effects of diversity in goal orientation. In a laboratory study with groups working on a problem-solving task, we show that diversity in learning and performance orientation

  15. Flipping my environmental geochemistry classroom using Team-Based Learning

    Science.gov (United States)

    Griffith, E. M.

    2016-02-01

    Recent studies indicate that active learning disproportionately benefits STEM students from disadvantaged backgrounds and women in male-dominated fields (Lorenzo et al., 2006; Haak et al., 2011). Freeman et al. (2014) went so far as to suggest that increasing the number of STEM graduates could be done, at least in part, by "abandoning traditional lecturing in favor of active learning". Motivated in part by these previous studies and working at a Hispanic-Serving Institution, I decided to flip my environmental geochemistry course, using Team-Based Learning (TBL) - an instructional strategy for using active learning in small groups (Michaelsen et al., 1982). The course is taught over a 3 hour long class period (once a week) with a mix of upper division undergraduate and graduate students from environmental science, geology, engineering, chemistry, and biological sciences. One of the major learning outcomes of my course is that students "will be able to explain and discuss environmental geochemical data and its significance with their peers." This is practiced each class period throughout the course using TBL, where both undergraduate and graduate students learn from each other and uncover misconceptions. It is essentially one version of a flipped classroom where the students' experience changes from acquiring course content in the classroom to applying course content in the classroom in teams. I will share an overview of the teaching and learning strategy and my experience as well as examples of activities done in the classroom. Cited references: Freeman et al. (2014) PNAS 111: 8410-8415; Haak et al. (2011) Science 332: 1213-1216; Lorenzo et al. (2006) Am J Phys 74: 118-122; Michaelsen et al. (1982) Organ Behav Teaching 7: 13-22.

  16. Performance of student software development teams: the influence of personality and identifying as team members

    Science.gov (United States)

    Monaghan, Conal; Bizumic, Boris; Reynolds, Katherine; Smithson, Michael; Johns-Boast, Lynette; van Rooy, Dirk

    2015-01-01

    One prominent approach in the exploration of the variations in project team performance has been to study two components of the aggregate personalities of the team members: conscientiousness and agreeableness. A second line of research, known as self-categorisation theory, argues that identifying as team members and the team's performance norms should substantially influence the team's performance. This paper explores the influence of both these perspectives in university software engineering project teams. Eighty students worked to complete a piece of software in small project teams during 2007 or 2008. To reduce limitations in statistical analysis, Monte Carlo simulation techniques were employed to extrapolate from the results of the original sample to a larger simulated sample (2043 cases, within 319 teams). The results emphasise the importance of taking into account personality (particularly conscientiousness), and both team identification and the team's norm of performance, in order to cultivate higher levels of performance in student software engineering project teams.

  17. Intraprofessional, team-based treatment planning for oral health students in the comprehensive care clinic.

    Science.gov (United States)

    Mattheos, Nikos; Storrs, Mark; Foster, Lea; Oberholzer, Theunis

    2012-12-01

    In 2009, Griffith University School of Dentistry and Oral Health, in Queensland, Australia, introduced into its various curricula the concept of team-based treatment planning (TBTP), aiming to facilitate intraprofessional, interdisciplinary training and peer learning among its students. Fifty student teams were organized, each of which included students from three programs (Dental Science, Oral Health Therapy, and Dental Technology) and three years of study (third-, fourth-, and fifth-year students). This study prospectively evaluated the impact of TBTP on students' perceptions and attitudes towards teamwork and their role in a team of peers. A total of 202 students who participated in fifty TBTP teams were prospectively surveyed at baseline and at six and twelve months after introduction of TBTP. "Reliable" and "responsible" were reported to be the most important qualities of both an effective team leader and member. Fifth-year students identified "hard-working" as an important quality of the ideal leader as opposed to the fourth-year students who ranked "supportive" higher. Attitudes of the fifth-year students towards TBTP appeared to have declined significantly from the previous years, while fourth-year students remained consistently more positive. In addition, fourth-year students appeared more likely to enjoy working in a team and considered themselves more effective in a team. No gender differences were observed, other than female students' appearing less confident to lead a team. It was concluded that the function of student-directed interdisciplinary, intraprofessional treatment planning teams might pose disproportionate strain on fifth-year students, impacting their attitudes to such modes of work.

  18. Trauma teams and time to early management during in situ trauma team training.

    Science.gov (United States)

    Härgestam, Maria; Lindkvist, Marie; Jacobsson, Maritha; Brulin, Christine; Hultin, Magnus

    2016-01-29

    To investigate the association between the time taken to make a decision to go to surgery and gender, ethnicity, years in profession, experience of trauma team training, experience of structured trauma courses and trauma in the trauma team, as well as use of closed-loop communication and leadership styles during trauma team training. In situ trauma team training. The patient simulator was preprogrammed to represent a severely injured patient (injury severity score: 25) suffering from hypovolemia due to external trauma. An emergency room in an urban Scandinavian level one trauma centre. A total of 96 participants were divided into 16 trauma teams. Each team consisted of six team members: one surgeon/emergency physician (designated team leader), one anaesthesiologist, one registered nurse anaesthetist, one registered nurse from the emergency department, one enrolled nurse from the emergency department and one enrolled nurse from the operating theatre. HRs with CIs (95% CI) for the time taken to make a decision to go to surgery was computed from a Cox proportional hazards model. Three variables remained significant in the final model. Closed-loop communication initiated by the team leader increased the chance of a decision to go to surgery (HR: 3.88; CI 1.02 to 14.69). Only 8 of the 16 teams made the decision to go to surgery within the timeframe of the trauma team training. Conversely, call-outs and closed-loop communication initiated by the team members significantly decreased the chance of a decision to go to surgery, (HR: 0.82; CI 0.71 to 0.96, and HR: 0.23; CI 0.08 to 0.71, respectively). Closed-loop communication initiated by the leader appears to be beneficial for teamwork. In contrast, a high number of call-outs and closed-loop communication initiated by team members might lead to a communication overload. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Exploring effectiveness of team communication: Balancing synchronous and asynchronous communication in design teams

    DEFF Research Database (Denmark)

    den Otter, Ad; Emmitt, Stephen

    2007-01-01

    Effective teams use a balance of synchronous and asynchronous communication. Team communication is dependent on the communication acts of team members and the ability of managers to facilitate, stimulate and motivate them. Team members from organizations using different information systems tend...... to have different understanding, opinions, and rates of adoption and skills levels regarding specific IT tools. The purpose of this paper is to explore the effective use of tools for communication in design teams and the strategies for the use of specific tools....

  20. Teaching nurses teamwork: Integrative review of competency-based team training in nursing education.

    Science.gov (United States)

    Barton, Glenn; Bruce, Anne; Schreiber, Rita

    2017-12-20

    Widespread demands for high reliability healthcare teamwork have given rise to many educational initiatives aimed at building team competence. Most effort has focused on interprofessional team training however; Registered Nursing teams comprise the largest human resource delivering direct patient care in hospitals. Nurses also influence many other health team outcomes, yet little is known about the team training curricula they receive, and furthermore what specific factors help translate teamwork competency to nursing practice. The aim of this review is to critically analyse empirical published work reporting on teamwork education interventions in nursing, and identify key educational considerations enabling teamwork competency in this group. CINAHL, Web of Science, Academic Search Complete, and ERIC databases were searched and detailed inclusion-exclusion criteria applied. Studies (n = 19) were selected and evaluated using established qualitative-quantitative appraisal tools and a systematic constant comparative approach. Nursing teamwork knowledge is rooted in High Reliability Teams theory and Crew or Crisis Resource Management sources. Constructivist pedagogy is used to teach, practice, and refine teamwork competency. Nursing teamwork assessment is complex; involving integrated yet individualized determinations of knowledge, skills, and attitudes. Future initiatives need consider frontline leadership, supportive followership and skilled communication emphasis. Collective stakeholder support is required to translate teamwork competency into nursing practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    Science.gov (United States)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  2. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  3. Leadership training in health care action teams: a systematic review.

    Science.gov (United States)

    Rosenman, Elizabeth D; Shandro, Jamie R; Ilgen, Jonathan S; Harper, Amy L; Fernandez, Rosemarie

    2014-09-01

    To identify and describe the design, implementation, and evidence of effectiveness of leadership training interventions for health care action (HCA) teams, defined as interdisciplinary teams whose members coordinate their actions in time-pressured, unstable situations. The authors conducted a systematic search of the PubMed/MEDLINE, CINAHL, ERIC, EMBASE, PsycINFO, and Web of Science databases, key journals, and review articles published through March 2012. They identified peer-reviewed English-language articles describing leadership training interventions targeting HCA teams, at all levels of training and across all health care professions. Reviewers, working in duplicate, abstracted training characteristics and outcome data. Methodological quality was evaluated using the Medical Education Research Study Quality Instrument (MERSQI). Of the 52 included studies, 5 (10%) focused primarily on leadership training, whereas the remainder included leadership training as part of a larger teamwork curriculum. Few studies reported using a team leadership model (2; 4%) or a theoretical framework (9; 17%) to support their curricular design. Only 15 studies (29%) specified the leadership behaviors targeted by training. Forty-five studies (87%) reported an assessment component; of those, 31 (69%) provided objective outcome measures including assessment of knowledge or skills (21; 47%), behavior change (8; 18%), and patient- or system-level metrics (8; 18%). The mean MERSQI score was 11.4 (SD 2.9). Leadership training targeting HCA teams has become more prevalent. Determining best practices in leadership training is confounded by variability in leadership definitions, absence of supporting frameworks, and a paucity of robust assessments.

  4. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-06-17

    ... Update. --Research and Analysis Update. --Wide-Field Infrared Survey Telescope Science Definition Team... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-054] NASA Advisory Council; Science... Subcommittee of the NASA Advisory Council (NAC). This subcommittee reports to the Science Committee of the NAC...

  5. 76 FR 59172 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-09-23

    ... Space Telescope, Science Definition Team. --Physics of the Cosmos/Cosmic Origins/Exoplanet Program... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-083)] NASA Advisory Council; Science... Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  6. Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

    CERN Multimedia

    2004-01-01

    Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

  7. Team structure and regulatory focus: the impact of regulatory fit on team dynamic.

    Science.gov (United States)

    Dimotakis, Nikolaos; Davison, Robert B; Hollenbeck, John R

    2012-03-01

    We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus characteristics (prevention and promotion) in 2 organizational structures (functional and divisional), resulting in 84 observations. Results suggested that salient regulatory demands inherent in the task interacted with structure to determine objective and subjective team-level outcomes, such that functional structures were best suited to (i.e., had best fit with) tasks with a prevention regulatory focus and divisional structures were best suited to tasks with a promotion regulatory focus. This contingency finding integrates regulatory focus and structural contingency theories, and extends them to the team level with implications for models of performance, satisfaction, and team dynamics.

  8. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  9. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  10. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  11. The interplay of diversity training and diversity beliefs on team creativity in nationality diverse teams.

    Science.gov (United States)

    Homan, Astrid C; Buengeler, Claudia; Eckhoff, Robert A; van Ginkel, Wendy P; Voelpel, Sven C

    2015-09-01

    Attaining value from nationality diversity requires active diversity management, which organizations often employ in the form of diversity training programs. Interestingly, however, the previously reported effects of diversity training are often weak and, sometimes, even negative. This situation calls for research on the conditions under which diversity training helps or harms teams. We propose that diversity training can increase team creativity, but only for teams with less positive pretraining diversity beliefs (i.e., teams with a greater need for such training) and that are sufficiently diverse in nationality. Comparing the creativity of teams that attended nationality diversity training versus control training, we found that for teams with less positive diversity beliefs, diversity training increased creative performance when the team's nationality diversity was high, but undermined creativity when the team's nationality diversity was low. Diversity training had less impact on teams with more positive diversity beliefs, and training effects were not contingent upon these teams' diversity. Speaking to the underlying process, we showed that these interactive effects were driven by the experienced team efficacy of the team members. We discuss theoretical and practical implications for nationality diversity management. (c) 2015 APA, all rights reserved).

  12. Gender Composition of Tactical Decision Making Teams; Impact on Team Process and Outcome

    National Research Council Canada - National Science Library

    Elliott, Linda

    1997-01-01

    This study investigates the performance of teams differing in gender composition on a university-developed synthetic task, the Team Interactive Decision Exercise for Teams Incorporating Distributed Expertise (TIDE2...

  13. Model of Team Organization and Behavior and Team Description Method

    Science.gov (United States)

    1984-10-01

    PERFORMING ORG& REPORT’ NUMBER 7.AUTHIOR(&) 0. CONTRACT OR GRANT NUMOSR(ej J. Thomas Roth Rohn J. Hritz HDA 903-81-C-0198: VEa Donald W. McGill 9...team descriptions are included, acid procedures for data recording are provided. 4q-4 4 iv, G OP S• . . • ,," $1 . . ’ __ _ _ _ ’ / . • , Utilization...Listing of thi! number acid identification of the roles adopted by team members in the actual team structure, along with KOS and primary equipment

  14. Leadership of interprofessional health and social care teams: a socio-historical analysis.

    Science.gov (United States)

    Reeves, Scott; Macmillan, Kathleen; van Soeren, Mary

    2010-04-01

    The aim of this paper is to explore some of the key socio-historical issues related to the leadership of interprofessional teams. Over the past quarter of a century, there have been repeated calls for collaboration to help improve the delivery of care. Interprofessional teamwork is regarded as a key approach to delivering high-quality, safe care. We draw upon historical documents to understand how modern health and social care professions emerged from 16th-century crafts guilds. We employ sociological theories to help analyse the nature of these professional developments for team leadership. As the forerunners of professions, crafts guilds were established on the basis of protection and promotion of their members. Such traits have been emphasized during the evolution of professions, which have resulted in strains for teamwork and leadership. Understanding a problem through a socio-historical analysis can assist management to understand the barriers to collaboration and team leadership. Nursing management is in a unique role to observe and broker team conflict. It is rare to examine these phenomena through a humanities/social sciences lens. This paper provides a rare perspective to foster understanding - an essential precursor to effective change management.

  15. Implementation of a team-based learning course: Work required and perceptions of the teaching team.

    Science.gov (United States)

    Morris, Jenny

    2016-11-01

    Team-based learning was selected as a strategy to help engage pre-registration undergraduate nursing students in a second-year evidence-informed decision making course. To detail the preparatory work required to deliver a team-based learning course; and to explore the perceptions of the teaching team of their first experience using team-based learning. Descriptive evaluation. Information was extracted from a checklist and process document developed by the course leader to document the work required prior to and during implementation. Members of the teaching team were interviewed by a research assistant at the end of the course using a structured interview schedule to explore perceptions of first time implementation. There were nine months between the time the decision was made to use team-based learning and the first day of the course. Approximately 60days were needed to reconfigure the course for team-based learning delivery, develop the knowledge and expertise of the teaching team, and develop and review the resources required for the students and the teaching team. This reduced to around 12days for the subsequent delivery. Interview data indicated that the teaching team were positive about team-based learning, felt prepared for the course delivery and did not identify any major problems during this first implementation. Implementation of team-based learning required time and effort to prepare the course materials and the teaching team. The teaching team felt well prepared, were positive about using team-based learning and did not identify any major difficulties. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Shared responsibility: school nurses' experience of collaborating in school-based interprofessional teams.

    Science.gov (United States)

    Reuterswärd, Marina; Hylander, Ingrid

    2017-06-01

    The Swedish Education Act (2011) mandated a new combination of services to boost students' physical health, their mental health and special education through interprofessional pupil health and well-being (PH) teams. For Swedish school nurses, providing these services presents new challenges. To describe how Swedish school nurses experience their work and collaboration within the interprofessional PH teams. Twenty-five school nurses (SNs) were interviewed in five focus groups. Content analysis was used to examine the data and to explore SNs' workplace characteristics by using the components of the sense of coherence (SOC) framework. SNs' experiences of work and collaboration within PH teams can be described using three domains: the expectations of others regarding SNs' roles, SNs' contributions to pupils' health and well-being, and collaboration among SNs within PH teams. The results indicate a discrepancy between SNs' own experiences of their contribution and their experiences of other professionals' expectations regarding those contributions. Some duties were perceived as expected, comprehensible, manageable and meaningful, while other duties - though expected - were perceived as less meaningful, taking time away from school-related matters. Other duties that were not explicitly expected - promoting general health and creating safety zones for pupils, teachers and parents, for example - were nonetheless perceived as meaningful. Collaboration within PH teams was considered meaningful, comprehensible and manageable only if the objectives of the team meetings were clear, if other professionals were available and if professional roles on the team were clearly communicated. The SNs reported a lack of clarity regarding their role in PH and its implementation in schools, indicating that professionals in PH teams need to discuss collaboration so as to find their niche given the new conditions. SOC theory emerged as a useful framework for discussing concrete work

  17. Your cancer care team

    Science.gov (United States)

    ... gov/ency/patientinstructions/000929.htm Your cancer care team To use the sharing features on this page, ... help your body heal. Working with Your Care Team Each member of your care team plays an ...

  18. Conceptualizing Interprofessional Teams as Multi-Team Systems-Implications for Assessment and Training.

    Science.gov (United States)

    West, Courtney; Landry, Karen; Graham, Anna; Graham, Lori; Cianciolo, Anna T; Kalet, Adina; Rosen, Michael; Sherman, Deborah Witt

    2015-01-01

    SGEA 2015 CONFERENCE ABSTRACT (EDITED). Evaluating Interprofessional Teamwork During a Large-Scale Simulation. Courtney West, Karen Landry, Anna Graham, and Lori Graham. CONSTRUCT: This study investigated the multidimensional measurement of interprofessional (IPE) teamwork as part of large-scale simulation training. Healthcare team function has a direct impact on patient safety and quality of care. However, IPE team training has not been the norm. Recognizing the importance of developing team-based collaborative care, our College of Nursing implemented an IPE simulation activity called Disaster Day and invited other professions to participate. The exercise consists of two sessions: one in the morning and another in the afternoon. The disaster scenario is announced just prior to each session, which consists of team building, a 90-minute simulation, and debriefing. Approximately 300 Nursing, Medicine, Pharmacy, Emergency Medical Technicians, and Radiology students and over 500 standardized and volunteer patients participated in the Disaster Day event. To improve student learning outcomes, we created 3 competency-based instruments to evaluate collaborative practice in multidimensional fashion during this exercise. A 20-item IPE Team Observation Instrument designed to assess interprofessional team's attainment of Interprofessional Education Collaborative (IPEC) competencies was completed by 20 faculty and staff observing the Disaster Day simulation. One hundred sixty-six standardized patients completed a 10-item Standardized Patient IPE Team Evaluation Instrument developed from the IPEC competencies and adapted items from the 2014 Henry et al. PIVOT Questionnaire. This instrument assessed the standardized or volunteer patient's perception of the team's collaborative performance. A 29-item IPE Team's Perception of Collaborative Care Questionnaire, also created from the IPEC competencies and divided into 5 categories of Values/Ethics, Roles and Responsibilities

  19. Zooniverse - A Platform for Data-Driven Citizen Science

    Science.gov (United States)

    Smith, A.; Lintott, C.; Bamford, S.; Fortson, L.

    2011-12-01

    In July 2007 a team of astrophysicists created a web-based astronomy project called Galaxy Zoo in which members of the public were asked to classify galaxies from the Sloan Digital Sky Survey by their shape. Over the following year a community of more than 150,000 people classified each of the 1 million galaxies more than 50 times each. Four years later this community of 'citizen scientists' is more than 450,000 strong and is contributing their time and efforts to more than 10 Zooniverse projects each with its own science team and research case. With projects ranging from transcribing ancient greek texts (ancientlives.org) to lunar science (moonzoo.org) the challenges to the Zooniverse community have gone well beyond the relatively simple original Galaxy Zoo interface. Delivering a range of citizen science projects to a large web-based audience presents challenges on a number of fronts including interface design, data architecture/modelling and reduction techniques, web-infrastructure and software design. In this paper we will describe how the Zooniverse team (a collaboration of scientists, software developers and educators ) have developed tools and techniques to solve some of these issues.

  20. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  1. Determinants of team-sport performance: implications for altitude training by team-sport athletes

    Science.gov (United States)

    Bishop, David J; Girard, Olivier

    2013-01-01

    Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged in these sports are required to repeatedly produce skilful actions and maximal or near-maximal efforts (eg, accelerations, changes in pace and direction, sprints, jumps and kicks), interspersed with brief recovery intervals (consisting of rest or low-intensity to moderate-intensity activity), over an extended period of time (1–2 h). While performance in most team sports is dominated by technical and tactical proficiencies, successful team-sport athletes must also have highly-developed, specific, physical capacities. Much effort goes into designing training programmes to improve these physical capacities, with expected benefits for team-sport performance. Recently, some team sports have introduced altitude training in the belief that it can further enhance team-sport physical performance. Until now, however, there is little published evidence showing improved team-sport performance following altitude training, despite the often considerable expense involved. In the absence of such studies, this review will identify important determinants of team-sport physical performance that may be improved by altitude training, with potential benefits for team-sport performance. These determinants can be broadly described as factors that enhance either sprint performance or the ability to recover from maximal or near-maximal efforts. There is some evidence that some of these physical capacities may be enhanced by altitude training, but further research is required to verify that these adaptations occur, that they are greater than what could be achieved by appropriate sea-level training and that they translate to improved team-sport performance. PMID:24282200

  2. Determinants of team-sport performance: implications for altitude training by team-sport athletes.

    Science.gov (United States)

    Bishop, David J; Girard, Olivier

    2013-12-01

    Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged in these sports are required to repeatedly produce skilful actions and maximal or near-maximal efforts (eg, accelerations, changes in pace and direction, sprints, jumps and kicks), interspersed with brief recovery intervals (consisting of rest or low-intensity to moderate-intensity activity), over an extended period of time (1-2 h). While performance in most team sports is dominated by technical and tactical proficiencies, successful team-sport athletes must also have highly-developed, specific, physical capacities. Much effort goes into designing training programmes to improve these physical capacities, with expected benefits for team-sport performance. Recently, some team sports have introduced altitude training in the belief that it can further enhance team-sport physical performance. Until now, however, there is little published evidence showing improved team-sport performance following altitude training, despite the often considerable expense involved. In the absence of such studies, this review will identify important determinants of team-sport physical performance that may be improved by altitude training, with potential benefits for team-sport performance. These determinants can be broadly described as factors that enhance either sprint performance or the ability to recover from maximal or near-maximal efforts. There is some evidence that some of these physical capacities may be enhanced by altitude training, but further research is required to verify that these adaptations occur, that they are greater than what could be achieved by appropriate sea-level training and that they translate to improved team-sport performance.

  3. Trauma team leaders' non-verbal communication: video registration during trauma team training.

    Science.gov (United States)

    Härgestam, Maria; Hultin, Magnus; Brulin, Christine; Jacobsson, Maritha

    2016-03-25

    There is widespread consensus on the importance of safe and secure communication in healthcare, especially in trauma care where time is a limiting factor. Although non-verbal communication has an impact on communication between individuals, there is only limited knowledge of how trauma team leaders communicate. The purpose of this study was to investigate how trauma team members are positioned in the emergency room, and how leaders communicate in terms of gaze direction, vocal nuances, and gestures during trauma team training. Eighteen trauma teams were audio and video recorded during trauma team training in the emergency department of a hospital in northern Sweden. Quantitative content analysis was used to categorize the team members' positions and the leaders' non-verbal communication: gaze direction, vocal nuances, and gestures. The quantitative data were interpreted in relation to the specific context. Time sequences of the leaders' gaze direction, speech time, and gestures were identified separately and registered as time (seconds) and proportions (%) of the total training time. The team leaders who gained control over the most important area in the emergency room, the "inner circle", positioned themselves as heads over the team, using gaze direction, gestures, vocal nuances, and verbal commands that solidified their verbal message. Changes in position required both attention and collaboration. Leaders who spoke in a hesitant voice, or were silent, expressed ambiguity in their non-verbal communication: and other team members took over the leader's tasks. In teams where the leader had control over the inner circle, the members seemed to have an awareness of each other's roles and tasks, knowing when in time and where in space these tasks needed to be executed. Deviations in the leaders' communication increased the ambiguity in the communication, which had consequences for the teamwork. Communication cannot be taken for granted; it needs to be practiced

  4. Team Proactivity as a Linking Mechanism between Team Creative Efficacy, Transformational Leadership, and Risk-Taking Norms and Team Creative Performance

    Science.gov (United States)

    Shin, Yuhyung; Eom, Chanyoung

    2014-01-01

    Despite the growing body of research on creativity in team contexts, very few attempts have been made to explore the team-level antecedents and the mediating processes of team creative performance on the basis of a theoretical framework. To address this gap, drawing on Paulus and Dzindolet's (2008) group creativity model, this study proposed team…

  5. Psychometric test of the Team Climate Inventory-short version investigated in Dutch quality improvement teams

    OpenAIRE

    Nieboer Anna P; Strating Mathilde MH

    2009-01-01

    Abstract Background Although some studies have used the Team Climate Inventory within teams working in health care settings, none of these included quality improvement teams. The aim of our study is to investigate the psychometric properties of the 14-item version of the Team Climate Inventory in healthcare quality improvement teams participating in a Dutch quality collaborative. Methods This study included quality improvement teams participating in the Care for Better improvement program for...

  6. Innovation in globally distributed teams: the role of LMX, communication frequency, and member influence on team decisions.

    Science.gov (United States)

    Gajendran, Ravi S; Joshi, Aparna

    2012-11-01

    For globally distributed teams charged with innovation, member contributions to the team are crucial for effective performance. Prior research, however, suggests that members of globally distributed teams often feel isolated and excluded from their team's activities and decisions. How can leaders of such teams foster member inclusion in team decisions? Drawing on leader-member exchange (LMX) theory, we propose that for distributed teams, LMX and communication frequency jointly shape member influence on team decisions. Findings from a test of our hypotheses using data from 40 globally distributed teams suggest that LMX can enhance member influence on team decisions when it is sustained through frequent leader-member communication. This joint effect is strengthened as team dispersion increases. At the team level, member influence on team decisions has a positive effect on team innovation. (c) 2012 APA, all rights reserved.

  7. Comparison of indicators of the team game performance between the U.S. team and teams of his rivals at the World Championship Men 2010

    OpenAIRE

    Rédli, Tomáš

    2011-01-01

    Title of thesis: Comparison of indicators of the team game performance between the U.S. team and teams of his rivals at the Wprld Championship Men 2010 Aim of the thesis: The aim of the thesis is to compare indicators of the team game performance of Team USA and its rivals. On the basis of this comparison will be a confrontation of both teams after the match and find differences in their game performance. Methods of the thesis: The main method of the thesis is quantitative analysis of 6 selec...

  8. Honor among thieves: The interaction of team and member deviance on trust in the team.

    Science.gov (United States)

    Schabram, Kira; Robinson, Sandra L; Cruz, Kevin S

    2018-05-03

    In this article, we examine member trust in deviant teams. We contend that a member's trust in his or her deviant team depends on the member's own deviant actions; although all members will judge the actions of their deviant teams as rational evidence that they should not be trusted, deviant members, but not honest members, can hold on to trust in their teams because of a sense of connection to the team. We tested our predictions in a field study of 562 members across 111 teams and 24 organizations as well as in an experiment of 178 participants in deviant and non-deviant teams. Both studies show that honest members experience a greater decline in trust as team deviance goes up. Moreover, our experiment finds that deviant members have as much trust in their deviant teams as honest members do in honest teams, but only in teams with coordinated rather than independent acts of deviance, in which deviant members engage in a variety of ongoing dynamics foundational to a sense of connection and affective-based trust. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Tinkering self-efficacy and team interaction on freshman engineering design teams

    Science.gov (United States)

    Richardson, Arlisa Labrie

    This study utilizes Bandura's theory of self-efficacy as a framework to examine the development of tinkering skills white working on a freshman engineering design team. The four sources of self-efficacy were analyzed in the context of tinkering within the design team. The research question, 'Does tinkering self-efficacy change for female students during the Freshman Engineering Design class while working on mixed sex teams?', was addressed using quantitative data collection and field observations. Approximately 41 students enrolled in a freshman engineering design class at a public university in the southwest participated by providing self-reports about their tinkering involvement during each design project. In addition, three mixed-sex student teams were observed while working to complete the course design projects. An observation protocol based on Bandura's sources of self efficacy, was used to document tinkering interactions within the three observed teams. The results revealed that Bandura's sources of self-efficacy influenced tinkering involvement. The self-efficacy source, performance accomplishment measured through prior tinkering experience, was the most influential on tinkering involvement. Unlike Bandura's ranking of influence, verbal persuasion was shown to correlate with more tinkering behaviors than the observation of others. The number of females on a team had no impact on tinkering involvement. Tinkering involvement did not change as students progressed from one project to another. However, the competitive nature of the design project appeared to have a negative impact on tinkering involvement and the division of tasks within the team. In addition, a difference was found in the female students' perception of their tinkering involvement and observation of their tinkering involvement. The findings suggest that effective implementation of teamwork including teamwork preparation, more emphasis on the design process and the elimination of competition

  10. Building multidisciplinary business teams

    International Nuclear Information System (INIS)

    Dyson, C.J.; Winte, N.C.

    1991-01-01

    This paper is a description of an approach to managing Exploration and Production assets through the operation of multidisciplinary business teams. The business team approach can assist in improved asset performance in terms of efficiency, motivation and business results, compared with more traditional matrix style hierarchies. Within this paper certain critical success factors for the long term success of multidiscipline teams are outlined, together with some of the risk of business team operation

  11. Formalization of Team Creation

    OpenAIRE

    Cerman, Tomáš

    2010-01-01

    This paper is divided to practical and theoretical part. Theoretical part defines essential background of personality and work psychology which are pillars for using the personality and roles typology in practical part. I also define conceptions such as group, team, procedures of making the team. Practical part is focused at making the repertoary grid which outlines proximity of team roles, anchored in the repertoary grids upon personal atributes basis and picked team positions.

  12. Conceptual framework of acute care nurse practitioner role enactment, boundary work, and perceptions of team effectiveness.

    Science.gov (United States)

    Kilpatrick, Kelley; Lavoie-Tremblay, Mélanie; Lamothe, Lise; Ritchie, Judith A; Doran, Diane

    2013-01-01

    This article describes a new conceptual framework for acute care nurse practitioner role enactment, boundary work and perceptions of team effectiveness. Acute care nurse practitioners contribute positively to patient care by enacting an expanded scope of practise. Researchers have found both positive and negative reactions to the introduction of acute care nurse practitioners in healthcare teams. The process of role enactment, shifting role boundaries, and perceptions of team effectiveness has been studied disparately. A framework linking team structures and processes to desirable outcomes is needed. Literature was obtained by searching CINAHL, PsycInfo, MedLine, PubMed, British Nursing Index, Cochrane Library, JSTOR Archive, Web of Science, and Google Scholar from 1985-2010. A descriptive multiple-case study was completed from March 2009-May 2009. A new conceptual framework describing how role enactment and boundary work affect perceptions of team effectiveness was developed by combining theoretical and empirical sources. The framework proposes proximal indicators used by team members to assess their team's performance. The framework identifies the inter-related dimensions and concepts that different stakeholders need to consider when introducing nurse practitioners in healthcare teams. Further study is needed to identify team-level outcomes that reflect the contributions of all providers to quality patient care, and explore the patients' and families' perceptions of team effectiveness following the introduction of acute care nurse practitioners. The new framework can guide decision-making and research related to the structures, processes, and outcomes of nurse practitioner roles in healthcare teams. © 2012 Blackwell Publishing Ltd.

  13. Reel Science: An Ethnographic Study of Girls' Science Identity Development In and Through Film

    Science.gov (United States)

    Chaffee, Rachel L.

    This dissertation study contributes to the research on filmmaking and identity development by exploring the ways that film production provided unique opportunities for a team of four girls to engage in science, to develop identities in science, and to see and understand science differently. Using social practice, identity, and feminist theory and New Literacies Studies as a theoretical lens and grounded theory and multimodality as analytic frameworks, I present findings that suggest that girls in this study authored identities and communicated and represented science in and through film in ways that drew on their social, cultural, and embodied resources and the material resources of the after-school science club. Findings from this study highlight the affordances of filmmaking as a venue for engaging in the disciplinary practices of science and for accessing and authoring identities in science.

  14. En atferdsfortolkning av team-effektivitet: med fagartikkel: Problemløsende strategi for team-atferd

    OpenAIRE

    Eriksen-Deinoff, Tina E. Svedenborg

    2014-01-01

    Master i læring i komplekse systemer The concept of team defines a group of people by design or by selection of behaviour in a collaborating working process. Overall, teams are supposed to perform with better outcome than individuals do. Scholars have voiced the need for more scientific research and documentation of how teams perform with higher efficiency and better effectiveness. Mainly, scholars measure team-effectiveness and team-efficiency with surveys, observer ratings or behavi...

  15. "Soft Power" and the Negotiation of Legitimacy: Collective Meaning Making in a Teacher Team

    Science.gov (United States)

    Eddy Spicer, David H.

    2013-01-01

    This article interrogates the "soft power" of teacher teamwork by probing the ways in which authority conditions the appropriation of institutional motives through collective meaning making. The study analyzes the interaction of a teacher-leader and a science teacher team across two settings of professional development organized to…

  16. Leader humility and team creativity: The role of team information sharing, psychological safety, and power distance.

    Science.gov (United States)

    Hu, Jia; Erdogan, Berrin; Jiang, Kaifeng; Bauer, Talya N; Liu, Songbo

    2018-03-01

    In this study, we identify leader humility, characterized by being open to admitting one's limitations, shortcomings, and mistakes, and showing appreciation and giving credit to followers, as a critical leader characteristic relevant for team creativity. Integrating the literatures on creativity and leadership, we explore the relationship between leader humility and team creativity, treating team psychological safety and team information sharing as mediators. Further, we hypothesize and examine team power distance as a moderator of the relationship. We tested our hypotheses using data gathered from 72 work teams and 354 individual members from 11 information and technology firms in China using a multiple-source, time-lagged research design. We found that the positive relationship between leader humility and team information sharing was significant and positive only within teams with a low power distance value. In addition, leader humility was negatively related to team psychological safety in teams with a high power distance value, whereas the relationship was positive yet nonsignificant in teams with low power distance. Furthermore, team information sharing and psychological safety were both significantly related to team creativity. We discuss theoretical and practical implications for leadership and work teams. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Military Interprofessional Health Care Teams: How USU is Working to Harness the Power of Collaboration.

    Science.gov (United States)

    D'Angelo, Matthew R; Saperstein, Adam K; Seibert, Diane C; Durning, Steven J; Varpio, Lara

    2016-11-01

    Despite efforts to increase patient safety, hundreds of thousands of lives are lost each year to preventable health care errors. The Institute of Medicine and other organizations have recommended that facilitating effective interprofessional health care team work can help address this problem. While the concept of interprofessional health care teams is known, understanding and organizing effective team performance have proven to be elusive goals. Although considerable research has been conducted in the civilian sector, scholars have yet to extend research to the military context. Indeed, delivering the highest caliber of health care to our service men and women is vitally important. This commentary describes a new initiative as the Uniformed Services University of the Health Sciences aimed at researching the characteristics of successful military interprofessional teams and why those characteristics are important. It also describes the interprofessional education initiative that Uniformed Services University is launching to help optimize U.S. military health care. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  18. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  19. Task versus relationship conflict, team performance and team member satisfaction: a meta-analysis

    NARCIS (Netherlands)

    de Dreu, C.K.W.; Weingart, L.R.

    2003-01-01

    This study provides a meta-analysis of research on the associations between relationship conflict, task conflict, team performance, and team member satisfaction. Consistent with past theorizing, resultsrevealed strong and negative correlations between relationship conflict, team performance, and

  20. Environmental Science: Processes & Impacts in 2018.

    Science.gov (United States)

    2018-02-21

    2017 was another successful year for Environmental Science: Processes & Impacts (ESPI); it saw the expansion of our Editorial team and publication of two excellent Themed Issues, all while maintaining our commitment to provide our authors with exceptional customer service and fast times to publication. Through this Editorial, we wish to reflect upon some of the highlights from 2017 and also take this opportunity to reveal further new additions to the ESPI team and our plans for 2018.

  1. Antecedents of team potency and team effectiveness: an examination of goal and process clarity and servant leadership.

    Science.gov (United States)

    Hu, Jia; Liden, Robert C

    2011-07-01

    Integrating theories of self-regulation with team and leadership literatures, this study investigated goal and process clarity and servant leadership as 3 antecedents of team potency and subsequent team effectiveness, operationalized as team performance and organizational citizenship behavior. Our sample of 304 employees represented 71 teams in 5 banks. Results showed that team-level goal and process clarity as well as team servant leadership served as 3 antecedents of team potency and subsequent team performance and team organizational citizenship behavior. Furthermore, we found that servant leadership moderated the relationships between both goal and process clarity and team potency, such that the positive relationships between both goal and process clarity and team potency were stronger in the presence of servant leadership.

  2. Helping fluid teams work: A research agenda for effective team adaptation in healthcare.

    Science.gov (United States)

    Bedwell, Wendy L; Ramsay, P Scott; Salas, Eduardo

    2012-12-01

    Although membership changes within teams are a common practice, research into this phenomenon is relatively nascent (Summers et al.; Acad Manag J 55:314-338, 2012). The small literature base, however, does provide insight into skills required for effective adaptation. The purpose of this effort is to provide a brief research synopsis, leading to research hypotheses about medical team training. By generalizing previous scientific findings regarding skills required for effective membership adaptation in different kinds of teams, we posit mechanisms whereby teamwork training might also support adaptation among medical teams (Burke et al.; Qual & Saf Health Care 13:i96-i104, 2004 and Salas et al.; Theor Issues Ergon Sci 8:381-394, 2007). We provide an overview of the membership change literature. Drawing upon literature from both within and outside of the medical domain, we suggest a framework and research propositions to aid in research efforts designed to determine the best content for helping to create adaptable medical teams through team training efforts. For effective adaptation, we suggest ad hoc teams should be trained on generalizable teamwork skills, to share just "enough" and the "right" information, to engage in shared leadership, and to shift from explicit to implicit coordination. Our overarching goal was to present what is known from the general research literature on successful team adaptation to membership changes, and to propose a research agenda to evaluate whether findings generalize to member changes in medical teams.

  3. Leadership for Distributed Teams

    NARCIS (Netherlands)

    De Rooij, J.P.G.

    2009-01-01

    The aim of this dissertation was to study the little examined, yet important issue of leadership for distributed teams. Distributed teams are defined as: “teams of which members are geographically distributed and are therefore working predominantly via mediated communication means on an

  4. Interpersonal team leadership skills.

    Science.gov (United States)

    Nelson, M

    1995-05-01

    To say that a team leader's job is a tough one is certainly not saying enough. It is up to the team leader to manage a group of people to be individuals but yet work as a team. The team leader must keep the peace and yet create a revolution with this group all at the same time. The good leader will require a lot of education, training, and tons of practical application to be a success. The good news, however, is that the team leader's job is a rewarding one, one that they'll always feel good about if they do it right. How many of us get the opportunity to take a group of wonderful, thinking individual minds and pull from them ideas that a whole team can take to success? Yes, the job is indeed tough, but the paybacks are many.

  5. The role of justice in team member satisfaction with the leader and attachment to the team.

    Science.gov (United States)

    Phillips, J M; Douthitt, E A; Hyland, M M

    2001-04-01

    This study examined the effects of team decision accuracy, team member decision influence, leader consideration behaviors, and justice perceptions on staff members' satisfaction with the leader and attachment to the team in hierarchical decision-making teams. The authors proposed that staff members' justice perceptions would mediate the relationship between (a) team decision accuracy, (b) the amount of influence a staff member has in the team leader's decision, and (c) the leader's consideration behaviors and staff attachment to the team and satisfaction with the leader. The results of an experiment involving 128 participants in a total of 64 teams, who made recommendations to a confederate acting as the team leader, generally support the proposed model.

  6. Team leaders' motivational behaviour and its influence upon team performance. A study on self-perceptions and team members' perceptions in a South African multinational

    NARCIS (Netherlands)

    van der Heijden, Beatrice; Verbaan, W.H.

    2006-01-01

    The aim of the study that is described in this article was to determine the relationship between team leaders' motivational behavior and the performance of their team members. Moreover, the differences between the team leaders' self-assessments of their motivational behavior and their team members'

  7. Cultural Diversity and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Van Praag, Mirjam

    One of the most salient and relevant dimensions of team heterogeneity is cultural background. We measure the impact of cultural diversity on the performance of business teams using a field experiment. Companies are set up by teams of undergraduate students in business studies in realistic though...... similar circumstances. We vary the cultural composition of otherwise randomly composed teams in a multi-cultural student population. Our data indicate that a moderate level of cultural diversity has no effect on team performance in terms of business outcomes (sales, profits and profits per share). However......, if at least the majority of team members is culturally diverse then more cultural diversity seems to affect the performance of teams positively. Our data suggest that this might be related to the more diverse pool of relevant knowledge facilitating (mutual) learning within culturally diverse teams....

  8. Team skills training

    International Nuclear Information System (INIS)

    Coe, R.P.; Carl, D.R.

    1991-01-01

    Numerous reports and articles have been written recently on the importance of team skills training for nuclear reactor operators, but little has appeared on the practical application of this theoretical guidance. This paper describes the activities of the Training and Education Department at GPU Nuclear (GPUN). In 1987, GPUN undertook a significant initiative in its licensed operator training programs to design and develop initial and requalification team skills training. Prior to that time, human interaction skills training (communication, stress management, supervisory skills, etc.) focused more on the individual rather than a group. Today, GPU Nuclear conducts team training at both its Three Mile Island (YMI), PA and Oyster Creek (OC), NJ generating stations. Videotaped feedback is sued extensively to critique and reinforce targeted behaviors. In fact, the TMI simulator trainer has a built-in, four camera system specifically designed for team training. Evaluations conducted on this training indicated these newly acquired skills are being carried over to the work environment. Team training is now an important and on-going part of GPUN operator training

  9. Me, Myself, My Team How to be an effective team player using NLP

    CERN Document Server

    McLeod, Angus

    2006-01-01

    Me, Myself, My Team brings you effective strategies to improve your team's communication and motivation, discover new perceptions and begin new courses of action. Full of practical ideas, this exceptional book demonstrates how team playing achieves the best results.

  10. The effect of interprofessional team-based learning among nursing students: A quasi-experimental study.

    Science.gov (United States)

    Wong, Arkers Kwan Ching; Wong, Frances Kam Yuet; Chan, Lap Ki; Chan, Namkiu; Ganotice, Fraide A; Ho, Jacqueline

    2017-06-01

    Although interprofessional education has received attention in recent years as a means of providing opportunities for health-care professionals to learn with, from and about other disciplines and enhance the quality of patient care, evidence of its effectiveness is limited. Interprofessional team-based learning was introduced to make it possible for students in different healthcare disciplines to interact with each other, and to prepare them to function effectively within a team in their future career. To examine the effects of interprofessional team-based learning for undergraduate nursing students in terms of knowledge level, readiness for interprofessional learning, attitude towards various aspects of team learning, and perceived collective efficacy. The study employed a one-group pretest-posttest quasi-experimental design. An interprofessional education program was given to students from two universities in Hong Kong who were in different healthcare disciplines including medicine, nursing, pharmacy, biomedical science, and Chinese medicine programs. The program was based on four phases of student learning- individual readiness assessment test, ice breaking session, team readiness assessment test, and application exercise. Nursing students involved in the program were invited to complete anonymous questionnaires to evaluate their interprofessional team experience. A total of 40 nursing students (9 male, 31 female) participated in the study. A statistically significant improvement was identified in their knowledge level (pteam learning, and perceived collective efficacy (pteam-based learning can enhance cross-disciplinary learning and outcomes resulting from team efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    Science.gov (United States)

    2017-10-01

    provision of training is not a major focus of this project, trainees were able to practice trauma management skills as well as leadership skills...SUBJECT TERMS Military healthcare team; Trauma teams; Team training; Teamwork; Adaptive performance; Leadership ; Simulation; Modeling; Bayesian belief...ABBREVIATIONS Healthcare team Trauma Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling

  12. The rehabilitation team: staff perceptions of the hospital environment, the interdisciplinary team environment, and interprofessional relations.

    Science.gov (United States)

    Strasser, D C; Falconer, J A; Martino-Saltzmann, D

    1994-02-01

    Although inpatient rehabilitation is an interdisciplinary activity organized around a treatment team, there is a limited understanding of the workings of the interdisciplinary process. To elucidate staff perceptions of key aspects of the rehabilitation treatment process, we surveyed staff (n = 113) from selected inpatient teams. The staff completed social psychological instruments that measure perceptions of the hospital environment (The Ward Atmosphere Scale [WAS]), the team's environment (the Group Environment Scale [GES]), and interprofessional relations (Interprofessional Perception Scale [IPS]). Rehabilitation staff generally endorse the team approach, but express concerns over professional boundaries. Interprofessional difficulties seemed to be independent of team membership or professional training. Compared with published data from other settings, rehabilitation teams resembled task-oriented groups, but showed significant differences across teams in their perceptions of the team and hospital environments. The task-oriented character of rehabilitation teams, team-specific characteristics, and discord in interprofessional relationships may need to be considered in studies of rehabilitation teams effectiveness.

  13. Facilitating Team Cognition : How designers mirror what NPD teams do

    NARCIS (Netherlands)

    Stompff, G.

    2012-01-01

    Products are developed by large multi-disciplinary teams. The teams deal with many topics requiring the expertise of several specialists simultaneously. They have to decide together if something is a problem; propose multi-disciplinary solutions; and align their activities into a seamless whole.

  14. Fostering teachers' team learning

    NARCIS (Netherlands)

    Bouwmans, Machiel; Runhaar, Piety; Wesselink, Renate; Mulder, Martin

    2017-01-01

    The implementation of educational innovations by teachers seems to benefit from a team approach and team learning. The study's goal is to examine to what extent transformational leadership is associated with team learning, and to investigate the mediating roles of participative decision-making,

  15. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  16. Mapping planetary caves with an autonomous, heterogeneous robot team

    Science.gov (United States)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  17. ScienceOrganizer System and Interface Summary

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2001-01-01

    ScienceOrganizer is a specialized knowledge management tool designed to enhance the information storage, organization, and access capabilities of distributed NASA science teams. Users access ScienceOrganizer through an intuitive Web-based interface that enables them to upload, download, and organize project information - including data, documents, images, and scientific records associated with laboratory and field experiments. Information in ScienceOrganizer is "threaded", or interlinked, to enable users to locate, track, and organize interrelated pieces of scientific data. Linkages capture important semantic relationships among information resources in the repository, and these assist users in navigating through the information related to their projects.

  18. Leader evaluation and team cohesiveness in the process of team development: A matter of gender?

    Directory of Open Access Journals (Sweden)

    Núria Rovira-Asenjo

    Full Text Available Leadership positions are still stereotyped as masculine, especially in male-dominated fields (e.g., engineering. So how do gender stereotypes affect the evaluation of leaders and team cohesiveness in the process of team development? In our study participants worked in 45 small teams (4-5 members. Each team was headed by either a female or male leader, so that 45 leaders (33% women supervised 258 team members (39% women. Over a period of nine months, the teams developed specific engineering projects as part of their professional undergraduate training. We examined leaders' self-evaluation, their evaluation by team members, and team cohesiveness at two points of time (month three and month nine, the final month of the collaboration. While we did not find any gender differences in leaders' self-evaluation at the beginning, female leaders evaluated themselves more favorably than men at the end of the projects. Moreover, female leaders were evaluated more favorably than male leaders at the beginning of the project, but the evaluation by team members did not differ at the end of the projects. Finally, we found a tendency for female leaders to build more cohesive teams than male leaders.

  19. Leader evaluation and team cohesiveness in the process of team development: A matter of gender?

    Science.gov (United States)

    Sczesny, Sabine; Gumí, Tània; Guimerà, Roger; Sales-Pardo, Marta

    2017-01-01

    Leadership positions are still stereotyped as masculine, especially in male-dominated fields (e.g., engineering). So how do gender stereotypes affect the evaluation of leaders and team cohesiveness in the process of team development? In our study participants worked in 45 small teams (4–5 members). Each team was headed by either a female or male leader, so that 45 leaders (33% women) supervised 258 team members (39% women). Over a period of nine months, the teams developed specific engineering projects as part of their professional undergraduate training. We examined leaders’ self-evaluation, their evaluation by team members, and team cohesiveness at two points of time (month three and month nine, the final month of the collaboration). While we did not find any gender differences in leaders’ self-evaluation at the beginning, female leaders evaluated themselves more favorably than men at the end of the projects. Moreover, female leaders were evaluated more favorably than male leaders at the beginning of the project, but the evaluation by team members did not differ at the end of the projects. Finally, we found a tendency for female leaders to build more cohesive teams than male leaders. PMID:29059231

  20. Effects of team tenure and leadership in self-managing teams

    NARCIS (Netherlands)

    Stoker, J.I.

    2008-01-01

    Purpose - This study seeks to identify the relationship between leader behaviour and the effectiveness of the members of a self-managing team (SMT) in terms of perceived individual performance and emotional exhaustion. In particular, it aims to examine the moderating role of individual team tenure.