WorldWideScience

Sample records for wisconsin cooling energy

  1. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. 75 FR 18828 - Wisconsin Electric Power Company, Wisconsin Gas LLC, Wisconsin Public Service Corporation...

    Science.gov (United States)

    2010-04-13

    ... Energy Regulatory Commission Wisconsin Electric Power Company, Wisconsin Gas LLC, Wisconsin Public Service Corporation: Complainants; ANR Pipeline Company: Respondent; Notice of Complaint April 6, 2010....206 (2009), Wisconsin Electric Power Company, Wisconsin Gas LLC, and Wisconsin Public Service...

  3. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    Energy Technology Data Exchange (ETDEWEB)

    Troge, Michael [Little Bear Development Center, Oneida, WI (United States)

    2014-12-01

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  4. Simulations of High-Energy Electron Cooling

    CERN Document Server

    Fedotov, Alexei V; Bruhwiler, David L; Eidelman, Yury I; Litvinenko, Vladimir N; Malitsky, Nikolay; Meshkov, Igor; Sidorin, Anatoly O; Smirnov, Alexander V; Troubnikov, Grigory

    2005-01-01

    High-energy electron cooling of RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms in RHIC. In addition, many unexplored effects of high-energy cooling in a collider complicate the task of getting very accurate estimates of cooling times. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes is underway at Brookhaven National Laboratory. In this paper, we present an update on code development and its application to the high-energy cooling dynamics studies for RHIC.

  5. SIMULATIONS OF HIGH-ENERGY ELECTRON COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BEN-ZVI,I.; EIDELMAN, YU.; LITVINENKO, V.; MALITSKY, N.

    2005-05-16

    High-energy electron cooling of RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms in RHIC. In addition, many unexplored effects of high-energy cooling in a collider complicate the task of getting very accurate estimates of cooling times. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes is underway at Brookhaven National Laboratory. In this paper, we present an update on code development and its application to the high-energy cooling dynamics studies for RHIC.

  6. SIMULATIONS OF HIGH-ENERGY ELECTRON COOLING

    International Nuclear Information System (INIS)

    FEDOTOV, A.V.; BEN-ZVI, I.; EIDELMAN, YU.; LITVINENKO, V.; MALITSKY, N.

    2005-01-01

    High-energy electron cooling of RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms in RHIC. In addition, many unexplored effects of high-energy cooling in a collider complicate the task of getting very accurate estimates of cooling times. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes is underway at Brookhaven National Laboratory. In this paper, we present an update on code development and its application to the high-energy cooling dynamics studies for RHIC

  7. Creating Jobs through Energy Efficiency Using Wisconsin's Successful Focus on Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Masood; Corrigan, Edward; Reitter, Thomas

    2012-03-30

    The purpose of this project was to provide administrative and technical support for the completion of energy efficiency projects that reduce energy intensity and create or save Wisconsin industrial jobs. All projects have been completed. Details in the attached reports include project management, job development, and energy savings for each project.

  8. The business of optimism. Wisconsin's Midwest Renewable Energy Fair

    International Nuclear Information System (INIS)

    Decker, J.

    2006-01-01

    The paper reports on the Wisconsin Midwest Renewable Energy Fair. The renewable energy business is said to be based on sound technology and sustainable development and is being largely embraced with enthusiasm. However, the keynote speaker, James Kunstler, warned that the transition from fossil fuels to renewables will be complicated and messy. The report mentions the views of several speakers but not all shared Kunstler's views. There were more than 100 workshops at the fair. Although big business was well represented, there were also home-made devices on show including a motorcycle powered by electricity. The importance of the fair is probably best judged by the way in which it generates enthusiasm for preserving the planet through the sustainable development of environmentally-friendly technology. (author)

  9. Process energy efficiency improvement in Wisconsin cheese plants

    International Nuclear Information System (INIS)

    Zehr, S.; Mitchell, J.; Reinemann, D.; Klein, S.; Reindl, D.

    1997-01-01

    Costs for the energy involved in cheese making has a major impact on profit. Although industrial cheese plants differ in size, production equipment, and the manner in which whey is processed, there are common elements in most plants. This paper evaluates several process integration opportunities at two representative cheese plants in Wisconsin. Pinch analysis is used to help assess the heat recovery potential for the major thermal processes in the plants. The potential of using packaged cheese as a thermal storage medium to allow electrical demand shifting in the cold storage warehouse is evaluated and shown to be feasible. Three major conservation measures are identified with a total cost savings of $130,000 to $160,000 annually

  10. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  11. Influence of Shading on Cooling Energy Demand

    Science.gov (United States)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  12. The supply and energy potential of forest resources in northern Wisconsin and Michigan's Upper Peninsula.

    Science.gov (United States)

    Dennis P. Bradley; Eugene M. Carpenter; James A. Mattson; Jerold T. Hahn; Sharon A. Winsauer

    1980-01-01

    Analyzes the economic potential of achieving energy independence by 10 pulp and paper mills in northern Wisconsin and Upper Michigan. Independence would require the annual harvest of 5.79 million green tons for both fuel and fiber needs, compared to a recommended harvest level of 31 million green tons. Delivered wood cost projections seem well within affordable...

  13. Electrical energy needs for space cooling

    International Nuclear Information System (INIS)

    Brunner, C. U.; Nipkow, J.; Steinemann, U.

    2008-01-01

    This article discusses measures that are to be taken to reduce increasing energy consumption resulting from global warming. A figure is quoted for the energy requirements for the ventilation and cooling of commercial, industrial and domestic buildings in Switzerland. A clear trend to higher technology densities and the associated demands for ventilation and air-conditioning are noted. The modeling of specific energy requirements for these services is discussed and the large economic gains and the refurbishment possibilities available are discussed. Possibilities for increasing the efficiency of such systems are discussed. The advantages and disadvantages of centralized and decentralized systems are examined and their effect on the electricity supply system are briefly noted.

  14. Measurements of low energy hydrogen ion effective sticking coefficients on titanium in the Wisconsin Levitated Octupole

    Energy Technology Data Exchange (ETDEWEB)

    Garner, H.; Post, R. S.

    1981-02-01

    The effective sticking coefficient for low energy (< 30 eV) hydrogen ions on titanium gettered aluminium walls has been measured in the Wisconsin Levitated Octupole. A value of greater than 0.75 was measured. The H/sub 2/ effective sticking coefficient for the same conditions is less than 0.01. Seventy-four percent of the wall area of the Octupole is gettered. The effects of recycling on plasma parameters is also discussed.

  15. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  16. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  17. Retrofitting the Southeast. The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W. [Steven Winter Associates, Inc., Norwalk, CT (United States); Shapiro, C. [Steven Winter Associates, Inc., Norwalk, CT (United States); Vijayakumar, G. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-02-01

    The Consortium for Advanced Residential Buildings research team has provided the technical engineering and building science support for a highly visible demonstration home that was unveiled at the National Association of Home Builders' International Builders Show on Feb. 9, 2012, in Orlando, FL. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This report describes the deep energy retrofit of the Cool Energy House (CEH), which began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  18. Retrofitting the Southeast: The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  19. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  20. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  1. Energy consumption analysis of sheep milk cooling systems

    OpenAIRE

    Cossu, Marco

    2013-01-01

    In this study the energy consumption of milk cooling systems for sheep milk was quantified, depending on number of milkings and performance class. The aim was to produce updated data about the incidence of energy consumption for milk cooling, useful for energy auditing research in livestock. The cost in electricity bills and the weight on the current price of sheep milk were calculated. The experimental work was carried out on 22 milk cooling systems in Sardinia, equipped with open-type tank ...

  2. Electron cooling for low-energy RHIC program

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  3. Development of school energy policy and energy education plans: A comparative case study in three Wisconsin school communities

    International Nuclear Information System (INIS)

    Lane, Jennie F.; Floress, Kristin; Rickert, Melissa

    2014-01-01

    Through a qualitative comparative case study, this investigation examined the process by which three school districts in Wisconsin, U.S.A., developed a school energy policy and complementary energy education plan. To guide the process, the researchers created an outline of recommended steps for the districts to follow. Although there were variations in the sequence and perceived ease of the steps, the Energy Task Force members involved in the process found the outline to be a supportive guide. Further analysis of the cases involved interviewing members of the Energy Task Forces to identify facilitating and obstructing factors. The study concluded that factors such as level of environmental literacy, along with aspects of the school culture and leadership, interacted to influence the successful drafting of school energy policies and education plans. In addition to introducing an outline of recommended steps that can be used by other school policy development teams interested in promoting energy efficiency, this study adds insights into the analysis of energy policy work within the context of a school setting. - Highlights: • School energy policy and complementary energy education plans can be successfully developed with guidelines for policy team membership. • Teacher agency, including environmental literacy, helps overcome barriers in developing school policy and energy education plans. • Administrative support of energy conservation is a key to the development of school energy policies and complementary energy education plans

  4. Community Energy Systems and the Law of Public Utilities. Volume Fifty-one. Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wisconsin governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  6. FNAL R and D in medium energy electron cooling

    CERN Document Server

    Nagaitsev, S; Crawford, A C; Kroc, T; MacLachlan, J; Saewert, G; Schmidt, C W; Shemyakin, A; Warner, A

    2000-01-01

    The first stage of the Fermilab Electron Cooling R and D program is now complete: a technology necessary to generate hundreds of milliamps of electron beam current at MeV energies has been demonstrated. Conceptual design studies show that with an electron beam current of 200 mA and with a cooling section of 20 m electron cooling in the 8.9 GeV/c Fermilab Recycler ring can provide antiproton stacking rates suitable for the Tevatron upgrades beyond Run II luminosity goals. A novel electron beam transport scheme with a weak magnetic field at the cathode and in the cooling section, and with discrete focusing elements in between will be used. A prototype of such an electron cooling system is now being built at Fermilab as part of the continuing R and D program. This paper describes the status of the electron cooling R and D program at Fermilab.

  7. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  8. Recognising the potential for renewable energy heating and cooling

    International Nuclear Information System (INIS)

    Seyboth, Kristin; Beurskens, Luuk; Langniss, Ole; Sims, Ralph E.H.

    2008-01-01

    Heating and cooling in the industrial, commercial, and domestic sectors constitute around 40-50% of total global final energy demand. A wide range of renewable energy heating and cooling (REHC) technologies exists but they are presently only used to meet around 2-3% of total world demand (excluding from traditional biomass). Several of these technologies are mature, their markets are growing, and their costs relative to conventional heating and cooling systems continue to decline. However, in most countries, policies developed to encourage the wider deployment of renewable electricity generation, transport biofuels and energy efficiency have over-shadowed policies aimed at REHC technology deployment. This paper, based on the findings of the International Energy Agency publication Renewables for Heating and Cooling-Untapped Potential, outlines the present and future markets and compares the costs of providing heating and cooling services from solar, geothermal and biomass resources. It analyses current policies and experiences and makes recommendations to support enhanced market deployment of REHC technologies to provide greater energy supply security and climate change mitigation. If policies as successfully implemented by the leading countries were to be replicated elsewhere (possibly after modification to better suit local conditions), there would be good potential to significantly increase the share of renewable energy in providing heating and cooling services

  9. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  10. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  11. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  12. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  13. Geothermal energy - effective solutions for heating and cooling of buildings

    International Nuclear Information System (INIS)

    Veleska, Viktorija

    2014-01-01

    Energy and natural resources are essential prerequisites for the maintenance of the life and the development of human civilization. With the advancement of technology is more emphasis on energy efficiency and reducing carbon dioxide emissions. Energy efficiency is using less power without reducing the quality of life. Almost half of the energy used is devoted to buildings, including heating and cooling. Buildings are a major source of CO 2 emissions in the atmosphere. Reducing the impact of buildings on the environment and the development of renewable energy, energy solutions are key factor in terms of sustainable development. Energy and geothermal pumps posts represent effective solutions for large facilities for heating and cooling. Geothermal energy piles represent a system of pipes that circulate thermal fluid and embedded in earth, thus extracting heat from the bearing to satisfy the needs for heating and cooling. Experience has shown that this type of energy piles can save up to two thirds of the cost of conventional heating, while geothermal pump has the ability to low temperature resources (such as groundwater and earth) to extract energy and raise the higher level needed for heating buildings. Their implementation is supported by an active group of researchers working with industry to demonstrate the benefits of dual benefit performance at the foundations. Initiative for renewable heat and potential for further adoption of solutions with these technologies is rapidly expanding. The use of this source of energy has great potential due to environmental, economic and social benefits. (author)

  14. Cool energy. Renewal solutions to environmental problems

    International Nuclear Information System (INIS)

    Brower, M.

    1992-01-01

    This book begins with a chapter describing some of the economic and environmental consequences of America's fossil-fuel-based economy. It makes the case that, despite some progress in reducing pollution from fossil fuels, no lasting cure for the deteriorating environment - in particular, the looming threat of global warming - is possible without developing alternative fuel sources. That renewable energy can provide the bulk of the new supplies needed is the theme of the second chapter, which discusses the relative advantages of these resources compared to fossil fuels and nuclear power and evaluates their long-term potential. The bulk of the book considers five broad categories of renewable energy sources: solar, wind, biomass (plant matter), rivers and oceans, and geothermal. For each of these sources, the book describes its current application, discusses its costs, analyzes new technologies under development, and assesses its positive and negative environmental impacts. This book shows the vital role renewable sources can and should play in America's energy future. It cites studies indicating that, with the right policies, renewable energy could provide as much as half of America's energy within 40 years, and an even larger fraction down the road. Such a rapid shift from existing energy sources would be dramatic but not unprecedented. In 1920, coal supplied 70% of US energy, but within 40 years its share had dropped to just 20% as oil and natural gas use increased. Sooner or later, oil and natural gas will also fade in importance. The real question is when. This book makes the case that the time to move decisively toward a renewable energy economy has arrived

  15. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  16. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  17. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  18. Energy Efficient Solid-State Cooling for Hot SPOT Removal

    Science.gov (United States)

    Yazawa, Kazuaki; Fedorov, Andrei; Joshi, Yogendra; Shakouri, Ali

    In this chapter, modeling and analysis of a hybrid scheme of a thermoelectric microcooler and a microchannel single-phase heat sink is discussed for a hotspot cooling. Following the introduction, the hybrid scheme concept is described. The Section 3 describes thermoelectric materials and fabrication of the solid-state microcoolers to give the necessary information for the thermal modeling, analysis, and the optimization of thermoelectric element in Section 4. Microchannel geometry and the pump power are discussed in Section 5 with an analytic model, and then the heat sink design itself is designed to optimum for lowest power used for the required cooling performance. Integrated cooling power for an integrated circuit (IC) with a hotspot as a function of heat flux is demonstrated. Section 6 summarizes the energy efficient cooling performance by the discussed hybrid scheme. To make technological challenges clear, concept of a new packaging approach for this integration is illustrated in Section 7 followed by the conclusions.

  19. Towards Cooling Tower Efficiency-An Energy Audit Approach

    Directory of Open Access Journals (Sweden)

    Long Su Weng Alwin

    2017-01-01

    Full Text Available This research studied the power generation trends from national grid and gas for a period of 4 years. Energy audit of critical systems like this is needful for optimal energy utilization. An energy audit was carried outon 6 industrial cooloing towers and their annual operating cost calculated. Variable speed drive suggested was installed and corresponding annual energy savings of 114,900 kWh/year cost saving of RM30,000 was achieved at a case study plant located in Malaysia. Cooling towers with smart systems was recommended for higher energy savings.

  20. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  1. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  2. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  3. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  4. Thermal energy storage for cooling of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  5. Comments on frictional cooling and the zero energy options for cooling intense muon beams

    International Nuclear Information System (INIS)

    Lebrun, P.

    2000-01-01

    It is shown that the proposed frictional cooling method is not directly applicable to intense (∼ 10 12 ) muon bunches, mostly due to space charge constraints. Other difficulties stem from the fact that the initial emittance must be quite small, compared to the nominal muon collider emittance. Excessive heat due to energy deposition in the foils, from the primary muon beam or from secondary electrons could also destroy the thin foils used as moderator. Other zero energy schemes are considered, separately for μ - and μ + . All of them lead the authors to the study of exotic electrons-ions-muons plasma

  6. Geothermal energy used in a cooling generation process

    International Nuclear Information System (INIS)

    Benzaoui, A.; El Gharbi, N.; Merabti, L.

    2006-01-01

    This paper deals with the geothermal energy recovery and use. It is available in an important water reservoir at 1800 m deep. Some drilled wells deliver each one about 200 1/s at 75-95 degree centigrade for agricultural use. It is necessarily cooled to be in irrigation conditions at 20-25 degree centigrade. Our purpose is to install the adequate sized heat exchangers to recover this important energy and to use it in different needs. Furthermore, a systematic survey is made, on the basis od Lindal Diagram, about different possibilities to use this geothermal reservoir available in arid area. Several applications are experimented and presented to farmers: air conditioning, domestic space heating, bathing, fruits and products drying, aqua fishing, etc.. In this report we present the study including scientific and technical questions (heat and mass transfer, absorption cooling generating, energy and mass balances, etc..). The available heat must be upgraded.The solar energy is used for this need. The total experimental cooled space is: 4 rooms X 210 m 3 . The coefficient of performance of the set up is 44% and could be enhanced. Inhabitants could use this fresh atmosphere to stock their products and to pay some home comfort. All calculations and theoretical simulations will be presented and commented.(Author)

  7. Use of cooling ponds and hydraulic turbines to save SRP energy consumption

    International Nuclear Information System (INIS)

    Price, J.B.

    1980-01-01

    A substantial amount of energy can be saved by using cooling ponds to supply C and K reactors with cooling water. Hydraulic turbines between the reactor and the cooling pond can recover some of the power used to pump cooling water to the reactors. Cooling ponds would also reduce effluent temperature in the swamps adjacent to the Savannah River. Cooling ponds are evaluated in this memorandum

  8. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar......The present study is concerned with the thermal indoor environment and HVAC system energy consumption of a detached, one-story, single family, plus-energy house during a cooling season. The house was located in Denmark and it has been used as a full-scale experimental facility for one year....... The house was cooled by a floor cooling system and was ventilated with a mechanical ventilation system. Different operative temperature set-points and different ventilation rates were tested. Operative temperature at a representative location inside the occupied zone was used as an indicator of the thermal...

  9. Building heating and cooling applications thermal energy storage program overview

    Science.gov (United States)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  10. Energy efficient hotspot-targeted embedded liquid cooling of electronics

    International Nuclear Information System (INIS)

    Sharma, Chander Shekhar; Tiwari, Manish K.; Zimmermann, Severin; Brunschwiler, Thomas; Schlottig, Gerd; Michel, Bruno; Poulikakos, Dimos

    2015-01-01

    Highlights: • We present a novel concept for hotspot-targeted, energy efficient ELC for electronic chips. • Microchannel throttling zones distribute flow optimally without any external control. • Design is optimized for highly non-uniform multicore chip heat flux maps. • Optimized design minimizes chip temperature non-uniformity. • This is achieved with pumping power consumption less than 1% of total chip power. - Abstract: Large data centers today already account for nearly 1.31% of total electricity consumption with cooling responsible for roughly 33% of that energy consumption. This energy intensive cooling problem is exacerbated by the presence of hotspots in multicore microprocessors due to excess coolant flow requirement for thermal management. Here we present a novel liquid-cooling concept, for targeted, energy efficient cooling of hotspots through passively optimized microchannel structures etched into the backside of a chip (embedded liquid cooling or ELC architecture). We adopt an experimentally validated and computationally efficient modeling approach to predict the performance of our hotspot-targeted ELC design. The design is optimized for exemplar non-uniform chip power maps using Response Surface Methodology (RSM). For industrially acceptable limits of approximately 0.4 bar (40 kPa) on pressure drop and one percent of total chip power on pumping power, the optimized designs are computationally evaluated against a base, standard ELC design with uniform channel widths and uniform flow distribution. For an average steady-state heat flux of 150 W/cm 2 in core areas (hotspots) and 20 W/cm 2 over remaining chip area (background), the optimized design reduces the maximum chip temperature non-uniformity by 61% to 3.7 °C. For a higher average, steady-state hotspot heat flux of 300 W/cm 2 , the maximum temperature non-uniformity is reduced by 54% to 8.7 °C. It is shown that the base design requires a prohibitively high level of pumping power (about

  11. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  12. Energy transport in cooling device by magnetic fluid

    Science.gov (United States)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  13. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  14. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  15. Solar project description for Zien Mechanical Contractors-I single family residence, Milwaukee, Wisconsin

    Science.gov (United States)

    Beers, D.

    1980-02-01

    The Zien Mechanical site is a single family residence located in Milwaukee, Wisconsin. The home has two separate solar energy systems: an air system for space heating and cooling; a liquid system to preheat the potable hot water. The space heating and cooling system design and operation modes are described. The space heating system is designed to apply approximately 44 percent of the space heating requirements for the 1388 square foot residence. Engineering drawings are provided and the performance evaluation instrumentation is described.

  16. The effects of landscaping on the residential cooling energy

    Science.gov (United States)

    Misni, A.

    2018-02-01

    This paper examines the effectiveness of landscaping on the air-conditioning energy saving of houses in a tropical environment. This case study involved looking at the construction and landscaping of three single-family houses in three sections of Shah Alam, Selangor, Malaysia. The houses ranged in age from 5 to 30 years old, which provided different examples of construction and maturity levels of the surrounding landscaping. Landscaping affects the thermal performance as well as on the air-conditioning energy of houses, in how it provides shade, channels wind, and evapotranspiration. While the construction of the three houses was similar, they were different in size and design, including their landscape design. These houses were chosen because they are representative of single-family tropical houses and landscaping styles in Malaysia since 30 years ago. Three houses were chosen; the 30-year-old house, the 10-year-old house, and the 5-year-old house. In a tropical country, landscaping is used to reduce the effects of the hot and humid climate. The houses spent 15-45% of the electricity cost on cooling. These results were influenced by human factors and the surrounding landscaping. Every type of vegetation, such as trees, grass, shrubs, groundcover, and turf, contributes to reducing air temperatures near the house and providing evaporative cooling.

  17. Energy transport in cooling device by magnetic fluid

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-01-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  18. Low energy building with novel cooling unit using PCM

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Samar

    2012-02-13

    This thesis aims to reduce the energy consumption as well as greenhouse gases to the environment without negatively affecting the thermal comfort. In the present work, thermal, energetic and economic impacts of employing passive solar systems combined with energy conservation systems have been investigated. These energy systems have been integrated with a typical residential building located in three different climate zones in Europe and Middle East regions.Hour-by-hour energy computer simulations have been carried out using TRNSYS and INSEL programs to analyze the performance of integrated energy systems. Furthermore, IESU software module has been developed to simulate a novel cooling unit using Phase Change Material (PCM). This unit is named as Indirect Evaporative and Storage Unit (IESU). Thereafter, complete economic equations for the Life Cycle Cost (LCC) criterion have been formulated. Furthermore this criterion has been optimized for different variables as a function of thermal parameters and economic figures from local markets. An optimum design of both residential buildings and energy systems has great impact on energy consumption. In fact, results showed that the energy consumption is reduced by 85.62%, 86.33% and 74.05% in Berlin, Amman and Aqaba, respectively. Moreover, the LCC criterion is reduced by 41.85% in Berlin, 19.21% in Amman and 15.22% in Aqaba.The macro economic analysis shows that once this research is applied in one million typical residential buildings in the selected climate zones, the annual avoided CO{sub 2} emissions are estimated to be about 5.7 million Tons in Berlin. In Aqaba, around 2.96 million Tons CO{sub 2} emissions will be saved annually and in Amman about 2.98 million Tons will be reduced. The payback period from the achieved saving is 18 years, 11 years and 8.6 years in Amman, Aqaba and Berlin, respectively.

  19. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used....... Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  20. Reducing cooling energy consumption in data centres and critical facilities

    Science.gov (United States)

    Cross, Gareth

    Given the rise of our everyday reliance on computers in all walks of life, from checking the train times to paying our credit card bills online, the need for computational power is ever increasing. Other than the ever-increasing performance of home Personal Computers (PC's) this reliance has given rise to a new phenomenon in the last 10 years ago. The data centre. Data centres contain vast arrays of IT cabinets loaded with servers that perform millions of computational equations every second. It is these data centres that allow us to continue with our reliance on the internet and the PC. As more and more data centres become necessary due to the increase in computing processing power required for the everyday activities we all take for granted so the energy consumed by these data centres rises. Not only are more and more data centres being constructed daily, but operators are also looking at ways to squeeze more processing from their existing data centres. This in turn leads to greater heat outputs and therefore requires more cooling. Cooling data centres requires a sizeable energy input, indeed to many megawatts per data centre site. Given the large amounts of money dependant on the successful operation of data centres, in particular for data centres operated by financial institutions, the onus is predominantly on ensuring the data centres operate with no technical glitches rather than in an energy conscious fashion. This report aims to investigate the ways and means of reducing energy consumption within data centres without compromising the technology the data centres are designed to house. As well as discussing the individual merits of the technologies and their implementation technical calculations will be undertaken where necessary to determine the levels of energy saving, if any, from each proposal. To enable comparison between each proposal any design calculations within this report will be undertaken against a notional data facility. This data facility will

  1. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  2. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  3. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  4. SOLPLAN Report: An Assessment of Barriers and Incentives to Conservation and Alternative-Energy Use in the Residential Sector in Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Fulenwider, Claire K.; Weiss, Lonnie S.; Pfefferkorn, Carol; Wiener, Don E.; Feldman, Stephen L.

    1981-03-01

    The Alternative Energy Policy Project of the Wisconsin Center for Public Policy focused upon two principle objectives: (1) gathering and analyzing new and previously unavailable data on barriers and incentives to greater energy conservation and alternative energy commercialization in the state of Wisconsin; and (2) building consensus around alternative energy policy to develop guidelines for alternative energy policy for the state. Particular attention was paid to public involvement in the policy process and to assessing barriers and incentives from as many key sectors of the energy field as possible. Thus, data were gathered from the general public, alternative energy users, the heating industry generally, the alternative-energy industry specifically, and key decision makers. The report is divided into four principal sections. The first looks at findings and analyses dealing with barriers to greater conservation and alternative energy use. Incentives for accelerating the extent of residential conservation and alternative energy use are discussed in the second section. The decision-making process itself in energy policy has been little analyzed and seldom documented. The role of consensus-building in the alternative-energy field and analysis of the decision-making process are discussed in Section III. Appendices in Section IV provide survey instruments and descriptions, a compendium of energy-related legislation developed within the project, and various reports. The total report reflects the interactive decision-making model as it was applied in SOLPLAN. (MCW)

  5. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    International Nuclear Information System (INIS)

    Edwin, M.; Joseph Sekhar, S.

    2014-01-01

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  6. Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center

    International Nuclear Information System (INIS)

    Cho, Jinkyun; Kim, Yundeok

    2016-01-01

    Highlights: • Energy-optimized data center’s cooling solutions were derived for four different climate zones. • We studied practical technologies of green data center that greatly improved energy efficiency. • We identified the relationship between mutually dependent factors in datacenter cooling systems. • We evaluated the effect of the dedicated cooling system applications. • Power Usage Effectiveness (PUE) was computed with energy simulation for data centers. - Abstract: Data centers are approximately 50 times more energy-intensive than general buildings. The rapidly increasing energy demand for data center operation has motivated efforts to better understand data center electricity use and to identify strategies that reduce the environmental impact. This research is presented analytical approach to the energy efficiency optimization of high density data center, in a synergy with relevant performance analysis of corresponding case study. This paper builds on data center energy modeling efforts by characterizing climate and cooling system differences among data centers and then evaluating their consequences for building energy use. Representative climate conditions for four regions are applied to data center energy models for several different prototypical cooling types. This includes cooling system, supplemental cooling solutions, design conditions and controlling the environment of ICT equipment were generally used for each climate zone, how these affect energy efficiency, and how the prioritization of system selection is derived. Based on the climate classification and the required operating environmental conditions for data centers suggested by the ASHRAE TC 9.9, a dedicated data center energy evaluation tool was taken to examine the potential energy savings of the cooling technology. Incorporating economizer use into the cooling systems would increase the variation in energy efficiency among geographic regions, indicating that as data centers

  7. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  8. Low-energy Spectra of Gamma-Ray Bursts from Cooling Electrons

    Science.gov (United States)

    Geng, Jin-Jun; Huang, Yong-Feng; Wu, Xue-Feng; Zhang, Bing; Zong, Hong-Shi

    2018-01-01

    The low-energy spectra of gamma-ray bursts’ (GRBs) prompt emission are closely related to the energy distribution of electrons, which is further regulated by their cooling processes. We develop a numerical code to calculate the evolution of the electron distribution with given initial parameters, in which three cooling processes (i.e., adiabatic, synchrotron, and inverse Compton cooling) and the effect of a decaying magnetic field are coherently considered. A sequence of results is presented by exploring the plausible parameter space for both the fireball and the Poynting flux–dominated regime. Different cooling patterns for the electrons can be identified, and they are featured by a specific dominant cooling mechanism. Our results show that the hardening of the low-energy spectra can be attributed to the dominance of synchrotron self-Compton cooling within the internal shock model or to decaying synchrotron cooling within the Poynting flux–dominated jet scenario. These two mechanisms can be distinguished by observing the hard low-energy spectra of isolated short pulses in some GRBs. The dominance of adiabatic cooling can also lead to hard low-energy spectra when the ejecta is moving at an extreme relativistic speed. The information from the time-resolved low-energy spectra can help to probe the physical characteristics of the GRB ejecta via our numerical results.

  9. Energy efficient data center liquid cooling with geothermal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2017-11-07

    A data center cooling system is operated in a first mode, and has an indoor portion wherein heat is absorbed from components in the data center by a heat transfer fluid, and an outdoor heat exchanger portion and a geothermal heat exchanger portion. The first mode includes ambient air cooling of the heat transfer fluid in the outdoor heat exchanger portion and/or geothermal cooling of the heat transfer fluid in the geothermal heat exchanger portion. Based on an appropriate metric, a determination is made that a switch should be made from the first mode to a second mode; and, in response, the data center cooling system is switched to the second mode. The second mode is different than the first mode.

  10. Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study.

    Science.gov (United States)

    He, Yingdong; Li, Nianping; Wang, Xiang; He, Meiling; He, De

    2017-11-17

    It is well known that personal cooling improves thermal comfort and save energy. This study aims to: (1) compare different personal cooling systems and (2) understand what influences users' willingness to adopt them. A series of experiments on several types of personal cooling systems, which included physical measurements, questionnaires and feedback, was conducted in a real office environment. The obtained results showed that personal cooling improved comfort of participants in warm environments. Then an improved index was proposed and used to compare different types of personal cooling systems in terms of comfort and energy efficiency simultaneously. According to the improved index, desk fans were highly energy-efficient, while the hybrid personal cooling (the combination of radiant cooling desk and desk fan) consumed more energy but showed advantages of extending the comfortable temperature range. Moreover, if personal cooling was free, most participants were willing to adopt it and the effectiveness was the main factor influencing their willingness, whereas if participants had to pay, they probably refused to adopt it due to the cost and the availability of conventional air conditioners. Thus, providing effective and free personal cooling systems should be regarded as a better way for its wider application.

  11. A Method for Estimating Potential Energy and Cost Savings for Cooling Existing Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto

    2017-04-24

    NREL has developed a methodology to prioritize which data center cooling systems could be upgraded for better efficiency based on estimated cost savings and economics. The best efficiency results are in cool or dry climates where 'free' economizer or evaporative cooling can provide most of the data center cooling. Locations with a high cost of energy and facilities with high power usage effectiveness (PUE) are also good candidates for data center cooling system upgrades. In one case study of a major cable provider's data centers, most of the sites studied had opportunities for cost-effective cooling system upgrades with payback period of 5 years or less. If the cable provider invested in all opportunities for upgrades with payback periods of less than 15 years, it could save 27% on annual energy costs.

  12. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  13. A variable water flow strategy for energy savings in large cooling systems / Gideon Edgar du Plessis

    OpenAIRE

    Du Plessis, Gideon Edgar

    2013-01-01

    Large cooling systems consume up to 25% of the total electricity used on deep level mines. These systems are integrated with the water reticulation system to provide chilled service water and cool ventilation air. Improving the energy efficiency of these large cooling systems is an important electrical demand-side management initiative. However, it is critical that the service delivery and system performance be maintained so as to not adversely affect productivity. A novel dema...

  14. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Nathan

    2012-11-29

    The Forest County Potawatomi Community (FCPC or Community) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (SF) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the Concordia Trust Property). As part of this project, which was conducted with assistance from the Department of Energy's Tribal Energy Program (TEP), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the building's natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a Catalytic Project for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmen-providing services to the Indian community and jobs to the neighborhood.

  15. Role of gas cooling in tomorrow`s energy services industry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  16. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler,

  17. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.

    2014-01-01

    Highlights: • A dynamic model to estimate the energy performance of buildings is presented. • The model is validated against leading software packages, TRNSYS and Energy Plus. • Modified degree days are introduced to account for solar irradiation effects. - Abstract: Degree days represent a versatile climatic indicator which is commonly used in building energy performance analysis. In this context, the present paper proposes a simple dynamic model to simulate heating/cooling energy consumption in buildings. The model consists of several transient energy balance equations for external walls and internal air according to a lumped-capacitance approach and it has been implemented utilizing the Matlab/Simulink® platform. Results are validated by comparison to the outcomes of leading software packages, TRNSYS and Energy Plus. By using the above mentioned model, energy consumption for heating/cooling is analyzed in different locations, showing that for low degree days the inertia effect assumes a paramount importance, affecting the common linear behavior of the building consumption against the standard degree days, especially for cooling energy demand. Cooling energy demand at low cooling degree days (CDDs) is deeply analyzed, highlighting that in this situation other factors, such as solar irradiation, have an important role. To take into account these effects, a correction to CDD is proposed, demonstrating that by considering all the contributions the linear relationship between energy consumption and degree days is maintained

  18. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  19. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Pfafferott, Jens; Sesana, Marta Maria

    2013-01-01

    Highlights: • Impact of five cooling technologies are simulated in six European climate zones with Trnsys 17. • The ventilation strategies reduce the cooling energy need even in South Europe climate. • Constant ventilation controller can lead to a poor cooling performance. • Comparing radiant strategies with air conditioning scenario, the energy saving is predicted to within 5–35%. - Abstract: Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption

  20. Prediction of the cooling energy requirement in buildings using the degree-days method

    International Nuclear Information System (INIS)

    Samo, S.R.; Mari, H.B.; Saand, A.

    2000-01-01

    A method (which is supposed to be used first time in Pakistan) Degree-Days for the prediction of seasonal energy requirements for cooling is briefly discussed. This method requires the simulation of the pattern of external temperature variations in buildings, over seasons, in response, to exposure to the weather conditions. The cooling degree-days of capital cities of four provinces and the capital of Pakistan, Karachi, Lahore, Peshawar, Quetta, and Islamabad from 1987-1996, are calculated from the available meteorological data by using a computer program. The seasonal cooling energy requirement of a sample dwelling in different regions of Pakistan is also compared. This study shows that the average cooling degree-days in Lahore are about seven times more than the degree-days in Quetta. In Pakistan cooling requirement starts from April to October. (author)

  1. Potential luminosity improvement for low-energy RHIC operation with electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.

    2009-06-08

    There is a strong interest in heavy-ion RHIC collisions in the energy range below the present RHIC injection energy, which is termed 'low-energy' operation. These collisions will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with RHIC electron cooling at low beam energies. This report summarizes the expected luminosity improvements with electron cooling and various limitations.

  2. Performance assessment of earth pipe cooling system for low energy buildings in a subtropical climate

    International Nuclear Information System (INIS)

    Ahmed, S.F.; Khan, M.M.K.; Amanullah, M.T.O.; Rasul, M.G.; Hassan, N.M.S.

    2015-01-01

    Highlights: • Earth pipe cooling performance was investigated in a subtropical climate in Australia. • A thermal model was developed using Fluent to assess the cooling performance. • A temperature reduction of around 2 °C was found for the earth pipe cooling system. • Annual energy savings of maximum 866.54 kW (8.82%) was achieved for a 27.23 m 3 room. - Abstract: Energy consumption in heating and cooling around the world has been a major contributor to global warming. Hence, many studies have been aimed at finding new techniques to save and control energy through energy efficient measures. Most of this energy is used in residential, agricultural and commercial buildings. It is therefore important to adopt energy efficiency measures in these buildings through new technologies and novel building designs. These new building designs can be developed by employing various passive cooling systems. Earth pipe cooling is one of these which can assist to save energy without using any customary mechanical units. This paper investigates the earth pipe cooling performance in a hot humid subtropical climate of Rockhampton, Australia. A thermal model is developed using ANSYS Fluent for measuring its performance. Impacts of air velocity, air temperature, relative humidity and soil temperature on room cooling performance are also assessed. A temperature reduction of around 2 °C was found for the system. This temperature reduction contributed to an energy saving of a maximum of 866.54 kW (8.82%) per year for a 27.23 m 3 room.

  3. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  4. Wien filter for cooled low-energy radioactive ion beams

    Science.gov (United States)

    Nummela, S.; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Äystö, J.

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2→ q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68< A<78 nuclei have been deduced.

  5. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68

  6. Exergy costing for energy saving in combined heating and cooling applications

    International Nuclear Information System (INIS)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten; Andersen, Peer

    2014-01-01

    Highlights: • We investigate the basis for cost apportioning of simultaneous heating and cooling. • Two thermoeconomic methods based on energy and exergy costing is demonstrated. • The unit cost of heating and cooling for a heat pump system is found and compared. • Energy costing may obstruct efficient use of energy. • Exergy costing provides the most rational cost apportioning for energy saving. - Abstract: The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated. In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared. The analysis shows that the two methods yield significantly different results. Rather surprisingly, it is demonstrated that the exergy costing method results in about three times higher unit cost for heating than for cooling as opposed to equal unit costs when using the energy method. Further the exergy-based cost for heating changes considerably with the heating temperature while that of cooling is much less affected

  7. Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage (STES). Application Manual

    Science.gov (United States)

    2016-11-01

    APPLICATION MANUAL Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage...manual is to describe the use of the Seasonal Thermal Energy Storage (STES) technology, particularly through the employment of wintertime cooling...application projects to increase energy efficiency and occupant comfort. Seasonal Thermal Energy Storage (STES) technology, energy efficiency, geothermal heat

  8. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  9. Assessing cooling energy performance of windows for residential buildings in the Mediterranean zone

    International Nuclear Information System (INIS)

    Tsikaloudaki, K.; Theodosiou, Th.; Laskos, K.; Bikas, D.

    2012-01-01

    Highlights: ► Cooling energy performance of residential windows in warm climates is studied. ► It is primarily determined by the window’s solar transmittance g and orientation. ► Advanced windows perform worse when compared to conventional ones with the same g. ► Shading contributes notably in decreasing the cooling loads attributed to the window. ► Equations for predicting the cooling energy performance of windows were developed. - Abstract: Heat transfer through windows accounts for a significant proportion of energy used in the building sector for covering both heating and cooling needs, since the optical and the thermal characteristics of conventional fenestration products constitute them more “vulnerable” in energy flows when compared to opaque building elements. In this study, an approach for evaluating the cooling energy performance of residential windows is presented. It is based on a parametric study, which aims at highlighting the impact of the window configuration on its energy behavior in terms of geometrical characteristics, thermophysical and optical properties, as well as orientation and shading levels. The results underlined the magnitude of the relationship between the thermal and optical properties of the transparent elements with respect to their orientation; especially for residential buildings, the solar transmittance determines at a considerable extent the cooling energy performance of fenestration, at least in the warmest part of Europe. Furthermore, the statistical analysis of the derived data provided mathematical expressions, which can be used in praxis for predicting the cooling energy performance of windows with respect to their thermal and optical characteristics.

  10. Energy conservation in domestic refrigerators by cooling compressor shell – A case study

    Directory of Open Access Journals (Sweden)

    N. Nethaji

    2017-09-01

    Full Text Available Application of energy efficient compressors, air handling units (AHUs, condensers and evaporators of high effectiveness are the some of the measures towards energy conservation in refrigeration systems. Cooling of compressor shell with the defrost drips is an energy saving measure which is explored in this paper. In tropical countries which have 70–80% RH year round, the quantity of defrost formation is significant while refrigeration systems are on. This defrost water is dripped on the compressor's shell, which in turn cools the compressor oil and hence reduces the friction losses and winding temperature of the motor. Once winding temperature is reduced the compressor's ampere rating is reduced which ultimately reduces the energy consumption of the compressor. For given conditions of refrigerator function, the compressor shell temperature and ampere rating of compressor are tabulated and investigated before and after compressor shell cooling. The investigation reveals that around 8–10% energy savings are achieved for the given conditions.

  11. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  12. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  13. Final Cooling For a High-luminosity High-Energy Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D.; Sayed, H.; Hart, T.; Summers, D.

    2015-05-01

    The final cooling system for a high-energy high-luminosity heavy lepton collider requires reduction of the transverse emittance εt by an order of magnitude to ~0.00003 m (rms, N), while allowing longitudinal emittance εL to increase to ~0.1m. In the present baseline approach, this is obtained by transverse cooling of low-energy muons within a sequence of high-field solenoids with low-frequency rf systems. Recent studies of such systems are presented. Since the final cooling steps are mostly emittance exchange, a variant form of that final system can be obtained by a round to flat transform in x-y, with transverse slicing of the enlarged flat transverse dimension followed by longitudinal recombination of the sliced bunchlets. Other variants are discussed. More explicit emittance exchange can greatly reduce the cost of a final cooling system.

  14. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas

  15. Multicriteria aided design of integrated heating-cooling energy systems in buildings.

    Science.gov (United States)

    Mróz, Tomasz M

    2010-08-01

    This paper presents an analysis of the possible application of integrated heating-cooling systems in buildings. The general algorithm of integrated heating-cooling system design aid was formulated. The evaluation criteria of technically acceptable variants were defined. Fossil fuel energy consumption, carbon dioxide emission, investment, and total exploitation cost were identified as the most important factors describing the considered decision problem. The multicriteria decision aid method ELECTRE III was proposed as the decision tool for the choice of the most compromised variant. The proposed method was used for a case study calculation-the choice of an integrated heating-cooling system for an office building.

  16. Exergy costing for energy saving in combined heating and cooling applications

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten

    2014-01-01

    . In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where...... exergy balance equations are used in conjunction with mass and energy balance equations. In both costing methods the thermodynamic analysis is followed by an economic analysis which includes investment and operating costs. For both methods the unit costs of heating and cooling are found and compared......The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated...

  17. Passive Method to Reduce Solar Energy Effect on the Cooling Load in Buildings

    Directory of Open Access Journals (Sweden)

    Orfi J.

    2012-10-01

    Full Text Available Energy needed for cooling residential and industrial buildings in hot weather countries is the major issue. The period needed for cooling or comfort conditions in those countries exceeds five months and outdoor temperature reaches more than 40 °C. Also, the solar intensity usually high and can reach about one kW per m2. Hence, any attempt to reduce the effect of solar energy on the cooling load is worthy to investigate. The present work analyzes using artificial, naturally ventilated, shading covers to reduce the effect of solar energy. Analytical and numerical analyzes were performed on the effect of adding a ventilated cover to walls and roof exposed to the solar energy.

  18. Potential use of dry cooling in support of advanced energy generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, D.W.; Arnold, E.M.; Allemann, R.T.

    1979-09-01

    Advanced energy technologies were investigated for filling the energy supply and demand gap, including fuel cells, thermionic converters, and fusion. Technologies that have the potential for supplying energy in the future are solar, geothermal, coal gasification and liquefaction, clean solid fuel from coal, and oil shale. Results are presented of an analysis of the advanced energy generation systems, the potential for using dry cooling, and the waste heat generation characteristics of the advanced technologies. The magnitude of the waste heat expected to be generated indicates the following percentages of total cooling requirements would be needed by advanced energy technologies: (a) 1% to 2% in 1985, (b) 17% to 40% in 2000, and (c) 24% to 76% in 2025. Dry cooling could be required for flashed steam and dry steam geothermal plants if balancing withdrawal and reinjection of the geothermal fluid becomes a requirement. Binary cycle geothermal plants and plants using the hot dry rocks geothermmal resource are even more likely to require dry cooling since these plants will need an outside source of water. Solar central tower plants have a high potential for the use of dry cooling since they are likely to be located in the Southwest where water availability problems are already apparent. The high water consumption associated with the projected synthetic fuel production levels indicates that dry cooling will be desirable, perhaps even mandatory, to achieve a high level of synthetic fuel production. In the year 2000, between 2.5 and 13 GW of electrical energy produced by advanced power generation systems may require dry cooling. In the year 2025, this requirement may increase to between 4.5 and 81 GW/sub e/.

  19. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    Science.gov (United States)

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  20. Performance analysis on utilization of sky radiation cooling energy for space cooling. Part 2; Hosha reikyaku riyo reibo system ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marushima, S.; Saito, T. [Tohoku University, Sendai (Japan)

    1996-10-27

    Studies have been made about a heat accumulation tank type cooling system making use of radiation cooling that is a kind of natural energy. The daily operating cycle of the cooling system is described below. A heat pump air conditioner performs cooling during the daytime and the exhaust heat is stored in a latent heat accumulation tank; the heat is then used for the bath and tapwater in the evening; at night radiation cooling is utilized to remove the heat remnant in the tank for the solidification of the phase change material (PCM); the solidified PCM serves as the cold heat source for the heat pump air conditioner to perform cooling. The new system decelerates urban area warming because it emits the cooler-generated waste heat not into the atmosphere but into space taking advantage of radiation cooling. Again, the cooler-generated waste heat may be utilized for energy saving and power levelling. For the examination of nighttime radiation cooling characteristics, CaCl2-5H2O and Na2HPO4-12H2O were tested as the PCM. Water was used as the heating medium. In the case of a PCM high in latent heat capacity, some work has to be done for insuring sufficient heat exchange for it by, for instance, rendering the flow rate low. The coefficient of performance of the system discussed here is three times higher than that of the air-cooled type heat pump system. 8 refs., 5 figs., 4 tabs.

  1. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  2. A Data Driven Pre-cooling Framework for Energy Cost Optimization in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, Arun; Chandan, Vikas; Mendoza, Cameron; Blake, Charles

    2017-05-16

    Commercial buildings consume significant amount of energy. Facility managers are increasingly grappling with the problem of reducing their buildings’ peak power, overall energy consumption and energy bills. In this paper, we first develop an optimization framework – based on a gray box model for zone thermal dynamics – to determine a pre-cooling strategy that simultaneously shifts the peak power to low energy tariff regimes, and reduces both the peak power and overall energy consumption by exploiting the flexibility in a building’s thermal comfort range. We then evaluate the efficacy of the pre-cooling optimization framework by applying it to building management system data, spanning several days, obtained from a large commercial building located in a tropical region of the world. The results from simulations show that optimal pre-cooling reduces peak power by over 50%, energy consumption by up to 30% and energy bills by up to 37%. Next, to enable ease of use of our framework, we also propose a shortest path based heuristic algorithmfor solving the optimization problemand show that it has comparable erformance with the optimal solution. Finally, we describe an application of the proposed optimization framework for developing countries to reduce the dependency on expensive fossil fuels, which are often used as a source for energy backup.We conclude by highlighting our real world deployment of the optimal pre-cooling framework via a software service on the cloud platform of a major provider. Our pre-cooling methodology, based on the gray box optimization framework, incurs no capital expense and relies on data readily available from a building management system, thus enabling facility managers to take informed decisions for improving the energy and cost footprints of their buildings

  3. Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System

    Science.gov (United States)

    Abaalkhail, Rana

    Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season of extreme weather conditions, using appliances, or turning on lights. Most often, the energy resources used in residential systems are obtained from natural gas, coal and oil. Moreover, climate change has increased awareness of a need for expendable, energy resources. As a result, carbon dioxide emissions are increasing and creating a negative effect on our environment and on our health. In fact, growing energy demands and limited natural resource might have negative impacts on our future. Therefore, saving energy is becoming an important issue in our society and it is receiving more attention from the research community. This thesis introduces a intelligent energy controller algorithm based on software agent approach that reduce the energy consumption at home for both heating and cooling spaces by considering the user's occupancy, outdoor temperature and user's preferences as input to the system. Thus the proposed approach takes into consideration the occupant's preferred temperature, the occupied and unoccupied spaces, as well as the time spent in each area of the home. A Java based simulator has been implemented to simulate the algorithm for saving energy in heating and cooling systems. The results from the simulator are compared to the results of using HOT2000, which is Canada's leading residential energy analysis and rating software developed by CanmetENERGY's Housing, Buildings, Communities and Simulation (HBCS) group. We have calculated how much energy a home modelled will use under emulated conditions. The results showed that the implementation of the proposed energy controller algorithm can save up to 50% in energy consumption in homes dedicated to heating and cooling systems compared to the results obtained by using HOT2000.

  4. Sustainable Heating, Cooling and Ventilation of a Plus-Energy House via Photovoltaic/Thermal Panels

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Sevela, Pavel

    2014-01-01

    Present work addresses the HVAC and energy concerns of the Technical University of Denmark's house, Fold, for the competition Solar Decathlon Europe 2012. Various innovative solutions are investigated; photovoltaic/thermal (PV/T) panels, utilization of ground as a heat source/sink and phase change...... two separate systems. PV/T panels enable the house to perform as a plus-energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively. The ground heat exchanger acts as the heat sink/source of the house. Free cooling enables the same cooling effect...

  5. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long...... period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive...

  6. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Science.gov (United States)

    Jersák, J.; Simon, S.

    2017-08-01

    The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL) technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  7. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Directory of Open Access Journals (Sweden)

    Jersák J.

    2017-08-01

    Full Text Available The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  8. Sustainable Heating/Cooling for Low Energy Buildings

    DEFF Research Database (Denmark)

    Krajčík, M.; Olesen, Bjarne W.; Petráš, D.

    2012-01-01

    Experimental evaluation is one of the means that allow thorough investigation of the indoor environment in a room. Providing that the measurement procedures are correct and that the investigator has the necessary experimental equipment available, experimental measurements can provide results with...... located in a low-energy building. Procedures and indicators that can be successfully used for experimental investigations of indoor environment are described and a sample of measured data is reported....

  9. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  10. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    Science.gov (United States)

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  11. Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Sayed, H. [Brookhaven; Hart, T. [Mississippi U.; Summers, D. [Mississippi U.

    2015-12-03

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

  12. The Analysis of Needs for Heating and Cooling Energy in the Administrative Building with Big Glazing Facades

    Directory of Open Access Journals (Sweden)

    Vilūnė Pikelytė

    2011-02-01

    Full Text Available The article discusses the influence of big glazing facades on the needs for heating and cooling energy.Three ways of modelling the needs for energy were chosen. The influence of the orientation of the glazing facade and different heat – optical features of glazing on energy needs was established. The paper analyzed the influence of the measures of passive energy saving on the needs for heating and cooling.A comparison of calculation results applying two methods suggesting the needs for cooling energy was made and energy costs of actual and normal heating were examined.Article in Lithuanian

  13. Performative building envelope design correlated to solar radiation and cooling energy consumption

    Science.gov (United States)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  14. Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M A

    1992-01-01

    This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

  15. Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1977-01-01

    Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO

  16. Qualification of coolants and cooling pipes for future high-energy-particle detectors

    Science.gov (United States)

    Ilie, Sorin; Tavlet, Marc

    2001-12-01

    In the next generation of high-energy-particle detectors to be installed at the Large Hadron Collider (LHC) at CERN, materials and components will be exposed to a significant level of ionising radiation. Silicon detectors and related electronics will have to be cooled down to -20 °C and therefore appropriate cooling fluids and cooling pipes have to be selected. Analytical methods such as UV-visible and FT-IR spectrometries, electronic microscopy and gas chromatography were used to characterise the radiation-induced effects on some organic coolants irradiated with both gamma and neutron fields. Some impurities were identified as a major source for radio-induced polymerisation and also for hydrofluoric acid (HF) evolution. Mechanical tests were performed to assess the operability of the rubber hoses and plastic pipes. Possible synergistic effects between the pipe material and the environment had to be considered.

  17. Lights, Camera, Action ... and Cooling - The case for centralized low carbon energy at Fox Studios

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-01

    Fox Studios partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit two production stages and one of its central cooling plants, to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program. Although this case study reports expected savings arising from proposed design recommendations for a unique building type and the unusual load characteristics associated with its use, the EEMs implemented for the central plant are applicable to any large campus, office and higher education facility. The intent is that by making the energy-efficiency measures (EEMs) set that were assessed as cost-effective from this project applicable to a larger number of buildings on the campus Fox Studios will be able to implement an integrated campus-wide energy strategy for the long term. The significant challenges for this project in the design phase included identifying how to assess and analyze multiple system types, develop a coherent strategy for assessment and analysis, implement the measurement and verification activities to collect the appropriate data (in terms of capturing ‘normal’ operating characteristics and granularity) and determine the best approach to providing cooling to the site buildings based on the nature of existing systems and the expected improvement in energy performance of the central cooling plant. The analytical framework adopted provides a blueprint for similar projects at other large commercial building campuses.

  18. Annual Energy Savings and Thermal Comfort of Autonomously Heated and Cooled Office Chairs

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chin, Justin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Energy use in offices buildings is largely driven by air conditioning demands. But the optimal temperature is not the same for all building occupants, leading to the infamous thermostat war. And many occupants have independently overcome building comfort weaknesses with their own space heaters or fans. NREL tested is a customized office chair that automatically heats and cools the occupant along the seat and chair back according to the occupants' personal preferences. This product is shown to deliver markedly better comfort at room temperatures well above typical office cooling setpoints. Experimental subjects reported satisfaction in these elevated air temperatures, partly because the chair's cooling effect was tuned to their own individual needs. Simulation of the chair in office buildings around the U.S. shows that energy can be saved everywhere, with impacts varying due to the climate. Total building HVAC energy savings exceeded 10% in hot-dry climate zones. Due to high product cost, simple payback for the chair we studied is beyond the expected chair life. We then understood the need to establish cost-performance targets for comfort delivery packages. NREL derived several hypothetical energy/cost/comfort targets for personal comfort product systems. In some climate regions around the U.S., these show the potential for office building HVAC energy savings in excess of 20%. This report documents this research, providing an overview of the research team's methods and results while also identifying areas for future research building upon the findings.

  19. Forests of Wisconsin, 2013

    Science.gov (United States)

    Charles H. Perry

    2014-01-01

    This resource update provides an overview of forest resources in Wisconsin based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Wisconsin Department of Natural Resources. Data estimates are based on field data collected using the FIA annualized sample design and...

  20. 77 FR 71587 - Wisconsin Public Service Corporation; Notices of Intent To File License Applications, Filing of...

    Science.gov (United States)

    2012-12-03

    ... Energy Regulatory Commission Wisconsin Public Service Corporation; Notices of Intent To File License.... d. Submitted By: Wisconsin Public Service Corporation. e. Name of Projects: Tomahawk Hydroelectric..., Vice President, Energy Supply Operations, Wisconsin Public Service Corporation, P.O. Box 19001, 700...

  1. Cooling and energy saving potentials of shade trees and urban lawns in a desert city

    International Nuclear Information System (INIS)

    Wang, Zhi-Hua; Zhao, Xiaoxi; Yang, Jiachuan; Song, Jiyun

    2016-01-01

    Highlights: • We developed a numerical framework incorporating trees in an urban canopy model. • Shade trees have more prominent energy saving potential than urban lawns. • The trade-off between water-energy is a key for urban landscape management. • Urban vegetation can significantly alleviate outdoor thermal stress. - Abstract: The use of urban vegetation in cities is a common landscape planning strategy to alleviate the heat island effect as well as to enhance building energy efficiency. The presence of trees in street canyons can effectively reduce environmental temperature via radiative shading. However, resolving shade trees in urban land surface models presents a major challenge in numerical models, especially in predicting the radiative heat exchange in canyons. In this paper, we develop a new numerical framework by incorporating shade trees into an advanced single-layer urban canopy model. This novel numerical framework is applied to Phoenix metropolitan area to investigate the cooling effect of different urban vegetation types and their potentials in saving building energy. It is found that the cooling effect by shading from trees is more significant than that by evapotranspiration from lawns, leading to a considerable saving of cooling load. In addition, analysis of human thermal comfort shows that urban vegetation plays a crucial role in creating a comfortable living environment, especially for cities located in arid or semi-arid region.

  2. Energy Management of Combined Cooling, Heating and Power Micro Energy Grid Based on Leader-Follower Game Theory

    Directory of Open Access Journals (Sweden)

    Kaijun Lin

    2018-03-01

    Full Text Available In this paper, we consider a general model and solution algorithm for the energy management of combined cooling, heating, and power micro energy grid (MEG under the game theory framework. An innovative dynamic leader-follower game strategy is proposed in this paper to balance the interactions between MEG and user. We show that such game between MEG and user has a unique Nash equilibrium (NE, and in order to quantify the user’s expenditure and dissatisfaction, we model them and adopt the fuzzy bi-objective algorithm. For more details in the proposed game model, the MEG leads the game by deciding energy sales prices and optimizing the power, cooling and heating outputs according to the user’s load plan to maximize its own profit. With the prices being released by MEG, user’s adjustment of energy consumption follows and is again fed to MEG. In practice, we initialize simulations with daily loads of a typical community. As the numerical results demonstrate, MEG is proficient in consumption capacity of renewable energy and energy optimization. It also shows that the user achieves his economic optimum with experience of energy usage taken into account.

  3. Energy and environmental evaluation of combined cooling heating and power system

    Science.gov (United States)

    Bugaj, Andrzej

    2017-11-01

    The paper addresses issues involving problems of implementing combined cooling, heating and power (CCHP) system to industrial facility with well-defined demand profiles of cooling, heating and electricity. The application of CCHP system in this particular industrial facility is being evaluated by comparison with the reference system that consists of three conventional methods of energy supply: (a) electricity from external grid, (b) heat from gas-fired boilers and (c) cooling from vapour compression chillers run by electricity from the grid. The CCHP system scenario is based on the combined heat and power (CHP) plant with gas turbine-compressor arrangement and water/lithium bromide absorption chiller of a single-effect type. Those two scenarios are analysed in terms of annual primary energy usage as well as emissions of CO2. The results of the analysis show an extent of primary energy savings of the CCHP system in comparison with the reference system. Furthermore, the environmental impact of the CCHP usage, in the form of greenhouse gases emission reductions, compares quite favourably with the reference conventional option.

  4. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  5. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  6. Die Deutschen in Wisconsin (Germans in Wisconsin).

    Science.gov (United States)

    Wisconsin State Dept. of Public Instruction, Madison.

    The following curriculum units comprise this course book: (1) Germans in a New Home, (2) Contributions of the Germans in Wisconsin, (3) A Letter to Germany, (4) Germans Come to Kingston, (5) First a Soldier, Then a Man of the Church (about Heinrich von Rohr), (6) A Visiting German, and (7) Germans and Music. Each unit begins with a reading of…

  7. Low Energy Electron Cooling and Accelerator Physics for the Heidelberg CSR

    International Nuclear Information System (INIS)

    Fadil, H.; Grieser, M.; Hahn, R. von; Orlov, D.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2006-01-01

    The Cryogenic Storage Ring (CSR) is currently under construction at MPI-K in Heidelberg. The CSR is an electrostatic ring with a total circumference of about 34 m, straight section length of 2.5 m and will store ions in the 20 ∼ 300 keV energy range (E/Q). The cryogenic system in the CSR is expected to cool the inner vacuum chamber down to 2 K. The CSR will be equipped with an electron cooler which has also to serve as an electron target for high resolution recombination experiments. In this paper we present the results of numerical investigations of the CSR lattice with finite element calculations of the deflection and focusing elements of the ring. We also present a layout of the CSR electron cooler which will have to operate in low energy mode to cool 20 keV protons in the CSR, as well as numerical estimations of the cooling times to be expected with this device

  8. A novel energy-saving method for air-cooled chiller plant by parallel connection

    International Nuclear Information System (INIS)

    Zhang Xiaosong; Xu Guoying; Chan, K.T.; Yi Xia

    2006-01-01

    A novel method was put forward for improving the energy efficiency of air-cooled water chiller plant operating on part load conditions. The conventional multiple-chiller plant was proposed to be integrated into one refrigeration cycle, by connecting those separate compressors, condensers and evaporators in parallel, respectively. The integrated multiple-chiller plant uses the electronic expansion valve to control refrigerant flow, achieving variable condensing temperature control. A prototype composed of four reciprocating compressors (including one variable-speed compressor), with total nominal cooling capacity of 120 kW was simulated and experimented. Both the simulative and experimental results indicated that applying this novel energy-saving method, the air-cooled chiller plant could get a significant performance improvement on various part load ratio (PLR) conditions, due to the apparent decrease of condensing temperature and some increase of evaporating temperature. Under the same outdoor temperature of 35 o C, when the PLR decreased from 100% to 50%, the COP increased by about 16.2% in simulation and 9.5% in experiment. Also, the practical refrigeration output ratio of the system was 55% on the condition of 50% PLR

  9. Study on the application of combined cooling, heating and power system with biomass energy in China

    Science.gov (United States)

    Guan, Haibin; Sun, Rongfeng; Zhang, Weijie; Fan, Xiaoxu; Jiang, Jianguo; Zhao, Baofeng

    2017-08-01

    CCHP (Combined Cooling Heating and Power) system is highly evaluated and developed rapidly around the world possessing better performance than traditional energy systems because of the cascade utilization of energy. Biomass is one of the renewable energy resources that is abundant and has been widely used in China for a long time. In this paper the principle and development of biomass gasification system and CCHP is clarified, the feasibility of combining the two systems together is analyzed from theoretical and technical points of view, and the active significance is also indicated. In conclusion, it is feasible to develop CCHP with Biomass Energy in an agricultural country such as China, which can flourish in the future.

  10. Barns of Wisconsin

    Science.gov (United States)

    Watson-Newlin, Karen

    2008-01-01

    In this article, the author shares a painting unit she introduced to her students. In this unit, her students painted pictures of barns and discussed the historical significance of barns in Wisconsin.

  11. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  12. Optimal sizing of a multi-source energy plant for power heat and cooling generation

    International Nuclear Information System (INIS)

    Barbieri, E.S.; Dai, Y.J.; Morini, M.; Pinelli, M.; Spina, P.R.; Sun, P.; Wang, R.Z.

    2014-01-01

    Multi-source systems for the fulfilment of electric, thermal and cooling demand of a building can be based on different technologies (e.g. solar photovoltaic, solar heating, cogeneration, heat pump, absorption chiller) which use renewable, partially renewable and fossil energy sources. Therefore, one of the main issues of these kinds of multi-source systems is to find the appropriate size of each technology. Moreover, building energy demands depend on the climate in which the building is located and on the characteristics of the building envelope, which also influence the optimal sizing. This paper presents an analysis of the effect of different climatic scenarios on the multi-source energy plant sizing. For this purpose a model has been developed and has been implemented in the Matlab ® environment. The model takes into consideration the load profiles for electricity, heating and cooling for a whole year. The performance of the energy systems are modelled through a systemic approach. The optimal sizing of the different technologies composing the multi-source energy plant is investigated by using a genetic algorithm, with the goal of minimizing the primary energy consumption only, since the cost of technologies and, in particular, the actual tariff and incentive scenarios depend on the specific country. Moreover economic considerations may lead to inadequate solutions in terms of primary energy consumption. As a case study, the Sino-Italian Green Energy Laboratory of the Shanghai Jiao Tong University has been hypothetically located in five cities in different climatic zones. The load profiles are calculated by means of a TRNSYS ® model. Results show that the optimal load allocation and component sizing are strictly related to climatic data (e.g. external air temperature and solar radiation)

  13. 76 FR 48841 - Wisconsin Public Service Corporation; Notice of Application for Amendment of License and...

    Science.gov (United States)

    2011-08-09

    ... Energy Regulatory Commission Wisconsin Public Service Corporation; Notice of Application for Amendment of..., 2011. d. Applicant: Wisconsin Public Service Corporation. e. Name of Project: High Falls Project. f.... 791a-825r. h. Applicant Contact: James Nuthals, Wisconsin Public Service Corporation, 700 North Adams...

  14. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  15. Javanese House’s Roof (Joglo) with the Opening as a Cooling Energy Provider

    Science.gov (United States)

    Pranoto S, M.

    2018-01-01

    Natural ventilation and air movement could be considered under the heading structural controls as it does not rely on any form of energy supply or mechanical installation but due to its importance for human comfort, it deserves a separate section. Air infiltration can destroy the performance of ventilation systems. Good ventilation design combined with optimum air tightness is needed to ensure energy efficient ventilation. Ultimately, ventilation needs depend on occupancy pattern and building use. A full cost and energy analysis is therefore needed to select an optimum ventilation strategy.The contains of paper is about the element of Javanese house (the roof) as the element of natural ventilation and a cooling energy provider. In this research, The Computational Fluid Dynamics Program, is used to draw and analysis. That tool can be track the pattern and the direction of movement of air also the air velocity in the object of ventilation of the roof Javanese house based. Finally, the ventilation of the roof of this Javanese house can add the velocity of air at indoor, average 0.4 m/s and give the effect of cooling, average 0.7°C.

  16. Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique

    International Nuclear Information System (INIS)

    Bhaskoro, Petrus Tri; Gilani, Syed Ihtsham Ul Haq; Aris, Mohd Shiraz

    2013-01-01

    Highlights: • We have simulated and validated the cooling loads of a multi-zone academic building, in a tropical region. • We have analyzed the effect of occupancy patterns on the cooling loads. • Adaptive cooling technique has been utilized to minimize the energy usage of HVAC system. • The results are promising and show a reduction of energy saving in the range of 20–30%. - Abstract: Application of adaptive comfort temperature as room temperature set points potentially reduce energy usage of the HVAC system during a cooling and heating period. The savings are mainly due to higher indoor temperature set point during hot period and lower indoor temperature set point during cold period than the recommended value. Numerous works have been carried out to show how much energy can be saved during cooling and heating period by applying adaptive comfort temperature. The previous work, however, focused on a continuous cooling load as found in many office and residential buildings. Therefore, this paper aims to simulate the energy saving potential for an academic glazed building in tropical Malaysian climate by developing adaptive cooling technique. A building simulation program (TRNSYS) was used to model the building and simulate the cooling load characteristic using current and proposed technique. Two experimental measurements were conducted and the results were used to validate the model. Finally, cooling load characteristic of the academic building using current and proposed technique were compared and the results showed that annual energy saving potential as much as 305,150 kW h can be achieved

  17. Water Use in Wisconsin, 2005

    Science.gov (United States)

    Buchwald, Cheryl A.

    2009-01-01

    The U.S. Geological Survey (USGS) Wisconsin Water Science Center is responsible for presenting data collected or estimated for water withdrawals and diversions every 5 years to the National Water-Use Information Program (NWUIP). This program serves many purposes such as quantifying how much, where, and for what purpose water is used; tracking and documenting water-use trends and changes; and providing these data to other agencies to support hydrologic projects. In 2005, data at both the county and subbasin levels were compiled into the USGS national water-use database system; these data are published in a statewide summary report and a national circular. This publication, Water Use in Wisconsin, 2005, presents the water-use estimates for 2005; this publication also describes how these water-use data were determined (including assumptions used), limitations of using these data, and trends in water-use data presented to the NWUIP. Estimates of water use in Wisconsin indicate that about 8,608 million gallons per day (Mgal/d) were withdrawn during 2005. Of this amount, about 7,622 Mgal/d (89 percent) were from surface-water sources and about 986 Mgal/d (11 percent) were from ground-water sources. Surface water used for cooling at thermoelectric-power plants constituted the largest portion of daily use at 6,898 Mgal/d. Water provided by public-supply water utilities is the second largest use of water and totaled 552 Mgal/d. Public supply served approximately 71 percent of the estimated 2005 Wisconsin population of 5.54 million people; two counties - Milwaukee and Dane - accounted for more than one-third of the public-supply withdrawal. Industrial and irrigation were the next major water uses at 471 and 402 Mgal/d, respectively. Non-irrigational agricultural (livestock and aquaculture) accounted for approximately 155 Mgal/d and is similar to the combined withdrawal for the remaining water-use categories of domestic, commercial, and mining (131 Mgal/d). Data on water use

  18. Effect of passive cooling strategies on overheating in low energy residential buildings for Danish climate

    DEFF Research Database (Denmark)

    Simone, Angela; Avantaggiato, Marta; de Carli, Michele

    2014-01-01

    Climate changes have progressively produced an increase of outdoors temperature resulting in tangible warmer summers even in cold climate regions. An increased interest for passive cooling strategies is rising in order to overcome the newly low energy buildings’ overheating issue. The growing level...... creating not negligible thermal discomfort. In the present work the effect of passive strategies, such as solar shading and natural night-time ventilation, are evaluated through computer simulations. The analyses are performed for 1½-storey single-family house in Copenhagen’s climate. The main result...... of air-tightness plays in low-energy buildings a double-acting role: reduction of energy demand and lack of adequate infiltration rate. In particular, the last one combined with higher outside air temperatures brings these new concepts buildings to progressively experience higher indoor temperatures...

  19. Intermediate energy electron cooling for antiproton sources using a Pelletron accelerator

    International Nuclear Information System (INIS)

    Cline, D.B.; Adney, J.; Ferry, J.; Kells, W.; Larson, D.J.; Mills, F.E.; Sundquist, M.

    1983-01-01

    It has been shown at FNAL that the electron cooling of protons is a very efficient method for reaching high luminosity in a proton beam. The emittance of the 120 KeV electron beam used at Fermilab corresponds to a cathode temperature of 0.1 eV. In order to apply cooling techniques to GeV proton beams the electron energies required are in the MeV range. In the experiment reported in this paper the emittance of a 3-MeV Pelletron electron accelerator was measured to determine that its emittance scaled to a value appropriate for electron cooling. The machine tested was jointly owned and operated by the University of California at Santa Barbara and National Electrostatics Corporation for research into free-electron lasers which also require low emittance beams for operation. This paper describes the thermal emittance of the beam to be the area in phase space in which 90% of the beam trajectories lie and goes on to describe the emittance-measurement method both in theory and application

  20. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  1. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    Science.gov (United States)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  2. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  3. Energy saving by evaporative air-cooling processes in building-envelope ventilated air spaces

    International Nuclear Information System (INIS)

    Cappelli D'Orazio, M.; Cianfrini, C.; Corcione, M.

    1999-01-01

    The thermal behaviour of a building-envelope with a ventilated air space in summer mediterranean climates is investigated in the case of the air-conditioned indoor ambient. The energy saving deriving from a forced ventilation carried out by saturated air subjected to a direct evaporative cooling along the air space is analyzed through a finite-difference simulation model, with reference to external walls of different masses, thermophysical properties and geometrical features, as well as to different ventilation and exhaust airflow rates

  4. Standalone cool/freeze cluster driven by solar photovoltaic energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.; Pedersen, Per Henrik; Jacobsen, Emil

    2010-12-15

    The objective of the project is to develop and demonstrate a grid-independent cold storage system for perishable food, medicine or other goods, with a special focus on the need for such systems in developing countries with a sparse and unreliable supply of electricity. The project is directly based on the result from the international SolarChill project where a unique battery less solar driven vaccine refrigerator was developed by Vestfrost in cooperation with Danish Technological Institute (DTI). The project partners are Danish Technological Institute (Project manager), Danfoss, Grundfos, Fresvik (Norway) and Karise Klejnsmedie. The refrigeration system is set up at the solar energy test area of DTI, where a PV array with a nominal power of 800 W has been established. The batteries and charge controller are purchased from a Danish PV system retailer. The inverter is a trapezoid 50 Hz 230 Vac inverter is a robust type with high surge current. The two AC cabinets are standard low energy household freezers, whereas the DC cabinet is a special ice-lined refrigerator (fresh food/middle temperature) with high thermal capacity in its walls. The selection of large chest type freezers gives low specific energy consumption due to a high volume/surface ratio and low air infiltration. The commercial low energy cabinets are relatively inexpensive, and can operate with an extremely low consumption if the thermostat is set to cooling mode. As part of this quite extensive project, there have been a number of contacts with associated activities as well as direct requests from companies operating in 3rd world countries. The two most important cases have been a milk-cooling project in Uganda and a World Bank GEF project regarding improved storage methods for vaccines. The current design of the PV driven refrigeration system could be modified to milk cooling, and this is actually being investigated by the Danish company Karise Klejnsmedie who are specialist in stainless steel

  5. Urban temperature analysis and impact on the building cooling energy performances: an Italian case study

    Directory of Open Access Journals (Sweden)

    Michele Zinzi

    2016-06-01

    Full Text Available Climate changes and urban sprawl are dramatically increasing the heat island effect in urban environments, whatever the size and the latitude are, affecting these latter parameters the effect intensity. The urban heats island is a phenomenon observed since the last decades of the XIX century but demonstrated at large scale only one century later, characterised by the increase of air temperature in densely built urban environments respect to the countryside surround cities. Many studies are available, showing urban heat island intensities up to 12°C. This thermal stress causes social, health and environmental hazards, with major consequences on weaker social classes, as elderly and low income people, it is not by chance that survey demonstrated the increase of deaths in such categories during intense and extended heat waves. This study presents the firs results on the observation of air temperature measures in different spots of Rome, city characterised by a typical Mediterranean climate and by a complex urban texture, in which densely built areas are kept separated by relatively green or not-built zones. Six spots are monitored since June 2014 and include: historical city centre, semi-central zones with different construction typologies, surrounding areas again with various urban and building designs. The paper is focused on the analysis of summer temperature profiles, increase respect to the temperature outside the cities and the impact on the cooling performance of buildings. Temperature datasets and a reference building model were inputted into the well-known and calibrated dynamic tool TRNSYS. Cooling net energy demand of the reference building was calculated, as well as the operative temperature evolution in the not cooled building configuration. The results of calculation allow to compare the energy and thermal performances in the urban environment respect to the reference conditions, usually adopted by building codes. Advice and

  6. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  7. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Abanades, A.; Garcia, C.; Garcia, L.; Escriva, A.; Perez-Navarro, A.; Rosales, J.

    2011-01-01

    Highlights: → Utilization of Accelerator Driven System (ADS) for Hydrogen production. → Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. → Application of the Sulfur-Iodine thermochemical process to subcritical systems. → Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  8. Liquid metal mist cooling and MHD Ericsson cycle for fusion energy conversion

    International Nuclear Information System (INIS)

    Greenspan, E.

    1989-01-01

    The combination of liquid metal mist coolant and a liquid metal MHD (LMMHD) energy conversion system (ECS) based on the Ericsson cycle is being proposed for high temperature fusion reactors. It is shown that the two technologies are highly matchable, both thermodynamically and physically. Thermodynamically, the author enables delivering the fusion energy to the cycle with probably the highest practical average temperature commensurate with a given maximum reactor design constraint. Physically, the mist cooling and LMMHD ECSs can be coupled directly, thus eliminating the need for primary heat exchangers and reheaters. The net result is expected to be a high efficiency, simple and reliable heat transport and ECS. It is concluded that the proposed match could increase the economic viability of fusion reactors, so that a thorough study of the two complementary technologies is recommended. 11 refs., 3 figs

  9. Solar energy powering up aerial misting systems for cooling surroundings in Saudi Arabia

    International Nuclear Information System (INIS)

    Atieh, Ahmad; Al Shariff, Samir

    2013-01-01

    Highlights: ► Demonstrate solar energy misting system for the first time to our knowledge. ► Return on investment for such a system is recovered within two and half years. ► Solar panel tilt position is 25° due south in Medina Munawarah. ► The misting system is capable of lowering ambient temperature over 10 °C. - Abstract: We demonstrated for the first time to our knowledge a misting system that is powered by solar energy. The system was used to cool down an open area in Medina, Saudi Arabia. The ambient and surrounding temperatures were measured and compared for different timing signals that were applied to the misting system. The used solar panel performance is evaluated for different loads, and tilting settings. The return on investment for the misting system is found to be about two years and half.

  10. Energy spread of ultracold electron bunches extracted from a laser cooled gas

    Science.gov (United States)

    Franssen, J. G. H.; Kromwijk, J. M.; Vredenbregt, E. J. D.; Luiten, O. J.

    2018-02-01

    Ultrashort and ultracold electron bunches created by near-threshold femtosecond photoionization of a laser cooled gas hold great promise for single-shot ultrafast diffraction experiments. In previous publications the transverse beam quality and the bunch length have been determined. Here the longitudinal energy spread of the generated bunches is measured for the first time, using a specially developed Wien filter. The Wien filter has been calibrated by determining the average deflection of the electron bunch as a function of magnetic field. The measured relative energy spread \\tfrac{{σ }U}{U}=0.64+/- 0.09 % agrees well with the theoretical model which states that it is governed by the width of the ionization laser and the acceleration length.

  11. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant: A challenging energy scheme

    International Nuclear Information System (INIS)

    Tian, Chuan Min; Jaffar, Mohd Narzam; Ramji, Harunal Rejan; Abdullah, Mohammad Omar

    2015-01-01

    In this study, an innovative design of hydro-electricity system was applied to an unconventional site in an attempt to generate electricity from the exhaust cooling water of a coal-fired power plant. Inspired by the idea of micro hydro, present study can be considered new in three aspects: design, resource and site. This system was hung at a cooling water discharge weir, where all sorts of civil work were prohibited and sea water was used as the cooling water. It was designed and fabricated in the university's mechanical workshop and transported to the site for installation. The system was then put into proof run for a three-month period and achieved some success. Due to safety reasons, on-site testing was prohibited by the power plant authority. Hence, most data was acquired from the proof run. The driving system efficiency was tested in the range of 25% and 45% experimentally while modeling results came close to experimental results. Payback period for the system is estimated to be about 4.23 years. Result obtained validates the feasibility of the overall design under the sensitive site application. - Highlights: • Challenging energy scheme via a hanging cooling water power generating system. • Driving system efficiency was tested in the range of 25% and 45%. • Payback period for the system is estimated to be about 4.2 years

  12. Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Zhang, Ge

    2015-01-01

    A theoretical model was established for predicting the volatile organic compound (VOC) removal and energy performance of a novel heat pump assisted solid desiccant cooling system (HP-SDC). The HP-SDC was proposed based on the combination of desiccant rotor with heat pump, and was designed...... for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two...

  13. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  14. Determining the Optimal Capacities of Renewable-Energy-Based Energy Conversion Systems for Meeting the Demands of Low-Energy District Heating, Electricity, and District Cooling

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend; Dincer, Ibrahim

    2015-01-01

    as 55 °C for supply and 25 °C for return, and with additional considerations being directed to supply electricity and cooling. Several optimal solutions with various nominal capacities of the technologies involved were obtained in each of the two case studies, one being for the Greater Copenhagen Area......, and the other for the Greater Toronto Area. Various climate conditions of the case areas in question caused different observations of nominal capacities for the energy conversion systems considered with single-production and multi-production based on different renewable energy sources.......This chapter presents a method for determining the optimal capacity of a renewable-energy-based energy conversion system for meeting the energy requirements of a given district as considered on a monthly basis, with use of a low-energy district heating system operating at a low temperature, as low...

  15. System for thermal energy storage, space heating and cooling and power conversion

    Science.gov (United States)

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  16. Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings

    International Nuclear Information System (INIS)

    Martínez-Lera, S.; Ballester, J.; Martínez-Lera, J.

    2013-01-01

    Highlights: ► Novel method to estimate the contribution of thermal energy storage in CHCP plants. ► Simple and accurate analysis of contributions of thermal storage. ► Application to the assessment and optimal sizing of thermal storage in CHCP plants. ► Thermal storage increases efficiency, coverage and economic benefit. ► Thermal storage allows increasing efficient operation of the plant. - Abstract: Thermal energy storage (TES) can lead to significant energy savings and economic benefits in combined heating, cooling and power plants (CHCPs) for buildings in the tertiary sector. However, their complex interactions with the rest of the CHCP system make their adequate sizing difficult without using extensive and detailed simulations. The authors have developed a new method to evaluate the thermal contribution of TES based on simple procedures. Comparisons with detailed simulations for a range of situations confirm the ability of this method to predict the effect of TES on CHCP systems with good approximation, as well as to find the optimal size in a relatively simple manner and with few required data. The case studies show a strong dependence of the TES contribution on the demands profile and the operation strategy. However, adequately sized TES are proven to bring relevant energy savings as well as economic profit to CHCP plants. In this paper, sizing procedures are provided to find the optimal volume both in terms of thermodynamic efficiency and of economic profit

  17. Promoting renewable energy sources for heating and cooling in EU-27 countries

    International Nuclear Information System (INIS)

    Cansino, Jose M.; Pablo-Romero, Maria del P.; Roman, Rocio; Yniguez, Rocio

    2011-01-01

    In addition to public policies aimed at improving the energy efficiency of buildings, EU authorities have also promoted the use of Renewable Energy Sources for heating and cooling uses (RES H and C). This paper analyses the main policy measures implemented in EU-27 countries up to 2009: i.e. subsidies, tax incentives, financial support and feed-in tariffs. Twenty-three Member States (MSs) have developed some of these policy measures. The most widespread measure is the subsidy (22 MSs have implemented these) because from a political point of view, subsidies provide a straightforward approach to promote the use of RES H and C. Secondly, tax incentives have been used for reducing investment costs and making renewable energy profitable. Thirdly, financial incentives and feed-in tariffs have been used sparingly. While financial incentives might be used more extensively for promoting RES H and C if they are accompanied by other policy measures, feed-in tariffs are not likely to be implemented significantly in the future because this measure is not designed for household heat producers. - Highlights: → Main EU policies to reduce energy consumption are focused on buildings' efficiency. → Alternative incentives to promote the use of RES H and C in EU-27 are now studied. → Subsidies are the most widespread measure. → Tax incentives are used for reducing investment costs and making RES profitable. → Financial incentives and feed-in tariffs have been used sparingly.

  18. An energy analysis of a linear concentrating photovoltaic system with an active cooling system

    Science.gov (United States)

    Kerzmann, Tony L.; Schaefer, Laura A.

    2010-08-01

    The recent focus on renewable energy has lead to an increased awareness of solar energy. Concentrating photovoltaic systems have seen a resurgence in research interest since their earlier pilot plant origins in the 1970s and 1980s. The use of concentration reduces the amount of expensive photovoltaic materials while maintaining a high level of incident solar radiation. This research combines the advantage of concentrating solar energy with high efficiency multijunction cells and an active cooling system to create a system that efficiently produces both electricity and heat. A linear concentrating photovoltaic system model was developed in order to simulate the system under actual solar and climatic conditions, where a number of different system variables can be adjusted. This simulation was used to evaluate the effects of domestic hot water use on a 6.2 kWp system. The results show the changes in solar cell efficiency, electricity produced, thermal energy produced, dollar value displaced, and global warming potential displaced as the domestic hot water use of the system is varied. This simulation can be used to find an optimal system for given input conditions and can be used to find optimal operating conditions for a given system size.

  19. Application of PCM energy storage in combination with night ventilation for space cooling

    International Nuclear Information System (INIS)

    Barzin, Reza; Chen, John J.J.; Young, Brent R.; Farid, Mohammed M.

    2015-01-01

    Highlights: • Night ventilation were tested in combination with PCM-impregnated gypsum boards. • The Price-based method were experimentally used to perform peak load shifting. • Importance of the application of a smart control were experimentally investigated. • A cost and energy saving up to 93% and 92% per day respectively were achieved. - Abstract: In recent years, as a result of the continuous increase in energy demand, the use of energy storage has become increasingly important. To address this problem, the application of phase change materials (PCM) in buildings has received attention because of their high energy storage density and their ease of incorporation in building envelopes. Despite large experimental works conducted on the application phase change materials in buildings, there is very little work done on this application in combination with night ventilation. In this study, the application of night ventilation in combination with PCM-impregnated gypsum boards for cooling purposes was experimentally investigated. Two identical test huts equipped with “smart” control systems were used for testing the concept. One hut was constructed using impregnated gypsum boards, while the other hut was finished with ordinary gypsum board. Initially an air conditioning (AC) unit, without night ventilation, was used in both huts to charge the PCM during low peak period, showing very little savings in electricity. However, when night ventilation was used to charge the PCM instead, a weekly electricity saving of 73% was achieved.

  20. Design of a novel geothermal heating and cooling system: Energy and economic analysis

    International Nuclear Information System (INIS)

    Angrisani, G.; Diglio, G.; Sasso, M.; Calise, F.; Dentice d’Accadia, M.

    2016-01-01

    Highlights: • A desiccant-based air handling unit is coupled with a geothermal source. • A TRNSYS model is developed to simulate both winter and summer period. • Sensitivity analysis is carried out in order to evaluate the effects of the design parameters. • Pay back period about 1.2 years and Primary Energy Savings higher than 90% were founded. • Economic and energetic performance increase with to the use of Domestic Hot Water. - Abstract: A dynamic simulation study in TRNSYS environment has been carried out to evaluate energy and economic performance of a novel heating and cooling system based on the coupling between a low or medium-enthalpy geothermal source and an Air Handling Unit, including a Desiccant Wheel. During summer season, a Downhole Heat Exchanger supplies heat to regenerate the desiccant material, while a certain amount of geothermal fluid is continuously extracted by the well in order to maintain high operating temperatures. Simultaneously, the extracted geothermal fluid drives an absorption chiller, producing chilled water to the cooling coil of the Air Handling Unit. Conversely, during the winter season, geothermal energy is used to cover a certain amount of the space heating demand. In both summer and winter operation modes, a geothermal energy is also used to supply Domestic Hot Water. A case study was analyzed, in which an existing low-enthalpy geothermal well (96 °C), located in Ischia (an island close to Naples, Southern Italy), is used to drive the geothermal system. Results showed that the performance of the proposed system is significantly affected by the utilization factor of Domestic Hot Water. In fact, considering a range of variation of such parameter between 5% and 100%, Primary Energy Saving increase from 77% to 95% and Pay-Back Period decreases from 14 years to 1.2 years, respectively. The simulations proved the technical and economic viability of the proposed system. In fact, a comparison with similar systems available

  1. Learning from Wisconsin

    Science.gov (United States)

    Daniel, Jamie Owen

    2011-01-01

    Like thousands of other people from around the country and around the world, this author was heartened and inspired by the tenacity, immediacy, and creativity of the pushback by Wisconsin's public-sector unions against Governor Scott Walker's efforts to limit their collective bargaining rights. And like many others who made the trek to Madison to…

  2. Wisconsin's forest resources, 2010

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  3. Wisconsin's forest resources, 2005

    Science.gov (United States)

    Charles, H. (Hobie) Perry; Gary J. Brand

    2006-01-01

    The annual forest inventory of Wisconsin continues, and this document reports 2001-05 moving averages for most variables and comparisons between 2000 and 2005 for growth, removals, and mortality. Summary resource tables can be generated through the Forest Inventory Mapmaker website at http://ncrs2.fs.fed.us/4801/fiadb/index. htm. Estimates from this inventory show a...

  4. Wisconsin's forest resources, 2006

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2007-01-01

    Figure 2 was revised by the author in August 2008. This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service from 2002-2006. These estimates, along with associated core tables postedon the Internet, are...

  5. Wisconsin's Forest Resources, 2007

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2008-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, are updated annually. For more information please refer to page 4 of this report.

  6. Wisconsin's forest resources, 2009

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this report...

  7. Contributions to the second workshop on medium energy electron cooling -MEEC96

    International Nuclear Information System (INIS)

    MacLachlan, J.

    1997-09-01

    MEEC96 was a workshop devoted primarily to discussion within four working groups, not a mini-conference of prepared reports. Therefore, although there are contributions bearing the name of a single author, much of what was learned came in extemporaneous discussion of the issues posed to the participants. The original plan to produce formal proceedings has been dropped because of the limited number of participants willing to write up their own contributions and because of the difficulty of converting free-wheeling discussion to the written word. The premsise for the 1996 gathering was to set a critique of Fermilab''s R ampersand D effort at cooling a ring of 8 GeV bar p''s. Separate abstracts have been submitted to the energy database for contributions to this workshop

  8. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    Science.gov (United States)

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  9. Energy and Exergy Based Optimization of Licl-Water Absorption Cooling System

    Directory of Open Access Journals (Sweden)

    Bhargav Pandya

    2017-06-01

    Full Text Available This study presents thermodynamic analysis and optimization of single effect LiCl-H2O absorption cooling system. Thermodynamic models are employed in engineering equation solver to compute the optimum performance parameters. In this study, cut off temperature to operate system has been obtained at various operating temperatures. Analysis depicts that on 3.59 % rise in evaporator temperature, the required cut-off temperature decreased by 12.51%. By realistic comparison between thermodynamic first and second law analysis, optimum generator temperature relative to energy and exergy based prospective has been evaluated. It is found that optimum generator temperature is strong function of evaporator and condenser temperature. Thus, it is feasible to find out optimum generator temperature for various combinations of evaporator and condenser temperatures. Contour plots of optimum generator temperature for several combinations of condenser and absorber temperatures have been also depicted.

  10. Multi-objective optimization of a combined cooling, heating and power system driven by solar energy

    International Nuclear Information System (INIS)

    Wang, Man; Wang, Jiangfeng; Zhao, Pan; Dai, Yiping

    2015-01-01

    Highlights: • A solar-powered CCHP system using flat-plate solar collectors is modeled. • Multi-objective optimization are conducted to obtain optimum performance. • The system performance is obtained from thermodynamic and economic aspects. - Abstract: This paper presented a multi-objective optimization of a combined cooling, heating and power system (CCHP) driven by solar energy. The flat-plate solar collector was employed to collect the solar radiation and to transform it into thermal energy. The thermal storage unit was installed to storage the thermal energy collected by the collectors to ensure a continuous energy supplement when solar energy was weak or insufficient. The CCHP system combined an organic Rankine cycle with an ejector refrigeration cycle to yield electricity and cold capacity to users. In order to conduct the optimization, the mathematical model of the solar-powered CCHP system was established. Owing to the limitation of the single-objective optimization, the multi-objective optimization of the system was carried out. Four key parameters, namely turbine inlet temperature, turbine inlet pressure, condensation temperature and pinch temperature difference in vapor generator, were selected as the decision variables to examine the performance of the overall system. Two objective functions, namely the average useful output and the total heat transfer area, were selected to maximize the average useful output and to minimize the total heat transfer area under the given conditions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) was employed to achieve the final solutions in the multi-objective optimization of the system operating in three modes, namely power mode, combined heat and power (CHP) mode, and combined cooling and power (CCP) mode. For the power mode, the optimum average useful output and total heat transfer area were 6.40 kW and 46.16 m 2 . For the CCP mode, the optimum average useful output and total heat transfer area were 5.84 k

  11. Electrical Energy Harvesting from Cooker’s Wasted Heat with Using Conduction Cooling

    Directory of Open Access Journals (Sweden)

    Amouzard Mahdiraji Wincent Ghafour

    2018-01-01

    Full Text Available In order meet the demand of electricity in current era, the need for new sources of energy even in very minimal amount, could be done with proper research and technology advancement in order to convert as much wasted energy as possible. Collecting and analyses cooker’s wasted heat as a main wasted energy source become the main interest for this research. This application can be installed either in household usage or commercial usage. Based on majority stove in household datasheet it shown that the efficiency of the stove is approximately 50%. With half of the efficiency turn into wasted heat, this application is suitable for thermoelectric generator (TEG to harvest the heat. The objective of this research is to determine whether the thermoelectric generator (TEG would able to power the 3V LED light as a small lighting system in household. Several designs with five TEGs in series circuit are tested to the application to analyses which method generated a better result. Since this research only focus in using a conduction cooling, aluminum heat sink will be utilized either for heat absorption or heat rejection. The maximum temperature differences between hot side and cold side is 209.83 °C with average power approximately 0.1 W.

  12. Experimental study on cooling performance and energy saving of gas engine-driven heat pump system with evaporative condenser

    International Nuclear Information System (INIS)

    Liu, Huanwei; Zhou, Qiushu; Zhao, Haibo

    2016-01-01

    Highlights: • GEHP air conditioning system with evaporative condenser was proposed. • Cooling performances under different conditions were investigated. • PER increased with increasing of evaporative condenser air velocity. • The maximum value of PER was 1.55. • The economical amount of GEHP with evaporative condenser was 28.1%. - Abstract: The gas engine-driven heat pump (GEHP) is widely utilized to the process of cooling, heating or food drying. Aiming at improving the coefficient of performance (COP), primary energy ratio (PER) and energy saving of GEHP, a GEHP system with evaporative condenser was developed and the cooling performances were experimented over a wide range of ambient air temperature (30–36 °C), evaporative condenser air velocity (2.2–3.9 m/s) and gas engine speeds (1200–2200 rpm). Experimental results showed that the cooling capacity and PER of the GEHP system with evaporative condenser increased as the increasing of evaporative condenser air velocity and decreasing of ambient air temperature. The increasing and decreasing extents of cooling capacity and PER were 12.1%, 4.8% and 8.2%, 9.0%, respectively. However, the gas engine energy consumption and gas engine waste heat decreased with the increasing of evaporative air velocity and decreasing of ambient air temperature. Meanwhile, the cooling capacity, gas engine energy consumption, gas engine waste heat increased with increasing of gas engine speed, and the increase amplitude was 75.64%, 153.2% and 153.3%, respectively. The maximum value of PER of GEHP system with evaporative condenser was 1.55, and the waste heat recovered from gas engine was more than 55% of gas engine energy consumption. The energy saving and emission saving of the GEHP with evaporative condenser were also analyzed, the PER savings of GEHP system with evaporative condenser compared to conventional air-cooled condenser were 28.1%. Furthermore, compared to the GEHP with air-cooled condenser, the primary energy

  13. A Solar Heating and Cooling System in a Nearly Zero-Energy Building: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Zhifeng Sun

    2017-01-01

    Full Text Available The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Therefore, a nearly zero-energy building, incorporating a solar heating and cooling system, was designed and built in Beijing, China. The system included a 35.17 kW cooling (10-RT absorption chiller, an evacuated tube solar collector with an aperture area of 320.6 m2, two hot-water storage tanks (with capacities of 10 m3 and 30 m3, respectively, two cold-water storage tanks (both with a capacity of 10 m3, and a 281 kW cooling tower. Heat pump systems were used as a backup. At a value of 25.2%, the obtained solar fraction associated with the cooling load was close to the design target of 30%. In addition, the daily solar collector efficiency and the chiller coefficient of performance (COP varied from 0.327 to 0.507 and 0.49 to 0.70, respectively.

  14. The design status of the United States Department of Energy modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Mills, Raymond R. Jr.

    1990-01-01

    The U.S. Department of Energy's Modular High Temperature Gas Cooled Reactor (MHTGR) is being designed using a systems engineering approach referred to as the integrated approach. The top level requirement for the plant is that it provides safe, reliable, economical energy. The safety requirements are established by the U.S. Licensing Authorities, principally the Nuclear Regulatory Commission. The reliability and economic requirements associated with the top level functions have been established in close coordination and cooperation with the electrical utilities and other potential users, and the nuclear supply industry. The integrated approach uses functional analysis to define the functions and sub-functions for the plant and to identify quantitatively how the various functions must be fulfilled. The top four functions associated with the MHTGR are: maintain safe plant operation; maintain plant protection; maintain control of radionuclide release; maintain emergency preparedness. In addition to meeting all U.S. Regulatory Requirements this advanced reactor concept is being designed to meet the following requirements: do not require sheltering or evacuating of anyone outside the plant boundary of 425 meters as a result of normal or abnormal plant operation; do not require operator action in order to accomplish the above sheltering and evacuation objectives and the design must be insensitive to operator errors; utilize inherent characteristics of materials to develop passive safety features; provide very long times for corrective actions following the initiation of an abnormal event before plant damage would be incurred

  15. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  16. Wisconsin's Forests 2009

    Science.gov (United States)

    Charles H. Perry; Vern A. Everson; Brett J. Butler; Susan J. Crocker; Sally E. Dahir; Andrea L. Diss-Torrance; Grant M Domke; Dale D. Gormanson; Sarah K. Herrick; Steven S. Hubbard; Terry R. Mace; Patrick D. Miles; Mark D. Nelson; Richard B. Rodeout; Luke T. Saunders; Kirk M. Stueve; Barry T. Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Wisconsin's forests reports more than 16.7 million acres of forest land with an average volume of more than 1,400 cubic feet per acre. Forest land is dominated by the oak/hickory forest-type group, which occupies slightly more than one quarter of the total forest land area; the maple/beech/birch forest-type group occupies an...

  17. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Wisconsin. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Wisconsin state legislature has designated the Public Service Commission (PSC) as the agency responsible for regulating public utilities, and has prescribed the manner in which such utilities are to be regulated. The PSC consists of three commissioners appointed to staggered six-year terms by the governor and confirmed by the senate. Municipalities are given certain limited regulatory powers over public utilities. They are allowed to determine the quality and character of each kind of product or service to be rendered by any public utility within the municipality; to determine all other terms and conditions upon which a public utility may be permitted to occupy the streets, highways or other public places within the municipality; and may require such additions and extensions to (a public utility's) physical plant within said municipality as shall be reasonable and necessary in the interest of the public, and to designate the location and nature of all such additions and extensions subject to review by the PSC. However, the PSC has original and concurrent jurisdiction with municipalities to require extensions of service and to regulate service. Municipalities may purchase and own public utilities; however, such utilities are subject to regulation by the PSC. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  18. Predicting Comfort Temperature in Indonesia, an Initial Step to Reduce Cooling Energy Consumption

    Directory of Open Access Journals (Sweden)

    Tri Harso Karyono

    2015-07-01

    Full Text Available Indonesia has no reliable thermal comfort standard that is based on research works. The current national standard (SNI 6390:2011 states only a single range of comfort temperature that is 25.5 °C Ta, with a range of +1.5 °C Ta. Previous thermal studies in a number of different buildings in Indonesia showed that the neutral (comfort temperatures of subjects were about 27 to 28 °C, which is higher than the values stated in the standard. As a big country with various ambient temperatures, Indonesian needs a better and more reliable thermal comfort predictor which can be applied properly across the country. This study is an attempt to propose an initial Indonesian thermal predictor, in the form of a simple equation, which could predict comfort temperatures properly across the country. Reanalysing the previous comfort studies in Indonesia, a simple regression equation is constructed as to be used as the initial Indonesian comfort predictor. Using this predictor, the comfort temperatures in a lowland or coastal cities like Jakarta is found to be higher than the current comfort standard. It is expected that this predictor would help to provide a better indoor thermal environment and at the same reduce the cooling energy in air conditioning (AC building, thus reducing a building’s carbon emissions.

  19. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunctional ventilation concept...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  20. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  1. Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-06-01

    Full Text Available In this paper, an optimal energy management strategy for a cooperative multi-microgrid system with combined cooling, heat and power (CCHP is proposed and has been verified for a test case of building microgrids (BMGs. Three different demand types of buildings are considered and the BMGs are assumed to be equipped with their own combined heat and power (CHP generators. In addition, the BMGs are also connected to an external energy network (EEN, which contains a large CHP, an adsorption chiller (ADC, a thermal storage tank, and an electric heat pump (EHP. By trading the excess electricity and heat energy with the utility grid and EEN, each BMG can fulfill its energy demands. Seasonal energy demand variations have been evaluated by selecting a representative day for the two extreme seasons (summer and winter of the year, among the real profiles of year-round data on electricity, heating, and cooling usage of all the three selected buildings. Especially, the thermal energy management aspect is emphasized where, bi-lateral heat trading between the energy supplier and the consumers, so-called energy prosumer concept, has been realized. An optimization model based on mixed integer linear programming has been developed for minimizing the daily operation cost of the EEN while fulfilling the energy demands of the BMGs. Simulation results have demonstrated the effectiveness of the proposed strategy.

  2. Effects of climate change on regional energy systems focussing on space heating and cooling: A case study of Austria

    Directory of Open Access Journals (Sweden)

    Hausl Stephan

    2014-01-01

    Full Text Available Climate change affects regions differently and therefore also climate change effects on energy systems need to be analyzed region specific. The objective of the study presented is to show and analyze these effects on regional energy systems following a high spatial resolution approach. Three regional climate scenarios are downscaled to a 1 km resolution and error corrected for three different testing regions in Austria. These climate data are used to analyze effects of climate change on heating and cooling demand until the year 2050. Potentials of renewable energies such as solar thermal, photovoltaic, ambient heat and biomass are also examined. In the last process step the outcomes of the previous calculations are fed into two energy system models, where energy system optimizations are executed, which provide information concerning optimal setups and operations of future energy systems. Due to changing climate strong changes for the energy demand structure are noticed; lower heat demand in winter (between -7 and -15% until 2050 and - strongly differing between regions - higher cooling demand in summer (up to +355%. Optimization results show that the composition of energy supply carriers is barely affected by climate change, since other developments such as refurbishment actions, price developments and regional biomass availabilities are more influencing within this context.

  3. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application

    International Nuclear Information System (INIS)

    Tsai, Huan-Liang; Le, Phuong Truong

    2016-01-01

    Highlights: • A novel light emitting diode/thermoelectric generator module is implemented. • The waste heat recycling for both self-sufficient and active-cooling functions is validated. • The improvements in the illuminance and working temperature of the lighting device are demonstrated. - Abstract: This paper presents the energy recycling and self-sufficient application of a novel high-power light emitting diode integrating with a thermoelectric generator module. The proposed lighting module in which a thermoelectric generator device is sandwiched between light emitting diode device and heat sink autonomously recycles the waste heat to self-sufficiently support for its active cooling with an electrical fan. The start-up responses of illuminance, temperature, current and power for the proposed module were evaluated through experimental measurement. The corresponding mathematical model was derived and simulation model was built using MATLAB/Simulink for verification. The illuminance, electrical, and thermal performances have a close agreement between experiment and simulation results. The technological viability about both autonomous operation and self-sufficient energy recycling for the novel module with the active cooling was validated. Compared with passive-cooling devices, the proposed module declines the working temperature and improves illuminance simultaneously.

  4. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  5. Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Different indoor terminal units can be used to heat and cool indoor spaces. These terminal units mostly rely on convection and radiation heat transfer mechanisms but their relative ratios can vary significantly for air-based and water-based systems with implications on whole system performance......, in terms of energy and exergy. In addition to the energy and exergy input required at the heating and cooling plants, the energy use of auxiliary components (fans and pumps) also vary depending on the chosen terminal unit. In order to study the energy and exergy performances of air-based and water......-based systems, an air heating and cooling system, and a radiant floor heating and cooling system were chosen, respectively. A single-family house was used as a case study assuming that different space heating and cooling systems were used to condition the indoor space of this house. In addition to the thermal...

  6. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F.; Santos, Rubens S. dos

    2013-01-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  7. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F., E-mail: placco@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancados (IEAV/DCTA) Sao Jose dos Campos, SP (Brazil); Santos, Rubens S. dos, E-mail: rsantos@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  8. Comparative Thermal Analysis of Different Cool Roof Materials for Minimizing Building Energy Consumption

    Directory of Open Access Journals (Sweden)

    Y. Anand

    2014-01-01

    Full Text Available The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.

  9. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  10. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting

    Science.gov (United States)

    Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.

    2018-02-01

    This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.

  11. Demonstration of the Whole-Building Diagnostician for the Federal Building and U.S. Courthouse at Milwaukee, Wisconsin, and for the University of Wisconsin at Madison

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, Nathan N.; Hail, John C.

    2003-12-30

    In an effort to expand the energy savings programs within the State, the Wisconsin Division of Energy obtained funding through the Federal Energy Management Program (FEMP), with additional funding assistance through the Rebuild America Program (RBA) to install the Whole Building Diagnostician (WBD) software program as a test bed project in two of the State’s facilities in Wisconsin. This report discusses the results of this effort.

  12. Energy Optimization for Transcritical CO2 Heat Pump for Combined Heating and Cooling and Thermal Storage Applications

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Blarke, Morten; Yazawa, Kazuaki

    2012-01-01

    and cold thermal storages know as Thermal Battery (TB) (Blarke, 2012). Smart and effective use of intermittent renewable energy resources (for example solar and wind power) is obtained supplying water heating (>70 oC) and cooling services (... hypothesis is that if electricity generated by intermittent sources is destined for thermal end-uses an efficient conversion of electricity to thermal energy and storage enables a flexible power supply. Thermal storage is more cost-effective than any electro-chemical or mechanical storage technology...

  13. Tornadoes Strike Northern Wisconsin

    Science.gov (United States)

    2007-01-01

    A series of tornadoes ripped through the Upper Midwest region of the United States in the evening of June 7, 2007. At least five different tornadoes touched down in Wisconsin, according to the Associated Press, one of which tore through the Bear Paw Resort in northern Wisconsin. Despite dropping as much as fifteen centimeters (six inches) of rain in some places and baseball-size hail in others, authorities were reporting no deaths attributable to the storm system, and only a smattering of injuries, but considerable property damage in some areas. When the MODIS instrument on NASA's Terra satellite observed the area on June 9, 2007, the track torn through the woods by one of the tornadoes stands out quite clearly. This photo-like image uses data collected by MODIS in the normal human vision range to give a familiar natural-looking appearance. The landscape is largely a checkerboard of farms, towns, roads, and cities. The pale land is predominantly farmland where crops have not fully grown in yet. Dark blue shows the winding path of rivers and lakes dotting the landscape. The large blue lake on the east (right) side of the image is Lake Michigan. Towns and cities, including the city of Green Bay, are gray. To the north side, farmland gives way to dark green as land use shifts from agriculture to the Menominee Indian Reservation and Nicolet National Forest. The diagonal slash through the dark green forested land shows the tornado track. Bare land was revealed where the tornado tore down trees or stripped vegetation off the branches. The high-resolution image provided above is at MODIS' full spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response System provides this image at additional resolutions.

  14. Mass and energy supply of a cool coronal loop near its apex

    Science.gov (United States)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before

  15. Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2014-10-01

    Full Text Available Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors. Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

  16. Prediction Performance of an Artificial Neural Network Model for the Amount of Cooling Energy Consumption in Hotel Rooms

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2015-08-01

    Full Text Available This study was conducted to develop an artificial neural network (ANN-based prediction model that can calculate the amount of cooling energy during the setback period of accommodation buildings. By comparing the amount of energy needed for diverse setback temperatures, the most energy-efficient optimal setback temperature could be found and applied in the thermal control logic. Three major processes that used the numerical simulation method were conducted for the development and optimization of an ANN model and for the testing of its prediction performance, respectively. First, the structure and learning method of the initial ANN model was determined to predict the amount of cooling energy consumption during the setback period. Then, the initial structure and learning methods of the ANN model were optimized using parametrical analysis to compare its prediction accuracy levels. Finally, the performance tests of the optimized model proved its prediction accuracy with the lower coefficient of variation of the root mean square errors (CVRMSEs of the simulated results and the predicted results under generally accepted levels. In conclusion, the proposed ANN model proved its potential to be applied to the thermal control logic for setting up the most energy-efficient setback temperature.

  17. 75 FR 71108 - Wisconsin Public Service Corporation; Notice of Application for Amendment of License and...

    Science.gov (United States)

    2010-11-22

    ... Energy Regulatory Commission Wisconsin Public Service Corporation; Notice of Application for Amendment of... Filed: June 30, 2010. d. Applicant: Wisconsin Public Service Corporation. e. Name of Project: Tomahawk... the following hydroelectric application has been filed with the Commission and is available for public...

  18. Influence of sub-cooling on the energy performance of two ...

    African Journals Online (AJOL)

    In this study, the effects of sub-cooling on the various refrigeration cycle performance parameters using the alternative refrigerants (R432A and R433A) as working fluids were evaluated theoretically and compared with those obtained using the baseline refrigerant (R22). The results obtained showed that the thermodynamic ...

  19. Guided design of heating and cooling mains for lower water and energy consumption and increased efficiency

    CSIR Research Space (South Africa)

    Gololo, V

    2011-01-01

    Full Text Available can allow reaching significant savings. It is also known from power generation and from the bulk chemicals production that the cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results...

  20. Wisconsin SRF Electron Gun Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, Joseph J. [University of Wisconsin-Madison; Bissen, M. [University of Wisconsin-Madison; Bosch, R. [University of Wisconsin-Madison; Efremov, M. [University of Wisconsin-Madison; Eisert, D. [University of Wisconsin-Madison; Fisher, M. [University of Wisconsin-Madison; Green, M. [University of Wisconsin-Madison; Jacobs, K. [University of Wisconsin-Madison; Keil, R. [University of Wisconsin-Madison; Kleman, K. [University of Wisconsin-Madison; Rogers, G. [University of Wisconsin-Madison; Severson, M. [University of Wisconsin-Madison; Yavuz, D. D. [University of Wisconsin-Madison; Legg, Robert A. [JLAB; Bachimanchi, Ramakrishna [JLAB; Hovater, J. Curtis [JLAB; Plawski, Tomasz [JLAB; Powers, Thomas J. [JLAB

    2013-12-01

    The University of Wisconsin has completed fabrication and commissioning of a low frequency (199.6 MHz) superconducting electron gun based on a quarter wave resonator (QWR) cavity. Its concept was optimized to be the source for a CW free electron laser facility. The gun design includes active tuning and a high temperature superconducting solenoid. We will report on the status of the Wisconsin SRF electron gun program, including commissioning experience and first beam measurements.

  1. Wisconsin's forest resources in 2004

    Science.gov (United States)

    Charles H. Perry

    2006-01-01

    Results of the 2000-2004 annual inventory of Wisconsin show about 16.0 million acres of forest land, more than 22.1 billion cubic feet of live volume on forest land, and nearly 593 million dry tons of all live aboveground tree biomass on timberland. Populations of jack pine budworm are increasing, and it remains a significant pest in Wisconsin forests. A complete...

  2. Investigation of Absorption Cooling Application Powered by Solar Energy in the South Coast Region of Turkey

    Science.gov (United States)

    Babayigit, O.; Aksoy, M. H.; Ozgoren, M.; Solmaz, O.

    2013-04-01

    In this study, an absorption system using ammonia-water (NH3-H2O) solution has been theoretically examined in order to meet the cooling need of a detached building having 150 m2 floor area for Antalya, Mersin and Mugla provinces in Turkey. Hourly dynamic cooling load capacities of the building were determined by using Radiant Time Series (RTS) method in the chosen cities. For the analysis, hourly average meteorological data such as atmospheric air temperature and solar radiation belonging to the years 1998-2008 are used for performance prediction of the proposed system. Thermodynamic relations for each component of absorption cooling system is explained and coefficients of performance of the system are calculated. The maximum daily total radiation data were calculated as 7173 W/m2day on July 15, 7277 W/m2 day on July 19 and 7231 W/m2day on July 19 for Mersin, Antalya and Mugla, respectively on the 23° toward to south oriented panels from horizontal surface. The generator operating temperatures are considered between 90-130°C and the best result for 110°C is found the optimum degree for maximum coefficient of performance (COP) values at the highest solar radiation occurred time during the considered days for each province. The COP values varies between 0.521 and 0.530 for the provinces. In addition, absorber and condenser capacities and thermal efficiency for the absorption cooling system were calculated. The necessary evacuated tube collector area for the different provinces were found in the range of 45 m2 to 47 m2. It is shown that although the initial investment cost is higher for the proposed absorption cooling system, it is economically feasible because of its lower annual operation costs and can successfully be operated for the considered provinces.

  3. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  4. Short-term storage of cooling energy. Optimization of power supply by large-scale chilled water storage; Kurzzeitige Kaeltespeicherung. Optimierung der Energieversorgung durch den Einsatz grosser Kaltwasserspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Urbaneck, T.; Schirmer, U.; Platzer, B. [Technische Univ. Chemnitz (Germany). Technische Thermodynamik; Barthel, U. [Stadtwerke Chemnitz AG (Germany); Bundesverband der Deutschen Gas- und Wasserwirtschaft e.V. (BGW) (Germany). Landesgruppe Sachsen/Sachsen-Anhalt/Thueringen; Uhlig, U.; Zimmermann, D.; Goeschel, T. [Stadtwerke Chemnitz AG (Germany)

    2007-07-01

    According to a pilot project carried out at the municipal utility in Chemnitz, power supply systems can be optimized energetically and ecologically by cogeneration. Since in Germany there is no large-scale short-term storage system for cooling energy, the municipal utility in Chemnitz established the first system. The fundamental idea: The storage system is loaded at night and is therefore able to cover the peak load in the district cooling energy system by day. (orig.)

  5. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    Energy use in buildings accounts for a large part of the energy use globally and as a result of this, international building energy performance directives are becoming stricter. This trend has led to the development of zero-energy and plus-energy buildings. Some of these developments have led to ...

  6. Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates

    Directory of Open Access Journals (Sweden)

    Y. Agrouaz

    2017-03-01

    Full Text Available The aim of this work is to investigate the energetic performance of a solar cooling system using absorption technology under Moroccan climate. The solar fraction and the coefficient of performance of the solar cooling system were evaluated for various climatic conditions. It is found that the system operating in Errachidia shows the best average annual solar fraction (of 30% and COP (of 0.33 owing to the high solar capabilities of this region. Solar fraction values in other regions varied between 19% and 23%. Moreover, the coefficient of performance values shows in the same regions a significant variation from 0.12 to 0.33 all over the year. A detailed parametric study was as well carried out to evidence the effect of the operating and design parameters on the solar air conditioner performance.

  7. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  8. Preparation for Future Defuelling and Decommissioning Works on EDF Energy's UK Fleet of Advanced Gas Cooled Reactors

    International Nuclear Information System (INIS)

    Bryers, John; Ashmead, Simon

    2016-01-01

    EDF Energy/Nuclear Generation is the owner and operator of 14 Advanced Gas cooled Reactors (AGR) and one Pressurised Water Reactor (PWR), on 8 nuclear stations in the UK. EDF Energy/Nuclear Generation is responsible for all the activities associated with the end of life of its nuclear installations: de-fuelling, decommissioning and waste management. As the first AGR is forecast to cease generation within 10 years, EDF Energy has started planning for the decommissioning. This paper covers: - broad outline of the technical strategy and arrangements for future de-fuelling and decommissioning works on the UK AGR fleet, - high level strategic drivers and alignment with wider UK nuclear policy, - overall programme of preparation and initial works, - technical approaches to be adopted during decommissioning. (authors)

  9. [Preliminary analysis of ginseng industry in Wisconsin].

    Science.gov (United States)

    Hu, Li; Zhang, Wen-sheng

    2008-07-01

    To study the case of Wisconsin as the top ginseng state in United States which has come through four developing steps: beginning, stagnating, flourishing and now, downturn. The current situation of the ginseng industry in Wisconsin was briefly introduced, the federal and state management on ginseng cultivation and export, the organization of Ginseng Board of Wisconsin and their marketing style based on the field investigation and data collected from USDA and Wisconsin state. The advantages and disadvantages of Wisconsin ginseng industry were analyzed in order to provide some suggestions for Chinese medicine industry. Chinese ginseng industry should learn the organization system from Wisconsin.

  10. The Role of Soya Oil Ester in Water-Based PCM for Low Temperature Cool Energy Storage

    Directory of Open Access Journals (Sweden)

    I. M. Rasta

    2016-01-01

    Full Text Available This study focuses on the preparation of the water-based phase change material (PCM with very small soya oil solution for low temperature latent heat thermal energy storage (LHTES. Soya oil ester is soluble very well in water and acts as nucleating agent for a novel solid-liquid PCM candidate that is suitable for low temperature cool storage in the range between −9°C and −6°C. Thermal energy storage properties of the water with very small soya oil ester solution were measured by T-history method. The experimental results show that very small amount of soya oil ester in water can lower the freezing point and trigger ice nucleation for elimination of the supercooling degree. The phase transition temperatures of the water-based PCMs with soya oil as nucleate agent were lower than those of individual water. The thermal properties make it potential PCM for LHTES systems used in low temperature cool energy storage applications.

  11. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system

    International Nuclear Information System (INIS)

    Yao, Erren; Wang, Huanran; Wang, Ligang; Xi, Guang; Maréchal, François

    2017-01-01

    Highlights: • A novel tri-generation based compressed air energy storage system. • Trade-off between efficiency and cost to highlight the best compromise solution. • Components with largest irreversibility and potential improvements highlighted. - Abstract: Compressed air energy storage technologies can improve the supply capacity and stability of the electricity grid, particularly when fluctuating renewable energies are massively connected. While incorporating the combined cooling, heating and power systems into compressed air energy storage could achieve stable operation as well as efficient energy utilization. In this paper, a novel combined cooling, heating and power based compressed air energy storage system is proposed. The system combines a gas engine, supplemental heat exchangers and an ammonia-water absorption refrigeration system. The design trade-off between the thermodynamic and economic objectives, i.e., the overall exergy efficiency and the total specific cost of product, is investigated by an evolutionary multi-objective algorithm for the proposed combined system. It is found that, with an increase in the exergy efficiency, the total product unit cost is less affected in the beginning, while rises substantially afterwards. The best trade-off solution is selected with an overall exergy efficiency of 53.04% and a total product unit cost of 20.54 cent/kWh, respectively. The variation of decision variables with the exergy efficiency indicates that the compressor, turbine and heat exchanger preheating the inlet air of turbine are the key equipment to cost-effectively pursuit a higher exergy efficiency. It is also revealed by an exergoeconomic analysis that, for the best trade-off solution, the investment costs of the compressor and the two heat exchangers recovering compression heat and heating up compressed air for expansion should be reduced (particularly the latter), while the thermodynamic performance of the gas engine need to be improved

  12. Desiccative and evaporative cooling systems in the field of energy change; Planung und Wirtschaftlichkeit von DEC-Anlagen im Umfeld der Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Ronny [ILK Dresden gGmbH, Dresden (Germany). Bereich Luft- und Klimatechnik

    2013-06-15

    Desiccative and evaporative cooling systems are established on the market since a few years. They are energy efficient, they can use renewable energy and replace conventional compression cooling systems. Their primary energy demand is up to one-third below the demand of conventional air conditioning systems. Nevertheless there is a big difference on the market. The sales have been stagnating for years, although the energy change requires efficient and sustainable technologies in this Article, the existing prejudices and their thrift are discussed. (orig.)

  13. Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration. Final technical project report

    Energy Technology Data Exchange (ETDEWEB)

    Federspiel, Clifford; Evers, Myah

    2011-09-30

    Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans run at the optimum fan speed maintaining stable air equilibrium while also expending the least amount of electricity. With lower fan speeds, the life of the capital investment made on cooling equipment improves, and the cooling capacity of the data center increases. This case study depicts a rare technological feat: The same process and technology worked cost effectively in eight very different environments. The results show that savings were achieved in centers with diverse specifications for the sizes, ages and types of cooling equipment. The percentage of cooling energy reduction ranged from 19% to 78% while keeping temperatures substantially within the

  14. Optimal Design of Cogeneration Systems in Industrial Plants Combined with District Heating/Cooling and Underground Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Vincenzo Dovì

    2011-12-01

    Full Text Available Combined heat and power (CHP systems in both power stations and large plants are becoming one of the most important tools for reducing energy requirements and consequently the overall carbon footprint of fundamental industrial activities. While power stations employ topping cycles where the heat rejected from the cycle is supplied to domestic and industrial consumers, the plants that produce surplus heat can utilise bottoming cycles to generate electrical power. Traditionally the waste heat available at high temperatures was used to generate electrical power, whereas energy at lower temperatures was either released to the environment or used for commercial or domestic heating. However the introduction of new engines, such as the ones using the organic Rankine cycle, capable of employing condensing temperatures very close to the ambient temperature, has made the generation of electrical power at low temperatures also convenient. On the other hand, district heating is becoming more and more significant since it has been extended to include cooling in the warm months and underground storage of thermal energy to cope with variable demand. These developments imply that electric power generation and district heating/cooling may become alternative and not complementary solutions for waste energy of industrial plants. Therefore the overall energy management requires the introduction of an optimisation algorithm to select the best strategy. In this paper we propose an algorithm for the minimisation of a suitable cost function, for any given variable heat demand from commercial and domestic users, with respect to all independent variables, i.e., temperatures and flowrates of warm fluid streams leaving the plants and volume and nature of underground storage. The results of the preliminary process integration analysis based on pinch technology are used in this algorithm to provide bounds on the values of temperatures.

  15. Energy Design Guidelines for High Performance Schools: Cool and Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  16. Energy Design Guidelines for High Performance Schools: Cool and Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  17. Learning energy efficiency: experience curves for household appliances and space heating, cooling, and lighting technologies

    NARCIS (Netherlands)

    Weiss, M.|info:eu-repo/dai/nl/156419912; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Improving demand side energy efficiency is an important strategy for establishing a sustainable energy system. Large potentials for energy efficiency improvements exist in the residential and commercial buildings sector. This sector currently accounts for almost 40% of the European Union’s (EU)

  18. 16 CFR 305.14 - Energy information disclosures for heating and cooling equipment.

    Science.gov (United States)

    2010-01-01

    ... UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE... condenser-evaporator coil combination comprising the listed split system; or (ii) The energy efficiency... slightly with different coils. (ii) For information disclosing both the seasonal energy efficiency ratio...

  19. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2017-06-01

    The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  20. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Directory of Open Access Journals (Sweden)

    Nemethova Ema

    2017-06-01

    Full Text Available The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II. for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  1. Technical, environmental, and socioeconomic factors associated with dry-cooled nuclear energy centers

    International Nuclear Information System (INIS)

    1976-04-01

    The report includes a review of the current state-of-the-art of dry-cooling technology for industrial and power-generating facilities and an evaluation of its technical potential and cost for large nuclear power plants. Criteria are formulated for coarse screening of the arid regions of the Western United States to select a surrogate site for more detailed site-specific analyses. The screening criteria included seismic considerations, existing transportation facilities, institutional and jurisdictional constraints, waste heat dissipation effects, water requirements, and ecologic and socioeconomic considerations. The Galt site near Las Vegas, Nevada was selected for the surrogate site analysis to assess important issues related to the construction and operation of twelve dry-cooled nuclear power plants at an arid location remote from major load centers. The assessment covers geotechnical, atmospheric and hydrologic considerations, special aspects of transporting large equipment overland to the site from seaports, analyses of potential transmission routes to major load centers, local institutional and taxing provisions, and ecologic and socioeconomic impacts

  2. Technical, environmental, and socioeconomic factors associated with dry-cooled nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    The report includes a review of the current state-of-the-art of dry-cooling technology for industrial and power-generating facilities and an evaluation of its technical potential and cost for large nuclear power plants. Criteria are formulated for coarse screening of the arid regions of the Western United States to select a surrogate site for more detailed site-specific analyses. The screening criteria included seismic considerations, existing transportation facilities, institutional and jurisdictional constraints, waste heat dissipation effects, water requirements, and ecologic and socioeconomic considerations. The Galt site near Las Vegas, Nevada was selected for the surrogate site analysis to assess important issues related to the construction and operation of twelve dry-cooled nuclear power plants at an arid location remote from major load centers. The assessment covers geotechnical, atmospheric and hydrologic considerations, special aspects of transporting large equipment overland to the site from seaports, analyses of potential transmission routes to major load centers, local institutional and taxing provisions, and ecologic and socioeconomic impacts.

  3. A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system

    International Nuclear Information System (INIS)

    Zhang, Yin; Wang, Xin; Zhang, Yinping; Zhuo, Siwen

    2016-01-01

    Introducing the thermal energy storage (TES) equipment into the building cooling heating and power (BCHP) system proves to be an effective way to improve the part load performance of the whole system and save the primary energy consumption. The location of TES in BCHP has a great impact on the thermal performance of the whole system. In this paper, a simplified model of TES-BCHP system composed of a gas turbine, an absorption chiller/an absorption heat pump, and TES equipment with phase change materials (PCM) is presented. In order to minimize the primary energy consumption, the performances of BCHP systems with different PCM-TES locations (upstream and downstream) are analyzed and compared, for a typical hotel and an office building respectively. Moreover, the influence of the thermal performance of PCM-TES equipment on the energy saving effect of the whole system is investigated. The results confirm that PCM-TES can improve the energy efficiency and reduce the installed capacities of energy supply equipment, and that the optimal TES location in BCHP highly depends on the thermal performance of the TES equipment and the user load characteristics. It also indicates that: 1) the primary energy saving ratio of PCM-TES-BCHP increases with increasing NTU of TES; 2) for the studied cases, downstream TES location becomes more preferable when user loads fluctuate greatly; 3) only downstream TES can reduce the installed capacities of absorption chiller/absorption heat pump. This work can provide guidance for PCM-TES-BCHP system design. - Highlights: • A simplified model of the PCM-TES-BCHP system is established. • TES can increase energy efficiency and decrease installed capacity of equipment. • Primary energy saving ratio increases with increasing NTU of TES. • Downstream TES location is more preferable when user loads fluctuate greatly. • Optimal TES location depends on equipment performances and load characteristics.

  4. Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser

    International Nuclear Information System (INIS)

    Martínez, P.; Ruiz, J.; Cutillas, C.G.; Martínez, P.J.; Kaiser, A.S.; Lucas, M.

    2016-01-01

    A well known strategy for improving the performance of air conditioning systems when using air-condensed units is to decrease the ambient inlet airflow temperature by means of an evaporative cooling pad. In this work experiments are conducted in a split air-conditioning system where the condensing unit is modified by coupling different evaporative cooling pads with variable thickness. The impact of the different cooling pads on the overall performance of the air-conditioning system is experimentally determined by measuring the airflow conditions and the energy consumption of the overall air conditioning system, including both the condenser fan and the feedwater recirculation pump of the cooling pads. The aim is to determine the energy efficiency improvement achieved by pre-cooling the ambient airflow compared to a common air-condensed unit and to calculate the optimal pad thickness that maximize the overall COP of the system. Experimental results indicate that the best overall COP is obtained by adding a cooling pad thickness of about 100 mm. At that point the compressor power consumption is reduced by 11.4%, the cooling capacity is increased by 1.8% and finally the overall COP is increased by 10.6%.

  5. Citybem: AN Open Source Implementation and Validation of Monthly Heating and Cooling Energy Needs for 3d Buildings in Cities

    Science.gov (United States)

    Murshed, S. M.; Picard, S.; Koch, A.

    2017-10-01

    Cities play an important role in reaching local and global targets on energy efficiency and the reduction of greenhouse gas emissions. In order to determine the potential of energy efficiency in the building sector new planning instruments are required that allow depicting the complete building stock on the one hand and investigate detailed measures on the other hand. To pursue this objective, the ISO 13970:2008 monthly heating and cooling energy model is implemented using an open source based software architecture (CityBEM), in connection with data from 3D city models in the CityGML standard (LOD2). Input parameters such as the building geometry, typology and energy characteristics have been associated with the 3D data. The model has been applied to several urban districts with different numbers of buildings in the city of Karlsruhe. In order to test the accuracy of the implemented model and its robustness, a 3-step validation has been conducted. The comparison of simulation results with results based on a TRNSYS simulation showed acceptable results for the studied application cases. The proposed approach can help urban decision makers to perform a city or district wide analysis of the building energy need which can be further used to prepare future scenarios or renovation plans to support decision making.

  6. CITYBEM: AN OPEN SOURCE IMPLEMENTATION AND VALIDATION OF MONTHLY HEATING AND COOLING ENERGY NEEDS FOR 3D BUILDINGS IN CITIES

    Directory of Open Access Journals (Sweden)

    S. M. Murshed

    2017-10-01

    Full Text Available Cities play an important role in reaching local and global targets on energy efficiency and the reduction of greenhouse gas emissions. In order to determine the potential of energy efficiency in the building sector new planning instruments are required that allow depicting the complete building stock on the one hand and investigate detailed measures on the other hand. To pursue this objective, the ISO 13970:2008 monthly heating and cooling energy model is implemented using an open source based software architecture (CityBEM, in connection with data from 3D city models in the CityGML standard (LOD2. Input parameters such as the building geometry, typology and energy characteristics have been associated with the 3D data. The model has been applied to several urban districts with different numbers of buildings in the city of Karlsruhe. In order to test the accuracy of the implemented model and its robustness, a 3-step validation has been conducted. The comparison of simulation results with results based on a TRNSYS simulation showed acceptable results for the studied application cases. The proposed approach can help urban decision makers to perform a city or district wide analysis of the building energy need which can be further used to prepare future scenarios or renovation plans to support decision making.

  7. Energy Design Guidelines for High Performance Schools: Cool and Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  8. Energy Design Guidelines for High Performance Schools: Cool and Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  9. Sustainability of Water Cooled Reactors - Energy Balance for Low Grade Uranium Resources

    International Nuclear Information System (INIS)

    Strupczewski, A.

    2011-01-01

    The opponents of nuclear power claim that as uranium resources get exhausted the energy needed to mine low grade uranium ore will be larger than the energy that can be obtained from fission in a nuclear power plant. This would result in loss of sustainability of nuclear power, with the negative energy balance expected within the next 40-60 years. Since the opponents state clearly that the ore containing less than 0.013% U 3 O 8 cannot yield positive energy balance, the study of the Institute of Atomic Energy in Poland referenced three mines of decreasing ore grade: Ranger 0.234% U 3 O 8 , Rossing 0.028% U 3 O 8 and Trekkopje 0.00126% U 3 O 8 , that is with ore grade below the postulated cut off value. The study considered total energy needs for uranium mining, including not only electricity needed for mining and milling, for water treatment and delivery, but also fuel for transportation and ore crushing, explosives for rock blasting, chemicals for uranium leaching and the energy needed for mine reclamation after completed exploitation. It has been shown that the energy estimates of nuclear opponents are wrong for Ranger mine and go off much further for the mines with lower uranium ore grades. The reasons for erroneous reasoning of nuclear opponents have been found. Their errors arise from treating the uranium ore deposits as if their layout and properties were the same as those of uranium ore mined in the US in the 70-ies. This results in an oversimplified formula, which yields large errors when the thickness of the overlayer is less than it was in the US. In addition the energy needs claimed for mine reclamation are much too high. The study showed that the energy needed for very low grade uranium ore mining and milling increases but the overall energy balance of the nuclear fuel cycle remains strongly positive. (author)

  10. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Leerdam, R.C. van; Medevoort, J. van; Tongeren, W.G.J.M. van; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D.

    2015-01-01

    The European KIC-Climate project Water and Energy for Climate Change (WE4CC) aims at the technical demonstration, business case evaluation and implementation of new value chains for the production of high-quality water using low-grade thermal waste energy from cooling water. A typical large-scale

  11. Cool roofs and the influence on the energy consumption under Danish conditions

    DEFF Research Database (Denmark)

    Brandt, Erik; Bunch-Nielsen, Tommy; Juhl, Lasse

    Experience from countries in warm climates has shown that the color of the roofing material has a significant effect on the energy consumption of the building. Especially changing from black to white roofing material provides reduction in energy consumption. The investigated roofs have been with ...

  12. Computer simulation for optimizing windbreak placement to save energy for heating and cooling buildings

    Science.gov (United States)

    Gordon M. Heisler

    1991-01-01

    Saving energy has recently acquired new importance because of increased concern for dwindling fossil fuel supplies and for the problem of carbon dioxide contributions to global climate change. Many studies have indicated that windbreaks have the ability to save energy for heating buildings. Suggested savings have ranged up 40 percent; though more commonly savings of...

  13. Load Shifting and Storage of Cooling Energy through Ice Bank or Ice Slurry Systems: modelling and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino

    2009-10-15

    Ice based Cool Thermal Energy Storage (CTES) systems have attracted much attention during last few decades. The reasons are mainly of economical and environmental nature. Compared to conventional refrigeration and air-conditioning systems without cool thermal energy storage, implementation of CTES will increase environmental standards and overall efficiency of the energy systems as it contributes to the phase-out of synthetic refrigerants and reduces peak loads in electricity grids. For the application of a cool thermal energy storages in refrigeration installations and HVAC systems in industry and building sector, it is necessary to have appropriate design tools in order to sufficiently accurate predict their performance. In this thesis theoretical and experimental investigations of two ice based cool thermal energy storage systems, namely static, indirect, external melt, ice-on-coil, i.e. ice bank system and dynamic, ice slurry cool thermal energy storage system are carried out. An ice bank storage technology for cooling purposes is known for a long time. The main drawbacks which are hindering its wider use are the system complexity, high first costs, system efficiency which is highly dependant on design, control and monitoring of the system, etc. On the other hand, ice slurry technology was not well studied until recently, while in the current scientific literature there are still differences between results and conclusions reported by different investigators. The aim of the present thesis is to extend the knowledge in the field of ice based CTES systems, thereby contributing in the development and wider utilization of those systems. In the first part of the thesis a computer application, named 'BankaLeda' is presented. It enables simulation of an ice bank system performance. In order to verify developed simulation model an experimental evaluation has been performed. Field measurements have been conducted on a two module silo which was installed as a

  14. Electron Cooling Dynamics for RHIC

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Ben-Zvi, I.; Eidelman, Yu.; Litvinenko, V.N.; Malitsky, N.; Bruhwiler, D.; Meshkov, I.; Sidorin, A.; Smirnov, A.; Trubnikov, G.

    2005-01-01

    Research towards high-energy electron cooling of RHIC is presently underway at Brookhaven National Laboratory. In this new regime, electron cooling has many unique features and challenges. At high energy, due to the difficulty of providing operational reserves, the expected cooling times must be estimated with a high degree of accuracy compared to extant low-energy coolers. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes and experimental benchmarking was launched at BNL. In this paper, we present an update of the high-energy cooling dynamics studies. We also include a discussion of some features of electron cooling relevant to colliders, such as the effects of rapid cooling of the beam core and an accurate treatment of the intra-beam scattering for such cooled ion distributions

  15. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  16. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  17. Cooling Curve Analysis of Micro- and Nanographite Particle-Embedded Salt-PCMs for Thermal Energy Storage Applications

    Science.gov (United States)

    Sudheer, R.; Prabhu, K. N.

    2017-08-01

    In recent years, the focus of phase change materials (PCM) research was on the development of salt mixtures with particle additives to improve their thermal energy storage (TES) functionalities. The effect of addition of microsized (50 μm) and nanosized (400 nm) graphite particles on TES parameters of potassium nitrate was analyzed in this work. A novel technique of computer-aided cooling curve analysis was employed here to study the suitability of large inhomogeneous PCM samples. The addition of graphite micro- and nanoparticles reduced the solidification time of the PCM significantly enhancing the heat removal rates, in the first thermal cycle. The benefits of dispersing nanoparticles diminished in successive 10 thermal cycles, and its performance was comparable to the microparticle-embedded PCM thereafter. The decay of TES functionalities on thermal cycling is attributed to the agglomeration of nanoparticles which was observed in SEM images. The thermal diffusivity property of the PCM decreased with addition of graphite particles. With no considerable change in the cooling rates and a simultaneous decrease in thermal diffusivity, it is concluded that the addition of graphite particles increased the specific heat capacity of the PCM. It is also suggested that the additive concentration should not be greater than 0.1% by weight of the PCM sample.

  18. Wisconsin's fourth forest inventory, 1983.

    Science.gov (United States)

    John S. Jr. Spencer; W. Brad Smith; Jerold T. Hahn; Gerhard K. Raile

    1988-01-01

    The fourth inventory of the timber resource of Wisconsin shows that growing-stock volume increased from 11.2 to 15.5 billion cubic feet between 1968 and 1983, and area of timberland increased from 14.5 to 14.8 million acres. Presented are analysis and statistics on forest area and timber volume, growth, mortality, removals, and projections.

  19. Wisconsin's forest resources in 2001.

    Science.gov (United States)

    John S. Vissage; Gery J. Brand; Manfred E. Mielke

    2003-01-01

    Results of the 2001 annual inventory of Wisconsin show about 15.8 million acres of forest land, more than 21.6 billion cubic feet of live volume on forest land, and nearly 584 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and white pine blister rust...

  20. Educational Attainment in Southeast Wisconsin

    Science.gov (United States)

    Million, Laura; Henken, Rob; Dickman, Anneliese

    2010-01-01

    In metro Milwaukee, as a part of the WIRED Initiative, the Regional Workforce Alliance (RWA)--a collaboration of organizations representing workforce development, economic development and education across southeast Wisconsin--has established the framework for pursuing the local talent dividend goal and a regional strategy for increasing…

  1. Birds of Prey of Wisconsin.

    Science.gov (United States)

    Hamerstrom, Frances

    This copiously illustrated document is designed to be a field quide to birds of prey that are common to Wisconsin, as well as to some that enter the state occasionally. An introduction discusses birds of prey with regard to migration patterns, the relationship between common names and the attitudes of people toward certain birds, and natural signs…

  2. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  3. Thermal Comfort Project: A Cool Solution to the Nation's Energy Security Challenges

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    This fact sheet describes how the CTTS thermal comfort project will increase energy security by reducing fuel consumed by auxiliary loads such as air conditioning. It also describes physiological and psychological computer models and thermal comfort manikin.

  4. RF DEMO ceramic helium cooled blanket, coolant and energy transformation systems

    International Nuclear Information System (INIS)

    Kovalenko, V.; Leshukov, A.; Poliksha, V.; Popov, A.; Strebkov, Yu.; Borisov, A.; Shatalov, G.; Demidov, V.; Kapyshev, V.

    2004-01-01

    RF DEMO-S reactor is a prototype of commercial fusion reactors for further generation. A blanket is the main element unit of the reactor design. The segment structure is the basis of the ceramic blanket. The segments mounting/dismounting operations are carried out through the vacuum vessel vertical port. The inboard/outboard blanket segment is the modules welded design, which are welded by back plate. The module contains the back plate, the first wall, lateral walls and breeding zone. The 9CrMoVNb steel is used as structural material. The module internal space formed by the first wall, lateral walls and back plate is used for breeding zone arrangement. The breeding zone design based upon the poloidal BIT (Breeder Inside Tube) concept. The beryllium is used as multiplier material and the lithium orthosilicate is used as breeder material. The helium at 0.1 MPa is used as purge gas. The cooling is provided by helium at 10 MPa. The coolant supply/return to the blanket modules are carrying out on the two independent circuits. The performed investigations of possible transformation schemes of DEMO-S blanket heat power into the electricity allowed to make a conclusion about the preferable using of traditional steam-turbine facility in the secondary circuit. (author)

  5. Proceedings of solar energy storage options. Volume I. An intensive workshop on thermal energy storage for solar heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts were prepared for the 28 papers presented. Panel chairmen's summaries are included; the complete panel reports will be published in Volume II of the Solar Energy Storage Options Workshop proceedings. (WHK)

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  8. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  9. Office-like Test Chambers to Measure Cool Roof Energy Savings in Four Indian Climates

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Rathish [Saint Gobain Research India Pvt. Ltd. (India); B, Sasank [Saint Gobain Research India Pvt. Ltd. (India); T, Rajappa [Saint Gobain Research India Pvt. Ltd. (India); N, Vinay [Saint Gobain Research India Pvt. Ltd. (India); Garg, Vishal [International Inst. of Information Technology, Hyderabad (India); Reddy, Niranjan [International Inst. of Information Technology, Hyderabad (India); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-21

    Selecting a high albedo (solar reflectance) waterproofing layer on the top of a roof helps lower the roof’s surface temperature and reduce the air conditioning energy consumption in the top floor of a building. The annual energy savings depend on factors including weather, internal loads, and building operation schedule. To demonstrate the energy saving potential of high albedo roofs, an apparatus consisting of two nearly identical test chambers (A and B) has been built in four Indian climates: Chennai (hot & humid), Bangalore (temperate), Jhagadia (Hot & dry) and Delhi (composite). Each chamber has well-insulated walls to mimic the core of an office building. Both chambers have the same construction, equipment, and operating schedule, differing only in roof surface. The reinforced cement concrete roof of Chamber A is surfaced with a low-albedo cement layer, while that of Chamber B is surfaced with a high-albedo water proof membrane (change in solar reflectance of 0.28). The experiment will be carried out for one year to explore seasonal variations in energy savings. Initial results in the month of July (post summer) shows that savings from high albedo roof ranges from 0.04 kWh/m2/day in temperate climates, to 0.08 kWh/m2/day in hot & dry climate.

  10. Alternative energy sources for the heating and cooling of a building

    CSIR Research Space (South Africa)

    Strydom, JFS

    1979-11-27

    Full Text Available The objective of two of the studies was to choose the most economical source of heating energy, taking cognizance of the building owner’s particular circumstances; in both cases a suitable alternative to light petroleum oil, which had been used...

  11. Measurements on a solar greenhouse combining cooling and electrical energy production

    NARCIS (Netherlands)

    B. van Tuijl; Piet Sonneveld; H. Janssen; J. van Campen; G. Bot; Gert-Jan Swinkels

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  12. Proposal for the small high temperature gas cooled reactor (application of nuclear energy in the changing and emerging energy markets)

    International Nuclear Information System (INIS)

    Remond R Pahladsingh

    2005-01-01

    With the peaking of the oil-production (2006) on the global energy-markets, already predicted by M.K. Hubbert in 1970 and the limited possibilities to use coal as an alternative, the world has come in a critical situation. Exponential growth in global population and the demand of energy (IEA) have created a unique, but known, problem in the present time. The difference with the past is the period in which the changes will take place is not centuries or decades but most likely a few years. There is no alternative for oil to anticipate on the coming energy-crisis. The coal-industry has been demolished in Europe and America, under the pressure of the environmental lobby, and the nuclear industry is in very bad shape. Large scale nuclear plants can only be built in strong power grids; the present power grids are exposed to de-investment and less maintenance in liberalized and de-regulated economies. Furthermore the Digital Society is placing additional requirements on reliability and quality of our electric power systems. Life extension programs in the nuclear industry have shown that the present industry is robust, safety standards are high but at the same time no breakthrough technology has come to the market. The manpower in the nuclear industry is ageing. There are no real indications of growth in the large scale nuclear industry. The present industry is heavily relaying on the present grid concepts that have shown many difficulties in recent past and the increased failures in power-grids will create constraints to excel the option of nuclear energy in the electric power industry This paper is a request to the nuclear industry to come with a revival program, easy to implement nuclear technology and to help the world to solve the huge energy-problems that present and future generations are facing in the world. The proposal in the paper is a request to bring nuclear energy back in our society (Yes in my backyard-YIMBY) so that the many fruitful uses of nuclear energy

  13. Water resources of Wisconsin: lower Wisconsin River basin

    Science.gov (United States)

    Hindall, S.M.; Borman, Ronald G.

    1974-01-01

    This report describes the physical environment, availability, distribution, movement, quality, and use of water in the upper Wisconsin River basin as an aid in planning and water management. The report presents general information on the basin derived from data obtained from Federal, State, and local agencies, New field data were collected in areas where information was lacking. More detailed studies of problem areas may be required in the future, as water needs and related development increase.

  14. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    International Nuclear Information System (INIS)

    Kwon, Yong Il

    2016-01-01

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  15. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Il [Shinhan University, Euijungbu (Korea, Republic of)

    2016-05-15

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  16. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    Energy Technology Data Exchange (ETDEWEB)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  17. Plenary lecture 1: thermoelectric technology as renewable energy source for power generation and heating & cooling systems

    OpenAIRE

    SHAMMAS, Noel

    2011-01-01

    This paper will review the latest research and current status of thermoelectric power generation, and will also demonstrate, using electronic design, semiconductor simulation and practical laboratory experimentation, the application of thermoelectric technology for use in energy harvesting and scavenging systems. Ongoing research and advances in thermoelectric materials and manufacturing techniques, enables the technology to make a greater contribution to address the growing requirement for l...

  18. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  19. Potential benefits of cool roofs on commercial buildings. Conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants

    International Nuclear Information System (INIS)

    Levinson, R.; Akbari, H.

    2010-01-01

    Cool roofs - roofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emission - lessen the flow of heat from the roof into the building, reducing the need for space cooling energy in conditioned buildings. Cool roofs may also increase the need for heating energy in cold climates. For a commercial building, the decrease in annual cooling load is typically much greater than the increase in annual heating load. This study combines building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area. The annual heating and cooling energy uses of four commercial building prototypes - new office (1980+), old office (pre-1980), new retail (1980+), and old retail (pre-1980) - were simulated in 236 US cities. Substituting a weathered cool white roof (solar reflectance 0.55) for a weathered conventional gray roof (solar reflectance 0.20) yielded annually a cooling energy saving per unit conditioned roof area ranging from 3.30 kWh/m 2 in Alaska to 7.69 kWh/m 2 in Arizona (5.02 kWh/m 2 nationwide); a heating energy penalty ranging from 0.003 therm/m 2 in Hawaii to 0.14 therm/m 2 in Wyoming (0.065 therm/m 2 nationwide); and an energy cost saving ranging from USD 0.126/m 2 in West Virginia to USD 1.14/m 2 in Arizona (USD 0.356/m 2 nationwide). It also offered annually a CO2 reduction ranging from 1.07 kg/m 2 in Alaska to 4.97 kg/m 2 in Hawaii (3.02 kg/m 2 nationwide); an NOx reduction ranging from 1.70 g/m 2 in New York to 11.7 g/m 2 in Hawaii (4.81 g/m 2 nationwide); an SO2 reduction ranging from 1.79 g/m 2 in California to 26.1 g/m 2 in Alabama (12.4 g/m 2 nationwide); and an Hg reduction ranging from 1.08 μg/m 2 in Alaska to 105 μg/m 2 in Alabama (61.2 μg/m 2 nationwide). Retrofitting 80% of the 2

  20. TRIGENERATION - A highly energy efficient source for heating, domestic hot water preparation, electricity and air cooling systems for tertiary sector

    International Nuclear Information System (INIS)

    Barbuta, Mariana; Ghitulescu, Mircea; Nicolau, Irina; Athanasovici, Cristian; Constantin, Cristinel; Ivan, Robert

    2004-01-01

    The general concerns relating to sustainable energy development have led to the implementation of certain solutions at the international level that have increased both energy generation and energy consuming processes efficiency. In our country the first steps in this direction have been carried out by the private companies that, after having analyzed the income increase and costs diminishing, have come to the conclusion that a reliable way to save money would be the rational use of the energy resources for utilities. A favorable consequence was the synergetic effect of the measures meant to increase energy efficiency for the energy generation and consumption processes that are also accompanied by benefit effects on the environmental impact by reduction CO 2 emissions. One of the solutions making the utmost of primary energy is the combined heat and power production (co-generation) that has significantly developed in our country within the energy sector as a whole. Co-generation may be considered environmentally friendly because it saves fuel on the one hand and, technologically, generates less emissions as compared to the separate generation of heat and power, on the other hand. The most favorable applications of co-generation at a medium and small scale are in the tertiary sector (hotels, hospitals, and office buildings) where heat consumption is usually high enough and is accompanied by relatively constant electricity consumption. By corroborating the above mentioned facts relating to local cogeneration installation utilization with those relating to the increased need for cooling in the tertiary buildings, a concept named 'TRI-GENERATION' in specialized literature has occurred, representing, in fact, utilization of cogeneration installations for supplying energy to the electricity, heat and cold consumer. Thus, the cogeneration installation utilization time will be practically prolonged over the entire duration of a year a fact that has extremely favorable

  1. On Innovative Cool-Colored Materials for Building Envelopes: Balancing the Architectural Appearance and the Thermal-Energy Performance in Historical Districts

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2017-12-01

    Full Text Available Architectural expression and energy performance are key decision-drivers in the selection of a particular construction element, with the purpose of Urban Heat Island mitigation, energy-consumption reductions, and cultural heritage preservation in historical centers. In historical centers, the external layer of the envelope and the visible parts of the building are built with traditional materials and technological solutions, such as single-layer walls or brickworks, depending on the country’s context, while the energy performance is usually optimized by means of internal insulation layers, or other active and passive solutions. Thermal-energy efficient materials and construction elements for the temperate, warm climate of the Mediterranean area are usually light-colored to reflect the largest part of solar radiation, thus reducing energy demands for cooling and improving thermal comfort conditions for occupants. On the other hand, many historical centers in such areas are characterized by reddish or grayish colors. In this work, we considered Italian historical areas, and other countries in the Mediterranean area with present similar situations. Thus, in this study, innovative, cool-colored, cement-based materials were developed to improve the thermal-energy performance of the external envelope of historical/historic built environments, without altering their appearance. These materials were prepared directly on-site, by mixing two types of pigments to achieve the desired color saturation. Optic and thermal properties were assessed, and yearly dynamic simulations of a historic, listed, case study building were performed, by comparing traditional-colored mortar and the prototype cool mortar envelopes. The research demonstrates that such cool-colored materials can maintain lower surface temperatures (−8 °C, while reducing energy demands for cooling (−3%.

  2. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia, E-mail: jrosales@instec.cu [Higher Institute of Technologies and Applied Sciences, Habana City (Cuba); Castells, Escriva [Energetic Engeniering Institute, Politechnical University of Valencia, Valencia (Spain); Abanades [Department of Simulation of Termoenergetic Systems, Politechnical University of Madrid, Madrid (Spain)

    2011-07-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  3. The Wisconsin experience with incentives for demand-side management

    International Nuclear Information System (INIS)

    Landgren, D.A.

    1990-01-01

    It has been noted that, within traditional regulatory frameworks for electric utilities, factors exist which discourage demand side management (DSM) and that there is a lack of positive incentives for DSM. Regulatory agencies should therefore make it possible for DSM measures to benefit from the same treatment as supply-side measures. The Wisconsin Public Service Commission (WPSC) has recognized this need and has adopted various measures accordingly. The need for efficiency incentives is described according to the particular experience of Wisconsin Electric concerning their recourse to a DSM incentive and according to new incentive models being tested in collaboration with other electricity suppliers in Wisconsin. The WPSC has concluded that the fact of considering the costs relating to DSM as expenses or capitalizing them within the rate base does not motivate the utility to promote DSM programs. The WPSC has thus decided to experiment with energy efficiency incentives in order to evaluate their eventual impact. The choice of the type of incentive had an objective of starting the process in an area where the lack of experience has created, from the regulatory point of view, a reticence on the part of utilities to engage in DSM programs. The WPSC has designed a variety of incentive models which have been adapted to each utility's own situation. Specific incentive programs developed for three Wisconsin utilities are reviewed

  4. Sediment yields of Wisconsin streams

    Science.gov (United States)

    Hindall, S.M.; Flint, R.F.

    1970-01-01

    Sediment in Wisconsin streams causes economic and engineering problems in water management and reduces the value of water for nearly all uses. Sediment produces problems such as reduced reservoir capacity, navigation hazards, increased cost of water treatment, property damage, temporary loss of farmland, destruction of feeding and nesting grounds of fish, and destruction of wildlife habitat. Sediment in water also reduces the aesthetic value of surface waters and is detrimental to the State's tourist and recreation industry.

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  6. Low energy cooling of the White Tower, functioning as a contemporary museum

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A.M.; Avgelis, A.; Anastaselos, D. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, School of Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2008-07-01

    Historical buildings are of significance not only because they preserve the cultural heritage of nations but also because of their representative character. However, as buildings they not necessarily provide satisfactory comfort and health conditions, despite the fact that they can be high-energy consumers. The Museum of Byzantine Culture in Thessaloniki has decided to convert the White Tower, a six-floor fortress dating back to the 15th century, into a contemporary city museum with means of audiovisual, virtual and information technologies. A study has been carried out in 2005-2006 to determine the possibilities, given the restrictions applying, to implement measures in order to establish and maintain satisfactory thermal comfort and indoor air quality conditions in the White Tower, whilst ensuring its unobstructed function as a contemporary city museum. The measurements and simulations carried out, together with the resulting suggested interventions are discussed in this paper. (author)

  7. Horizontal temperature distribution in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The present study is concerned with the air and operative temperatures at different locations in a detached, one-story, single family, plus-energy house. The house was located in Denmark and it has been used as a full-scale experimental facility with heated dummies to simulate occupants living...... system) and was ventilated with a mechanical ventilation system (heat recovery on ventilation). Inside the house, there was a single space combining kitchen, living room and bedroom areas. The thermal comfort of the occupant(s) in this space could differ based on the location of the occupant, and control...... would follow the temperature changes in the occupied zone closely and, thus, would provide a good indication of the thermal indoor environment to the control system....

  8. US hydropower resource assessment for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  9. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  10. The energy-saving effects of ground-coupled heat pump system integrated with borehole free cooling: A study in China

    International Nuclear Information System (INIS)

    Zhou, Zhihua; Wu, Shengwei; Du, Tao; Chen, Guanyi; Zhang, Zhiming; Zuo, Jian; He, Qing

    2016-01-01

    Highlights: • Investigate the suitable application scope of free cooling system. • Simulate and predict its COP and carbon reduction. • Compare the temperature changes of underground soil between free cooling mode and conventional cooling mode. • Suggest the use of free cooling. - Abstract: Ground coupled heat pump (GCHP) systems have been widely implemented due to its potential benefits of energy savings. However, very few studies attempted to examine the operational performance of GCHP system integrated with borehole free cooling (i.e. using the circulating water in ground heat exchanger for the cooling purpose). A typical office building in Tianjin was chosen for a detailed case study. Both experiments and numerical simulation are employed to examine the efficiency of proposed GCHP system by means of comparing the normal running mode (NRM) and the energy-saving running mode (ESRM) in terms of the energy consumption and soil temperature variation. The results showed that the energy efficiency ratio (EER system ) of the system increased every year in winter but decreased gradually in summer during 10 years of operation. In winter, the EER system of NRM was 3.4% higher than that of ESRM. In summer, the EER system of NRM was 0.5% lower than that of ESRM under the same normal cooling mode (NM c ). The EER system of free cooling mode (FM c ) could reach as high as 23.35, which was 5.2 times higher than that of NM c . In summer, the EER system of ESRM was 13.58 on average, which was 2.6 times higher than that of NRM. The soil temperature gained minor rise under both modes during 10 years’ operation. This study revealed that there are significant energy savings benefits if the GCHP system is integrated with FM c . Meanwhile, the requirements related to temperature and humidity can be satisfied when the indoor thermal and moisture load are not too high. Therefore, the integration of FM c with GCHP system could be considered for the operation of office buildings

  11. Electron Cooling Study for MEIC

    International Nuclear Information System (INIS)

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  12. Comparative analysis of thermal storage cooling and storage battery cooling using photovoltaic generation. Part 2. Research on architectural systematization of energy conversion devices; Taiyoko hatsuden ni yoru chikunetsu reibo to chikuden reibo ni tsuite. 2. Energy henkan no kenchiku system ka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, N.; Kimura, G.; Fukao, S.; Shimizu, T.; Sunaga, N.; Tsunoda, M.; Muro, K.; Yamanaka, S. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    For use in energy self-sufficient buildings, a system was studied capable of retaining for its own use the excess of power produced by a photovoltaic power generation system without releasing it to the commercial system. Summertime cooling was considered. The storage battery cooling system was provided with two solar cell systems and, in the daytime, one was used for cooling and the other for charging batteries for nighttime cooling. In the cold heat storage cooling system, cold heat accumulators (red bricks) were provided in the wall and floor, and under the floor, and the floor was a grating for proper ventilation between the room and underfloor space. With the solar cell-driven air conditioner out of operation, cold heat was fed to the room from the underfloor cold heat accumulators by a fan. In storage battery cooling, solar power covered 60% of what the air conditioner used. In the presence of sufficient power in storage, the air conditioner stayed on at night without buying commercial power, when the room temperature was 25{degree}C. In the cold heat accumulation cooling, 50% of the air conditioner power consumption was covered by solar power. It is recommended to install cold heat accumulators not in the room but in a separate space, such as the underfloor space, where they are exposed to the cooling cold air direct from an air conditioner for future retrieval of cold heat. 2 refs., 9 figs., 3 tabs.

  13. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating

    International Nuclear Information System (INIS)

    Xu, Zelin; Kleinstreuer, Clement

    2014-01-01

    Highlights: • Pilot study for improved CPV/T system efficiencies when using nanofluids as coolant. • Validated computational efficiency analysis of a 2-D combined CPV/T model. • Use of a new thermal conductivity model for nanofluids. • Nanofluid-based co-generation system a preferable to water-based systems. - Abstract: New designs of dual concentration photovoltaic–thermal (CPV/T) systems can provide both electrical and thermal energy, while reducing solar cell material usage via optical techniques. The overall system efficiency can be improved by using advanced dual-purpose liquids with enhanced heat transfer characteristics, such as nanofluids. In this paper the use of nanofluids, i.e., dilute nanoparticle suspensions in liquids, are considered for improved efficiency of a CPV/T system for the first time. Specifically, a 2-D model coupling thermal analysis and computational fluid dynamics simulations has been developed to calculate efficiencies of individual subsystems as well as the overall system. A new thermal conductivity model for nanofluids, which was validated with experimental data sets, was employed. The electrical and thermal performances of the system were evaluated for different climatic conditions. The results show that using nanofluids improves the electrical and total efficiencies of the system, especially when using silicon solar cells. For example, if the nanofluid outlet temperature of the solar cell is set to 62 °C via a controlled flow rate, the system overall efficiency could reach 70% with electrical and thermal contributions amounting to 11% and 59%, respectively. In summary, a nanofluid-based system is preferable to water-based systems in the long run

  14. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  15. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  16. Final progress report on Grant No. DE-FG02-81ER10229, U.S. Department of Energy Reactor Sharing Program at the University of Wisconsin, July 15, 2000 - May 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Agasie, Robert J.

    2001-12-27

    The Reactor Sharing Program makes the facilities of the University of Wisconsin Nuclear Reactor Laboratory available to other educational institutions. Uses include direct instruction, student theses projects, and staff research projects. A list of using institutions and a brief description of use is given.

  17. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  18. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  19. Initial Cooling Experiment (ICE)

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  20. Improving mobility for Wisconsin's elderly : brief.

    Science.gov (United States)

    2011-10-01

    By 2035, the number of elderly residents in Wisconsin is expected to nearly double, and one in four drivers on Wisconsin roads will be elderly. According to national statistics, the elderly are more likely to be involved in crashes on a per-mile basi...

  1. Generation IV nuclear energy system initiative. Large GFR core subassemblydesign for the Gas-Cooled Fast Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E. A.; Kulak, R. F.; Therios, I. U.; Wei, T. Y. C.

    2006-07-31

    Gas-cooled fast reactor (GFR) designs are being developed to meet Gen IV goals of sustainability, economics, safety and reliability, and proliferation resistance and physical protection as part of an International Generation IV Nuclear Energy System Research Initiative effort. Different organizations are involved in the development of a variety of GFR design concepts. The current analysis has focused on the evaluation of low-pressure drop, pin-core designs with favorable passive cooling properties. Initial evaluation of the passive cooling safety case for the GFR during depressurized decay heat removal accidents with concurrent loss of electric power have resulted in requirements for a reduction of core power density to the 100 w/cc level and a low core pressure drop of 0.5 bars. Additional design constraints and the implementation of their constraints are evaluated in this study to enhance and passive cooling properties of the reactor. Passive cooling is made easier by a flat radial distribution of the decay heat. One goal of this study was to evaluate the radial power distribution and determine to what extent it can be flattened, since the decay heat is nearly proportional to the fission power at shutdown. In line with this investigation of the radial power profile, an assessment was also made of the control rod configuration. The layout provided a large number of control rod locations with a fixed area provided for control rods. The number of control rods was consistent with other fast reactor designs. The adequacy of the available control rod locations was evaluated. Future studies will be needed to optimize the control rod designs and evaluate the shutdown system. The case for low pressure drop core can be improved by the minimization of pressure drop sources such as the number of required fuel spacers in the subassembly design and by the details of the fuel pin design. The fuel pin design is determined by a number of neutronic, thermal-hydraulic (gas dynamics

  2. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  3. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  4. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Cummings, Jamie E. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Vieira, Robin K. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Fairey, III, Phillip W. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Sherwin, John S. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Withers, Jr., Charles [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Hoak, David [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Beal, David [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States)

    2016-09-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  5. Thermal analysis for energy consumption reduction in cooling water systems; Analisis termico para la reduccion del consumo de energia en sistemas de agua de enfriamiento

    Energy Technology Data Exchange (ETDEWEB)

    Picon Nunez, Martin [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, Guanajuato (Mexico); Quillares Vargas, Luis [Tecnopinch, S. A. de C. V., (Mexico)

    1998-12-31

    This paper presents the fundamental principles for the thermal analysis of cooling water systems in processing plants. In existing heat dissipating networks this methodology application allows the identification of opportunities for reducing the energy consumption used for cooling water pumping. The methodology is based on the determination of the minimum cooling water flow as a function of the installed heat exchange capacity, subjected to the restrictions of the maximum allowed temperature elevation. The methodology application to real systems, has resulted in saving 20% of the total energy consumed in cooling water pumping. [Espanol] En este trabajo se presentan los principios fundamentales para el analisis termico de sistemas de enfriamiento en plantas de proceso. En redes de eliminacion de calor existentes, la aplicacion de esta metodologia permite identificar oportunidades para reducir el consumo de energia utilizada para el bombeo del fluido enfriante. La metodologia se basa en la determinacion del flujo minimo de agua de enfriamiento en funcion de la capacidad de transferencia de calor instalada, sujeta a las restricciones de maximo incremento de temperatura permitido. La aplicacion de la metodologia a sistemas reales, ha resultado en ahorros del 20% del total de la energia que se consume en el bombeo del agua de enfriamiento.

  6. Thermo economical optimization of a jet nozzle cooling cycle assisted by solar energy; Otimizacao termoeconomica de ciclo de refrigeracao por compressao por ejetor auxiliado com energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, Gabriel I. Medina; Colle, Sergio [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: gabriel@emc.ufsc.br; colle@emc.ufsc.br

    2000-07-01

    The present work deals with the analysis of the jet nozzle cooling cycle assisted by solar energy. Both, a thermodynamic and economic optimization are carried out, for ammonia as working fluid. The optimization of the ejector is also focussed, for different values of the relevant design parameters. The method P{sub 1} - {sub P}2 for economical optimization of solar energy systems is used in order to find out the optimum collector area, which corresponds to the maximum value of the life time cost saving. The numerical results are presented in terms of the specific costs of the auxiliary energy, as well as the collector area. (author)

  7. Influence of glazing types and ventilation principles in double skin façades on delivered heating and cooling energy during heating season in an office building

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2012-01-01

    Full Text Available Double skin façade represents an additional skin on the outside wall of the building with the idea of reducing building’s energy demand. The zone formed by adding a skin can be sealed or ventilated either naturally or mechanically. This paper shows the results of delivered heating and cooling energy for an office building during heating season with 3 different ventilation strategies and 90 double skin façade configurations. The results were obtained by using EnergyPlus simulation program. In all observed cases, adding double skin façade leads to a decrease in delivered heating energy by as much as 55.80%, but delivered cooling energy might increase if proper glazing type is not selected. The best results were obtained by using triple glazing as inner skin of double façade. [Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  8. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H. [Lawrence Berkeley Lab., CA (United States); Bos, W. [Sacramento Municipal Utility District, CA (United States)

    1992-12-01

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  9. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  10. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    Science.gov (United States)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  11. A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids

    International Nuclear Information System (INIS)

    Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H.

    2016-01-01

    Highlights: • Stable MWNTs and graphene nanofluids were used in a mechanical wet cooling tower. • Thermal and rheological properties of nanofluids were investigated. • Nanofluids enhanced the efficiency, cooling range and tower characteristic. • Water consumption reduced significantly for both MWNTs and graphene nanofluids. - Abstract: This study deals with an experimental investigation on the thermal performance of a mechanical wet cooling tower with counter flow arrangement by using multi-walled carbon nanotubes (MWNTs) and nanoporous graphene nanofluids. Stable nanofluids were prepared through two-step procedure by using water with properties taken from a working cooling tower in the South of Iran. Zeta potential revealed suitable stability of MWNTs and nanoporous graphene nanofluids. Thermal and rheological properties of the nanofluids were investigated. It was found that thermal conductivity increases by 20% and 16% at 45 °C for MWNTs and nanoporous graphene nanofluids, respectively. The increase in density and viscosity, particularly in low concentrations of nanoparticles, was insignificant enough for industrial applications. Moreover, it was found that by using nanofluids, efficiency, cooling range and tower characteristic (KaV/L) are enhanced in comparison to water. For instance, at inlet water temperature of 45 °C and water/air (L/G) flow ratio of 1.37, the cooling range increases by 40% and 67% for MWNTs and nanoporous graphene nanofluids (0.1 wt.%), respectively. On the other hand water consumption is reduces by 10% and 19% at inlet water temperature of 45 °C for MWNTs and nanoporous graphene nanofluids, respectively.

  12. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  13. Sowing the Seeds for a Bountiful Harvest: Shaping the Rules and Creating the Tools for Wisconsin's Next Generation of Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Vickerman, Michael Jay

    2012-03-29

    Project objectives are twofold: (1) to engage wind industry stakeholders to participate in formulating uniform permitting standards applicable to commercial wind energy installations; and (2) to create and maintain an online Wisconsin Wind Information Center to enable policymakers and the public to increaser their knowledge of and support for wind generation in Wisconsin.

  14. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  15. Addressing elderly mobility issues in Wisconsin.

    Science.gov (United States)

    2011-09-01

    "The aging of baby boomers poses significant challenges to Wisconsins existing transportation infrastructure and specialized transit : programs. From 2010 to 2035, the number of elderly Wisconsinites is projected to grow by 90 percent, an increase...

  16. Predicting Scour of Bedrock in Wisconsin

    Science.gov (United States)

    2017-04-01

    This research evaluates the scour potential of rocks supporting Wisconsin DOT bridge foundations. Ten highway bridges were selected for this study, of which seven are supported by shallow foundations, and five were built on sandstone in rivers/stream...

  17. Fuelwood production and sources in Wisconsin, 1981.

    Science.gov (United States)

    James E. Blyth; E. Michael Bailey; W. Brad Smith

    1984-01-01

    Discusses and analyzes the 1981 Wisconsin fuelwood production from roundwood and primary wood-using mill residue. Analyzes production by geographic area, type of producer, species, landowner class, type of land, and tree source.

  18. Cool materials for reducing summer energy consumptions in Mediterranean climate: In-lab experiments and numerical analysis of a new coating based on acrylic paint

    International Nuclear Information System (INIS)

    Antonaia, Alessandro; Ascione, Fabrizio; Castaldo, Anna; D’Angelo, Antonio; De Masi, Rosa Francesca; Ferrara, Manuela; Vanoli, Giuseppe Peter; Vitiello, Giuseppe

    2016-01-01

    Highlights: • Paper investigates potentiality of 3paints of automotive sector for cool roofing application. • Laboratory measurements are performed for different substrates and configurations. • Acrylic paint has satisfying values of spectral reflectance (77–80%) and thermal emissivity (92%). • Numerical analyses are proposed for roof technologies with different insulation level. • Annual energy saving varies between 0.4% and 3.0% and roof never exceeds temperature of 40 °C. - Abstract: The urbanization has negative effects on the environment, mainly related to the generation of pollution, the modification of the properties of the atmosphere, the covering of the soil surface. The cumulative effects produce the so-called phenomenon of ‘Urban Heat Island’ (UHI). Cool roofs have a positive impact on the global environment, by reducing the energy required for interior cooling and related greenhouse gas emissions. Moreover these help to mitigate the UHI effect. A cool roofing material is characterized by higher solar reflectance in comparison to conventional roof coatings and high infrared emittance values. This paper is aimed to investigate the potentialities of high reflective commercial products not specialized for cool roofing. Three paints of the automotive sector have been selected. These products have very fast drying, good adhesion directly to different type of materials, good gloss and appearance, greater durability than traditional, lower cost and application time. Laboratory measurements are performed for the characterization of thermal-optical properties of different prototype samples, by considering application on different substrates (aluminum, ceramic tile, bitumen membrane, polyvinyl chloride sheet) as well as different configurations (evaluating the adoption of gripping and external gloss). Only the white acrylic paint shows good values for spectral reflectance (77–80%) and thermal emissivity (92%) that are comparable with commercial

  19. Climate Regulation of Rearing-Related Buildings - Evaluating the Factors Related to the Energy Requirement of Heating/Cooling, and Analysis of Alternative Solutions

    Directory of Open Access Journals (Sweden)

    Toth Laszló

    2017-10-01

    Full Text Available The most notable role in the energy usage of rearing-related buildings belongs to barn climate. For animals, one of the most important climate parameter is the temperature of the barn atmosphere. This can be kept in the proper interval by either heating or cooling. Apart from the operation of technological solutions, the need for airing barns must be taken into consideration. This means there are special technical requirements for airing. Also, they can cause significant energy losses. The temperature limit of heating is mainly influenced by the technological temperature related to keeping the animal in question, its acceptable differences, the heat loss of the barn, and the airing requirement. Energy sources applicable to heating can be traditional sources (coal, oil, gas, renewable sources (solar, biomass, wind, water, or geothermal energy, or transformed energy (electricity. As these have specific operation systems, they also mean further challenges in implementing efficient energy usage. The usage of heating energy can either be optimised by the rational usage of the heating system, or machinery explicitly made for reserving energy. Sparing heating energy via recuperative heating exchange may cut costs significantly, which we also proved in this research with actual calculations. However, we have to state that the efficient usage of heat exchangers requires that the internal and external temperatures differ greatly, which has a huge impact on heat recovery performance.

  20. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    International Nuclear Information System (INIS)

    Forsberg, Charles; Hu, Lin-wen; Peterson, Per; Sridharan, Kumar

    2015-01-01

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  1. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peterson, Per [Univ. of California, Berkeley, CA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  2. Cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Dittrich, H.; Ernst, G.; Roller, W.

    1975-01-01

    The task on which the invention is based is to design a cooling tower in such a way that the negative influences of the wind, in particular strong side winds (wind velocities of over 10 m/s), on the functioning of the cooling tower are reduced or eliminated altogether. (orig./TK) [de

  3. 75 FR 56597 - University of Wisconsin; University of Wisconsin Nuclear Reactor Environmental Assessment and...

    Science.gov (United States)

    2010-09-16

    ... when solid waste is generated from use of the UWNR, it is transferred to the University of Wisconsin.... In the years that solid waste was generated, less than 400 milliCuries of solid waste was transferred...; University of Wisconsin Nuclear Reactor Environmental Assessment and Finding of No Significant Impact The U.S...

  4. ELECTRON COOLING OF RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.; LITVINENKO, V.; BARTON, D.; ET AL.

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.

  5. Rehabilitation of Delavan Lake, Wisconsin

    Science.gov (United States)

    Robertson, Dale M.; Goddard, Gerald L.; Helsel, D.R.; MacKinnon, Kevin L.

    2009-01-01

    A comprehensive rehabilitation plan was developed and implemented to shift Delavan Lake, Wisconsin, from a hypereutrophic to a mesotrophic condition. The plan was threefold: (1) reduce external phosphorus (P) loading by applying Best Management Practices in the watershed, enhance an existing wetland, and short-circuit the inflows through the lake, (2) reduce internal P loading by treating the sediments with alum and removing carp, and (3) rehabilitate the fishery by removing carp and bigmouth buffalo and adding piscivores (biomanipulation). The first and second parts of the plan met with only limited success. With only minor reductions in internal and external P loading, P concentrations in the lake returned to near pre-treatment concentrations. The intensive biomanipulation and resulting trophic cascade (increased piscivores, decreased planktivores, increased large zooplankton populations, and reduced phytoplankton populations) eliminated most of the original problems in the lake (blue-green algal blooms and limited water clarity). However, now there is extensive macrophyte growth and abundant filamentous algae. Without significantly reducing the sources of the problems (high P loading) in Delavan Lake, the increased water clarity may not last. With an improved understanding of the individual components of this rehabilitation program, better future management plans can be developed for Delavan Lake and other lakes and reservoirs with similar eutrophication problems.

  6. The clean air act amendments of 1990 and the national energy strategy of 1991 in relation to district heating and cooling

    International Nuclear Information System (INIS)

    Kainlauri, E.O.

    1992-01-01

    District heating and cooling (DHC) has a good side with regard to the environment, as one system replaces many individual boilers and furnaces that together would emit a larger amount of uncontrolled, environmentally damaging substances than the DHC power plant. However, the more controlled emissions from the power plant are more visible and concentrated and are carried on by winds to longer distances. The Clean Air Act Amendments of 1990 set definite goals for reducing harmful emissions, and the power plants must gradually improve their plants and operations to follow these new guidelines. Similarly, the National Energy Strategy calls for adherence to the purposes of the Clean Air Act, but at the same time it provides some trade-offs in order to allow more time for the construction and installation of more effective equipment. As the use of electricity has increased tenfold in the United States during the past 40 years and the electricity producing power plants are usually only about 30 % fuel efficient, the emissions from the fuel that is used to burn and generate electricity-with two-thirds of it wasted-have multiplied enormously. To harness the wasted energy by utilizing district heating and cooling could greatly improve environmental conditions and conserve large amounts of energy

  7. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  8. Tickborne Powassan virus infections among Wisconsin residents.

    Science.gov (United States)

    Johnson, Diep K Hoang; Staples, J Erin; Sotir, Mark J; Warshauer, David M; Davis, Jeffrey P

    2010-04-01

    Powassan virus (POWV) is a tickborne Flavivirus that causes a rare but potentially life-threatening illness. The first reported case of POWV infection in a Wisconsin resident occurred in 2003. Enhanced surveillance and testing detected 2 additional cases. Patient specimens with a positive or equivocal immunoglobulin M (IgM) antibody to an arbovirus were sent from commercial laboratories to the Wisconsin State Laboratory of Hygiene and forwarded to the Centers for Disease Control and Prevention (CDC) for confirmatory testing. Patients with laboratory confirmed POWV infections were interviewed to obtain demographic, clinical, and epidemiologic information. POWV infections were confirmed in 3 adult Wisconsin residents in 2003, 2006, and 2007; illness onsets occurred during May and June. Two patients were hospitalized and all survived. One patient had a dual infection with POWV and Anaplasma phaghocytophilum. Specimens from all 3 patients were initially reported as positive for IgM antibody to either St Louis encephalitis or California serogroup viruses; POWV-specific antibody was detected during confirmatory testing at the CDC. Each patient had exposures to known or likely tick habitats in different counties within 30 days before illness onset. These are the first diagnosed human POWV infections in Wisconsin. Because all 3 patients were initially identified as having other arboviral infections using commercial screening kits, routine confirmatory testing is essential for proper diagnosis of most arboviral infections. Wisconsin residents should be educated regarding risks of acquiring and ways to prevent POWV infection and other tickborne diseases when spending time outdoors.

  9. IEA HPP Annex 32 - Economical heating and cooling systems for low-energy houses. State-of-the-art report Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2007-04-01

    Norway is a member of Annex 32, 'Economical heating and cooling systems for low-energy houses' (2006-2008), organized under the umbrella of the International Energy Agency (IEA) and the IEA Heat Pump Programme (HPP). The 9 participating countries are Switzerland (Operating Agent), Austria, Canada, Germany, Japan, the Netherlands, Norway, Sweden and the USA. The Norwegian participation is financed by Enova SF, and SINTEF Energy Research is responsible for planning and carrying out the Norwegian activities. Task 1 of the project is a state-of the art analysis of the low-energy building market and heat pump technologies applied in this type of buildings. Heating demands for low-energy houses and passive houses in Norwegian climate are characterized as follows: The ratio of the annual heating demand for hot water heating and the total annual heating demand of the houses typically range from 40 to 85 percent, and the heating season for space heating and heating of ventilation air range from about 5-7 and 4-6 months per year for semi-detached houses and flats, respectively (Oslo climate). In comparison, the heating season for semi-detached houses and flats constructed in accordance with the Norwegian building codes of 1997 is 8 and 9 months, respectively. Development companies for residential properties, co-operative building societies as well as housing manufactures are now showing great interest in low-energy houses and passive houses. According to The Norwegian State Housing Bank, almost 10.000 residences with low-energy or passive house standard are now being planned, constructed or have been completed. The projects include single-family houses, semi-detached houses, row houses, block of flats and apartment buildings. The main focus in these projects has been on the architectural design, building construction and efficient ventilation systems, and less on the heating (and cooling) systems. The heat pump market in this market segment is regarded to be promising due to

  10. Comparative analysis of cooling systems for energy equipment of combined heat and power plants and nuclear power plants

    Science.gov (United States)

    Reutov, B. F.; Lazarev, M. V.; Ermakova, S. V.; Zisman, S. L.; Kaplanovich, L. S.; Svetushkov, V. V.

    2016-07-01

    In the 20th century, the thermal power engineering in this country was oriented toward oncethrough cooling systems. More than 50% of the CHPP and NPP capacities with once-through cooling systems put into operation before the 1990s were large-scale water consumers but with minimum irretrievable water consumption. In 1995, the Water Code of the Russian Federation was adopted in which restrictions on application of once-through cooling systems for newly designed combined heat and power plants (CHPPs) were introduced for the first time. A ban on application of once-through systems was imposed by the current Water Code of the Russian Federation (Federal law no. 74-FZ, Art. 60 Cl. 4) not only for new CHPPs but also for those to be modified. Clause 4 of Article 60 of the Water Code of the Russian Federation contravenes law no. 7-FZ "On Protection of the Environment" that has priority significance, since the water environment is only part of the natural environment and those articles of the Water Code of the Russian Federation that are related directly to electric power engineering, viz., Articles 46 and 62. In recent decades, the search for means to increase revenue charges and the economic pressure on the thermal power industry caused introduction by law of charges for use of water by cooling systems irrespective of the latter's impact on the water quality of the source, the environment, the economic efficiency of the power production, and the living conditions of the people. The long-range annual increase in the water use charges forces the power generating companies to switch transfer once-through service water supply installations to recirculating water supply systems and once-through-recirculating systems with multiple reuse of warm water, which drastically reduces the technical, economic, and ecological characteristic of the power plant operation and also results in increasing power rates for the population. This work comprehensively substantiates the demands of

  11. Consumer adoption and grid impact models for plug-in hybrid electric vehicles in Wisconsin.

    Science.gov (United States)

    2010-05-01

    This proposed study focuses on assessing the demand for plug-in hybrid electric vehicles (PHEV) in Wisconsin and its economic : impacts on the States energy market and the electric grid. PHEVs are expected to provide a range of about 40 miles per ...

  12. Implementing high-speed rail in Wisconsin peer exchange.

    Science.gov (United States)

    2009-01-01

    The Wisconsin Department of Transportation Division of Transportation Investment Management hosted : a peer exchange on June 2 -4, 2009 in Milwaukee, Wisconsin. Representatives from four state DOTs and : two freight railroads joined representatives f...

  13. Annual experimental results on heat and cool storage modes for natural energy autonomous house, HARBEMAN house; Shizen energy jiritsu house (HARBEMAN house) no chikunetsu chikurei mode no jissoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.; Fujino, T.; Suzuki, M. [Tohoku University, Sendai (Japan)

    1997-11-25

    Outlined herein is performance of the solar system, followed for a year, installed in a solar house (HARBEMAN HOUSE) built in 1996 in City of Sendai. The house is equipped, on the roof, with a 30.42m{sup 2} wide solar collector on the south and sky radiator on the north. They are connected to a heat-insulated tank (31m{sup 3}) installed underground, storing hot or cool water which carries energy for heating/air-conditioning and hot water. The solar system operates in a long-term hot or cool water storage mode. In the hot water storage mode, the solar collector is connected to the underground main tank, where pumped-up water heated by solar heat is stored to be supplied as hot water. Heat collected is low during the December-February period, and recovered in March. In the cool water storage mode, the radiator is connected to the underground main tank, where pumped-up water is cooled by radiation and stored to be supplied to a fan coil unit in each room for air-conditioning. The recorded lowest temperature of water in the tank is 5.1degC. No air-conditioning load is observed, on account of the unseasonal weather. 3 refs., 10 figs., 2 tabs.

  14. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  15. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  16. Health hazard evaluation report No. HETA-81-003-980, Babcock and Wilcox Co. , Milwaukee, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Zey, J.N.; Ahrenholz, S.; Klemme, J.C.

    1981-10-01

    On October 1, 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Boilermakers Union, Local 1849, for a Health Hazard Evaluation of the Babcock and Wilcox Co., Tubular Products Division, Milwaukee, Wisconsin. The request involved the potential for employee exposure to biocides, dispersant and anti-scaling agents as they are added to four separate circulating water systems which cool four annealing furnaces, two reheat furnaces and one air compressor. NIOSH conducted a combined environmental and medical survey at the Milwaukee facility on November 19-20, 1980. While conducting a walk-through survey on November 19, 1980, NIOSH observed that furnace operators working near cooling systems were potentially exposed to cooling system chemicals. The furnace operators were included in employee monitoring on November 20, 1980. All concentrations obtained were below current environmental criteria. Medical interview data suggested that workers may have been exposed to potentially hazardous levels of DMF in the past.

  17. Modeling Power Plant Cooling Water Requirements: A Regional Analysis of the Energy-Water Nexus Considering Renewable Sources within the Power Generation Mix

    Science.gov (United States)

    Peck, Jaron Joshua

    Water is used in power generation for cooling processes in thermoelectric power. plants and currently withdraws more water than any other sector in the U.S. Reducing water. use from power generation will help to alleviate water stress in at risk areas, where droughts. have the potential to strain water resources. The amount of water used for power varies. depending on many climatic aspects as well as plant operation factors. This work presents. a model that quantifies the water use for power generation for two regions representing. different generation fuel portfolios, California and Utah. The analysis of the California Independent System Operator introduces the methods. of water energy modeling by creating an overall water use factor in volume of water per. unit of energy produced based on the fuel generation mix of the area. The idea of water. monitoring based on energy used by a building or region is explored based on live fuel mix. data. This is for the purposes of increasing public awareness of the water associated with. personal energy use and helping to promote greater energy efficiency. The Utah case study explores the effects more renewable, and less water-intensive, forms of energy will have on the overall water use from power generation for the state. Using a similar model to that of the California case study, total water savings are quantified. based on power reduction scenarios involving increased use of renewable energy. The. plausibility of implementing more renewable energy into Utah’s power grid is also. discussed. Data resolution, as well as dispatch methods, economics, and solar variability, introduces some uncertainty into the analysis.

  18. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas

    International Nuclear Information System (INIS)

    Zhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2009-01-01

    In this study, a small scale hybrid solar heating, chilling and power generation system, including parabolic trough solar collector with cavity receiver, a helical screw expander and silica gel-water adsorption chiller, etc., was proposed and extensively investigated. The system has the merits of effecting the power generation cycle at lower temperature level with solar energy more efficiently and can provide both thermal energy and power for remote off-grid regions. A case study was carried out to evaluate an annual energy and exergy efficiency of the system under the climate of northwestern region of China. It is found that both the main energy and exergy loss take place at the parabolic trough collector, amount to 36.2% and 70.4%, respectively. Also found is that the studied system can have a higher solar energy conversion efficiency than the conventional solar thermal power generation system alone. The energy efficiency can be increased to 58.0% from 10.2%, and the exergy efficiency can be increased to 15.2% from 12.5%. Moreover, the economical analysis in terms of cost and payback period (PP) has been carried out. The study reveals that the proposed system the PP of the proposed system is about 18 years under present energy price conditions. The sensitivity analysis shows that if the interest rate decreases to 3% or energy price increase by 50%, PP will be less than 10 years.

  19. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... in the ventilation losses (or gains). At low air-change rates (below 0.5 ACH), radiant and air-based terminals have similar energy needs. For higher air change rate, the energy consumption of radiant terminals is lower than that of air-based terminals due to the higher air temperature. At 2 ACH, the energy savings...... of a radiant wall can be estimated to around 10% compared to the active chilled beam (in terms of delivered energy). The asymmetry between air and radiant temperature, the air temperature gradient and the possible short-circuit between inlet and outlet all play a role equally important in decreasing...

  20. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  1. Proceedings of the 2007 Low-Income Energy Network (LIEN) annual conference : cool ideas, hot solutions : working together to end energy poverty

    International Nuclear Information System (INIS)

    Bhanji, Z.

    2007-01-01

    The Low-Income Energy Network (LIEN) is a network of community organizations that promote programs and policies that address the problems of energy poverty and homelessness. LIEN raises awareness about reducing Ontario's contribution to smog and climate change by promoting a healthy economy through the more efficient use of energy and a transition to renewable energy sources. This conference provided a forum to propose solutions to low-income energy issues such as rising energy prices and rate affordability; reducing bills and pollution through energy conservation programs for low-income consumers; creating a comprehensive province-wide, low-income energy consumers' strategy; and, including energy poverty on the public agenda. One of the 3 presentations from this conference has been catalogued separately for inclusion in this database. refs., tabs., figs

  2. Proceedings of the 2007 Low-Income Energy Network (LIEN) annual conference : cool ideas, hot solutions : working together to end energy poverty

    Energy Technology Data Exchange (ETDEWEB)

    Bhanji, Z. [Low-Income Energy Network, Toronto, ON (Canada)] (comp.)

    2007-07-01

    The Low-Income Energy Network (LIEN) is a network of community organizations that promote programs and policies that address the problems of energy poverty and homelessness. LIEN raises awareness about reducing Ontario's contribution to smog and climate change by promoting a healthy economy through the more efficient use of energy and a transition to renewable energy sources. This conference provided a forum to propose solutions to low-income energy issues such as rising energy prices and rate affordability; reducing bills and pollution through energy conservation programs for low-income consumers; creating a comprehensive province-wide, low-income energy consumers' strategy; and, including energy poverty on the public agenda. One of the 3 presentations from this conference has been catalogued separately for inclusion in this database. refs., tabs., figs.

  3. The Legal Status of Homemakers in Wisconsin.

    Science.gov (United States)

    Melli, Marygold Shire

    This report focuses on laws in the state of Wisconsin as they relate to homemakers. Four areas are discussed, each in separate sections: marriage, widowhood, divorce, and wife abuse. The section on marriage includes information on property rights, disability and death of homemaker, federal Equal Credit Opportunity Act, domicile, interspousal…

  4. Divided Wisconsin: Partisan Spatial Electoral Realignment

    Science.gov (United States)

    Zaniewski, Kazimierz J.; Simmons, James R.

    2016-01-01

    When the Republican and Democratic presidential candidates head into the general election this fall, they will be courting votes from a statewide electorate that has dramatically shifted over time, mirroring the political polarization that is happening across the country. Over the last three decades, Wisconsin's political geography has evolved…

  5. Wisconsin Public Schools at a Glance, 2016

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2016

    2016-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2015-16); (2) Student (2015-16); (3) Attendance & Graduation (2014-15);(4) Staff (2013-14); (5) School Funding; and (6) Student Performance (2014-15). [For the previous report…

  6. Wisconsin Public Schools at a Glance

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2014

    2014-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2014-15); (2) Staff (2013-14); (3) Students (2013-14);(4) Report Cards (2013-14); (5) Attendance and Graduation (2012-13); (6) Student Performance (2013-14); and (7) School Funding.

  7. The University of Wisconsin OAO operating system

    Science.gov (United States)

    Heacox, H. C.; Mcnall, J. F.

    1972-01-01

    The Wisconsin OAO operating system is presented which consists of two parts: a computer program called HARUSPEX, which makes possible reasonably efficient and convenient operation of the package and ground operations equipment which provides real-time status monitoring, commanding and a quick-look at the data.

  8. Genetic Analysis of Termite Colonies in Wisconsin

    Science.gov (United States)

    R.A. Arango; D.A. Marschalek; F. Green III; K.F. Raffa; M.E. Berres

    2015-01-01

    The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure...

  9. Stakeholders' Perceptions of Parcelization in Wisconsin's Northwoods

    Science.gov (United States)

    Mark G. Rickenbach; Paul H. Gobster

    2003-01-01

    Parcelization, the process by which relatively large forest ownerships become subdivided into smaller ones, is often related to changes in ownership and can bring changes to the use of the land. Landowners, resource professionals, and others interested in Wisconsin's Northwoods were asked their views on parcelization in a series of stakeholder forums. We analyzed...

  10. Sorghum as a forage in Wisconsin

    Science.gov (United States)

    Growing moderate quality forages that meet, but do not exceed, requirements of dairy replacement heifers is not a common practice in Wisconsin; however, this forage management option would have a positive impact on the dairy industry. It is typical for heifers to gain excessive bodyweight when they ...

  11. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    CERN Document Server

    Cesareo, R; Castellano, A

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd sub 1 sub - sub x Zn sub x Te and HgI sub 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 mu m, an area of about 2x3 mm sup 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 mu m. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching approx 9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd sub 1 sub - sub x Zn sub x Te detector ha...

  12. Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Barton, D.S.; Beavis, D.B.; Blaskiewicz, M.; Brennan, J.M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.Y.; Connolly, R.; Eidelman, Yu.I.; Fedotov, A.V.; Fischer, W.; Gassner, D.M.; Hahn, H.; Harrison, M.; Hershcovitch, A.; Hseuh, H.-C.; Jain, A.K.; Johnson, P.D.J.; Kayran, D.; Kewisch, J.; Lambiase, R.F.; Litvinenko, V.; MacKay, W.W.; Mahler, G.J.; Malitsky, N.; McIntyre, G.T.; Meng, W.; Mirabella, K.A.M.; Montag, C.; Nehring, T.C.N.; Nicoletti, T.; Oerter, B.; Parzen, G.; Pate, D.; Rank, J.; Rao, T.; Roser, T.; Russo, T.; Scaduto, J.; Smith, K.; Trbojevic, D.; Wang, G.; Wei, J.; Williams, N.W.W.; Wu, K.-C.; Yakimenko, V.; Zaltsman, A.; Zhao, Y.; Abell, D.T.; Bruhwiler, D.L.; Bluem, H.; Burger, A.; Cole, M.D.; Favale, A.J.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.M.M.; Burov, A.V.; Nagaitsev, S.; Delayen, J.R.; Derbenev, Y.S.; Funk, L. W.; Kneisel, P.; Merminga, L.; Phillips, H.L.; Preble, J.P.; Koop, I.; Parkhomchuk, V.V.; Shatunov, Y.M.; Skrinsky, A.N.; Koop, I.; Parkhomchuk, V.V.; Shatunov, Y.M.; Skrinsky, A.N.; Sekutowicz, J.S.

    2005-01-01

    We report progress on the R and D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R and D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/

  13. Electron Cooling of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  14. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  15. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  16. High energy resolution and high count rate gamma spectrometry measurement of primary coolant of generation 4 sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Coulon, R.

    2010-01-01

    Sodium-cooled Fast Reactors are under development for the fourth generation of nuclear reactor. Breeders reactors could gives solutions for the need of energy and the preservation of uranium resources. An other purpose is the radioactive wastes production reduction by transmutation and the control of non-proliferation using a closed-cycle. These thesis shows safety and profit advantages that could be obtained by a new generation of gamma spectrometry system for SFR. Now, the high count rate abilities, allow us to study new methods of accurate power measurement and fast clad failure detection. Simulations have been done and an experimental test has been performed at the French Phenix SFR of the CEA Marcoule showing promising results for these new measurements. (author) [fr

  17. Review of water, lighting, and cooling energy efficiency measures for low-income homes located in warm climates

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.A.; Gettings, M.B.

    1998-02-01

    In support of the U.S. Department of Energy`s Weatherization Assistance Program, Oak Ridge National Laboratory has performed a literature review of weatherization measures applicable for homes located in warm climate regions. Sources for this information included: (1) documented engineering estimates, (2) vendor information, (3) reported performance from research and field tests, and (4) direct discussions with researchers, vendors, and field reporters. Estimated savings are extrapolated from reported energy savings and applied to the end-use energy consumption for low-income homes reported by the Energy Information Administration. Additionally, installation costs, savings-to-investment ratios, and parameters indicating performance sensitivity to issues such as occupancy, construction, client education, and maintenance requirements are presented. The report is comprised of two sections: (1) an overview of measure performance, and (2) an appendix. The overview of measures is in a tabular format, which allows for quick reference. More detailed discussions and references for each measure are presented in the Appendix and it is highly recommended that these be reviewed prior to measure selection.

  18. Aiming at super long term application of nuclear energy. Scope and subjects on the water cooled breeder reactor, the 'reduced moderation water reactor'

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2001-01-01

    In order to make possible on nuclear energy application for super long term, development of sodium cooling type fast breeder reactor (FBR) has been carried out before today. However, as it was found that its commercialization was technically and economically difficult beyond expectation, a number of nations withdrew from its development. And, as Japan has continued its development, scope of its actual application is not found yet. Now, a research and development on a water cooling type breeder reactor, the reduced moderation water reactor (RMWR)' using LWR technology has now been progressed under a center of JAERI. This RMWR is a reactor intending a jumping upgrade of conversion ratio by densely arranging fuel bars to shift neutron spectrum to faster region. The RMWR has a potential realizable on full-dress plutonium application at earlier timing through its high conversion ratio, high combustion degree, plutonium multi-recycling, and so on. And, it has also feasibility to solve uranium resource problem by realization of conversion ratio with more than 1.0, to contribute to super long term application of nuclear energy. Here was investigated on an effect of reactor core on RMWR, especially of its conversion ratio and plutonium loading on introduction effect as well as on how RMWR could be contributed to reduction of uranium resource consumption, by drawing some scenario on development of power generation reactor and fuel cycle in Japan under scope of super long term with more than 100 years in future. And, trial calculation on power generation cost of the RMWR was carried out to investigate some subjects at a viewpoint of upgrading on economy. (G.K.)

  19. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  20. DESIK final report. Energy wise design and regulation of the secondary side of indirect cooling systems with natural coolants; DESIK slutrapportering. Energirigtig design og regulering af sekundaersiden pae indirekte koeleanlaeg med naturlige koelemidler

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, Arne

    2006-02-15

    The project's aim was to produce knowledge and tools to facilitate the process of implementing energy efficient secondary cooling systems, or merely to avoid overconsumption of energy on account of insufficient relevant professional background. The project has been communicated as a PC tool, which can be ordered from aj(commercial at)ipu.dk. Project focus has been on some general aspects of secondary systems as well as two scopes of application: supermarket cooling systems and air conditioning of office buildings. (BA)

  1. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  2. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  3. Use of oxygen dosing to prevent flow accelerated corrosion in British Energy's Advanced Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Quirk, G.P.; Woolsey, I.S.; Rudge, A.

    2010-01-01

    Flow accelerated corrosion (FAC) was recognized as major threat to the carbon steel feed and economizer tubing of the once-through boilers of the UK's Advanced Gas-cooled Reactors (AGRs) following the observation of FAC damage of the boiler inlet orifice assemblies at two plants in 1977, and subsequent review of the likelihood of further damage elsewhere within the boilers of all AGRs. In most cases, replacement of susceptible tubing was not feasible; due to the inaccessibility of the boiler components within the reactor concrete pressure vessel. Preventing further FAC damage within the boilers therefore had to rely largely on changes to the boiler feedwater chemistry. Following extensive research programs carried out in the late 1970s and early 1980s two main feedwater chemistry regimes were adopted to suppress FAC in different AGRs. The four units found to be at greatest risk of FAC damage adopted an oxygen dosed All Volatile Treatment (AVT) regime during commissioning, while four other units retained the original deoxygenated ammonia dosed AVT regime, but with an increased feedwater pH. The deoxygenated ammonia dosed chemistry regime was also adopted in four AGR units subsequently built, which used 1%Cr0.5%Mo feed and economizer tubing in their once-through boilers. The oxygen dosed AVT chemistry regime adopted in four units having helical once-through boilers has proved highly effective in preventing FAC, with no evidence of damage after around 150,000 hours of operation. However, FAC damage was eventually found in some of the other units operating with a deoxygenated feedwater chemistry regime, in spite of having adopted an elevated feedwater pH. These units have now successfully converted to an oxygen dosed AVT feedwater chemistry regime to prevent further FAC damage, with the result that all 14 AGR reactors now operate with variants of the original oxygen dosed feedwater chemistry regime developed during the 1980s. The paper outlines the development of

  4. Energy extraction and water treatment in one system: The idea of using a desalination battery in a cooling tower

    Science.gov (United States)

    Shapira, Barak; Cohen, Izaak; Penki, Tirupathi Rao; Avraham, Eran; Aurbach, Doron

    2018-02-01

    The use of sodium manganese oxide as an intercalation electrode for water treatment was recently explored, and referred to as a "desalination battery" and "hybrid capacitive deionization". Here, we examine the feasibility of using such a desalination battery, comprising crystalline Na4Mn9O18 as the cathode and Ag/AgCl/Cl- electrode as the anode, to extract energy from low-grade waste heat sources. Sodium manganese oxide electrode's material was produced via a solid-state synthesis. Electrodes were produced by spray-coated onto graphite foils, and showed a temperature dependence of the electrode potential, namely, ∂ E / ∂ T , of -0.63 mV/K (whereas, the Ag/AgCl/Cl- mesh electrode showed much lower temperature dependence, energy conversion, a flow battery system was constructed. Thermally regenerative electrochemical cycles (TREC) were constructed for the flow battery cell. The thermal energy conversion, in this particular system, was shown to be feasible at relatively low C-rate (C/19) with temperatures varying between 30 °C and 70 °C.

  5. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  6. Optimization of electron cooling in the Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Burov, A.; Carlson, K.; Prost, L.R.; Sutherland, M.; Warner, A.; /Fermilab

    2009-04-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1A DC electron beam (as well as by a stochastic cooling system). The paper describes electron cooling improvements recently implemented: adjustments of electron beam line quadrupoles to decrease the electron angles in the cooling section and better stabilization and control of the electron energy.

  7. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  8. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  9. 18th national meeting for energy saving promotion (prize winning case awarded by Ministry of International Trade and Industry). ; Saving energy in annealed coil cooling equipment by using volatile corrosion inhibitor. Dai 18 kai sho energy suishin zenkoku taikai (tsusho sangyo daijinsho jusho jirei); Kikasei boseizai ni yoru shodon coil reikyaku setsubi no sho energy

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-30

    A method and a device for preventing rust in annealed coils using volatile corrosion inhibitor (VCI) were put into practical use. Air cooling using dehumidified air and corrosion inhibiting air cooling have been used to prevent rusting caused by condensation on surfaces of coils being cooled, but these methods consume a very large amount of energy. As a result of discussing new corrosion inhibiting methods, cyclohexylamine carbonate (CHC) showed a highest corrosion prohibition capability as a VCI. Because CHC has a strong odor, new deodorants have been searched by combining it with special metallic salts. It was found that the range where a deodorant can be added without impeding the corrosion prohibiting effect is from 20% to 30%. A test for practical application indicated that rusting could be suppressed even using a VCI with concentration as low as 0.4 ppm to 0.8 ppm if the velocity of cooling air on coil surfaces is held from 0.2 m/s to 0.4 m/s. A high-accuracy continuous CHC analyzing method was established that uses a nitrogen oxide analyzer. The required installation space was reduced to 1/15 to 1/20 and the running cost to 1/8 to 1/10 of conventional methods. 11 figs., 4 tabs.

  10. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  11. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koker, John [Univ. of Wisconsin, Oshkosh, WI (United States); Lizotte, Michael [Univ. of Wisconsin, Oshkosh, WI (United States)

    2017-02-08

    The University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility is a demonstration project that supported the first commercial-scale use in the United States of high solids, static pile technology for anaerobic digestion of organic waste to generate biogas for use in generating electricity and heat. The research adds to the understanding of startup, operation and supply chain issues for anaerobic digester technology. Issues and performance were documented for equipment installation and modifications, feedstock availability and quality, weekly loading and unloading of digestion chambers, chemical composition of biogas produced, and energy production. This facility also demonstrated an urban industrial ecology approach to siting such facilities near sewage treatment plants (to capture and use excess biogas generated by the plants) and organic yard waste collection sites (a source of feedstock).

  12. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  13. Effectiveness-weighted control method for a cooling system

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  14. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  15. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m 2 in Singapore compared with 27.5 m 2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  16. Developments in cooling technique. Energy efficient solutions incentivized by price increases; Ontwikkelingen in de koeltechniek. Energie-efficiente oplossingen door prijsstijgingen gestimuleerd

    Energy Technology Data Exchange (ETDEWEB)

    Van de Maarel-Sonneveld, K.; Van de Sande, C. [Nederlandse vereniging van ondernemingen op het gebied van de Koudetechniek en Luchtbehandeling NVKL, Zoetermeer (Netherlands)

    2012-04-15

    Due to tightening of European (environmental) laws and regulations there is an increasing trend in the development of installations and equipment with natural refrigerants and synthetic refrigerants (HFCs) that have low global warming potential. At the same time, the installations are also becoming more energy efficient. Due to increasing prices, it is worth making investments in for operators. [Dutch] Door aanscherping van Europese (milieu)wet- en regelgeving is er een stijgende trend in de ontwikkeling van installaties en apparatuur met natuurlijke koudemiddelen en synthetische koudemiddelen (HFK'S) met een laag aardopwarmingsvermogen of 'global warming potential'. Tegelijkertijd worden de installaties zelf energie-efficienter. Door de stijgende energieprijzen loont het voor exploitanten hierin te investeren.

  17. Cool Snacks

    DEFF Research Database (Denmark)

    Krogager, Stinne Gunder Strøm; Grunert, Klaus G; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  18. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  19. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  20. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out, ...

  1. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  2. Elements of Instruction VTAE Workshop (Wisconsin Rapids, Wisconsin, March 7-9, 1989). Final Report.

    Science.gov (United States)

    Lee, Howard D.

    This document describes a 3-day Wisconsin workshop on essential elements of instruction in vocational, technical, and adult education (VTAE). The workshop's content was based on the Univesity of California at Los Angeles' Teaching Model, which resulted from the work of Madeline Hunter. A three-page narrative describes some aspects of the model,…

  3. Priming the green heating and cooling market for take-off : Renewable Energy Deployment Initiative strategic business plan 9-51, 2004-2007

    International Nuclear Information System (INIS)

    2005-01-01

    The Renewable Energy Deployment Initiative (REDI) is a program which focuses on the development of green heating and cooling (GH and C) initiatives. A strategic plan to support market penetration of renewable technologies was presented in this paper. Strategies to increase market stimulation included increased incentives to influence GH and C penetration rates as well as the launching of commercial-scale pilot projects to demonstrate the viability of GH and C systems in the residential sector. Various performance-based incentives were outlined that aimed to encourage managers of federal facilities to use more GH and C technologies. Plans for new pilot projects and the installation of 600 active solar thermal and biomass combustion systems were outlined. Strategic partnerships and alliances that supported organizations positioned to influence the uptake of GH and C systems were presented, as well as strategies to expand and develop new partnerships with organizations serving northern and Aboriginal communities. Initiatives to support the development and self-sufficiency of GH and C networks were presented. Formal coordination mechanisms with other federal facilities and technology transfer programs were outlined, as well as a new partnership performance framework. Strategies to form systematic collaborations with agencies involved in the built environment were presented. Various training and educational partnerships were reviewed. Updates to simulation software and other tools to improve project feasibility analysis were presented. Issues concerning the development of standards and certification protocols for GH and C systems were evaluated. Plans to develop and implement a renewable energy training strategy and action plan for the Canadian community college network were outlined. An overview of information, knowledge and outreach strategies was presented, as well as various strategies focused on market research and consumer needs, attitudes and motivation. An

  4. Quality of Wisconsin stormwater, 1989-94

    Science.gov (United States)

    Bannerman, Roger T.; Legg, Andrew D.; Greb, Steven R.

    1996-01-01

    Water-quality data were compiled from four urban stormwater monitoring projects conducted in Wisconsin between 1989 and 1994. These projects included monitoring in both storm-sewer pipes and urban streams. A total of 147 constitu ents were analyzed for in stormwater sampled from 10 storm-sewer pipes and four urban streams. Land uses represented by the storm-sewer watersheds included residential, commercial, industrial, and mixed. For about one-half the con stituents, at least 10 percent of the event mean con centrations exceeded the laboratory's minimum reporting limit. Detection frequencies were greater than 75 percent for many of the heavy metals and polycyclic aromatic hydrocarbons in both the storm sewer and stream samples, whereas detec tion frequencies were about 20 percent or greater for many of the pesticides in both types of sam ples. Stormwater concentrations for conventional constituents, such as suspended solids, chloride, total phosphorus, and fecal coliform bacteria were greater than minimum reporting limits almost 100 percent of the time. Concentrations of many of the constituents were high enough to say that stormwater in the storm sewers and urban streams might be contrib uting to the degradation of the streams. In this report, constituents defined as potential contami nants are those for which the laboratory minimum report limit was exceeded for at least 10 percent of the sampled storm events, and for which at least one event mean concentration exceeded an estab lished water-quality standard. Storm-sewer sam ples had event mean concentrations of lead, copper, zinc, cadmium, and silver that frequently exceeded Wisconsin's acute toxicity criteria for cold water fisheries. Wisconsin's human cancer criteria was exceeded almost 100 percent of the time for polycyclic aromatic hydrocarbons in stormwater samples from storm sewers and streams. Maximum concentrations of diazinon found in storm sewers exceeded recommended levels of diazinon. Storm

  5. Mixing zones studies of the waste water discharge from the Consolidated Paper Company into the Wisconsin River at Wisconsin Rapids, Wisconsin

    Science.gov (United States)

    Hoopes, J. A.; Wu, D. S.; Ganatra, R.

    1973-01-01

    Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.

  6. STAR-H2: a battery-type lead-cooled fast reactor for hydrogen manufacture in a sustainable hierarchical hub-spoke energy infrastructure

    International Nuclear Information System (INIS)

    Wade, D.C.; Doctor, R. D.; Peddicord, K.L.

    2003-01-01

    The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MW th of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H 2 (and O 2 ). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO 2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval

  7. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  8. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  9. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  10. Maisotsenko cycle applications for multistage compressors cooling

    Science.gov (United States)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  11. Archaeological Investigations at a Wisconsin Petroglyph Site

    Directory of Open Access Journals (Sweden)

    Jack Steinbring

    2014-01-01

    Full Text Available Preliminary test excavations at the Hensler Petroglyph Site in East Central Wisconsin, U.S.A. have disclosed the remains of aboriginal engravings below Aeolian sediments dated to ca. 15,000 years B.P. The stratified deposits lying adjacent to an engraved panel, containing 35 pecked images, have yielded animal-like cobbles, some covered with red ochre, apparently picked for some esoteric use. The site itself has unusual natural shapes in the rock formation, along with acoustical properties, lightning strikes, a magnetic anomaly, and geographic prominence. Collectively these factors are thought to have attracted the ancient rock artists to the site.

  12. Wisconsin EE Mandates: The Bad News and the Good News.

    Science.gov (United States)

    Lane, Jennie; And Others

    1996-01-01

    Examines Wisconsin teachers' perceived competencies in, attitudes toward, and amount of class time devoted to teaching about the environment. Discusses the effects of Wisconsin environmental education mandates concerning preservice preparation in environmental education and K-12 environmental education curriculum plans. Identifies areas where the…

  13. Wisconsin Maternity Leave and Fringe Benefits: Policies, Practices and Problems.

    Science.gov (United States)

    Gerner, Jennifer

    The study examines the economic implications in Wisconsin of the 1972 Equal Employment Opportunity Commission guideline which requires employers to treat maternity leave as a temporary disability. First, the static cost of the maternity leave guideline to employers is estimated for the State of Wisconsin. Second, some examination of the economic…

  14. Evolution of cool-roof standards in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  15. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  16. Groundwater Energy Designer (GED). Computerized design tool for use of groundwater as heating and cooling source - Final report; Groundwater Energy Designer (GED). Computergestuetztes Auslegungstool zur Waerme- und Kaeltenutzung von Grundwasser - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Poppei, J.; Mayer, G.; Schwarz, R.

    2006-11-15

    We have developed the graphic-based tool Groundwater Energy Designer (GED) for the dimensioning of groundwater withdrawal and reinjection facilities for the purpose of thermal energy exploitation. The tool is designed to support persons planning and constructing small and medium sized installations as well as licensing authorities. GED takes into account the site-specific energy demand and hydrogeological situation. Starting from the analysis of heating or cooling demand, the possibilities of a direct utilization of the groundwater are tested interactively. The well bores for groundwater withdrawal are dimensioned based on a simplified hydrogeological characterisation. The options for the reinjection of used water are investigated considering the local situation (available area and natural groundwater flow). The situation is assessed with consideration of: (i) the technical feasibility at the site (drawdown in the well, distance between production and reinjection wells); (ii) the potential thermal impact on the groundwater (delineation of the heat propagation front for an evaluation of licensing feasibility). GED combines interactive user interfaces for the input of data and characterisation of the local situation, a database with technical and hydrogeological parameters and a flow and heat transfer simulator based on a finite volume code with an automatic mesh generator. The program is available for purchase from the developer. (authors)

  17. Reducing overheating risk using ventilative cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    2014-01-01

    The current trend towards nearly-zero energy buildings has led to an increased risk of overheating throughout the year. Use of the cooling potential of outdoor air can be an energy efficient passive solution to this.......The current trend towards nearly-zero energy buildings has led to an increased risk of overheating throughout the year. Use of the cooling potential of outdoor air can be an energy efficient passive solution to this....

  18. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  19. Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

  20. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  1. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd 1-x Zn x Te and HgI 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 μm, an area of about 2x3 mm 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 μm. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching ∼9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd 1-x Zn x Te detector has an area of 4 mm 2 and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI 2 detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in Chieti and in Naples, and sulfur (due to

  2. Muon Cooling - Emittance Exchange

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Muon Cooling is the key factor in building of a Muon collider, (to a less degree) Muon storage ring, and a Neutrino Factory. Muon colliders potential to provide a probe for fundamental particle physics is very interesting, but may take a considerable time to realize, as much more work and study is needed. Utilizing high intensity Muon sources - Neutrino Factories, and other intermediate steps are very important and will greatly expand our abilities and confidence in the credibility of high energy muon colliders. To obtain the needed collider luminosity, the phase-space volume must be greatly reduced within the muon life time. The Ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. We note that, the ionization losses results not only in damping, but also heating. The use of alternating solenoid lattices has been proposed, where the emittance are large. We present an overview of the cooling and discuss formalism, solenoid magnets and some beam dynamics

  3. New Approaches to Final Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab

    2014-11-10

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittances by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  4. Analysis of the heat transfer mechanisms during energy storage in a Phase Change Material filled vertical finned cylindrical unit for free cooling application

    International Nuclear Information System (INIS)

    Solomon, Gnanadurai Ravikumar; Velraj, Ramalingam

    2013-01-01

    Highlights: • Freezing behavior of a PCM, in a cylinder with annular longitudinal fins is presented. • Among various fin heights, 20 mm fin contribute maximum heat transfer enhancement. • Addition of fins plays a contradictory role during the sensible cooling of liquid PCM. • The fin effect along with external cooling, vary the sensible cooling rate of liquid PCM. • The surface convective resistance dominated over the conductive resistance of PCM. - Abstract: The heat transfer performance of the Phase Change Material (PCM) used in free cooling application is low due to poor thermal conductivity. The addition of fins to enhance the heat transfer during solidification process is commonly employed, to address this. However for application such as free cooling, where the driving temperature potential is very less, the present experimental study is intended to investigate the sensible and subcooling phenomena during the outward cylindrical solidification of the PCM stored on the annulus side, along with 8 longitudinal uniformly spaced copper fins of different heights. The performance of the fins during solidification is analyzed, and the best suitable height is arrived at. The addition of fins plays a contradicting role during the sensible cooling of the liquid PCM, due to the suppression of free convection. The external cooling conditions along with the effect of the fin, vary the sensible cooling rate of the liquid PCM, that influences the subcooling effect, and also drifts the temperature at which major phase change occurs. In addition, the effects due to the inlet velocity of the heat transfer fluid, and its temperature on heat transfer are investigated and reported. The increase in velocity decreases the duration of solidification, and this effect is more pronounced towards the entry region, due to the higher local convective heat transfer co-efficient and a comparatively higher driving temperature potential

  5. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  6. Direct Liquid Cooling for Electronic Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  7. Sustainable cooling method for machining titanium alloy

    International Nuclear Information System (INIS)

    Boswell, B; Islam, M N

    2016-01-01

    Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously known to generate high temperatures and adverse reactions between the workpiece and the tool tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing tool life. Titanium Alloy, for example always requires coolant to be used during machining. However, traditional flood cooling needs to be replaced due to environmental issues, and an alternative cooling method found that has minimum impact on the environment. For true sustainable cooling of the tool it is necessary to account for all energy used in the cooling process, including the energy involved in producing the coolant. Previous research has established that efficient cooling of the tool interface improves the tool life and cutting action. The objective of this research is to determine the most appropriate sustainable cooling method that can also reduce the rate of wear at the tool interface. (paper)

  8. Sistema de enfriamiento con desecante para reducir consumo de energía en restaurante caso de estudio; Desiccant cooling system to decrease energy consumption in Restaurant study case

    Directory of Open Access Journals (Sweden)

    Tania Carbonell Morales

    2015-12-01

    Full Text Available Este artículo mostró la posibilidad de emplear un sistema de enfriamiento con rueda desecante para el tratamiento del aire de las diferentes áreas del Restaurante caso de estudio, instalación alta consumidora de energía, de ahí la necesidad de estudiar nuevas alternativas para el acondicionamiento de aire que permitan el control de la humedad y el ahorro de energía. El análisis bibliográfico realizado mostró que actualmente los sistemas de enfriamiento con desecante están siendo estudiados y empleados como una alternativa para el ahorro de energía y el cuidado del medioambiente en el campo del tratamiento del aire. Se propuso un sistema compuesto fundamentalmente por una rueda desecante de gel de sílice, una rueda conservadora de energía y un intercambiador de calor. Con el nuevo sistema de enfriamiento la demanda de energía eléctrica disminuye previéndose ahorros del orden de 1 1802 CUC anualmente solo por concepto de consumo de energía eléctrica.In this paper the possibility of using a cooling system with a desiccant wheel for air treatment of different areas of the case study restaurant is shown. This facility is classified as high consumer of energy, making it necessaryto study new alternatives for air conditioning allowing humidity control and energy saving. The literature review conducted on cooling systems with desiccant wheel technology was currently being studied and used as analternative to saving energy and protecting the environment in the field of air treatment. The desiccant cooling system proposed is fundamentally for a desiccant wheel of silica gel, an energy conservative wheel and a heatexchanger. With the new cooling system electricity demand decreases and significant savings of about 1 1802 CUC are forecasted only in annual electricity consumption.

  9. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  10. Evaluation of existing cooling systems for reducing cooling power consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hatamipour, M.S. [Chemical Engineering Department, Isfahan University, Isfahan (Iran, Islamic Republic of); Mahiyar, H.; Taheri, M. [Chemical Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2007-07-01

    This work was designed to estimate the cooling load power consumption during the summer in the hot and humid areas of Iran. The actual electrical energy consumption for cooling systems of some typical buildings with various applications (3 residential home buildings, 2 industrial plant buildings, a trade center with 38 shops, 3 public sectors and a city hospital) in a hot and humid region in South of Iran was recorded during the peak load period of the year (July-August). The records were used for estimating the total power consumption of the cooling systems in this region. According to this estimation, which was confirmed by the regional electrical power distribution office, the cooling systems power consumption in this region accounted for more than 60% of the total power consumption during the peak load period of the year. A computer program was developed for simulating the effect of various parameters on cooling load of the buildings in hot and humid regions. According to the simulation results, use of double glazed windows, light colored walls and roofs, and insulated walls and roofs can reduce the cooling load of the buildings more than 40%. (author)

  11. Wisconsin River at Portage, Wisconsin; Feasibility Study for Flood Control Plant of Study.

    Science.gov (United States)

    1977-08-01

    natural setting that the late Aldo Leopold , often called the "Father of Wildlife Management," wrote some of his famous works in the still-standing log...Protect endangered or threatened plants and animals and their ha>itats. e. Consider the Aldo Leopold Memorial Reserve. The Wisconsin Department of Natural...standing log cabin he built -- that the late 0 0 Aldo Leopold wrote some of his famous works. He also wrote about this very site and the immediate area

  12. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  13. An evaluation of the bedrock aquifer system in northeastern Wisconsin

    Science.gov (United States)

    Emmons, P.J.

    1987-01-01

    Ground water is a major source of water in northeastern Wisconsin. The lower Fox River valley, located between Lake Winnebago and Green Bay in northeastern Wisconsin, is the second largest population center in Wisconsin. By 1957, ground-water withdrawals had lowered the potentiometric surface of the aquifer system as much as 440 feet below prepumping levels. With the exception of the city of Green Bay, which converted from ground water to surface water (Lake Michigan) for their municipal water supply in 1957, ground-water withdrawals have continually increased.

  14. Survey of medical radium installations in Wisconsin

    International Nuclear Information System (INIS)

    Tapert, A.C.; Lea, W.L.

    1975-05-01

    A radiation protection survey was performed at 70 medical radium installations in the State of Wisconsin. The requirements of the State's Radiation Protection Code were used as survey criteria. Radiation measurements of radium storage containers, radium capsule leakage tests, and monitoring of work surfaces for contamination were performed. Film badge monitoring data of whole body and extremity doses are presented for 221 individuals at 17 hospitals. Whole body doses during single treatments ranged from 10 to 1360 mrems per individual. The estimate of 500 mrems per treatment was determined as the dose aggregate to hospital personnel. Whole body doses from film badges are compared with analogous TLD doses. Four physicians and six technicians at nine hospitals participated in a study for monitoring the extremities with TLD. Cumulative extremity doses ranged from 28 to 6628 mrems per participant during the study. (U.S.)

  15. Updating progress in cancer control in Wisconsin.

    Science.gov (United States)

    Treml, Kimberly B; McElroy, Jane A; Kaufman, Stephanie K; Remington, Patrick L; Wegner, Mark V

    2006-06-01

    In 1989, experts in cancer prevention, early detection, and treatment met in Madison to set the public health agenda for cancer control. Part of the plan defined target percent change in cancer mortality rates to be met by the year 2000. During the 1990s, public health and health care professionals developed programs and policies to reach these goals. The purpose of this analysis is to evaluate Wisconsin's progress in reducing cancer mortality and success in meeting the year 2000 objectives. Wisconsin mortality data for 1984-1986 and 1999-2001 were obtained from the Centers for Disease Control and Prevention, CDC Wonder. Percent change was calculated between the 2 time periods and compared to the 2000 target percent change for all-site cancer and site specific cancer mortality. All-site cancer mortality decreased by 7% from 1984-1986 to 1999-2001 with a greater than 16% decline in age groups <65 years. Mortality from breast, colorectal, and cervical cancer each decreased by at least 25%. Lung cancer and malignant melanoma mortality rates increased by 5% and 17%, respectively. Among additionally analyzed cancers, mortality decreased in prostate, stomach, and childhood cancers and increased in liver cancer and non-Hodgkin's lymphoma. The results of the state's cancer control effort are mixed. The year 2000 objectives were met for breast and colorectal cancer. Progress was made in reducing mortality from cervical cancer and from all sites combined, but the other year 2000 objectives were not met. Mortality rates increased for lung cancer and malignant melanoma during the 15-year period.

  16. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  17. Thermodynamic limits of dynamic cooling.

    Science.gov (United States)

    Allahverdyan, Armen E; Hovhannisyan, Karen V; Janzing, Dominik; Mahler, Guenter

    2011-10-01

    We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature T(min)>0 reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach T(min) grows as 1/T(min). This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above T(min). Our results on T(min)>0 prove unattainability of the absolute zero temperature without ambiguities that surround its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N≫1 identical spins. Here we show that T(min)∝1/N and find the maximal cooling compatible with the minimal work determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered when taking into account imperfections in preparing the microcanonic state.

  18. The State-of-the-Art for Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    2016-01-01

    Ventilative cooling for buildings may lead to cooling energy savings and improvements in thermal comfort, especially in seasonally temperate and warm climates. But, codes and regulations need to better quantify its benefits.......Ventilative cooling for buildings may lead to cooling energy savings and improvements in thermal comfort, especially in seasonally temperate and warm climates. But, codes and regulations need to better quantify its benefits....

  19. Radiocesium in migratory aquatic game birds using contaminated U.S. Department of Energy reactor-cooling reservoirs: A long-term perspective.

    Science.gov (United States)

    Kennamer, Robert A; Oldenkamp, Ricki E; Leaphart, James C; King, Joshua D; Bryan, A Lawrence; Beasley, James C

    2017-05-01

    Low-level releases of radiocesium into former nuclear reactor cooling-reservoirs on the U.S. Department of Energy's Savannah River Site (SRS) in South Carolina, USA, dating primarily to the late 1950s and early 1960s, have allowed examination of long-term contaminant attenuation in biota occupying these habitats. Periodic collections of migratory game birds since the 1970s have documented 137 Cs (radiocesium) activity concentrations in birds of SRS reservoirs, including mainly Par Pond and Pond B. In this study, during 2014 and 2015 we released wild-caught American coots (Fulica americana) and ring-necked ducks (Aythya collaris) onto Pond B. We made lethal collections of these same birds with residence times ranging from 32 to 173 days to examine radiocesium uptake and estimate the rate of natural attenuation. The two species achieved asymptotic whole-body activity concentrations of radiocesium at different times, with ring-necked ducks requiring almost three times longer than the 30-35 days needed by coots. We estimated ecological half-life (T e ) for Pond B coots over a 28-yr period as 16.8 yr (95% CI = 12.9-24.2 yr). Pond B coot T e was nearly four times longer than T e for coots at nearby Par Pond where radiocesium bioavailability had been constrained for decades by pumping of potassium-enriched river water into that reservoir. T e could not be estimated from long-term data for radiocesium in Pond B diving ducks, including ring-necked ducks, likely because of high variability in residence times of ducks on Pond B. Our results highlight the importance: (1) for risk managers to understand site-specific bio-geochemistry of radiocesium for successful implementation of countermeasures at contaminated sites and (2) of residence time as a critical determinant of observed radiocesium activity concentrations in highly mobile wildlife inhabiting contaminated habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  1. University of Wisconsin Antarctic Soils Database, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The University of Wisconsin Antarctic Soils Database contains data collected by Dr. James G. Bockheim and his colleagues from 1975 through 1987. Data include site...

  2. Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

    1976-01-01

    This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competition rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)

  3. Greenhouse cooling and heat recovery using fine wire heat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse

    NARCIS (Netherlands)

    Bakker, J.C.; Zwart, de H.F.; Campen, J.B.

    2006-01-01

    A greenhouse cooling system with heat storage for completely closed greenhouses has been designed, based on the use of a fine wire heat exchanger. The performance of the fine wire heat exchangers was tested under laboratory conditions and in a small greenhouse compartment. The effects of the system

  4. Parameter optimization for Doppler laser cooling of a low-energy heavy ion beam at the storage ring S-LSR

    Science.gov (United States)

    Osaki, Kazuya; Okamoto, Hiromi

    2014-05-01

    S-LSR is a compact ion storage ring constructed at Kyoto University several years ago. The ring is equipped with a Doppler laser cooling system aimed at beam crystallization. Bearing in mind hardware limitations in S-LSR, we try to find an optimum set of primary experimental parameters for the production of an ultracold heavy ion beam. Systematic molecular dynamics simulations are carried out for this purpose. It is concluded that the detuning and spot size of the cooling laser should be chosen around -42 MHz and 1.5 mm, respectively, for the most efficient cooling of 40 keV ^{24}Mg^+ beams in S-LSR. Under the optimum conditions, the use of the resonant coupling method followed by radio-frequency field ramping enables us to reach an extremely low beam temperature on the order of 0.1 K in the transverse degrees of freedom. The longitudinal degree of freedom can be cooled to close to the Doppler limit; i.e., to the mK range. We also numerically demonstrate that it is possible to establish a stable, long one-dimensionally ordered state of ions.

  5. Geographic and racial variation in teen pregnancy rates in Wisconsin.

    Science.gov (United States)

    Layde, Molly M; Remington, Patrick L

    2013-08-01

    Despite recent declines in teen birth rates, teenage pregnancy remains an important public health problem in Wisconsin with significant social, economic, and health-related effects. Compare and contrast teen birth rate trends by race, ethnicity, and county in Wisconsin. Teen (ages 15-19 years) birth rates (per 1000 teenage females) in Wisconsin from 2001-2010 were compared by racelethnicity and county of residence using data from the Wisconsin Interactive Statistics on Health. Teen birth rates in Wisconsin have declined by 20% over the past decade, from 35.5/1000 teens in 2001 to 28.3/1000 teens in 2010-a relative decline of 20.3%. However, trends vary by race, with declines among blacks (-33%) and whites (-26%) and increases among American Indians (+21%) and Hispanics (+30%). Minority teen birth rates continue to be 3 to 5 times greater than birth rates among whites. Rates varied even more by county, with an over 14-fold difference between Ozaukee County (7.8/1000) and Menominee County (114.2). Despite recent declines, teen pregnancy continues to be an important public health problem in Wisconsin. Pregnancy prevention programs should be targeted toward the populations and counties with the highest rates.

  6. Passive wall cooling panel with phase change material as a cooling agent

    Science.gov (United States)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 – 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  7. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  8. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  9. Alternatives to compressor cooling in California climates

    Energy Technology Data Exchange (ETDEWEB)

    Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

    1991-01-01

    This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

  10. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  11. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  12. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  13. Muon cooling channels

    CERN Document Server

    Eberhard-K-Kei

    2003-01-01

    A procedure uses the equations that govern ionization cooling, and leads to the most important parameters of a muon cooling channel that achieves assumed performance parameters. First, purely transverse cooling is considered, followed by both transverse and longitudinal cooling in quadrupole and solenoid channels. Similarities and differences in the results are discussed in detail, and a common notation is developed. Procedure and notation are applied to a few published cooling channels. The parameters of the cooling channels are derived step by step, starting from assumed values of the initial, final and equilibrium emittances, both transverse and longitudinal, the length of the cooling channel, and the material properties of the absorber. The results obtained include cooling lengths and partition numbers, amplitude functions and limits on the dispersion at the absorber, length, aperture and spacing of the absorber, parameters of the RF system that achieve the longitudinal amplitude function and bucket area ...

  14. High-power ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    1983-05-01

    Ion cyclotron resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two component ion energy distribution is produced (300 eV and 50 eV) with the application of 500 kW of rf power into a 5 x 10 12 cm -3 density plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun injected plasmas

  15. Sistema de enfriamiento con desecante para reducir consumo de energía en restaurante caso de estudio; Desiccant cooling system to decrease energy consumption in Restaurant study case

    Directory of Open Access Journals (Sweden)

    Tania – Carbonell Morales

    2016-02-01

    Full Text Available Este artículo mostró la posibilidad de emplear un sistema de enfriamiento con rueda desecante para el tratamiento del aire de las diferentes áreas del Restaurante caso de estudio, instalación alta consumidora de energía, de ahí la necesidad de es tudiar nuevas alternativas para el acondicionamiento de aire que permitan el control de la humedad y el ahorro de energía. El análisis bibliográfico realizado mostró que actualmente los sistemas de enfriamiento con desecante están siendo estudia dos y empleados como una alternativa para el ahorro de energía y el cuidado del medioambiente en el campo del tratamiento del aire. Se propuso un sistema compuesto fundamentalmente por una rueda desecante de gel de sílice, una rueda conservadora de energía y un intercambiador de calor. Con el nuevo sistema de enfriamiento la demanda de energía eléctrica disminuye previéndose ahorros del orden de 11802 CUC anualmente solo por concepto de consumo de energía eléctrica. In this paper the possibility of using a cooling syst em with a desiccant wheel for air treatment of different areas of the case study restaurant is shown. This facility is classified as high consumer of energy, making it necessary to study new alternatives for air conditioning allowing humidity control and energy saving. The literature review conducted on cooling systems with desiccant wheel technology was currently being studied and used as an alternative to saving energy and protecting the environment in the field of air treatment. The desiccant cooling system proposed is fundamentally for a desiccant wheel of silica gel, an energy conservative wheel and a heat exchanger. With the new cooling system electricit y demand decreases and significant savings of about 11802 CUC are forecasted only in annual electricity consumption

  16. Technical potential of evaporative cooling in Danish and European condition

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Andersen, Christian Hede; Heiselberg, Per Kvols

    2015-01-01

    Evaporative cooling is a very interesting high temperature cooling solution that has potential to save energy comparing to refrigerant cooling systems and at the same time provide more cooling reliability than mechanical or natural ventilation system without cooling. Technical cooling potential...... of 5 different evaporative systems integrated in the ventilation system is investigated in this article. Annual analysis is conducted based on hourly weather data for 15 cities located in Denmark and 123 European cities. Investigated systems are direct, indirect, combinations of direct and indirect...

  17. Plumes from one and two cooling towers

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Onishi, Y.

    1978-01-01

    Use of mechanical- and natural-draft cooling towers is expanding in the United States in response to pressures for better resource allocation and preservation. Specifically, increasing public and regulatory concern over the effects of the intake and discharge of large volumes of cooling water has encouraged electric utilities to accept cooling towers as the primary method of removing condenser waste heat even though once-through cooling is considerably less expensive. Other factors encouraging the use of cooling towers include small water supply and consumption rates, reduction in land requirements (compared to cooling ponds or lakes), and operational flexibility. The growing demand for electric energy should also add to the increase of cooling tower use. The experimental program and its comparison to model prediction suggest that optimal siting of cooling towers, particularly multiple towers, is a task requiring knowledge of ambient wind history, plume dynamics, and tower operating conditions. Based on the tower wake effects and on the results for interaction of plumes from two cooling towers, site terrain may be a very significant factor in plume dynamics and interaction

  18. Review of groundwater cooling systems in London

    Energy Technology Data Exchange (ETDEWEB)

    Ampofo, F.; Maidment, G.G.; Missenden, J.F. [Department of Engineering Systems, Faculty of Engineering, Science and The Built Environment, London South Bank University, 103 Borough Road, London, SE1 0AA (United Kingdom)

    2006-12-15

    The environmental impact of the UK building stock has increased the pressure on architects, engineers and building operators to reduce the use of air conditioning in favour of more passive cooling solutions. Good progress has been made in this direction but many passive solutions are limited to new-build projects. For existing buildings, and those for which mechanical air conditioning cannot be avoided, low energy cooling capability can be incorporated to improve significantly overall efficiency. This paper focuses on one such low energy capability - cooling using groundwater, which has gained popularity in recent years in the London area. Among the reasons for this are the excellent energy efficiency and the increasing viability of water extraction systems. The paper shows that groundwater cooling technology can be incorporated into newly-build and existing buildings to help reduce the environmental impact of the UK building stock. (author)

  19. Impact of Wisconsin Medicaid Policy Change on Dental Sealant Utilization.

    Science.gov (United States)

    Okunseri, Christopher; Okunseri, Elaye; Garcia, Raul I; Gonzalez, Cesar; Visotcky, Alexis; Szabo, Aniko

    2018-02-01

    In September 2006, Wisconsin Medicaid changed its policy to allow nondentists to become certified Medicaid providers and to bill for sealants in public health settings. This study examined changes in patterns of dental sealant utilization in first molars of Wisconsin Medicaid enrollees associated with a policy change. The Electronic Data Systems of Medicaid Evaluation and Decision Support for Wisconsin from 2001 to 2009. Retrospective claims data analysis of Wisconsin Dental Medicaid for children aged 6-16 years. A total of 479,847 children followed up for 1,441,300 person-years with 64,546 visits were analyzed. The rate of visits for sealants by dentists increased significantly from 3 percent per year prepolicy to 11 percent per year postpolicy, and that of nondentists increased from 18 percent per year to 20 percent after the policy change, but this was not significant. Non-Hispanic blacks had the lowest visit rates for sealant application by dentists and nondentists pre- and postpolicy periods. The Wisconsin Medicaid policy change was associated with increased rates of visits for dental sealant placement by dentists. The rate of visits with sealant placements by nondentists increased at the same rate pre- and postpolicy change. © Health Research and Educational Trust.

  20. Wisconsin Healthy Birth Outcomes: minority health program challenges and contributions.

    Science.gov (United States)

    Cruz, Evelyn; Guhleman, Patricia; Onheiber, Patrice Mocny

    2008-11-01

    For at least 20 years, the probability that an infant born in Wisconsin would die during the first year of life has been approximately three times greater for infants born to African American women than for those born to White women. Over the same period of time, other states have made improvements in African American infant mortality, whereas Wisconsin's ranking has fallen to last place. Various state and local efforts have been made to address the issue; however, it is only in the last 2 to 3 years that Wisconsin's high rate of African American infant mortality has become an agreed-upon health priority. This article discusses the factors that have converged to bring African American infant mortality to the forefront of Wisconsin public health policy and programs. Particular attention is given to the role of Wisconsin's Minority Health Program in relation to public health leadership and coalition building. Key actions currently underway to implement effective, evidence-based solutions are also described.

  1. Muskellunge growth potential in northern Wisconsin: implications for trophy management

    Science.gov (United States)

    Faust, Matthew D.; Isermann, Daniel A.; Luehring, Mark A.; Hansen, Michael J.

    2015-01-01

    The growth potential of Muskellunge Esox masquinongy was evaluated by back-calculating growth histories from cleithra removed from 305 fish collected during 1995–2011 to determine whether it was consistent with trophy management goals in northern Wisconsin. Female Muskellunge had a larger mean asymptotic length (49.8 in) than did males (43.4 in). Minimum ultimate size of female Muskellunge (45.0 in) equaled the 45.0-in minimum length limit, but was less than the 50.0-in minimum length limit used on Wisconsin's trophy waters, while the minimum ultimate size of male Muskellunge (34.0 in) was less than the statewide minimum length limit. Minimum reproductive sizes for both sexes were less than Wisconsin's trophy minimum length limits. Mean growth potential of female Muskellunge in northern Wisconsin appears to be sufficient for meeting trophy management objectives and angler expectations. Muskellunge in northern Wisconsin had similar growth potential to those in Ontario populations, but lower growth potential than Minnesota's populations, perhaps because of genetic and environmental differences.

  2. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  3. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  4. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  5. Cooling tower water ozonation at Southern University

    International Nuclear Information System (INIS)

    Chen, C.C.; Knecht, A.T.; Trahan, D.B.; Yaghi, H.M.; Jackson, G.H.; Coppenger, G.D.

    1990-01-01

    Cooling-tower water is a critical utility for many industries. In the past, inexpensive water coupled with moderate regulation of discharge water led to the neglect of the cooling tower as an energy resource. Now, with the increased cost of chemical treatment and tough EPA rules and regulations, this situation is rapidly changing. The operator of the DOE Y-12 Plant in Oak Ridge as well as many other industries are forced to develop an alternate method of water treatment. The cooling tower is one of the major elements in large energy systems. The savings accrued from a well engineered cooling tower can be a significant part of the overall energy conservation plan. During a short-term ozonation study between 1987-1988, the Y-12 Plant has been successful in eliminating the need for cooling tower treatment chemicals. However, the long-term impact was not available. Since April 1988, the ozone cooling water treatment study at the Y-12 Plant has been moved to the site at Southern University in Baton Rouge, Louisiana. The purpose of this continued study is to determine whether the use of ozonation on cooling towers is practical from an economic, technical and environmental standpoint. This paper discusses system design, operating parameter and performance testing of the ozonation system at Southern University

  6. Sodium-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Guidez, Joel; Andrieux, Catherine; Baque, Francois; Bonin, Bernard; Boullis, Bernard; Cabet, Celine; Carre, Frank; Dufour, Philippe; Gauche, Francois; Grouiller, Jean-Paul; Jeannot, Jean-Philippe; Le Flem, Marion; Le Coz, Pierre; Martin, Laurent; Masson, Michel; Mathonniere, Gilles; Nokhamzon, Jean-Guy; Pelletier, Michel; Rodriguez, Gilles; Saez, Manuel; Seran, Jean-Louis; Varaine, Frederic; Zaetta, Alain; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2014-01-01

    This book first explains the choice of sodium-cooled reactors by outlining the reasons of the choice of fast neutron reactors (fast neutrons instead of thermal neutrons, recycling opportunity for plutonium, full use of natural uranium, nuclear waste optimization, flexibility of fast neutron reactors in nuclear material management, fast neutron reactors as complements of water-cooled reactors), and by outlining the reasons for the choice of sodium as heat-transfer material. Physical, chemical, and neutron properties of sodium are presented. The second part of the book first presents the main design principles for sodium-cooled fast neutron reactors and their core. The third part proposes an historical overview and an assessment of previously operated sodium-cooled fast neutron reactors (French reactors from Rapsodie to Superphenix, other reactors in the world), and an assessment of the main incidents which occurred in these reactors. It also reports the experience and lessons learned from the dismantling of various sodium-cooled fast breeder reactors in the world. The next chapter addresses safety issues (technical and safety aspects related to the use of sodium) and environmental issues (dosimetry, gaseous and liquid releases, solid wastes, and cooling water). Then, various technological aspects of these reactors are addressed: the energy conversion system, main components, sodium chemistry, sodium-related technology, advances in in-service inspection, materials used in reactors and their behaviour, and fuel system. The next chapter addresses the fuel cycle in these reactors: its integrated specific character, report of the French experience in fast neutron reactor fuel processing, description of the transmutation of minor actinides in these reactors. The last chapter proposes an overview of reactors currently projected or under construction in the world, presents the Astrid project, and gives an assessment of the economy of these reactors. A glossary and an index

  7. Environmental, financial and energy feasibility of the electrolysis of the water steam of a generation IV reactor cooling system during the moments of low consumption ef eletrical energy: challenges and perspectives

    International Nuclear Information System (INIS)

    Stefanelli, Eduardo J.; Vargas, Miltom; Garcia, Pedro L.; Seo, Emilia S.M.; Oliveira, Wagner de S.

    2009-01-01

    Our civilization is in an inflection moment. Our current decisions will lead us to drastic changes in the planet climate or to cleaner and more sustainable energy generation models. In a certain moment in the evolution of our society, we have privileged the productivity instead of the reasonable use of the planet's resources. This option has been leading us to a situation in which these resources are seriously jeopardized. New models of energy generation and use should be discussed and adopted in order to reverse this process. The electric-power consumption is not constant through time and it must be generated at the moment it is going to be used. There are moments of great idleness in the electric-power generation system, counterbalanced by high demand moments. This characteristic has induced us to the construction of a model of great generation capacity that remains without use most of the time, producing huge financial and environmental impacts. In this article, we discuss the environmental, financial and energy viability of using the idle capacity of the electric-power system to, through water steam electrolysis, produce hydrogen, which would be reconverted into electric power in peak moments by a fuel cell. In this study, we aim at investigating the viability of associating a SOFC (Solid Oxide Fuel Cell), acting as an electrolysis bow, to a generation IV reactor, in order to produce hydrogen from superheated water steam in the cooling of the reactor, which will be converted into electric power via SOFC (Solid Oxide Fuel Cell) in peak moments. The method used in this investigation was to study the electric charge variation consumed in a day, randomly selected in relation to the hour of the day, to launch a curve into a diagram 'Demand x hour of the day', to establish the peak moments, the minimum moments, and the average consumption, and, based on these data and geometrically, predict the viability of using the energetic potential of the moments in which the

  8. Environmental, financial and energy feasibility of the electrolysis of the water steam of a generation IV reactor cooling system during the moments of low consumption ef eletrical energy: challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Eduardo J.; Vargas, Miltom; Garcia, Pedro L.; Seo, Emilia S.M.; Oliveira, Wagner de S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: ipen@stefanelli.eng.br

    2009-07-01

    Our civilization is in an inflection moment. Our current decisions will lead us to drastic changes in the planet climate or to cleaner and more sustainable energy generation models. In a certain moment in the evolution of our society, we have privileged the productivity instead of the reasonable use of the planet's resources. This option has been leading us to a situation in which these resources are seriously jeopardized. New models of energy generation and use should be discussed and adopted in order to reverse this process. The electric-power consumption is not constant through time and it must be generated at the moment it is going to be used. There are moments of great idleness in the electric-power generation system, counterbalanced by high demand moments. This characteristic has induced us to the construction of a model of great generation capacity that remains without use most of the time, producing huge financial and environmental impacts. In this article, we discuss the environmental, financial and energy viability of using the idle capacity of the electric-power system to, through water steam electrolysis, produce hydrogen, which would be reconverted into electric power in peak moments by a fuel cell. In this study, we aim at investigating the viability of associating a SOFC (Solid Oxide Fuel Cell), acting as an electrolysis bow, to a generation IV reactor, in order to produce hydrogen from superheated water steam in the cooling of the reactor, which will be converted into electric power via SOFC (Solid Oxide Fuel Cell) in peak moments. The method used in this investigation was to study the electric charge variation consumed in a day, randomly selected in relation to the hour of the day, to launch a curve into a diagram 'Demand x hour of the day', to establish the peak moments, the minimum moments, and the average consumption, and, based on these data and geometrically, predict the viability of using the energetic potential of the moments

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wisconsin. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Wisconsin.

  10. Renewables for Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This timely report examines the technologies, current markets and relative costs for heat and cold production using biomass, geothermal and solar-assisted systems. It evaluates a range of national case studies and relevant policies. Should the successful and more cost-effective policies be implemented by other countries, then the relatively untapped economic potential of renewable energy heating and cooling systems could be better realised, resulting in potential doubling of the present market within the next few years.

  11. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  12. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  13. Design of a High-Perveance Electron Gun for Electron Cooling in the Low Energy Ion Ring (LEIR) at CERN and Non-Interceptive Proton Beam Profile Monitors using Ion or Atomic Probe Beams

    CERN Document Server

    Dimopoulou, Christina

    2002-01-01

    For an efficient electron cooling of the low-energy Pb54+ ions in LEIR a high-perveance (at least 3.6microperv) electron gun had to be designed. The theoretical study of electron guns has shown that the required perveance can be achieved by using a convex cathode. The gun should be immersed in a strong magnetic field (B=2-6kG) in order to obtain a parallel beam with very low transverse energy (typically 0.1 eV). This idea was confirmed by experimental tests at Fermilab. An adiabatic magnetic expansion is foreseen after the gun in order to reduce the magnetic field to accpetable values (0.6-1 kG) in the cooling section. The internal geometry of a convex cathode gun for the LEIR electron cooler together with the parameters of the magnetic expansion are proposed. The scheme fulfils the requirements. In addition, the author has made an important contribution in the field of beam instrumentation for the LHC and other accelerators at CERN. A profile monitor has been developed that uses a Xe ion probe beam that inte...

  14. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2016-09-01

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  15. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States)

    2016-09-08

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  16. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  17. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boyd, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Taylor [Colorado Energy Office, Denver, CO (United States)

    2017-12-05

    This measurement and verification (M and V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with cooling tower efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M and V plan, and details the procedures to use to determine water savings.

  18. Of Needles and Haystacks: Building an Accurate Statewide Dropout Early Warning System in Wisconsin

    Science.gov (United States)

    Knowles, Jared E.

    2015-01-01

    The state of Wisconsin has one of the highest four year graduation rates in the nation, but deep disparities among student subgroups remain. To address this the state has created the Wisconsin Dropout Early Warning System (DEWS), a predictive model of student dropout risk for students in grades six through nine. The Wisconsin DEWS is in use…

  19. Introduction to radioactive waste management issues in Wisconsin

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This brief focused on wastes from commercial production of electricity and various industrial, medical and research applications of radioactive materials. Only traditionally solid wastes are dealt with. It was organized into five parts. Part I presented an introduction to radioactivity - what it is and the biological hazards associated with it. Federal regulation of the management of radioactive wastes was discussed in Part II. Existing state laws and bills currently before the Wisconsin Legislature were described in Part III. Part IV gave background information on specific areas of potential inquiry related to radioactive wastes in Wisconsin. Part V summarized the issues identified in the brief. 2 figures, 7 tables

  20. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  1. Biblioteca y Centro de Estudios de la Universidad de Wisconsin - Kenosha - . Wisconsin – (EE.UU.

    Directory of Open Access Journals (Sweden)

    Hellmuth, George

    1978-12-01

    Full Text Available Continuing the line established by these same architects in previous University designs, the Library and Study Hall of the University of Wisconsin is another attempt at creating an exciting atmosphere, particularly conducive to the development of university life. It is to be noted, in this case, the arrangement of the library and study areas around a central common open space, sort of an inner courtyard used as a relaxation and sitting área, where all traffic corridors and promenades from the adjacent faculties come to meet, thus becoming the main reference point for the entire campus. The library with a current capacity for 245,000 volumes and 1,400 reading stalls is designed so it can be eventually enlarged permitting to almost double its book capacity and increasing the reading stalls to more than 2,000.

    Continuando la línea marcada por estos mismos arquitectos en anteriores proyectos de universidades, la biblioteca y el centro de estudios de la Universidad de Wisconsin procura definir atractivos espacios para el desarrollo de la vida universitaria. En este caso destaca la organización de los servicios de biblioteca y estudio en torno a un espacio comunitario central, a modo de plaza interior, destinado a sala de estar y recreo, y en donde confluyen las circulaciones que provienen de los locales adyacentes, convirtiéndolo en el principal punto de referencia del campus universitario. La biblioteca, que actualmente tiene capacidad para 245.000 volúmenes y 1.400 lectores, ha previsto una ampliación que le permitirá casi doblar el número de volúmenes y proporcionar espacio para más de 2.000 lectores.

  2. A cool present for LEIR

    CERN Multimedia

    2005-01-01

    LEIR (Low Energy Ion Ring), which will supply lead ions to the LHC experiments, has taken delivery of one of its key components, its electron cooling system. From left to right, Gérard Tranquille, Virginia Prieto and Roland Sautier, in charge of the electron cooling system for LEIR at CERN, and Christian Lacroix, in charge of installation for the LEIR machine. On 16 December, the day before CERN's annual closure, the LEIR teams received a rather impressive Christmas present. The "parcel" from Russia, measuring 7 metres in length and 4 metres in height, weighed no less than 20 tonnes! The component will, in fact, be one of the key elements of the future LEIR, namely its electron cooling system. LEIR is one of the links in the injector chain that will supply lead ions to the LHC experiments, in particular ALICE (see Bulletin No. 28/2004 of 5 July 2004), within the framework of the I-LHC Project. The electron cooling system is designed to reduce and standardise transverse ion velocity. This focuses the bea...

  3. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  4. Glacial Lake Lind, Wisconsin and Minnesota

    Science.gov (United States)

    Johnson, M.D.; Addis, K.L.; Ferber, L.R.; Hemstad, C.B.; Meyer, G.N.; Komai, L.T.

    1999-01-01

    Glacial Lake Lind developed in the pre-late Wisconsinan St. Croix River valley, Minnesota and Wisconsin, and lasted more than 1000 yr during the retreat of the Superior lobe at the end of the Wisconsinan glaciation. Lake Lind sediment consists primarily of red varved silt and clay, but also includes mud-flow deposits, nearshore silt (penecontemporaneously deformed in places), nearshore rippled sand, and deltaic sand. Lake Lind varved red clay is not part of glacial Lake Grantsburg, as suggested by earlier authors, because the red varves are separated from overlying glacial Lake Grantsburg silt and clay by a unit of deltaic and fluvial sand. Furthermore, varve correlations indicate that the base of the red varves is younger to the north, showing that the basin expanded as the Superior lobe retreated and was not a lake basin dammed to the southwest by the advancing Grantsburg sublobe. Varve correlations indicate that the Superior lobe retreated at a rate of about 200 m/yr. Uniform winter-clay thickness throughout most of the varve couplets suggests thermal stratification in the lake with clay trapped in the epilimnion; some clay would exit the lake at the outlet prior to winter freeze. Zones of thicker winter-clay layers, in places associated with mud-flow layers, indicate outlet incision, lake-level fall, and shoreline erosion and resuspension of lake clay. The most likely outlet for glacial Lake Lind was in the southwest part of the lake near the present site of Minneapolis, Minnesota. Nearshore sediment indicates that the lake level of glacial Lake Lind was around 280 m. The elevation of the base of the Lake Lind sediments indicates water depth was 20 to 55 m. Evidence in the southern part of the lake basin suggests that the Superior lobe readvanced at least once during the early stages of glacial Lake Lind. Lake Lind ended not by drainage but by being filled in by prograding deltas and outwash plains composed of sand derived from the retreating Superior lobe. It

  5. NASA Microclimate Cooling Challenges

    Science.gov (United States)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  6. Liquid Metal Cooled Reactor Core Design and Structural Material Research by the Institute for Energy and Transport at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Nilsson, K.-F.; D’Agata, E.; Fütterer, M.A.; Lázaro, A.; Grah, A.; Tsige-Tamirat, H.; Ammirabile, L.; Flores y Flores, A.; Hähner, P.

    2013-01-01

    JRC supports, in accordance with the SET Plan, nuclear energy as one of the options in a future sustainable energy mix for Europe. JRC supports the policy instruments for coordination and implementation of research, financing, demonstration and deployment of next generation nuclear energy systems, incl. ESNII prototypes and demonstrators. JRC performs independent and contributes to collaborative R&D on important safety issues for next generation reactors

  7. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  8. Design of high-energy-class cryogenically cooled Yb.sup.3+./sup.:YAG multislab laser system with low wavefront distortion

    Czech Academy of Sciences Publication Activity Database

    Divoký, Martin; Sikocinski, Pawel; Pilař, Jan; Lucianetti, Antonio; Sawicka, Magdalena; Slezák, Jiří; Mocek, Tomáš

    2013-01-01

    Roč. 52, č. 6 (2013), "064201-1"-"064201-6" ISSN 0091-3286 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : DPSSL * Yb 3+ :YAG * cryogenically cooled amplifier * pulsed high average power laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.958, year: 2013

  9. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  10. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  11. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  12. Solar heating and cooling with absorption refrigeration

    OpenAIRE

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  13. Estimation of European Union residential sector space cooling potential

    International Nuclear Information System (INIS)

    Jakubcionis, Mindaugas; Carlsson, Johan

    2017-01-01

    Data on European residential space cooling demands are scarce and often of poor quality. This can be concluded from a review of the Comprehensive Assessments on the energy efficiency potential in the heating and cooling sector performed by European Union Member States under Art. 14 of the Energy Efficiency Directive. This article estimates the potential space cooling demands in the residential sector of the EU and the resulting impact on electricity generation and supply systems using the United States as a proxy. A georeferenced approach was used to establish the potential residential space cooling demand in NUTS-3 regions of EU. The total potential space cooling demand of the EU was estimated to be 292 TW h for the residential sector in an average year. The additional electrical capacity needed was estimated to 79 GW. With proper energy system development strategies, e.g. matching capacity of solar PV with cooling demand, or introduction of district cooling, the stresses on electricity system from increasing cooling demand can be mitigated. The estimated potential of space cooling demand, identified in this paper for all EU Members States, could be used while preparing the next iteration of EU MS Comprehensive Assessments or other energy related studies. - Highlights: • An estimation of EU space cooling demand potential in residential sector is presented. • An estimate of space cooling demand potential is based on using USA data as a proxy. • Significant cooling demand increase can be expected. • Cooling demand increase would lead to increased stress in energy supply systems. • Proper policies and strategies might measurably decrease the impact on energy systems.

  14. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    Directory of Open Access Journals (Sweden)

    2017-06-01

    Full Text Available Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combined effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling. A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.

  15. Digital Learning Compass: Distance Education State Almanac 2017. Wisconsin

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Wisconsin. The sample for this analysis is comprised of all active, degree-granting…

  16. Dragonflies are biocontrol agents in Wisconsin cranberry marshes

    Science.gov (United States)

    Dragonflies (Order Odonata) are abundant predators that emerge in large hatch events each summer in Wisconsin cranberry marshes. They seem to be a potential group of biocontrol agents for pest management that may be influenced by the diversity found on the marsh. In fact, our evidence shows that dra...

  17. Southeastern Wisconsin Workplace Communication Project Curriculum Development Guide.

    Science.gov (United States)

    Frederick, Catherine; Huss-Lederman, Susan; Johnson, Jewelie

    The Southeastern Wisconsin Workplace Communication Project is a workplace English-as-a-Second-Language (ESL) resource and outreach program involving a partnership of businesses and adult educators in a rural area that has experienced an increase in new speakers of English in the manufacturing workforce. The guide provides workplace educators and…

  18. WEAKLY SYNCHRYRONIZED SUBPOPULATION DYNAMICS IN WISCONSIN FROGS AND TOADS

    Science.gov (United States)

    Spatial synchrony in population dynamics is a topic of increasing interest in basic and applied ecology. We used data from 18 years of frog and toad calling surveys conducted throughout Wisconsin to determine the level of intraspecific synchrony among survey sites, and the relat...

  19. On Farmers’ Ground: Wisconsin Dairy Farm Nutrient Management Survey Questionnaire

    Science.gov (United States)

    This questionnaire was used during quarterly, face-to-face interviews with the fifty-four Wisconsin dairy farmers who participated in the ‘On Farmers’ Ground’ nutrient management research project. It was designed to systematically and consistently compile information on herd size and composition, l...

  20. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    Science.gov (United States)

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  1. Wisconsin's Infants and Toddlers. Publication #2015-17

    Science.gov (United States)

    Murphey, David; Cooper, Mae

    2015-01-01

    Wisconsin's infants and toddlers (defined as children less than three years old) are more than 200,000 in number. Seventy-one percent are white/non-Hispanic, and the largest minority group is Hispanic, at 12 percent. Black, Asian American, and American Indian infants and toddlers make up smaller percentages. To help states target policies related…

  2. 77 FR 16674 - Establishment of the Wisconsin Ledge Viticultural Area

    Science.gov (United States)

    2012-03-22

    .... All of the comments expressed support for the proposed Wisconsin Ledge viticultural area. TTB... label reference on a wine that indicates or implies an origin other than the wine's true place of origin... or other term identified as being viticulturally significant in part 9 of the TTB regulations, at...

  3. Skill Needs and Training Strategies in the Wisconsin Printing Industry.

    Science.gov (United States)

    Wisconsin Univ., Madison. Center on Wisconsin Strategy.

    A study examined the emerging skill needs in the Wisconsin printing industry, a key industry that provided the largest increase (more than 13,000 new jobs) in manufacturing employment in the state in the past decade. Eighteen interviews were conducted with industry personnel and production managers, union representatives, technical college…

  4. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    Science.gov (United States)

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  5. Enhancing the performance of photovoltaic panels by water cooling

    Directory of Open Access Journals (Sweden)

    K.A. Moharram

    2013-12-01

    Full Text Available The objective of the research is to minimize the amount of water and electrical energy needed for cooling of the solar panels, especially in hot arid regions, e.g., desert areas in Egypt. A cooling system has been developed based on water spraying of PV panels. A mathematical model has been used to determine when to start cooling of the PV panels as the temperature of the panels reaches the maximum allowable temperature (MAT. A cooling model has been developed to determine how long it takes to cool down the PV panels to its normal operating temperature, i.e., 35 °C, based on the proposed cooling system. Both models, the heating rate model and the cooling rate model, are validated experimentally. Based on the heating and cooling rate models, it is found that the PV panels yield the highest output energy if cooling of the panels starts when the temperature of the PV panels reaches a maximum allowable temperature (MAT of 45 °C. The MAT is a compromise temperature between the output energy from the PV panels and the energy needed for cooling.

  6. Plasma impurities and cooling

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1976-11-01

    In high-temperature low-density plasmas radiation cooling by impurity atoms can be an important energy loss mechanism, since the radiation is not reabsorbed. In a brief historical survey it is shown that the problem is not new but was discussed since the first beginning of controlled thermonuclear fusion research. It is then shown radiation losses enter into the general power balance equation of a plasma containing impurities. The equations for the different types of radiation losses are given as a function of the atomic quantities. In a special section simplifications due to the corona model assumption are discussed. It follows a detailed survey of the results obtained by several authors for the ionization balance and power losses of impurity elements observed in present high-temperature plasma machines used in CTR, especially in TOKAMAKS. In the conclusion a survey is given of the atomic data which experimentalists and theorists need for current research on impurities in fusion-like plasmas. (86 references)

  7. Effect of DOC on evaporation from small Wisconsin lakes

    Science.gov (United States)

    Watras, C. J.; Morrison, K. A.; Rubsam, J. L.

    2016-09-01

    Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (<1.5 m s-1) and steep forested uplands surrounding all three lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC < low DOC). Across the 3 lakes and 4 years, E averaged ∼3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs

  8. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  9. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  10. A Muon Collider scheme based on Frictional Cooling

    International Nuclear Information System (INIS)

    Abramowicz, H.; Caldwell, A.; Galea, R.; Schlenstedt, S.

    2005-01-01

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling

  11. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  12. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    The demand for air conditioning has been consistently increasing worldwide in recent years, concomitantly to the introduction of ambitious energy and environmental targets. As a result, high efficiency air conditioners running on low polluting energy sources need to be developed. This thesis...... selection software. Different compositions of the secondary air stream are considered, including partial recirculation of the cooled primary air stream, i.e. dew point cooling, and use of air from a separate ambient. The desiccant cooling system combines the two components, including a compact air-to-air...... heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  13. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  14. Periodical Publishing in Wisconsin. Proceedings of the Conference on Periodical Publishing in Wisconsin (Madison, WI, May 11-12, 1978).

    Science.gov (United States)

    Danky, James P., Ed.; And Others

    The papers contained in this compilation were drawn from the proceedings of a 1978 conference on periodical publishing in Wisconsin. Papers in the first section of the collection deal with the basics of publishing and cover such topics as selecting articles, starting a new publication, mailing procedures, aesthetics and layout, and printing…

  15. Informed Forces for Environmental Quality, Conference Proceedings (University of Wisconsin, Green Bay, Wisconsin, March 28-29, 1968).

    Science.gov (United States)

    Wisconsin Univ., Green Bay.

    To increase understanding of the dimensions of man's impact on his environment and the key issues involved in improving that environment through education and action was the goal of the environmental quality conference held at the University of Wisconsin, Green Bay, on March 28-29, 1968. Contained in this document are the conference…

  16. Energy Savers Tips on Saving Energy& Money at Home

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances

  17. Energy Savers: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  18. Energy Saver: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  19. Energy Savers: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  20. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  1. Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, T.; Quilis, S. [Energesis Ingenieria S.L., Ciudad Politecnica de la Innovacion, Camino de Vera s/n, 46022 Valencia (Spain); Montero, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2010-09-15

    This work compares the experimental results obtained for the energy performance study of a ground coupled heat pump system with the design values predicted by means of standard methodology. The system energy performance of a monitored ground coupled heat pump system is calculated using the instantaneous measurements of temperature, flow and power consumption and these values are compared with the numerical predictions. These predictions are performed with the TRNSYS software tool following standard procedures taking the experimental thermal loads as input values. The main result of this work is that simulation results solely based on nominal heat pump capacities and performances overestimate the measured overall energy performance by a percentage between 15% and 20%. A sensitivity analysis of the simulation results to changes in percentage of its input parameters showed that the heat pump nominal coefficient of performance is the parameter that mostly affects the energy performance predictions. This analysis supports the idea that the discrepancies between experimental results and simulation outputs for this ground coupled system are mainly due to heat pump performance degradation for being used at partial load. An estimation of the impact of this effect in energy performance predictions reduces the discrepancies to values around 5%. (author)

  2. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  3. Heating up the gas cooling market

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    Gas cooling is an exciting technology with a potentially bright future. It comprises the production of cooling (and heating) in buildings and industry, by substituting environmentally-friendlier natural gas or LPG over predominantly coal-fired electricity in air conditioning equipment. There are currently four established technologies using gas to provide cooling energy or conditioned air. These are: absorption, both direct gas-fired and utilising hot water or steam; gas engine driven vapour compression (GED); cogeneration, with absorption cooling driven by recovered heat; and desiccant systems. The emergence of gas cooling technologies has been, and remains, one of evolution rather than revolution. However, further development of the technology has had a revolutionary effect on the performance, reliability and consumer acceptability of gas cooling products. Developments from world-renowned manufacturers such as York, Hitachi, Robur and Thermax have produced a range of absorption equipment variously offering: the use of 100 percent environmentally-friendly refrigerants, with zero global warming potential; the ideal utilisation of waste heat from cogeneration systems; a reduction in electrical distribution and stand-by generation capacity; long product life expectancy; far less noise and vibration; performance efficiency maintained down to about 20 percent of load capacity; and highly automated and low-cost maintenance. It is expected that hybrid systems, that is a mixture of gas and electric cooling technologies, will dominate the future market, reflecting the uncertainty in the electricity market and the prospects of stable future gas prices

  4. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  5. Study of cooling effectiveness for an integrated cooling turbine blade

    OpenAIRE

    Matsushita, Masahiro; Yamane, Takashi; Mimura, Fujio; Fukuyama, Yoshitaka; 松下 政裕; 山根 敬; 三村 富嗣雄; 福山 佳孝

    2007-01-01

    Experimental study of film cooling, impingement cooling and integrated cooling were carried out with the aim of applying them to turbine cooling. The experiments were conducted with 673 K hot gas flow and room temperature cooling air. Test plate surface temperature distributions were measured with an infrared camera. This report presents fundamental research data on cooling performance of the test plates for the validation of numerical simulation. Moreover, simplify heat transfer calculations...

  6. Supplementation based on protein or energy ingredients to beef cattle consuming low-quality cool-season forages: II. Performance, reproductive, and metabolic responses of replacement heifers.

    Science.gov (United States)

    Cappellozza, B I; Cooke, R F; Reis, M M; Moriel, P; Keisler, D H; Bohnert, D W

    2014-06-01

    This experiment evaluated the influence of supplement composition on performance, reproductive, and metabolic responses of Angus × Hereford heifers consuming a low-quality cool-season forage (8.7% CP and 57% TDN). Sixty heifers (initial age = 226 ± 3 d) were allocated into 15 drylot pens (4 heifers/pen and 5 pens/treatment) and assigned to 1) supplementation with soybean meal (PROT), 2) supplementation with a mixture of cracked corn, soybean meal, and urea (68:22:10 ratio, DM basis; ENER), or 3) no supplementation (CON). Heifers were offered meadow foxtail (Alopecurus pratensis L.) hay for ad libitum consumption during the experiment (d -10 to 160). Beginning on d 0, PROT and ENER were provided daily at a rate of 1.30 and 1.40 kg of DM/heifer to ensure that PROT and ENER intakes were isocaloric and isonitrogenous. Hay and total DMI were recorded for 5 consecutive days during each month of the experiment. Blood was collected every 10 d for analysis of plasma progesterone to evaluate puberty attainment. Blood samples collected on d -10, 60, 120, and 150 were also analyzed for plasma concentrations of plasma urea N (PUN), glucose, insulin, IGF-I, NEFA, and leptin. Liver samples were collected on d 100 from 2 heifers/pen and analyzed for mRNA expression of genes associated with nutritional metabolism. No treatment effect was detected (P = 0.33) on forage DMI. Total DMI, ADG, and mean concentrations of glucose, insulin, and IGF-I as well as hepatic mRNA expression of IGF-I and IGFBP-3 were greater (P ≤ 0.02) for PROT and ENER compared with CON and similar between PROT and ENER (P ≥ 0.13). Mean PUN concentrations were also greater (P forage had a similar increase in DMI, growth, and overall metabolic status if offered supplements based on soybean meal or corn at 0.5% of BW.

  7. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  8. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  9. Laser-Cooling for Light Ion Accumulation

    CERN Document Server

    Madsen, N

    2000-01-01

    The ALICE Experiment to be installed at the Large Hadron Collider (LHC) will initially look at Pb82+-Pb82+ collisions. In a later stage, collisions of lighter ions are also foreseen. For lead ions, fast electron cooling will be used in the accumulation process at low energy to reach the beam brightness necessary for the experiment. For lighter ions, electron cooling becomes less efficient as the ratio Q2/A decreases (Q and A are respectively charge state and mass number of the ion). For this reason, a study has been made of the possibility to use the maturing technology of laser-cooling of fast ion beams to reach the desired emittances for lighter ions. The main problems encountered are the availability of useful ion species, the availability of corresponding laser systems, and the efficiency with which the transverse emittance can be reduced by the laser-cooling mechanism (which works mainly in the longitudinal plane).

  10. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  11. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  12. SPL RF Coupler Cooling Efficiency

    CERN Document Server

    Bonomi, R; Montesinos, E; Parma, V; Vande Craen, A

    2014-01-01

    Energy saving is an important challenge in accelerator design. In this framework, reduction of heat loads in a cryomodule is of fundamental importance due to the small thermodynamic efficiency of cooling at low temperatures. In particular, care must be taken during the design of its critical components (e.g. RF couplers, coldwarm transitions). In this framework, the main RF coupler of the Superconducting Proton Linac (SPL) cryomodule at CERN will not only be used for RF powering but also as the main mechanical support of the superconducting cavities. These two functions have to be accomplished while ensuring the lowest heat in-leak to the helium bath at 2 K. In the SPL design, the RF coupler outer conductor is composed of two walls and cooled by forced convection with helium gas at 4.5 K. Analytical, semi-analytical and numerical analyses are presented in order to defend the choice of gas cooling. Temperature profiles and thermal performance have been evaluated for different operating conditions; a sensitivit...

  13. JUELICH: COSY acceleration and cooling

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The COSY cooler synchrotron at the KFA Forschungszentrum Jülich, inaugurated on 1 April, is now well on its way towards precision-defined high energy beams to open new fields for Jülich physics experiments. In two important goals, on 25 May the first beam cooled by electrons circulated inside the accelerator, then on 25 July physicists succeeded in accelerating the beam from the 270 MeV/c injection momentum to 600 MeV. Shortly after, this was pushed well above 1 GeV. Throughout the tuning process the number of stored particles increased steadily, finally peaking at 1.1 x 10 11 , a value compatible with the predicted limit at the injection energy. This success was the result of a painstaking search for the optimum parameter set, the commissioning crew being acutely aware that bringing such a large machine on line was a major experiment in its own right. The 3.3 GeV/c COSY machine belongs to the new class of hadron storage and cooler synchrotrons which started with CERN's LEAR low energy antiproton ring. COSY will 'sharpen' its beams to a narrow momentum spread using both electron and stochastic cooling to control the circulating particles. In addition it will provide space for internal experiments. Both features will allow for novel experimental approaches, and more than 100 physicists are eagerly waiting for the first proton reactions in their detectors

  14. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  15. Cooling Devices in Laser therapy.

    Science.gov (United States)

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  16. Thermionic cooling in semiconductor multilayers

    International Nuclear Information System (INIS)

    Lee, S.; Lewis, R.A.; Lough, B.; Zhang, C.

    2000-01-01

    Full text: A solid-state refrigerator in which electrons transport heat has advantages over the conventional vapour-cycle, compressor-based domestic refrigerator since it has no moving parts, it is low-maintenance, silent, vibration-free and does not require the use of refrigerant gases. The usual approach to making an all-electrical refrigerator is by thermoelectric refrigeration. After a period of intense research in the 1950s and 60s it was realised that the efficiency of thermoelectric devices was less than, and unlikely to exceed, that of conventional compressor units. While thermoelectric cooling has found specialised applications in cases where reliability, compactness and weight are important considerations, it does not appear that thermo-electrics will ever successfully compete in the domestic market, in spite of recent advances in the design and fabrication of thermoelectric materials. A new approach to an all-electric refrigerator is to employ thermionic emission over potential barriers. A key difference between a thermoelectric device and a thermionic device is that in the former the electrons are scattered in their motion and in the latter they are not. Thus thermionic cooling, in principle, can be much more efficient than thermoelectric cooling. A radical new realisation of the thermionic refrigerator was suggested recently in which a multilayer semiconductor structure would be used. We discuss the optimisation of such a multilayer semiconductor cooling system by considering (1) electron-phonon interactions in the barriers and electrodes; (2) the detailed treatment of thermal conductivity; (3) an exact numerical solution of the heat and energy currents (in contrast to the previous approximate analytic solutions); (4) the effect of varying layer thickness across the device; and (5) the effect of varying current density across the device

  17. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  18. Turbine airfoil film cooling

    Science.gov (United States)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1987-10-01

    The experimental data obtained in this program gives insight into the physical phenomena that occur on a film cooled airfoil, and should provide a relevant data base for verification of new design tools. Results indicate that the downstream film cooling process is a complex function of the thermal dilution and turbulence augmentation parameters with trends actually reversing as blowing strength and coolant-to-gas temperature ratio varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to changes in the film cooling parameters and, consequently, should prove to be more of a challenge than the suction surface in accurately predicting heat transfer levels with downsteam film cooling.

  19. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  20. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.