WorldWideScience

Sample records for wiring density excellent

  1. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  2. Interferometer for electron density measurement in exploding wire plasma

    International Nuclear Information System (INIS)

    Batra, Jigyasa; Jaiswar, Ashutosh; Kaushik, T.C.

    2016-12-01

    Mach-Zehnder Interferometer (MZI) has been developed for measuring electron density profile in pulsed plasmas. MZI is to be used for characterizing exploding wire plasmas for correlating electron density dynamics with x-rays emission. Experiments have been carried out for probing electron density in pulsed plasmas produced in our laboratory like in spark gap and exploding wire plasmas. These are microsecond phenomenon. Changes in electron density have been registered in interferograms with the help of a streak camera for specific time window. Temporal electron density profiles have been calculated by analyzing temporal fringe shifts in interferograms. This report deals with details of MZI developed in our laboratory along with its theory. Basic introductory details have also been provided for exploding wire plasmas to be probed. Some demonstrative results of electron density measurements in pulsed plasmas of spark gap and single exploding wires have been described. (author)

  3. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    Science.gov (United States)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  4. Reduction of Gas Bubbles and Improved Critical Current Density in Bi-2212 Round Wire by Swaging

    CERN Document Server

    Jiang, J; Huang, Y; Hong, S; Parrell, J; Scheuerlein, C; Di Michiel, M; Ghosh, A; Trociewitz, U; Hellstrom, E; Larbalestier, D

    2013-01-01

    Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.

  5. Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    International Nuclear Information System (INIS)

    Malagoli, A; Lee, P J; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C; Ghosh, A K; Scheuerlein, C; Di Michiel, M

    2013-01-01

    It is well known that longer Bi-2212 conductors have significantly lower critical current density (J c ) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5–240 cm lengths of state-of-the-art, commercial Ag alloy sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of J c away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers J c , often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full J c of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled. (paper)

  6. Localized end states in density modulated quantum wires and rings.

    Science.gov (United States)

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  7. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  8. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    Energy Technology Data Exchange (ETDEWEB)

    Pervikov, A. V. [Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, 2/4, pr. Akademicheskii, 634021 Tomsk, Russia and Department of High Voltage Electrophysics and High Current Electronics, Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2016-06-15

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  9. Laser wakefield acceleration using wire produced double density ramps

    Directory of Open Access Journals (Sweden)

    M. Burza

    2013-01-01

    Full Text Available A novel approach to implement and control electron injection into the accelerating phase of a laser wakefield accelerator is presented. It utilizes a wire, which is introduced into the flow of a supersonic gas jet creating shock waves and three regions of differing plasma electron density. If tailored appropriately, the laser plasma interaction takes place in three stages: Laser self-compression, electron injection, and acceleration in the second plasma wave period. Compared to self-injection by wave breaking of a nonlinear plasma wave in a constant density plasma, this scheme increases beam charge by up to 1 order of magnitude in the quasimonoenergetic regime. Electron acceleration in the second plasma wave period reduces electron beam divergence by ≈25%, and the localized injection at the density downramps results in spectra with less than a few percent relative spread.

  10. Large critical current density improvement in Bi-2212 wires through the groove-rolling process

    International Nuclear Information System (INIS)

    Malagoli, A; Bernini, C; Braccini, V; Romano, G; Putti, M; Chaud, X; Debray, F

    2013-01-01

    Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density J C and on the microstructure. In particular, groove-rolled multifilamentary wires show a J C increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper. (paper)

  11. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  12. Radial density distribution of a warm dense plasma formed by underwater electrical explosion of a copper wire

    Science.gov (United States)

    Nitishinskiy, M.; Yanuka, D.; Virozub, A.; Krasik, Ya. E.

    2017-12-01

    Time- and space-resolved evolution of the density (down to 0.07 of solid state density) of a copper wire during its microsecond timescale electrical explosion in water was obtained by X-ray backlighting. In the present research, a flash X-ray source of 20 ns pulse-width and >60 keV photon energy was used. The conductivity of copper was evaluated for a temperature of 10 kK and found to be in good agreement with the data obtained in earlier experiments [DeSilva and Katsouros, Phys. Rev. E 57, 5945 (1998) and Sheftman and Krasik, Phys. Plasmas 18, 092704 (2011)] where only electrical and optical diagnostics were applied. Magneto-hydrodynamic simulation shows a good agreement between the simulated and experimental waveforms of the current and voltage and measured the radial expansion of the exploding wire. Also, the radial density distribution obtained by an inverse Abel transform analysis agrees with the results of these simulations. Thus, the validity of the equations of state for copper and the conductivity model used in the simulations was confirmed for the parameters of the exploding wire realized in the present research.

  13. Applied Hts Bulks and Wires to Rotating Machines for Marine Propulsion

    Science.gov (United States)

    Miki, M.; Felder, B.; Kimura, Y.; Tsuzuki, K.; Taguchi, R.; Shiliang, Y.; Xu, Y.; Ida, T.; Izumi, M.

    2010-04-01

    High-temperature superconductors allow a compact and efficient way to provide high-torque density to rotating machines with excellent operation. A field pole, providing flux density of more than 1.5 T around the armature, was initially designed for an axial-gap type with the flux parallel to the rotor axis. Melt-growth Gd-123 bulks as well as Bi-2223 wire windings have been successfully assembled on the rotor disk. No iron core was used, though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks, a 15 kW, 720 rpm, synchronous motor was designed and tested in the group of TUMSAT, Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW, we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large-scale marine propulsion is also discussed on a 100 kW, 230 rpm tested machine. A closed-cycle condensed neon associated with thermal insulation is also reported.

  14. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  15. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    Science.gov (United States)

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  16. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  17. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires.

    Science.gov (United States)

    Zhang, Hao; Guo, Shuyu; Wang, Dongyue; Zhou, Tingting; Wang, Lin; Ma, Junqing

    2016-09-01

    To evaluate and compare the effects of nanostructured, diamondlike, carbon (DLC) coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel archwires. Plasma-enhanced chemical vapor deposition technology was applied to coat DLC films onto the surface of austenitic stainless steel wires, and salt-bath nitrocarburizing technology was employed to achieve surface hardening of other wires. Surface and cross-sectional characteristics, microhardness, modulus of elasticity, friction resistance, corrosion resistance, and cell toxicity of the modified and control wires were analyzed. The surfaces of the DLC-coated and nitrocarburized wires were both smooth and even. Compared with the control, the DLC-coated wires were increased in surface hardness 1.46 times, decreased in elastic modulus, reduced in kinetic friction coefficient by 40.71%, and decreased in corrosion current density by two orders of magnitude. The nitrocarburized wire was increased in surface hardness 2.39 times, exhibited an unchanged elastic modulus, demonstrated a decrease in maximum static friction force of 22.2%, and rose in corrosion current density two orders of magnitude. Cytotoxicity tests revealed no significant toxicity associated with the modified wires. DLC coating and nitrocarburizing significantly improved the surface hardness of the wires, reduced friction, and exhibited good biocompatibility. The nanostructured DLC coating provided excellent corrosion resistance and good elasticity, and while the nitrocarburizing technique substantially improved frictional properties, it reduced the corrosion resistance of the stainless steel wires to a lesser extent.

  18. Nickel-Titanium Wire as Suture Material: A New Technique for the Fixation of Skin.

    Science.gov (United States)

    Li, Haidong; Song, Tao

    2018-01-29

    To introduce nickel-titanium wire as suture material for closure of incisions in cleft lip procedures. Closure of skin incisions using nickel-titanium wire as suture material, with postoperative follow-up wound evaluation. There was excellent patient satisfaction and good cosmetic outcome. Nickel-titanium wire is an excellent alternative for suture closure of cleft lip surgical incisions.

  19. Electromagnetic densification of MgB2/Cu wires

    International Nuclear Information System (INIS)

    Woźniak, M; Glowacki, B A

    2014-01-01

    Electromagnetic compaction of in situ MgB 2 /Cu wire has been achieved using a custom-built 200 J device. The monofilament core packing density was increased by 8% and up to 31% for unreacted and reacted wires respectively. The higher density of the MgB 2 core resulted in a critical current density increase of up to 75% in comparison to that for cold-drawn-only wire. Applying this treatment to a wire with Cu powder additions to the core and with an optimized heat treatment resulted in one of the highest ever reported values of J c for MgB 2 /Cu wires of 6.83 × 10 3  A cm −2 at 4.2 K and 6 T. (paper)

  20. Density of Electronic States in Impurity-Doped Quantum Well Wires

    Science.gov (United States)

    Sierra-Ortega, J.; Mikhailov, I. D.

    2003-03-01

    We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)

  1. Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe2As2 HIP wires and tapes

    Science.gov (United States)

    Pyon, Sunseng; Suwa, Takahiro; Tamegai, Tsuyoshi; Takano, Katsutoshi; Kajitani, Hideki; Koizumi, Norikiyo; Awaji, Satoshi; Zhou, Nan; Shi, Zhixiang

    2018-05-01

    We fabricated (Ba,K)Fe2As2 superconducting wires and tapes using the powder-in-tube method and hot isostatic pressing (HIP). HIP wires and tapes showed a high value of transport critical current density (J c) exceeding 100 kAcm‑2 at T = 4.2 K and the self-field. Transport J c in the HIP wire reached 38 kAcm‑2 in a high magnetic field of 100 kOe. This value is almost twice larger than the previous highest value of J c among round wires using iron-based superconductors. Enhancement of J c in the wires and tapes was caused by improvement of the drawing process, which caused degradation of the core, formation of microcracks, weak links between grains, and random orientation of grains. Details of the effect of the improved fabrication processes on the J c are discussed.

  2. Experimental study on manufacturing of grits-spiral- distribution electroplated wire saw

    Directory of Open Access Journals (Sweden)

    Yufei GAO

    2016-12-01

    Full Text Available In order to obtain high performance electroplating diamond wire saw, experimental studies are conducted for development of grits-spiral-distribution electroplated diamond wire saw using sand-suspend electroplating method. The influences of pre-plating cathode current density, grits electro-embedding cathode current density and time on composite deposite coating appearance and grits distribution of wire saw are analyzed, and the sawing experiment is carried out by using the trial wire saw. The results show that good bonding strength between the coating and the steel wire can be obtained when the adopted cathode current density is 5.0 A/dm2 at pre-plating stage; good coating and girts distribution can be obtained when the adopted cathode current density is 5.0 A/dm2 and the electroplating time is 7~8 min at grits electro-embedding stage. By winding insulation wire on the surface of steel wire and reasonably selecting technological parameters before pre-plating can make the diamond wire saw with grits-spiral-distribution on surface, and the new type of wire saw has a better crumbs-clearing effect in wire sawing process.

  3. Bubble Formation within Filaments of Melt-Processed Bi2212 wires and its strongly negative effect on the Critical Current Density

    CERN Document Server

    Kametani, F; Jiang, J; Scheuerlein, C; Malagoli, A; Di Michiel, M; Huang, Y; Miao, H; Parrell, J A; Hellstrom, E E; Larbalestier, D C

    2011-01-01

    Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density Jc is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting Jc. By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed Jc values shows an inverse relation between Jc and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on Jc. Bubbles reduce the continuous Bi221...

  4. Fabrication of seven-core multi-filamentary MgB2 wires with high critical current density by an internal Mg diffusion process

    International Nuclear Information System (INIS)

    Togano, K; Hur, J M; Matsumoto, A; Kumakura, H

    2009-01-01

    We found that the reaction between a Mg core and a B powder layer in an internal Mg diffusion (IMD)-processed multi-filamentary wire can proceed rapidly even at a furnace temperature lower than the melting point of Mg (650 deg. C), resulting in the formation of a reacted layer with a fine composite structure and, hence, excellent in-field critical current properties. The multi-filamentary wire is composed of an outermost Cu-Ni sheath and seven filaments with a Ta sheath, a Mg core, and B+SiC powder filled in the space between the Ta sheath and the Mg core. Heat treatment at 645 deg. C for 1 h produced a reacted layer with dense composite structure along the inner wall of the Ta sheath and a hole at the center of each core. This reaction probably initiated from the heat generation at the B/Mg interface, resulting in a temperature rise of the Mg core and the occurrence of liquid Mg infiltration. The J c value at 4.2 K for the reacted layer exceeds 10 5 cm -2 at 9 T, which is the highest reported so far for MgB 2 wire, including powder-in-tube (PIT)-processed wires. These results indicate that the IMD process can compete in terms of practical wire fabrication with the conventional PIT process.

  5. The Microstructure of Multi-wire U-Mo Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Sang; Park, Eun Kee; Cho, Woo Hyoung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm {approx} 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix as shown. This multi-wire fuels showed very good fuel performance during the KOMO-3 irradiation test. At the KOMO-3 test, the specimen of the multi-wire fuels were U-7Mo/Al and U-7Mo-1Si/Al. In this study we investigate the microstructure change of the U-7Mo and U-7Mo-1Ti with some variation of annealing conditions. In addition to this, we want to check the effect of adding Ti element to U-7Mo on the gamma phase stability

  6. Effects of MgO impurities and micro-cracks on the critical current density of Ti-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Liang, G.; Alessandrini, M.; Yen, F.; Hanna, M.; Fang, H.; Hoyt, C.; Lv, B.; Zeng, J.; Salama, K.

    2007-01-01

    Ti-sheathed monocore MgB 2 wires with improved magnetic critical current density (J c ) have been fabricated by in situ powder-in-tube (PIT) method and characterized by magnetization, X-ray diffraction, scanning electron microscopy and electrical resistivity measurements. For the best wire, the magnetic J c values at 5 K and fields of 2 T, 5 T, and 8 T are 4.1 x 10 5 A/cm 2 , 7.8 x 10 4 A/cm 2 , and 1.4 x 10 4 A/cm 2 , respectively. At 20 K and fields of 0.5 T and 3 T, the J c values are about 3.6 x 10 5 A/cm 2 and 3.1 x 10 4 A/cm 2 , respectively, which are much higher than those of the Fe-sheathed mono-core MgB 2 wires fabricated with the same in situ PIT process and under the same fabricating conditions. It appears that the overall J c for the average Ti-sheathed wires is comparable to that of the Fe-sheathed wires. Our X-ray diffraction and scanning electron microscopy analysis indicates that J c in the Ti-sheathed MgB 2 wires can be strongly suppressed by MgO impurities and micro-cracks

  7. Spin-charge separation in quantum wires

    International Nuclear Information System (INIS)

    Yacoby, A.

    2004-01-01

    Full Text:Using momentum resolved tunneling between two clean parallel quantum wires in a AlGaAs/GaAs heterostructure we directly measure the dispersion of the quantum many-body modes in ballistic wires and follow their dependence on Coulomb interactions by varying the electron density. We find clear signatures of three excitation modes in the data: The anti-symmetric charge mode of the coupled wire system and two spin modes. The density dependence of the anti-symmetric charge mode agrees well with Luttinger-liquid theory. As the density of electrons is lowered, the Coulomb interaction is seen to become increasingly dominant leading to excitation velocities that are up to 2.5 times faster than the bare Fermi velocity, determined experimentally from the carrier density. The symmetric charge excitation, also expected from theory, is, however, not visible in the data. The observed spin velocities are found to be 25% slower than the bare Fermi velocities and depend linearly on carrier density. The dispersions are mapped down to a critical density at which spontaneous localization is observed. Some of the experimental findings concerning this phase will be discussed

  8. Swelling Estimation of Multi-wire U-Mo Monolithic Fuel for HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon-Sang; Ryu, Ho-Jin; Park, Jong-Man; Oh, Jong-Myeong; Kim, Chang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm - 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix. In this study temperature calculations and a swelling estimation of a multi-wire monolithic fuel were carried out. Also the results of a post irradiation analysis of this fuel will be introduced.

  9. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  10. Spontaneous spin polarization in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, A.A., E-mail: a_vas2002@mail.ru

    2015-12-04

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  11. Spontaneous spin polarization in quantum wires

    International Nuclear Information System (INIS)

    Vasilchenko, A.A.

    2015-01-01

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  12. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yu

    2011-02-01

    Full Text Available 【Abstract】Objective: To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. Methods: This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years. The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. Results: All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood’s rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. Conclusions: The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages. Key words: Sternoclavicular joint; Dislocations; Bone wires; Fracture fixation, internal

  13. Processing of flexible high-Tc superconducting wires

    International Nuclear Information System (INIS)

    Lee, B.I.; Modi, V.

    1989-01-01

    Wires superconducting at temperatures above 77 K are produced by using YBa 2 Cu 3 O 7 materials. Flexibility was obtained by support from prefabricated fibers or a metallic coating on the extruded YBa 2 Cu 3 O 7 wires. The microstructure, the T c and the critical current densities of the wires were determined. Processing variables and steps are described

  14. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  15. Anisotropic intrinsic spin Hall effect in quantum wires

    International Nuclear Information System (INIS)

    Cummings, A W; Akis, R; Ferry, D K

    2011-01-01

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)

  16. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    Science.gov (United States)

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  17. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  18. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  19. Critical current studies on fine filamentary NbTi accelerator wires

    International Nuclear Information System (INIS)

    Garber, M.; Sabatini, R.L.; Sampson, W.B.; Suenaga, M.

    1986-01-01

    The magnets for the Superconducting Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (> 2400 A/mm 2 at 5 T) and very small filaments ( about 2μ m in diameter). Previous work has shown that by controling the formation of Cu 4 Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J /SUB c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufacturers

  20. Critical current studies on fine filamentary NbTi accelerator wires

    International Nuclear Information System (INIS)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    The magnets for the Superconductig Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (>2400 A/mm 2 at 5 T) and very small filaments (approx. 2μm in diameter). Previous work has shown that by controlling the formation of Cu 4 Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J/sub c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufactures

  1. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  2. Transport critical current density and microstructure in extruded YBa2Cu3O7-x wires processed by zone melting

    International Nuclear Information System (INIS)

    Shi, D.; Krishnan, H.; Hong, J.M.; Miller, D.; McGinn, P.J.; Chen, W.H.; Xu, M.; Chen, J.G.; Fang, M.M.; Welp, U.; Lanagan, M.T.; Goretta, K.C.; Dusek, J.T.; Picciolo, J.J.; Balachandran, U.

    1990-01-01

    YBa 2 Cu 3 O 7-x compounds were extruded into long wires with the diameter of 1 mm after sintering. The sintered wires were subsequently zone melted to develop a highly textured microstructure. Magnetization experiments at 77 K indicated a J c value of 1x10 5 A/cm 2 at 1 T. Transport measurements at 77 K showed a greatly enhanced field dependence of the critical current density. Transmission electron microscopy revealed an important grain-boundary feature which eliminated the weak-link behavior. Large amounts of dislocations have also been found in the zone-melted sample which may contribute to flux pinning in the system

  3. STM tunneling through a quantum wire with a side-attached impurity

    International Nuclear Information System (INIS)

    Kwapinski, T.; Krawiec, M.; Jalochowski, M.

    2008-01-01

    The STM tunneling through a quantum wire (QW) with a side-attached impurity (atom, island) is investigated using a tight-binding model and the non-equilibrium Keldysh Green function method. The impurity can be coupled to one or more QW atoms. The presence of the impurity strongly modifies the local density of states of the wire atoms, thus influences the STM tunneling through all the wire atoms. The transport properties of the impurity itself are also investigated mainly as a function of the wire length and the way it is coupled to the wire. It is shown that the properties of the impurity itself and the way it is coupled to the wire strongly influence the STM tunneling, the density of states and differential conductance

  4. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  5. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    International Nuclear Information System (INIS)

    Basfar, A.A.

    2002-01-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation

  6. Magnetic characterization of the nickel layer protecting the copper wires in harsh applications

    Directory of Open Access Journals (Sweden)

    Roger Daniel

    2017-06-01

    Full Text Available High Temperature (HT° motor coils open new perspectives for extending the applications of electrical motors or generators to very harsh environments or for designing very high power density machines working with high internal temperature gradients. Over a temperature of 300°C, the classic enameled wire cannot work permanently, the turn-to-turn insulation must be inorganic and made with high temperature textiles or vitro-ceramic compounds. For both cases, a diffusion barrier must protect the copper wire against oxidation. The usual solution consists of adding a nickel layer that yields an excellent chemical protection. Unfortunately, the nickel has ferromagnetic properties that change a lot the skin effect in the HT wire at high frequencies. For many applications such as aeronautics, electrical machines are always associated with PWM inverters for their control. The windings must resist to high voltage short spikes caused by the fast fronted pulses imposed by the feeding inverter. The nickel protection layer of the HT° inorganic wire has a large influence on the high frequency behavior of coils and, consequently, on the magnitude of the voltage spikes. A good knowledge of the non-linear magnetic characteristics of this nickel layer is helpful for designing reliable HT inorganic coils. The paper presents a method able to characterize non-linear electromagnetic properties of this nickel layer up to 500°C.

  7. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    OpenAIRE

    Kametani, F.; Jiang, J.; Matras, M.; Abraimov, D.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-01-01

    Why Bi2Sr2CaCu2Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)2Sr2Ca2Cu3O10), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM

  8. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  9. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    International Nuclear Information System (INIS)

    Reshak, A.H.; Khan, Saleem Ayaz; Kamarudin, H.; Bila, Jiri

    2014-01-01

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor

  10. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-01-05

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor.

  11. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    International Nuclear Information System (INIS)

    Campbell, Scott; Holesinger, Terry; Huang, Ybing

    2012-01-01

    of an extremely high H c2 . For this reason, Bi 2 Sr 2 CaCu 2 O y (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb 3 Sn wires used in magnets in the 16-18 T range typically perform with J E in the range 200-500 A/mm 2 ; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J E (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J E at the operating conditions, resistive transition

  12. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  13. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  14. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  15. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  16. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  17. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  18. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  19. Development of Nb3Sn AC superconducting wire. Pt. 2

    International Nuclear Information System (INIS)

    Kasahara, Hobun; Torii, Shinji; Akita, Shirabe; Ueda, Kiyotaka; Kubota, Yoji; Yasohama, Kazuhiko; Kobayashi, Hisayasu; Ogasawara, Takeshi.

    1993-01-01

    For the realization of superconducting power apparatus, it is important that the development of highly stable superconducting cables. Nb 3 Sn wire has higher critical temperature than NbTi wire. Therefore, it is possible to make highly stable superconducting wires. In this report, we examine a manufacturing process of Ac Nb 3 Sn wire. This manufacturing process has four times higher critical current density than conventional processes. We have made a 400 kVA class AC coil with React and Wind method. The loss density of this coil was 20MW/m 3 at just before the quench. In this case, the temperature of cable increased about 3.8 K. This means that the Nb 3 Sn coil has a very high stability. (author)

  20. Spin polarization of electrons in quantum wires

    OpenAIRE

    Vasilchenko, A. A.

    2013-01-01

    The total energy of a quasi-one-dimensional electron system is calculated using density functional theory. It is shown that spontaneous ferromagnetic state in quantum wire occurs at low one-dimensional electron density. The critical electron density below which electrons are in spin-polarized state is estimated analytically.

  1. Basic characteristics of thin wire arc plasma

    International Nuclear Information System (INIS)

    Urushihara, K.; Endoh, N.; Ono, S.; Teii, S.; Ishimura, T.

    1998-01-01

    The investigated plasma was generated by applying an electric current of about 50 A to a copper wire of 48 μm diameter in air. The development in time of emission spectra was measured and relative line intensity ratios were used to determine the temperature. The extension of the plasma was measured with a movable electrostatic probe which was placed next to the thin wire, and the electron density was estimated using the known electron mobility. The electron temperature was typically about 8000 K. On the other hand, the electron density tended to decrease with time from about 3.10 16 cm -3

  2. Simulation of the chemical environment of a nuclear explosion with exploding wires

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Walter; Block, Oliver U.J. [Nuclear Engineering, Kansas State University, Manhattan, KS (United States)

    1970-05-15

    The chemical processes in an expanding underground cavity resulting from a nuclear explosion cannot be predicted or controlled as well as such physical characteristics as crater size, magnitude of the outgoing shock wave, or the extent of rock fracturing. However in most underground nuclear explosions it would be desirable to control the chemical and/or physical form and amount of radioactive fallout venting from the explosion. The high temperatures and corresponding high energy densities produced by exploding wires are sufficient to produce in the wire and material immediately surrounding it the temperature (a few thousand degrees) required to simulate the chemical environment of a nuclear explosion in the time interval just preceding the venting of the cavity. The economics and the size of exploding wire apparatus make this type of experiment readily applicable to laboratory study. Design of exploding wire circuits to obtain particular temperatures or energy densities can be completed using several different combinations of circuit and wire conditions. Since the circuit parameters, including charging voltage, capacitor bank capacitance and circuit inductance primarily determine the cost of the necessary laboratory equipment, these parameters should be selected by theoretical expressions while also considering economic factors. Wire parameters are then experimentally determined to produce the most energetic explosions with the selected circuit parameters. A theoretical method applicable to designing exploding wire circuits to produce the desired high temperatures and energy densities in the wire and surrounding sample material has been obtained. The method assumes that a thermal spike of energy is deposited in a low conductivity material (typical of the earth's crust) surrounding the wire. From the assumed temperature distribution in the surrounding sample material the energy which must be deposited in the thermal spike to produce the desired temperature and

  3. AC magnetic transport on heterogeneous ferromagnetic wires and tubes

    International Nuclear Information System (INIS)

    Sinnecker, J.P.; Pirota, K.R.; Knobel, M.; Kraus, L.

    2002-01-01

    The AC current density radial distribution is calculated on heterogeneous composite materials with cylindrical geometry. The composites have an inner core and thin outer shell that can be either from the same material (homogenous material like simple wires) or from different materials with different physical properties. The case in which a non-magnetic inner core is surrounded by a magnetic layer, like electrodeposited wires, is mainly studied. The effect of frequency and applied magnetic field is simulated. The current density distribution as a function of frequency and applied field, as well as the total current over the inner core and outer shells are calculated. The results agree substantially well with the experimentally observed data for simple electrodeposited wires

  4. Four-atom period in the conductance of monatomic al wires

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2003-01-01

    We present first-principles calculations based on density functional theory for the conductance of monatomic Al wires between Al(111) electrodes. In contrast to the even-odd oscillations observed in other metallic wires, the conductance of the Al wires is found to oscillate with a period of four ...... atoms as the length of the wire is varied. Although local charge neutrality can account for the observed period, it leads to an incorrect phase. We explain the conductance behavior using a resonant transport model based on the electronic structure of the infinite wire....

  5. Superconducting critical-current densities of commercial multifilamentary Nb3Sn(Ti) wires made by the bronze process

    International Nuclear Information System (INIS)

    Suenaga, M.; Tsuchiya, K.; Higuchi, N.; Tachikawa, K.

    1985-01-01

    Superconducting critical-current densities Jsub(c) in fields up to 24 T and at 4.2 and 1.8 K were measured for a number of commercial Nb 3 Sn wires which were alloyed with Ti. The best values of Jsub(c) at 20 T and at 4.2 and 1.8 K were 78 and 156 A mm -2 , respectively. In order to achieve these high current densities at H>20 T, it was shown that nonuniformity of the filaments had to be minimized. It was also shown that the grain size of Nb 3 Sn is not very important in determining Jsub(c) at these high magnetic fields, and that achieving high values of critical magnetic field Hsub(c2) is more important than small grain size. (author)

  6. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  7. Silicon Nano wires with MoS_x and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Ho, S.T.; Chen, W.J.

    2016-01-01

    A convenient method was used for synthesizing Pt-nanoparticle//silicon nano wires nano composites. Obtained Pt-/silicon nano wires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-/silicon nano wire nano composite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-/silicon nano wire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-/silicon nano wires is also comparable to /silicon nano wires and Pt/silicon nano wires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-/silicon nano wires can be attributed to the fast electron transfer between Pt-/silicon nano wire electrodes and electrolyte interfaces.

  8. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres

    International Nuclear Information System (INIS)

    Zhao, Liwei; Li, Hongji; Li, Mingji; Xu, Sheng; Li, Cuiping; Qu, Changqing; Zhang, Lijun; Yang, Baohe

    2016-01-01

    Highlights: • Graphene/TaC/Ta wire electrode was prepared by CVD. • Carbon hollow spheres as a solid electrolyte were prepared by hydrothermal. • Specific capacitance of assembled capacitor reached 593 F g −1 at 10 A g −1 . • The capacitor provided high energy and power densities (132 W h kg −1 /3.17 kW kg −1 ). • The hybrid capacitor also exhibited a high stability during long endurance tests. - Abstract: Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593 F g −1 at a current density of 10 A g −1 . The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132 W h kg −1 at a high power density of 3.17 kW kg −1 . The high energy density is attributed to the widened operation window ranging from 0 to 3.0 V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.

  9. Progress in electrical and mechanical properties of rectangular MgB2 wires

    International Nuclear Information System (INIS)

    Kovac, P; Melisek, T; Kopera, L; Husek, I; Polak, M; Kulich, M

    2009-01-01

    Critical current densities and mechanical resistance of MgB 2 wires made by the rectangular wire-in-tube technique (RWIT) have been studied. Wires prepared from different precursor powders and variable sheath materials are compared. The best electrical performance (10 4 A cm -2 at 11.3 T) was measured for the wire with mechanically alloyed powder doped by SiC. While the critical current densities, J c , at 4.2 K are considerably influenced by the powder used, the differences at 20 K are much smaller. Flattened wires show different levels of critical current anisotropy influenced by the precursor powder used. Stress-strain characteristics and critical current degradation are strongly affected by the applied metallic materials and also by the filament's strength. The highest irreversible strain ε irr = 0.55% was measured for Ti/Cu/Monel sheathed wire with filaments from mechanically alloyed powder.

  10. Fabrication and superconducting properties of a simple-structured jelly-roll Nb{sub 3}Al wire with low-temperature heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.J. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Yan, G., E-mail: gyan@c-wst.com [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Pan, X.F. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Zhang, P.X. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Qi, M. [Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Liu, X.H.; Feng, Y. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Superconductivity and New Energy R& D Center, Southwest Jiaotong University (SWJTU), Chengdu 610031 (China)

    2015-06-15

    Highlights: • Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the jelly-roll method. • The length of 18-cores Nb{sub 3}Al superconducting wire reaches 100 m without any breakage and intermediate anneal. • This wire has the uniform filament-shapes and fine long-wire homogeneity. • This Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. - Abstract: With extremely high critical current density (J{sub c}) and excellent strain tolerance, Nb{sub 3}Al superconductor is considered as an alternative to Nb{sub 3}Sn for application of high-field magnets. However, owing to their complex structure, Nb{sub 3}Al superconducting wires can hardly meet the requirement of engineering application at present. In this work, a novel simple-structured Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the conventional jelly-roll method, as well as a heat-treatment of 800–850 °C for 20–50 h. The results show that a 18-filament superconducting wire with length longer than 100 m can be successfully prepared by this method, and also this Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. These suggest that with further optimization, the simple-structured Nb{sub 3}Al superconducting wires are very promising to fabricate the km-grade long wires to meet the requirement of engineering application.

  11. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    Science.gov (United States)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  12. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  13. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  14. ''Water bath'' effect during the electrical underwater wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Ratakhin, N. A.; Grinenko, A.; Krasik, Ya. E.

    2007-01-01

    The results of a simulation of underwater electrical wire explosion at a current density >10 9 A/cm 2 , total discharge current of ∼3 MA, and rise time of the current of ∼100 ns are presented. The electrical wire explosion was simulated using a one-dimensional radiation-magnetohydrodynamic model. It is shown that the radiation of the exploded wire produces a thin conducting plasma shell in the water in the vicinity of the exploding wire surface. It was found that this plasma shell catches up to 30% of the discharge current. Nevertheless, it was shown that the pressure and temperature of the wire material remain unchanged as compared with the idealized case of the electrical wire explosion in vacuum. This result is explained by a 'water bath' effect

  15. Electron transport in quantum wires: possible current instability mechanism

    International Nuclear Information System (INIS)

    Sablikov, V.A.

    2001-01-01

    The electrons nonlinear and dynamic transition in quantum wires connecting the electron reservoirs, are studies with an account of the Coulomb interaction distribution of electron density between the reservoirs and the wire. It is established that there exist two processes, leading to electrical instability in such structure. One of them is expressed in form of multistability of the charge accumulated in the wire, and negative differential conductivity. The other one is connected with origination of negative dynamic conductivity in the narrow frequency range near the resonance frequency of the charge waves on the wire length [ru

  16. Study of the core gaps formed accidentally during wire explosion

    International Nuclear Information System (INIS)

    Tkachenko, S. I.; Khattatov, T. A.; Romanova, V. M.; Mingaleev, A. R.; Baksht, R. B.; Oreshkin, V. I.; Shelkovenko, T. A.; Pikuz, S. A.

    2012-01-01

    During wire explosion, along with striations (a regular structure with alternating lower and higher density bands), low-density regions the characteristic axial size of which differs substantially from that of striations and can reach 1–2 mm are also observed in the discharge channel. Such irregular structures came to be known as “gaps” (D. B. Sinars et al., Phys. Plasmas 8, 216 (2001)). In the present study, the mechanism of the formation of core gaps during explosions of 25- and 50-μm-diameter copper and nickel wires in air is investigated. It is shown that the specific energy deposited in the gap region substantially exceeds the average specific energy deposited in the wire material.

  17. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low currents......, while fusion bonding occurred at higher currents. This was due to the highly asymmetrical heat generation resulting in almost complete melting of the wire before the initiation of interfacial melting. This is a distinctly different bonding mechanism compared to previous studies on crossed wire joints....

  18. Scaleup of powder metallurgy processed Nb-Al multifilamentary wire

    International Nuclear Information System (INIS)

    Thieme, C.; Foner, S.; Otubo, J.; Pourrahimi, S.; Schwartz, B.; Zhang, H.

    1983-01-01

    Power metallurgy processed Nb-Al superconducting wires were fabricated from billets up to 45 mm o.d. with nominal areal reduction ratios, R, up to 2 X 10 5 , Nb powder sizes from 40 to 300 μm from various sources, Al powder sizes from 9 to 75 μm, Al concentrations from 3 to 25 wt % Al and with a wide range of heat treatments. All the compacts used tap density powder in a Cu tube and swaging and/or rod rolling and subsequent wire drawing. Both single strand and bundled wires were made. Overall critical current densities, J /SUB c/, of 2 X 10 4 A/cm 2 at 14 T and 10 4 A/cm 2 at 16 T were achieved for 6 to 8 wt % Al in Nb

  19. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  20. Symmetric tape round REBCO wire with J e (4.2 K, 15 T) beyond 450 A mm-2 at 15 mm bend radius: a viable candidate for future compact accelerator magnet applications

    Science.gov (United States)

    Kar, Soumen; Luo, Wenbo; Ben Yahia, Anis; Li, Xiaofen; Majkic, Goran; Selvamanickam, Venkat

    2018-04-01

    Round REBCO (RE = rare earth) wires of 1.6-1.85 mm diameter have been fabricated using ultrathin REBCO tapes where the superconductor film is positioned near the geometric center. Such symmetric tape round (STAR) wires exhibit excellent tolerance to bend strain with a critical current retention of more than 97% when bent to a radius of 15 mm. A 1.6 mm diameter REBCO STAR wire made with six 2.5 mm wide symmetric tapes reached an engineering current density (J e) of 454 A mm-2 at 4.2 K in a background field of 15 T at a bend radius of 15 mm. Such superior performance at a small bend radius can enable fabrication of future accelerator magnets, operating at magnetic fields above 20 T.

  1. Comparison of Superelasticity of Nickel Titanium Orthodontic Arch wires using Mechanical Tensile Testing and Correlating with Electrical Resistivity

    Science.gov (United States)

    Sivaraj, Aravind

    2013-01-01

    Background: Application of light and continuous forces for optimum physiological response and least damage to the tooth supporting structures should be the primary aim of the orthodontist. Nickel titanium alloys with the properties of excellent spring back, super elasticity and wide range of action is one of the natural choices for the clinicians to achieve this goal. In recent periods, various wire manufacturers have come with a variety of wires exhibiting different properties. It is the duty of the clinician to select appropriate wires during various stages of treatment for excellent results. For achieving this evaluation of the properties of these wires is essential. Materials & Methods: This study is focussed on evaluating the super elastic property of eight groups of austenite active nickel titanium wires. Eight groups of archwires bought from eight different manufacturers were studied. These wires were tested through mechanical tensile testing and electrical resistivity methods. Results: Unloading curves were carefully assessed for superelastic behaviour on deactivation. Rankings of the wires tested were based primarily upon the unloading curve’s slope Conclusion: Ortho organisers wires ranked first and superior, followed by American Orthodontics and Ormco A wires. Morelli and GAClowland NiTi wires were ranked last. It can be concluded that the performance of these wires based on rankings should be further evaluated by clinical studies. How to cite this article: Sivaraj A. Comparison of Superelasticity of Nickel Titanium Orthodontic Arch wires using Mechanical Tensile Testing and Correlating with Electrical Resistivity. J Int Oral Health 2013; 5(3):1-12. PMID:24155596

  2. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  3. The Fine Wire Technique for Flexor Tenolysis.

    Science.gov (United States)

    Rosenblum, Matthew K; Baltodano, Pablo A; Weinberg, Maxene H; Whipple, Lauren A; Gemmiti, Amanda L; Whipple, Richard E

    2017-11-01

    Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire's thinness allows for a swift tenolysis. The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive.

  4. Mesoscopic NbSe3 wires

    International Nuclear Information System (INIS)

    Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.

    1999-01-01

    We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)

  5. Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging

    International Nuclear Information System (INIS)

    Bartolome, E; Granados, X; Cambel, V; Fedor, J; Kovac, P; Husek, I

    2005-01-01

    The irreversible magnetic behaviour at different temperatures of an ex situ Fe-alloy/MgB 2 wire, exhibiting a granular compositional distribution, was studied using an in-field, high resolution Hall probe imaging system. Quantitative information about the local current density was obtained by solving the Biot-Savart inversion problem. The flux penetration and current distribution maps obtained can be attributed to a inhomogeneous compositional 'plum-cake-like' system, consisting of large, isolated MgB 2 agglomerations embedded in a matrix of finely distributed MgB 2 +MgO. The critical current densities within the grains and their evolution with the applied magnetic field and temperature have been obtained, and compared to the mean J c (H,T) in the matrix

  6. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  7. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  8. Application of irradiation process for the production of thin wall wires

    International Nuclear Information System (INIS)

    Saito, E.

    1977-01-01

    The demand for thin wall crosslinked PVC or polyethylene insulated wires in Japan was about 15,000,000 dollars in value in 1975. Their annual sales in 1980 are estimated at about 40 million dollars which will account for approximately 20% of the sales of all thin wall thermoplastic insulated wires expected for the same year. A comparative study was made of the irradiation process and the chemical process for manufacture of wires with crosslinked PVC or polyethylene insulation. Having found the excellence of the irradiation process an accelerator (500 KeV, 65mA) was installed in 1973 and production was begun of several types of thin wall irradiation crosslinked PVC and polyethylene insulated wires ranging from 0.06 mm 2 to 2.0 mm 2 in the cross-sectional area of conductor, successfully putting them in extensive commercial application. This report compares the irradiation process and the chemical process, properties of several types of irradiation crosslinked PVC, and polyethylene insulated wires and their applications. (author)

  9. Scanning the melting curve of tungsten by a submicrosecond wire-explosion experiment

    International Nuclear Information System (INIS)

    Kloss, A.; Hess, H.; Schneidenbach, H.; Grossjohann, R.

    1999-01-01

    Measurements of temperature and density during a wire-explosion experiment at atmospheric pressure are described. The measurements encompass a parameter range from the solid to near the critical point. The influence of a polytetra-fluoroethylene coating of the wire, necessary to prevent surface discharges, on the temperature and density measurements is investigated. The melting curve of tungsten up to 4,000 K is determined

  10. The influence of the manufacturing method on the microstructure and drawing properties of copper wires

    International Nuclear Information System (INIS)

    Gruber, A.; Jeglitsch, F.

    1982-01-01

    Copper is the third most important common metal from production figures after iron and aluminium and is largely used as pure metal in the electroindustry mainly here in the form of wires of different sizes due to its excellent electrical properties. Therefore all factors influencing the drawing ability are very important. The following work deals with the influence of impurity measurements as well as of the microstructure on the deformation or recrystallization behaviour in manufacturing continuous casting and rolling wire and dip-forming wire, and gives a rupture cause specific to each manufacturing method in the wire drawing process. (orig.) [de

  11. Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics.

    Science.gov (United States)

    Sutou, Yuji; Omori, Toshihiro; Furukawa, Akihisa; Takahashi, Yukinori; Kainuma, Ryosuke; Yamauchi, Kiyoshi; Yamashita, Shuzo; Ishida, Kiyohito

    2004-04-15

    A new type of medical guide wire with functionally graded hardness from the tip to the end was developed with the use of Cu-Al-Mn-based alloys. The superelasticity (SE) of the Cu-Al-Mn-based alloys in the tip is drastically improved by controlling the grain size, whereas the end of the wire is hardened using bainitic transformation by aging at around 200-400 degrees C. Therefore, the tip of the guide wire shows a superelasticity and its end has high stiffness. This guide wire with functionally graded characteristics shows excellent pushability and torquability, superior to that of the Ni-Ti guide wire. Copyright 2004 Wiley Periodicals, Inc.

  12. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft fractures in children: A treatment concept.

    Science.gov (United States)

    Sahu, Ramji Lal

    2013-09-01

    Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be treated surgically. In the present study, Kirschner wires (K-wire) were used to achieve a closed intramedullary fixation of humeral shaft fractures. The objective of this study was to evaluate the efficacy of intramedullary K-wires for the treatment of humeral shaft fracture in children. This prospective study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from June 2005 to June 2010. Sixty-eight children with a mean age of 7.7 years (range, 2-14 years) were recruited from Emergency and out patient department having closed fracture of humerus shaft. All patients were operated under general anaesthesia. All patients were followed for 12 months. Out of 68 patients, 64 patients underwent union in 42-70 days with a mean of 56 days. Complications found in four patients who had insignificant delayed union which were united next 3 weeks. Intramedullary K-wires were removed after an average of 5 months without any complications. The results were excellent in 94.11% and good in 5% children. This technique is simple, quick to perform, safe and reliable and avoids prolonged hospitalization with good results and is economical.

  13. Nanosecond electrical explosion of thin aluminum wire in vacuum: experimental and computational investigations

    International Nuclear Information System (INIS)

    Cochrane, Kyle Robert; Struve, Kenneth William; Rosenthal, Stephen Edgar; McDaniel, Dillon Heirman; Sarkisov, Gennady Sergeevich; Deeney, Christopher

    2004-01-01

    The experimental and computational investigations of nanosecond electrical explosion of thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. Laser shadowgrams of the overheated Al core exhibit axial stratification with a ∼100 (micro)m period. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Two-wavelength interferometry shows an expanding Al core in a low-ionized gas condition with increasing ionization toward the periphery. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of ∼100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. 1D MHD simulation shows good agreement with experimental data. MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for wire core and corona follow from the MHD simulation and are discussed.

  14. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  15. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  16. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    Science.gov (United States)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  17. Diameter dependent failure current density of gold nanowires

    International Nuclear Information System (INIS)

    Karim, S; Maaz, K; Ali, G; Ensinger, W

    2009-01-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 x 10 12 A m -2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  18. Structure and electronic properties of molybdenum monatomic wires encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Fuente, A; Vega, A [Departamento de Fisica Teorica, Atomica y Optica. Universidad de Valladolid, E-47011 Valladolid (Spain); GarcIa-Suarez, V M; Ferrer, J [Departamento de Fisica and CINN, Universidad de Oviedo, 33007 Oviedo (Spain)

    2011-07-06

    Monatomic chains of molybdenum encapsulated in single-walled carbon nanotubes (CNTs) of different chiralities are investigated using density functional theory. We determine the optimal size of the CNT for encapsulating a single atomic wire, as well as the most stable atomic arrangement adopted by the wire. We also study the transport properties in the ballistic regime by computing the transmission coefficients and tracing them back to the electronic conduction channels of the wire and the host. We predict that CNTs of appropriate radii encapsulating a Mo wire have metallic behavior, even if both the nanotube and the wire are insulators. Therefore, encapsulation of Mo wires in CNTs is a way to create conductive quasi-one-dimensional hybrid nanostructures.

  19. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.

    Science.gov (United States)

    Imai, T; Watari, F; Yamagata, S; Kobayashi, M; Nagayama, K; Toyoizumi, Y; Nakamura, S

    1998-12-01

    The FRP wires 0.5 mm in diameter with a multiple fiber structure were fabricated by drawing the fiber polymer complex at 250 degrees C for an esthetic, transparent orthodontic wire. Biocompatible CaO-P2O5-SiO2-Al2O3 (CPSA) glass fibers of 8-20 microm in diameter were oriented unidirectionally in the longitudinal direction in PMMA matrix. The mechanical properties were investigated by 3-point flexural test. The FRP wire showed sufficient strength and a very good elastic recovery after deformation. Young's modulus and the flexural load at deflection 1 mm were nearly independent of the fiber diameter and linearly increased with the fiber fraction. The dependence on fiber fraction obeys well the rule of mixture. This FRP wire could cover the range of strength corresponding to the conventional metal orthodontic wires from Ni-Ti used in the initial stage of orthodontic treatments to Co-Cr used in the final stage by changing the volume ratio of glass fibers with the same external diameter. The estheticity in external appearance was excellent. Thus the new FRP wire can satisfy both mechanical properties necessary for an orthodontic wire and enough estheticity, which was not possible for the conventional metal wire.

  20. Properties of stabilized MgB2 composite wire with Ti barrier

    International Nuclear Information System (INIS)

    Kovac, P; Husek, I; Melisek, T; Holubek, T

    2007-01-01

    Stabilized four-filament in situ MgB 2 /Ti/Cu/Monel composite wire was produced by the rectangular wire-in-tube (RWIT) technique. 10 wt% of nanosize SiC was added into the Mg-B powder mixture, which was packed into the Ti/Cu and Monel tubes, respectively. The assembled composite was two-axially rolled into wire and/or tape form and sintered at temperatures of 650-850 deg. C/0.5 h. Stabilized MgB 2 wire with Ti barrier is studied in terms of field-dependent transport critical current density, effects of filament size reduction and thermal stability

  1. Mechanical and metallurgical changes on 308L wires drawn by electropulses

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Celentano, Diego Javier; Jorba Peiró, Jordi

    2015-01-01

    The electroplastic effects resulting from different electropulses configurations on a wire drawing process are investigated experimentally and numerically. Electropulses are induced into 308L stainless steel while it is simultaneously wire drawn. A current density of 185 A/mm2, a frequency range from 140 to 355 Hz and a pulse duration range from 100 to 250 µs are combined to electrically assist the wire drawing process. The electropulsing influence is studied in several mechanical parameters,...

  2. Improvement of cold wire drawing process by electropulsing

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Jorba Peiró, Jordi

    2015-01-01

    The electroplastic effects on wire drawing process assisted with different short time current pulses configurations are investigated experimentally. The current pulses were induced to a specimen during the drawing process. The studied material is the 308L stainless steel. Current densities of 185 A/mm2, frequencies range from 140 to 350 Hz and pulse duration range from 100 to 250 μs were used in the electrically‐assisted wire drawing process. Frequency and pulse duration are...

  3. High conductivity carbon nanotube wires from radial densification and ionic doping

    Science.gov (United States)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  4. Microstructural and crystallographic imperfections of MgB{sub 2} superconducting wire and their correlation with the critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Shahabuddin, Mohammed; Alzayed, Nasser S. [Department of Physics and Astronomy, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Oh, Sangjun [Materials Research Team, National Fusion Research Institute, Yueeong, Daejeon 305-333 (Korea, Republic of); Choi, Seyong [Busan Center, Korea Basic Science Institute, Geumjeong, Busan 609-735 (Korea, Republic of); Maeda, Minoru [Department of Physics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Hata, Satoshi; Shimada, Yusuke [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hossain, Md Shahriar Al [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Kim, Jung Ho, E-mail: jhk@uow.edu.au [Department of Physics and Astronomy, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia)

    2014-01-15

    A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.

  5. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  6. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    Science.gov (United States)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  7. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  8. X-ray backlighting of two-wire Z-pinch plasma using X-pinch

    International Nuclear Information System (INIS)

    Tong, Zhao; Xiao-Bing, Zou; Ran, Zhang; Xin-Xin, Wang

    2010-01-01

    Two 50-μm Mo wires in parallel used as a Z-pinch load are electrically exploded with a pulsed current rising to 275 kA in 125 ns and their explosion processes are backlighted using an X-pinch as an x-ray source. The backlighting images show clearly the processes similar to those occurring in the initial stages of a cylindrical wire-array Z-pinch, including the electric explosion of single wires characterised by the dense wire cores surrounded by a low-density coronal plasma, the expansion of the exploding wire, the sausage instability (m = 0) in the coronal plasma around each wire, the motion of the coronal plasma as well as the wire core toward the current centroid, the formation of the precursor plasma column with a twist structure something like that of higher mode instability, especially the kink instability (m = 1). (fluids, plasmas and electric discharges)

  9. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  10. Phenomenological investigation of many-body induced modifications to the one-dimensional density of states of long quantum wires

    International Nuclear Information System (INIS)

    Morimoto, T; Yumoto, N; Ujiie, Y; Aoki, N; Ochiai, Y; Bird, J P

    2008-01-01

    We investigate the behavior of interacting one-dimensional systems using linear (close to equilibrium) and non-linear transport measurements of split-gate quantum wires of varying channel length. Our measurements reveal a remarkable resonance effect in the differential conductance, which exhibits a pronounced peak, for a narrow range of source-drain voltage, at the transition from tunneling to open transport. This peak becomes more pronounced with increase of channel length, but is rapidly suppressed by increase of temperature or (in-plane) magnetic field. We believe that these unique features may arise from the dependence of transport on the electron density of states, and suggest a phenomenological model to account for this transport behavior

  11. Magnesium diboride(MgB2) wires for applications

    International Nuclear Information System (INIS)

    Patel, Dipak; Kim, Jung Ho

    2016-01-01

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB 2 /Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB 2 structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm -2 for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10 5 Acm -2 at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires

  12. Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu-Nb composite wires and experimental comparison

    International Nuclear Information System (INIS)

    Gu, T.; Medy, J.-R.; Volpi, F.; Castelnau, O.; Forest, S.; Hervé-Luanco, E.; Lecouturier, F.; Proudhon, H.; Renault, P.-O.

    2017-01-01

    Nanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (> 90T) as they combine both high electrical conductivity and high strength. Multi-scaled Cu-Nb wires can be fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure providing a unique set of properties. This work presents a comprehensive multiscale study to predict the anisotropic effective electrical conductivity based on material nanostructure and architecture. Two homogenization methods are applied: a mean-field theory and a full-field approach. The size effect associated with the microstructure refinement is taken into account in the definition of the conductivity of each component in the composites. The multiscale character of the material is then accounted for through an iterative process. Both methods show excellent agreement with each other. The results are further compared, for the first time, with experimental data obtained by the four-point probe technique, and also show excellent agreement. Finally, the qualitative and quantitative understanding provided by these models demonstrates that the microstructure of Cu-Nb wires has a significant effect on the electrical conductivity.

  13. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    Science.gov (United States)

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  14. A STUDY ON THE MANAGEMENT OF DISPLACED FRACTURES OF PATELLA USING MODIFIED TENSION BAND WIRING

    Directory of Open Access Journals (Sweden)

    Hari Babu

    2015-10-01

    Full Text Available INTRODUCTION: Patella is an important component of the extensor mechanism of the knee. A patella fracture constitutes 1% of all skeletal fractures resulting from either direct or indirect trauma. Any improper and inadequate treatment would inevitably lead to a disability which would be most perceptibly felt in a country like India, where squatting is important activity in daily life. The goal of treatment is to regain the continuity of the extensor mechanism and congruity of patellofemoral a rticulation so that the normal function of the knee can be restored. Several techniques have been described for internal fixation of fractures of patella. The ideal fixation for the fracture patella is that it should be strong enough to allow early mobiliz ation, reduce posttraumatic stiffness and perhaps help the healing of the articular surface . AIMS: To analyze the functional outcome of displaced transverse fractures of the patella treated by Modified Tension Band Wiring principle (Muller using A. Dutta & S. K. Gupta Scoring System. To extend the application of Modified Tension Band wiring for minimally comminuted fractures of patella and assesses the results. CONCLUSION : The present study shows that modified tension band wiring (Muller is an effective p rocedure in the management of displaced transverse patellar fractures, with excellent to good results. Minimally comminuted patellar fractures also yielded excellent to good results with Modified tension band wiring as an extended application. The results in the present study are comparable to other modifications of Tension Band Wiring principle. The surgery of Modified Tension Band Wiring gives rigid fixation and helps in early mobilization. Regular and scheduled post- operative physiotherapy plays an impor tant role in the functional outcome.

  15. Many-body spin related phenomena in ultra-low-disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Stiles, P.J.; O'Brien, J.L.; Lumpkin, N.E.

    2000-01-01

    Full text: Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 x 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs AlGaAs quantum wires with nominal lengths l=0 and 2μm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparison we observe structure near 0.7 x 2e 2 /h for l=0 whereas the l = 2μm wires show structure evolving with increasing density to 0.5 x 2e 2 /h in zero magnetic field, the value expected for an ideal spin split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region

  16. Developments in the Generation and Interpretation of Wire Codes (invited paper)

    International Nuclear Information System (INIS)

    Ebi, K.L.

    1999-01-01

    Three new developments in the generation and interpretation of wire codes are discussed. First, a method was developed to computer generate wire codes using data gathered from a utility database of the local distribution system and from tax assessor records. This method was used to wire code more than 250,000 residences in the greater Denver metropolitan area. There was an approximate 75% agreement with field wire coding. Other research in Denver suggests that wire codes predict some characteristics of a residence and its neighbourhood, including age, assessed value, street layout and traffic density. A third new development is the case-specular method to study the association between wire codes and childhood cancers. Recent results from applying the method to the Savitz et al and London et al studies suggest that the associations between childhood cancer and VHCC residences were strongest for residences with a backyard rather than street service drop, and for VHCC residences with LCC speculars. (author)

  17. Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic

    Energy Technology Data Exchange (ETDEWEB)

    Awano, Hiroyuki

    2015-06-01

    Current driven magnetic domain wall (DW) motions of ferri-magnetic TbFeCo wires have been investigated. In the case of a Si substrate, the critical current density (Jc) of DW motion was successfully reduced to 3×10{sup 6} A/cm{sup 2}. Moreover, by using a polycarbonate (PC) substrate with a molding groove of 600 nm width, the Jc was decreased to 6×10{sup 5} A/cm{sup 2}. In order to fabricate a logic in memory, a current driven spin logics (AND, OR, NOT) have been proposed and successfully demonstrated under the condition of low Jc. These results indicate that TbFeCo nanowire is an excellent candidate for next generation power saving memory and logic.

  18. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  19. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  20. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  1. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    International Nuclear Information System (INIS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-01-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (I c ) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum I c was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO)

  2. Energy transformation in Z-pinch and plasma focus discharges with wire and wire-in-liner loads

    International Nuclear Information System (INIS)

    Kubes, Pavel; Kravarik, Jozef; Klir, Daniel; Scholz, Marek; Paduch, Marian; Tomaszewski, Krzysztof; Karpinski, Leslaw; Bakshaev, Yury L.; Blinov, Peter I.; Chernenko, Andrey S.; Dan'ko, Sergey A.; Korolev, Valery D.; Shashkov, Andrey Y.; Tumanov, Victor I.

    2002-01-01

    The results of the study of the Z-pinch and plasma-focus plasmas at presence of the axial C, Al, or Cu wires of sufficient high diameter are discussed in this paper. The wire was positioned on the top of the inner electrode of the PF 1000 plasma focus (1.8 MA, IPPLM Warsaw), or at the axis with or without the tungsten or alumine wire array load at the S-300 facility (3 MA, RRC Kurchatov Institute, Moscow), and at the axis of the small Z-pinch Z-150 (50 kA, CTU Prague). The plasma corona around the wire was generated both by the current going through the wires and by the implosion of the wire array or of the current sheath. The experiments showed interesting results often observed in some shots of Z-pinch type discharges - existence of helical structures, two relatively long and stable pinch phases, oscillation of pinch diameter, and back return of the plasma exploding from the pinch. All these observed phenomena can be evolved by spontaneous self-generation and transformation of the axial magnetic field in the pinch during the plasma implosion and explosion. A configuration of axial and azimuthal magnetic field confines the plasma and later transforms or dissipates during a few tens or hundreds ns. A fast transformation of internal magnetic fields can induce a sufficiently high electric field for generation of keV particles and radiation. Study and usage of Z-pinch discharges is connected with solving of two principal problems, limitation of instability development and a way of generation of high energy particles and radiation. The first problem is partially solved by the faster increase of the current, by better cylindrical symmetry of the load and plasma, by higher density of the plasma or by the presence of a stronger magnetized plasma

  3. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  4. Defect structures in MgB2 wires introduced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Liao, X Z; Serquis, A; Zhu, Y T; Civale, L; Hammon, D L; Peterson, D E; Mueller, F M; Nesterenko, V F; Gu, Y

    2003-01-01

    The microstructures of MgB 2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. A large amount of crystalline defects including small-angle twisting, tilting and bending boundaries, in which high densities of dislocations reside, was found forming sub-grains within MgB 2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centres that contribute to the high critical current densities of the wires at high temperatures and at high fields

  5. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  6. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  7. Report on UQ Assessmentsto support SESAME wire-wrappedbundle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Emilian L. [ORNL; Pointer, William David [ORNL

    2017-10-01

    This work assesses the influence of assumptions made when generating a mesh of a wire-wrappedgeometry. The contact region between a wire and its adjacent pin is commonly modeled by eitherembedding the wire to the adjacent pin or trimming the wire so that a gap separates the wire from itsadjacent pin. These models are referred to as close-gap and open-gap approaches herein and are applied totwo geometries. The first geometry consists of a single pin wire-wrapped subchannel. A polyhedral meshand a hexahedral mesh are generated. The second and third geometry are a 7-pin and a 19-pinwire-wrapped bundles meshed with polyhedral elements only. Pressure drops are obtained with theSTAR-CCM+computational fluid dynamic package. Sensitivity analyses of the mesh density, the meshtype, and the turbulent models are performed. Numerical results show that the best match to theexperimental data and to the Cheng-Todreas correlation is obtained with the combination of a hexahedralmesh, the shear stress transport (SST) turbulent model, and the open-gap approach. In the case of the 7-pingeometry, the best results are obtained with the open-gap approach and the SST turbulent model. The19-pin geometry yields contradictory results to the 7-pin geometry results, and thus will require furtherinvestigations.

  8. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. Magnesium diboride(MgB{sub 2}) wires for applications

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Dipak; Kim, Jung Ho [Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong (Australia)

    2016-03-15

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB{sub 2}/Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB{sub 2} structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm{sup -2} for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10{sup 5} Acm{sup -2} at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires.

  11. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  12. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    /polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.

  13. The Fine Wire Technique for Flexor Tenolysis

    Science.gov (United States)

    Baltodano, Pablo A.; Weinberg, Maxene H.; Whipple, Lauren A.; Gemmiti, Amanda L.; Whipple, Richard E.

    2017-01-01

    Background: Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. Methods: This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Results: Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire’s thinness allows for a swift tenolysis. Conclusions: The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive. PMID:29263961

  14. A comparative study of wireless and wired sensors networks for deficit irrigation management

    Science.gov (United States)

    Torres Sánchez, Roque; Domingo Miguel, Rafael; Valles, Fulgencio Soto; Perez-Pastor, Alejandro; Lopez Riquelme, Juan Antonio; Blanco Montoya, Victor

    2016-04-01

    In recent years, the including of sensors in the context of agricultural water management, has received an increasing interest for the establishment of irrigation strategies, such as regulated deficit irrigation (RDI). These strategies allow a significant improvement of crop water productivity (marketable yield / water applied), especially in woody orchards. The application of these deficit irrigation strategies, requires the monitoring of variables related to the orchard, with the purpose of achieving an efficiently irrigation management, since it is necessary to know the soil and plant water status to achieve the level of water deficit desired in each phenological stage. These parameters involve the measurements of soil and plant parameters, by using appropriate instrumentation devices. Traditional centralized instrumentation systems include soil matric potential, water content and LVDT sensors which information is stored by dataloggers with a wired connection to the sensors. Nowadays, these wired systems are being replaced by wireless ones due, mainly, to cost savings in wiring and labor. These technologies (WSNs) allow monitoring a wide variety of parameters in orchards with high density of sensors using discrete and autonomous nodes in the trees or soil places where it is necessary, without using wires. In this paper we present a trial in a cherry crop orchard, with different irrigation strategies where both a wireless and a wired system have been deployed with the aim of obtaining the best criteria on how to select the most suitable technology in future agronomic monitoring systems. The first stage of this study includes the deploying of nodes, wires, dataloggers and the installation of the sensors (same for both, wired and wireless systems). This stage was done during the first 15 weeks of the trial. Specifically, 40 MPS6 soil matric potential, 20 Enviroscan water content and 40 (LVDT and band) dendometers were installed in order to cover the experimental

  15. Thermal anchoring of wires in large scale superconducting coil test experiment

    International Nuclear Information System (INIS)

    Patel, Dipak; Sharma, A.N.; Prasad, Upendra; Khristi, Yohan; Varmora, Pankaj; Doshi, Kalpesh; Pradhan, S.

    2013-01-01

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  16. A high resolution wire scanner beam profile monitor with a microprocessor data acquisition system

    International Nuclear Information System (INIS)

    Cutler, R.I.; Mohr, D.L.; Whittaker, J.K.; Yoder, N.R.

    1983-01-01

    A beam profile monitor has been constructed for the NBS-LANL Racetrack Microtron. The monitor consists of two perpendicular 30 μm diameter carbon wires that are driven through an electron beam by a pneumatic actuator. A long-lifetime, electroformed nickel bellows is used for the linear-motion vacuum feedthrough. Secondary emission current from the wires and a signal from a transducer measuring the position of the wires are simultaneously digitized by a microprocessor to yield beam current density profiles in two dimensions. The wire scanner is designed for use with both pulsed and cw beams

  17. Development of Powder-in-Tube Processed Iron Pnictide Wires and Tapes

    KAUST Repository

    Ma, Yanwei

    2011-06-01

    The development of PIT fabrication process of iron pnictide superconducting wires and tapes has been reviewed. Silver was found to be the best sheath material, since no reaction layer was observed between the silver sheath and the superconducting core. The grain connectivity of iron pnictide wires and tapes has been markedly improved by employing Ag or Pb as dopants. At present, critical current densities in excess of 3750 A /cm 2 (I c = 37.5 A) at 4.2 K have been achieved in Ag-sheathed SrKFeAs wires prepared with the above techniques, which is the highest value obtained in iron-based wires and tapes so far. Moreover, Ag-sheathed Sm-1111 superconducting tapes were successfully prepared by PIT method at temperatures as low as ̃ 900 °C, instead of commonly used temperatures of ̃ 1200 °C. These results demonstrate the feasibility of producing superconducting pnictide composite wires, even grain boundary properties require much more attention. © 2010 IEEE.

  18. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  19. Derivation of the probability distribution function for the local density of states of a disordered quantum wire via the replica trick and supersymmetry

    International Nuclear Information System (INIS)

    Bunder, J.E.J.E.; McKenzie, R.H.Ross H.

    2001-01-01

    We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states. Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled 'spins' which are elements of u(1,1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams

  20. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  1. Successful rotational atherectomy over RG3 guidewire after failure of various techniques to deliver RotaWire.

    Science.gov (United States)

    Kaneko, Umihiko; Kashima, Yoshifumi; Kanno, Daitaro; Sugie, Takuro; Kobayashi, Ken; Fujita, Tsutomu

    2017-10-01

    Although performing rotational atherectomy (RA) requires guidewire exchange for the dedicated guidewire, RotaWire guidewire (Boston Scientific) exhibits much lower performance than conventional guidewire. Consequently, there are times when RotaWire cannot be advanced past the lesion independently or using a microcatheter exchange technique, rendering RA impossible. We present a case of a heavily calcified, device-uncrossable, and non-expansible chronic total occlusion lesion successfully revascularized with RA over RG3 guidewire (Asahi Intecc), which has a length of 330 cm, hydrophilic coating, and a 0.010-inch-long shaft. RG3 provided excellent cross-ability and RA could also be performed over RG3 without guidewire exchange for the RotaWire.

  2. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  3. Optimization of superconductivity properties in MgB2 Wires and tapes to generate high magnetic fields

    International Nuclear Information System (INIS)

    Serrano, German

    2005-01-01

    We present, in this work, a study of the effects of doping, heat treatments and mechanisms of deformation, over the microstructure and superconducting properties of powder in tube (PIT) M g B 2 wires and tapes.We observed that nano-SiC doping improves the critical current density (J c ) and the upper critical field (H c 2).The combined use of doping and Hot Isostatic Pressing (HIPing), produces samples with high density and improves J c s.We studied the influence of number and temperature of intermediate heat treatments (TTI), during the fabrication of wires and tapes.We observed that TTI made at low temperature ( o C), results in wires and tapes with better microstructure than those made at high temperature.Moreover, the increment of the heat treatments numbers at high temperature, decreases the quality of microstructure and J c .In the study of sheaths materials, we observed that the J c values measured by magnetization in Ti sheath samples are two order of magnitude larger than the values measured by transport, which indicates macroscopic fracture problems.On other hand, we fabricated tapes with excellent J c values (10 4 A/cm 2 at 4K and 7T), which are similar to those of samples made with HIPing.This tape presents some degree of grains alignment, as a consequence of rolling.We observed J c anisotropy in both transport and magnetization measurements in a range between 4 and 26K, and the same effect in H c 2.The anisotropy factor in Jc increase with applied field, while the anisotropy in Hc2 is constant with temperature (H c 2 parallel H c 2 perpendicular ∼1.2).Finally, we observed that carbon nanotubes doping improves H c 2 and this effects is most important at temperatures below 5K.This increase in H c 2 was predicted by Gurevich [45], as an effect of modification in scattering coefficient between electronics bands of M g B 2 by doping [es

  4. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  5. Inelastic scattering and local heating in atomic gold wires

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Brandbyge, Mads; Lorente, N.

    2004-01-01

    We present a method for including inelastic scattering in a first-principles density-functional computational scheme for molecular electronics. As an application, we study two geometries of four-atom gold wires corresponding to two different values of strain and present results for nonlinear...

  6. Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method

    KAUST Repository

    Li, Ping

    2016-03-31

    With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.

  7. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  8. Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Li Jun; Bagci, Hakan

    2016-01-01

    With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.

  9. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  10. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands.

    Science.gov (United States)

    Han, Yu; Li, Qiang; Ng, Kar Wei; Zhu, Si; Lau, Kei May

    2018-06-01

    We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.

  11. A semi-analytical study of positive corona discharge in wire-plane electrode configuration

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Chen, J. H.

    2013-08-01

    Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.

  12. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  13. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    International Nuclear Information System (INIS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-01-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in intersection -shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  17. Calculation of the Critical Current Reduction in a Brittle Round Multifilamentary Wire due to External Forces

    NARCIS (Netherlands)

    ten Haken, Bernard; Godeke, A.; ten Kate, Herman H.J.

    1994-01-01

    A simple model is presented that can describe the electro-mechanical state of a multifilamentary wire. An elastic cylinder model is used to derive the strain state analytically. Axial and transverse forces came a position dependent critical current density in the wire. The integral critical current

  18. Analysis of the evolvement of contact wire wear irregularity in railway catenary based on historical data

    NARCIS (Netherlands)

    Wang, H.; Nunez Vicencio, Alfredo; Liu, Zhigang; Song, Yang; Duan, Fuchuan; Dollevoet, R.P.B.J.

    2017-01-01

    This paper studies the evolvement of the wear irregularity of contact wire using wire thickness data measured yearly from a section of railway catenary. The power spectral density and time–frequency representation based on the wavelet transform are employed for data analysis, with an emphasis on

  19. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  20. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  1. Control of core structure in MgB{sub 2} wire through tailoring boron powder

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Minoru, E-mail: maeda.minoru70@nihon-u.ac.jp [Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Uchiyama, Daisuke [Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Hossain, Md Shahriar Al; Ma, Zongqing [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Shahabuddin, Mohammed [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Kim, Jung Ho, E-mail: jhk@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia)

    2015-07-05

    Highlights: • The typical void structure in the wire is obtained by using large-sized B powder. • In contrast, void alignment can be achieved by using fine B powder. • The sintering at lower temperatures improves the critical current density in fields. - Abstract: A common fabrication process for MgB{sub 2} wire, namely, the in situ powder-in-tube process, forms numerous voids within the wire core, and void formation cannot be completely avoided. The orientation is, however, known to be aligned more or less along the current-flow direction when ductile coarse magnesium powder is used as a precursor, and further tailoring approaches could open up the way to improving the transport critical current density. Herein, we have used boron powders with different particle sizes, in combination with the coarse magnesium powder, and evaluated their size effects on the phase composition, microstructure, and transport properties. A mixture of the coarse magnesium powder with large-sized boron powder in the wire core, after cold working and sintering, forms a granular morphology. In contrast, an aligned core appears during the reduction process for wire which is prepared by using fine boron powder. The sintering process, especially at a low temperature, where magnesium evaporation hardly occurs, yields an aligned structure, mainly consisting of MgB{sub 2} phase, along the wire direction. These findings demonstrate that the initial size of the starting materials is critical for the tailored structure.

  2. Evaluation on current-limiting performance of the YBCO thin-film wire considering electric coupling condition

    International Nuclear Information System (INIS)

    Du, H.-I.; Han, B.-S.; Kim, Y.-J.; Lee, D.-H.; Song, S.-S.; Han, T.-H.; Han, S.-C.

    2011-01-01

    The basic way to improve the performance of a superconducting current limiter is to apply and evaluate a superconducting device that is appropriate to the superconducting current limiter. Among the many types of superconducting devices, the YBCO thin film wire has excellent current-limiting performance that is appropriate for actual system application. For the application of the YBCO thin film wire to superconducting current limiters, its current-limiting performance as a unit device must be accurately evaluated, and measures to improve its current-limiting performance must be sought. Accordingly, to evaluate the current-limiting performance of the YBCO thin film wire, this study was conducted to evaluate its resistance-increasing trend, V max , T r , I max , I qt , and current-limiting rate as a unit device, after which the electric coupling condition that consists of a core and windings was used to evaluate the current-limiting performance of the YBCO thin film wire.

  3. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    International Nuclear Information System (INIS)

    Fu Xi; Zhou Guanghui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j s,xi T and j s,yi T (i = x, y, z). We find that the elements j T s,xx and j T s,yy have a antisymmetrical relation and the element j T s,yz has the same amount level as j s,xx T and j s,yy T . We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  4. Progress in second-generation HTS wire development and manufacturing

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J.

    2008-01-01

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid

  5. Structural Parameters and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wires

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andy; Huang, Xiaoxu

    2012-01-01

    Pearlitic steel wires have a nanoscale structure and a strength which can reach 5 GPa. In order to investigate strengthening mechanisms, structural parameters including interlamellar spacing, dislocation density and cementite decomposition, have been analyzed by transmission electron microscopy...... and high resolution electron microscopy in wires cold drawn up to a strain of 3.7. Three strengthening mechanisms, namely boundary strengthening, dislocation strengthening and solid solution hardening have been analyzed and good agreement has been found between the measured flow stress and the value...

  6. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    Science.gov (United States)

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  7. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    International Nuclear Information System (INIS)

    Li, Mingji; Guo, Wenlong; Li, Hongji; Xu, Sheng; Qu, Changqing; Yang, Baohe

    2014-01-01

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na 2 SO 4 aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g −1 at current density of 0.5 A g −1 . The capacitance remains at about 84% after 1000 cycles at 10 A g −1 . The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices

  8. Proton radiography of intense-laser-irradiated wire-attached cone targets

    International Nuclear Information System (INIS)

    Yabuuchi, T.; Sawada, H.; Bartal, T.; Beg, F.N.; Batani, D.; Gizzi, L.A.; Key, M.H.; Mackinnon, A.J.; McLean, H.S.; Patel, P.K.; Norreys, P.A.; Spindloe, C.; Stephens, R.B.; Wei, M.S.; Theobald, W.

    2011-01-01

    Measurements of extreme electrostatic and magnetic fields are of interest for the study of high-energy-density plasmas. Results of proton deflectometry of cone-wire targets that are of interest to fast-ignition inertial confinement fusion are presented. (authors)

  9. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  10. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  11. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. [Application of rafting K-wire technique for tibial plateau fractures].

    Science.gov (United States)

    Zhang, Xing-zhou; Yu, Wei-zhong; Li, Yun-feng; Liu, Yan-hui

    2015-12-01

    To summarize application of rafting K-wires technique for tibial plateau fractures. From January 2013 to January 2015,45 patients with tibial plateau fractures were treated by locking plate with rafting K-wires, including 33 males and 12 females with an average of 44.2 years old ranging from 22 to 56 years old. According to Schatzker classification, 6 cases were type II, 8 were type Ill, 4 were type IV, 4 were type V, and 5 were type VI. Allogeneic bone graft were performed for bone defects. All patients were fixed with two to five K-wires. Part of weight loading were encouraged at 3 months after operation,and full weight-loading were done at 5 months after operation. Postoperative complications were observed,and Rasmussen clinical and radiological assessment were used to evaluate clinical results. All Patients were followed up from 10 to 23 months with average of 14 months. According to Rasmussen clinical and radiological assessment, clinical scores 23.58 ± 6.33, radiological scores were 14.00 ± 6.33; and excellent and good rates were 82.2% and 77.8% respectively. Four patients occurred severe osteoporosis and collapse of articular surface; 5 patients occurred traumatic arthritis. Rafting K-wires technique with anatomized armor plate could effective fix and support platform collapse and joint bone fragments, increase support surface area and reduce postoperative reduction loss rate.

  13. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Zheng, Zhi-Bin; Lai, Yu-Sheng; Jow, Jiin-Jiang

    2015-01-01

    Graphical abstract: Nickel cobaltite nanograss with bimodal pore size distribution is grown around the carbon nanotube-wrapped stainless steel wire mesh as a high capacitance and stable electrode for high-performance and flexible supercapacitors. - Highlights: • NiCo 2 O 4 nanograss with bimodal pore size distribution is hydrothermally prepared. • Carbon nanotubes (CNTs) wrap around stainless steel (SS) wire mesh as a scaffold. • NiCo 2 O 4 grown on CNT-wrapped SS mesh shows excellent capacitive performance. • Porous CNT layer allows for rapid transport of electron and electrolyte. - Abstract: Nickel cobaltite nanograss with bimodal pore size distribution (small and large mesopores) is grown on various electrode substrates by one-pot hydrothermal synthesis. The small pores (<5 nm) in the nanograss of individual nanorods contribute to large surface area, while the large pore channels (>20 nm) between nanorods offer fast transport paths for electrolyte. Carbon nanotubes (CNTs) with high electrical conductivity wrap around stainless steel (SS) wire mesh by electrophoresis as an electrode scaffold for supporting the nickel cobaltite nanograss. This unique electrode configuration turns out to have great benefits for the development of supercapacitors. The specific capacitance of nickel cobaltite grown around CNT-wrapped SS wire mesh reaches 1223 and 1070 F g −1 at current densities of 1 and 50 A g −1 , respectively. CNT-wrapped SS wire mesh affords porous and conductive networks underneath the nanograss for rapid transport of electron and electrolyte. Flexible CNTs connect the nanorods to mitigate the contact resistance and the volume expansion during cycling test. Thus, this tailored electrode can significantly reduce the ohmic resistance, charge-transfer resistance, and diffusive impedance, leading to high specific capacitance, prominent rate performance, and good cycle-life stability.

  14. Critical current density and flux pinning in superconducting wires and coils of silver-clad Bi-Pb-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Dou, S.X.; Liu, H.K.; Apperley, M.H.; Song, K.H.; Sorrell, C.C.; Guo, S.J.; Loberg, B.; Easterling, K.E.

    1991-01-01

    The critical current density (J c ) of Ag-clad of Bi-Pb-Sr-Ca-Cu-O has been measured to be about 12,000 A/cm 2 at 77 K in zero field. This wire was rolled into a tape of thickness 0.1 mm and width of 2 to 3 mm, and a coil of 35 mm diameter was formed. The J c of this coil was measured to be about 2,000 A/cm 2 at 77 K over the full length (1.00 meter) of the coil. In this paper compositions, heat treatment parameters, and cold-deformation for enhancement of J c are presented. The microstructure is characterized and pinning interactions as well as possible weak links are emphasised. (orig.)

  15. Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors

    Science.gov (United States)

    Hu, Minglei; Liu, Yuhao; Zhang, Min; Wei, Helin; Gao, Yihua

    2016-12-01

    Commercially available wearable energy storage devices need a wire-type electrode with high strength, conductivity and electrochemical performance, as well as stable structure under deformation. Herein, we report a novel wire-type electrode of hierarchically structure MnO2 on Ni wire with multilayer graphene (MGr) as a buffer layer to enhance the electrical conductivity of the MnO2 and interface contact between the MnO2 and Ni wire. Thus, the wire-type MnO2/MGr/Ni electrode has a stable and high quality interface. The wire-type supercapacitor (WSC) based on wire-type MnO2/MGr/Ni electrode exhibits good electrochemical performance, high rate capability, extraordinary flexibility, and superior cycle lifetime. Length (area, volumetric) specific capacitance of the WSC reaches 6.9 mF cm-1 (73.2 mF cm-2, 9.8 F cm-3). Maximum length (volumetric) energy density of the WSC based on MnO2/MGr/Ni reaches 0.62 μWh cm-1 (0.88 mWh cm-3). Furthermore, the WSC has a short time constant (0.5-400 ms) and exhibits minimal change in capacitance under different bending shapes.

  16. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  17. Superconducting properties of powder-metallurgically produced Cu-Nb3Sn composite wires

    International Nuclear Information System (INIS)

    Schaper, W.; Wecker, J.; Heine, K.; Bormann, R.; Freyhardt, H.C.

    1988-01-01

    The critical current density of composite superconducting wires can be improved by ternary or quaternary additions. If these additions are incorporated into the A15 phase the upper critical field can be increased. An increase in this field, however, can only be realized if the additions do not strongly deteriorate the critical temperature. An enhanced upper critical field in connection with a favorable grain size of the A15 phase finally leads to improved critical current densities in the entire field range. With these parameters as guidelines, the effects of Ti, In, Ga, and Ge additions to the bronze and of Ta additions to the niobium on the superconducting properties of PM produced Cu-Nb 3 Sn wires were investigated

  18. High-speed test of SFQ-shift register files using PTL wiring

    International Nuclear Information System (INIS)

    Fujiwara, K.; Yamashiro, Y.; Yoshikawa, N.; Hashimoto, Y.; Yorozu, S.; Terai, H.; Fujimaki, A.

    2004-01-01

    We have been developing an SFQ shift register memory, which is one candidate to realize high-throughput and high-density superconductive memories. We have modified our memory architecture in order to adapt it to our SFQ microprocessor, CORE1. The new version of the shift register memory is composed of shift registers with non-destructive readout operation, which have an internal feedback. We have also studied the availability of passive transmission line (PTL) wiring in the memory system at high speed. The tested circuit is a 4-byte shift register file, where four kinds of wiring circuits are used between a decoder and shift registers. We have measured the dependences of the DC bias margin on the operating frequency for all wiring methods, and obtained almost the same dependences, which shows the availability of the PTL wiring in the memory system. We have used the NEC 2.5 kA/cm 2 Nb standard process and the CONNECT cell library

  19. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. Measurement of position and profile of undulator radiation in Indus-2 using scanning wire monitor

    International Nuclear Information System (INIS)

    Kant, Chander; Lal, Sohan; Raghuwanshi, V.K.; Prasad, Vijendra

    2015-01-01

    Two planar undulators (U1 and U2) for Atomic Molecular Spectroscopy (AMOS) beamline and Angle Resolved Photoelectron Spectroscopy (ARPES) beamline have been installed in Indus-2. The U1 undulator is designed to produce photons in the energy range of 6 eV to 250 eV and U2 undulator is designed to produce photons in the energy range of 30 eV to 600 eV. In order to measure the position and vertical profile of photon beams emitted from these undulators, one scanning wire monitor has been installed in each beamline front end. In these scanning wire monitors, a gold coated tungsten wire of 100 μm thickness, stretched between a fork shaped alumina ceramic holder, is scanned vertically perpendicular to the direction of propagation of photon beam by using a precisely controlled stepper motor. The photo-electron current generated in the wire is measured by an electrometer. A graphical user interface has been developed which facilitates the scanning as per the given range, plots the graphs and stores the scanned data in Excel file. This paper describes our experience and usefulness of these wire monitors during commissioning of planar undulators in Indus-2. (author)

  1. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Guo, Wenlong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Xu, Sheng [School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-10-30

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g{sup −1} at current density of 0.5 A g{sup −1}. The capacitance remains at about 84% after 1000 cycles at 10 A g{sup −1}. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  2. Current-driven vortex domain wall motion in wire-tube nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Espejo, A. P. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Vidal-Silva, N. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); López-López, J. A. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Goerlitz, D.; Nielsch, K. [Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, 9170124 Santiago (Chile)

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  3. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  4. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  5. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    Science.gov (United States)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  6. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    International Nuclear Information System (INIS)

    Wu, Jian; Li, Mo; Li, Yang; Li, Xingwen; Qiu, Aici

    2017-01-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications. (topical review)

  7. 3D modeling of instabilities in multi-wire Z pinches

    International Nuclear Information System (INIS)

    Haill, T.A.; Desjarlais, M.P.; Marder, B.M.; Robinson, A.C.

    1998-01-01

    Recent success in generating large x-ray energies and powers from large wire-number Z pinch arrays has revived a strong interest in MHD and magneto-Rayleigh-Taylor (RT) instabilities. Two-dimensional r-z simulations of Z pinches typically start calculations with a preformed plasma sheath and seed RT instabilities with a random density perturbation. The magnitude of the random density perturbation is tuned so that the calculated x-ray radiation pulse matches the amplitude and pulse-width of experimentally measured data. While these calculations have been extremely useful in understanding the effect of RT instabilities on experiments, they do not capture all of the three-dimension structure seen in experimental images and are not truly predictive in nature. To remedy this shortcoming Sandia is developing a 3D nature of Z pinch dynamics, namely the merger of arrays of wires into a plasma sheath

  8. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  9. Density Functional Simulation of a Breaking Nanowire

    DEFF Research Database (Denmark)

    Nakamura, A.; Brandbyge, Mads; Hansen, Lars Bruno

    1999-01-01

    to a specific number of eigenchannels. The transitions between plateaus can be abrupt in connection with structural rearrangements or extend over a few a of elongation. The interplay between conductance modes and structural deformation is discussed by means of the eigenchannel transmission probabilities.......We study the deformation and breaking of an atomic-sized sodium wire using density functional simulations. The wire deforms through sudden atomic rearrangements and smoother atomic displacements. The conductance of the wire exhibits plateaus at integer values in units of 2e(2)/h corresponding...

  10. Progress in second-generation HTS wire development and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@superpower-inc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2008-09-15

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid.

  11. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  12. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  13. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  14. Results of the Fermilab wire production program

    International Nuclear Information System (INIS)

    Strauss, B.P.; Remsbottom, R.H.; Reardon, P.J.; Curtis, C.W.; McDonald, W.K.

    1976-01-01

    In examining the various schedules of wire drawing and heat treating, the Critchlow type of schedule provided the highest and most uniform data from billet to billet. It consists of a long anneal at 400 +- 20 0 C at a cold work point giving about 99 percent reduction in area from the extrusion size. Several quick copper anneals at 300 0 C may be interspersed to aid in fabrication. A final anneal at finished size both peaks up the resistivity ratio of the copper as well as the critical current of the alloy by moving dislocations to subcell walls. Using this method, critical currents of 1.7 x 10 5 A/cm 2 could be maintained in all billets. The copper cladding and sinking method looks promising and should save production costs. In spite of this, it was important to attain good packing density in the billets to assure uniform filament pattern and reduce breakage in wire drawing. Overall, a procedure was found for fabricating wire in large production lots that would be acceptable for constructing dipole magnets. It is felt that this method could be peaked up with time

  15. Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet

    DEFF Research Database (Denmark)

    Maslyuk, V.; Bagrets, A.; Meded, V.

    2006-01-01

    Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established meth...

  16. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  17. Polarimetry and Schlieren diagnostics of underwater exploding wires

    Science.gov (United States)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-11-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ˜80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  18. Polarimetry and Schlieren diagnostics of underwater exploding wires

    International Nuclear Information System (INIS)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-01-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ∼80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  19. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  20. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    International Nuclear Information System (INIS)

    Ochiai, Y.; Murata, T.; Ito, H.; Masugata, K.

    2012-01-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device multiple shot operations is realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm, length 25 mm. Capacitor bank of capacitance 3 μF, charging voltage 30 kV was used and the wire was successfully exploded by a discharge current of 15 kA, rise time 5.3 μs. Plasma flux of ion current density around 70 A/cm 2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7x10 4 m/sec, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of ion current density distribution ion flow is found to be concentrated to the direction where ion acceleration gap is placed. From the experiment the device is found to be acceptable for applying PHIB accelerator. (author)

  1. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  2. Disorder and Interaction Effects in Quantum Wires

    International Nuclear Information System (INIS)

    Smith, L W; Ritchie, D A; Farrer, I; Griffiths, J P; Jones, G A C; Thomas, K J; Pepper, M

    2012-01-01

    We present conductance measurements of quasi-one-dimensional quantum wires affected by random disorder in a GaAs/AlGaAs heterostructure. In addition to quantised conductance plateaux, we observe structure superimposed on the conductance characteristics when the channel is wide and the density is low. Magnetic field and temperature are varied to characterize the conductance features which depend on the lateral position of the 1D channel formed in a split-gate device. Our results suggest that there is enhanced backscattering in the wide channel limit, which gives rise to quantum interference effects. When the wires are free of disorder and wide, the confinement is weak so that the mutual repulsion of the electrons forces a single row to split into two. The relationship of this topological change to the disorder in the system will be discussed.

  3. Effect of 211 phase addition of the magnetic properties of 123 textured wires

    International Nuclear Information System (INIS)

    Sengupta, S.; McGinn, P.J.; Chen, Weihua; Zhu, Naiping; Tan, Li

    1991-01-01

    One of the potential candidates for flux pinning in textured 123 wires is the 211 phase. The effect of Y 2 BaCuO 5 additions on the magnetic properties of the textured wires has been studied. Texturing was accomplished by a zone-melting technique. Microstructural studies reveal that they are well textured. Estimation of the critical current density using Bean's model as a function of 211 additions will be presented. These will be compared with transport measurements

  4. Filament to filament bridging and its influence on developing high critical current density in multifilamentary Bi2Sr2CaCu2Ox round wires

    International Nuclear Information System (INIS)

    Shen, T; Jiang, J; Kametani, F; Trociewitz, U P; Larbalestier, D C; Schwartz, J; Hellstrom, E E

    2010-01-01

    Increasing the critical current density (J c ) of the multifilamentary round wire Ag/Bi 2 Sr 2 CaCu 2 O x (2212) requires understanding its complicated microstructure, in which extensive bridges between filaments are prominent. In this first through-process quench study of 2212 round wire, we determined how its microstructure develops during a standard partial-melt process and how filament bridging occurs. We found that filaments can bond together in the melt state. As 2212 starts to grow on subsequent cooling, we observed that two types of 2212 bridges form. One type, which we call Type-A bridges, forms within filaments that bonded in the melt; Type-A bridges are single grains that span multiple bonded filaments. The other type, called Type-B bridges, form between discrete filaments through 2212 outgrowths that penetrate into the Ag matrix and intersect with other 2212 outgrowths from adjacent filaments. We believe the ability of these two types of bridges to carry inter-filament current is intrinsically different: Type-A bridges are high- J c inter-filament paths whereas Type-B bridges contain high-angle grain boundaries and are typically weak linked. Slow cooling leads to more filament bonding, more Type-A bridges and a doubling of J c without changing the flux pinning. We suggest that Type-A bridges create a 3D current flow that is vital to developing high J c in multifilamentary 2212 round wire.

  5. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  6. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  7. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  8. Recent advances in high-temperature superconductor wire fabrication and applications development

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of high-temperature superconductor wires are summarized and detailed discussion is provided on developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future, include fault-current limiters and short transmission lines

  9. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  10. A new wire chamber front-end system, based on the ASD-8 B chip

    International Nuclear Information System (INIS)

    Kruesemann, B.A.M.; Bassini, R.; Ellinghaus, F.; Frekers, D.; Hagemann, M.; Hannen, V.M.; Heynitz, H. von; Heyse, J.; Rakers, S.; Sohlbach, H.; Woertche, H.J.

    1999-01-01

    The Focal-Plane Polarimeter (FPP) for the Big-Bite Spectrometer van den Berg (Nucl. Instr. and Meth. B 99 (1995) 637ff) at the KVI requires the read-out of four large-area MWPCs and two VDCs with 3872 wires in total. The EUROSUPERNOVA collaboration (SNOVA) developed a digital 16 channel preamplifier front-end board, housing two amplifier-shaper-discriminatorchips ASD-8 B. The main features of this board are a fast single-wire readout, a high integration density, a low power consumption and compatibility to common instrumentation standards. The board represents the first successfully running application of the ASD-8 for wire chamber readout. (author)

  11. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  12. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  13. Metallurgical processing and properties of multifilamentary V3Ga composite wires

    International Nuclear Information System (INIS)

    Howe, D.G.; Weinman, L.S.

    1976-01-01

    Multifilamentary composite wires of V - 6.1 at. percent Ga filaments in a Cu-17.5 at. percent Ga matrix were fabricated. High purity V and Ga were arc melted and cast to form an alloy rod. High purity Cu and Ga were induction melted and also cast as an alloy rod. The alloy rods were reduced in diameter by swaging. The larger diameter Cu - Ga matrix rod was drilled with 19 holes which terminated within the matrix-rod. The holes served as receptacles for 19 V-Ga rods which were inserted into the matrix. The composite assembly was evacuated under high vacuum and sealed by an electron beam weld. The composite was then reduced in diameter through swaging and wire drawing to 0.032-in. dia wire. V 3 Ga layers at the filament/matrix interface were formed through an isothermal solid-state reaction. Growth rates for V 3 Ga are strongly influenced by alloy composition and formation temperature, with more rapid growth occurring in composite wires with higher Ga contents. Improved critical current densities (J/sub c/) resulted from lower formation temperatures, J/sub c/ values of over 1 x 10 6 A/cm 2 in a transverse magnetic field of 100 kG were obtained in the multifilamentary composite wire. 9 figs

  14. Effect of Cu4Ti compound formation on the characteristics of NbTi accelerator magnet wire

    International Nuclear Information System (INIS)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    High critical current density, J/sub c/ > 2500 A/mm 2 , and small filament diameter, d approx. 3 μm, are required in multifilamentary NbTi wire used for superconducting accelerator magnets. Wires obtained from various commercial sources had J/sub c/'s in the range 1000 to 2800 A/mm 2 amd d's in the range 1 to 23 μm. The filaments were examined by means of scanning electron microscopy in order to determine the reason for the variation in J/sub c/. It was found that the filaments in high J/sub c/ wires had clean smooth surfaces and uniform cross section along their lengths. Filaments in low J/sub c/ wires show formation of Cu 4 Ti compound particles on their surfaces and large variations in cross section. The lower critical current measured in these wires is believed to be largely due to this effect. The superconducting-normal state transition is relatively wide in these wires

  15. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  16. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  17. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  18. Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire.

    Science.gov (United States)

    Suzuki, Akihiro; Kanetaka, Hiroyasu; Shimizu, Yoshinaka; Tomizuka, Ryo; Hosoda, Hideki; Miyazaki, Shuichi; Okuno, Osamu; Igarashi, Kaoru; Mitani, Hideo

    2006-11-01

    To examine the mechanical properties and the usefulness of titanium-niobium-aluminum (Ti-Nb-Al) wire in orthodontic tooth movement as compared with nickel-titanium (Ni-Ti) wire. The load deflection of expansion springs was gauged with an original jig. The gradient of the superelastic region was measured during the unloading process. Expansion springs comprising the two types of alloy wires were applied to upper first molars of rats. The distance between the first molars was measured with micrometer calipers. The force magnitude of the Ti-Nb-Al expansion spring was lower than that of the Ni-Ti expansion spring over the entire deflection range. The initial force magnitude and the gradient in the superelastic region of the Ti-Nb-Al expansion springs were half those of the Ni-Ti expansion springs. Thus, Ti-Nb-Al expansion springs generated lighter and more continuous force. Tooth movement in the Ni-Ti group proceeded in a stepwise fashion. On the other hand, tooth movement in the Ti-Nb-Al group showed relatively smooth and continuous progression. At 17 days after insertion of expansion springs, there were no significant differences between the Ti-Nb-Al and Ni-Ti groups in the amount of tooth movement. These results indicate that Ti-Nb-Al wire has excellent mechanical properties for smooth, continuous tooth movement and suggest that Ti-Nb-Al wire may be used as a practical nickel-free shape memory and superelastic alloy wire for orthodontic treatment as a substitute for Ni-Ti wire.

  19. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    Science.gov (United States)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  20. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  1. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    field has a dual effect on the packing density of particles in the deposits formed by .... Saturated calomel electrode (SCE) and a platinum wire mesh were used as .... density of the deposit, the smaller the volume of liquid phase, which should be.

  2. Dark-ground illumination: a quantitative diagnostic for plasma density

    International Nuclear Information System (INIS)

    Paul, S.F.

    1981-01-01

    Radial electron density profiles of a toroidal belt pinch plasma have been obtained by a single measurement. Collimated ruby laser light, incident on the plasma, is focused to a diffraction limited spot (100 μm). The technique, a variation of the dark-ground microscope, involves masking the center of the plasma diffraction pattern with a thin wire. Undiffracted light is blocked by a thin wire, whereas light diffracted by the plasma passes around the wire and onto a photoplate. The resulting interference generates a high contrast fringe pattern whose intensity varies as 1-cosΔ phi, where Δ phi is the phase shift induced by the plasma. The fringes are recorded on Polaroid type 46L transparency film. Using this technique, radial density profiles of the plasma produced in the Columbia Torus I belt pinch have been measured. The plasma minor cross section is elliptical with a approx. 2 cm, b approx. 30 cm and approx. 3 x 10 16 /cm 3 . Average densities as low as 2 x 10 15 /cm 3 have been measured

  3. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  4. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  5. Wire array Z-pinch insights for enhanced x-ray production

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Haines, M.G.; Chittenden, J.P. [The Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, D.C. 20375 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Greenly, J.B.; Sinars, D.B. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); Reisman, D.B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, D.C. 20375 (United States)

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array {ital z}-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. {bold 26}, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh{endash}Taylor instability in the r{endash}z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas {bold 3}, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh{endash}Taylor instability in the r{endash}z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. {copyright} {ital 1999 American Institute of Physics.}

  6. Wire array Z-pinch insights for enhanced x-ray production

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  7. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    Energy Technology Data Exchange (ETDEWEB)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-04

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  8. Wire array Z-pinch insights for enhanced x-ray production

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Haines, M.G.; Chittenden, J.P.; Whitney, K.G.; Apruzese, J.P.; Peterson, D.L.; Greenly, J.B.; Sinars, D.B.; Reisman, D.B.; Mosher, D.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh - Taylor instability in the r - z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh - Taylor instability in the r - z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. copyright 1999 American Institute of Physics

  9. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels

  10. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  11. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  12. Oriented nano-wire formation and selective adhesion on substrates by single ion track reaction in polysilanes

    International Nuclear Information System (INIS)

    Shu Seki; Satoshi Tsukuda, Yoichi Yoshida; Seiichi Tagawa; Masaki Sugimoto; Shigeru Tanaka

    2002-01-01

    1-D nano-sized materials such as carbon nanotubes have attracted much attention as ideal quantum wires for future manufacturing techniques of nano-scaled opto-electronic devices. However it is still difficult to control the sizes, spatial distributions, or positions of nanotubes by conventional synthetic techniques to date. The MeV order heavy ion beams causes ultra-high density energy deposition which can not be realized by any other techniques (lasers, H, etc), and penetrate the polymer target straighforward as long as 1∼100 m depth. the energy deposited area produces non-homogeneous field can be controlled by changing the energy deposition rate of incident ions (LET: linear energy transfer, eV/nm). We found that cross-linking reaction of polysilane derivatives was predominantly caused and gave nano-gel in the chemical core, unlike main chain scission occurring at the outside of the area. high density energy deposition by ion beams causes non-homogeneous crosslinking reaction of polysilane derivatives within a nano-sized cylindrical area along an ion trajectory, and gives -SiC based nano-wires of which sizes (length, thickness) and number densities are completely under control by changing the parameters of incident ion beams and molecular sizes of target polymers. based on the concept pf the single track gelation, the present study demonstrates the formation of cross-linked polysilane nano-wires with the fairly controlled sizes. Recently the techniques of position-selective single ion hitting have been developed for MeV order ion beams, however it is not sufficient to control precisely the positions of the nano-wires on the substrates within sub- m area. in the present study, we report the selective adhesion of anno-wires on Si substrates by the surface treatments before coating, which enables the patterning of planted nano-wires on substrates and/or electrodes as candidates for nano-sized field emissive cathodes or electro-luminescent devices. Some examples of

  13. Analytical Expression of Equivalent Transverse Magnetic Permeability for Three-core Wire Armoured Submarine Cables

    DEFF Research Database (Denmark)

    Viafora, Nicola; Baù, Matteo; Dall, Laurits Bergholdt

    2016-01-01

    As three-core wire-armoured submarine cables become progressively more relevant, the need for refined modelling techniques grows likewise. IEC Standard 60287 indications though are still widely recognized to be insufficiently accurate, since several effects due to the presence of the collective...... wire armour are ignored. This paper therefore offers an insight into the induced losses mechanism as a function of the armour wires electromagnetic properties. The analysis is focused on the influence of the armour transverse permeability, whose overall resultant value is estimated by means...... the induced sheath power losses due to the presence of the armour, whereas the proposed approach improves the accuracy, as the magnetic flux density enhancement within the cable is accounted for....

  14. Influence of iridium doping in MgB2 superconducting wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2018-01-01

    MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700°C, 800°C or 900°C for 1h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered...... by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence...

  15. Current's Fluctuations through Molecular Wires Composed of Thiophene Rings.

    Science.gov (United States)

    Ojeda Silva, Judith Helena; Cortés Peñaranda, Juan Camilo; Gómez Castaño, Jovanny A; Duque, Carlos Alberto

    2018-04-11

    We study theoretically the electronic transport and quantum fluctuations in single-molecule systems using thiophene rings as integrated elementary functions, as well as the dependence of these properties with the increase of the coupled rings, i.e., as a quantum wire. In order to analyze the current flow through these molecular systems, the thiophene rings are considered to be connected to metal contacts, which, in general terms, will be related to the application of voltages (bias voltages or gate voltages) to generate non-equilibrium behavior between the contacts. Due to the nonlinear behavior that is generated when said voltages are applied, it is possible to observe quantum fluctuations in the transport properties of these molecular wires. For the calculation of the transport properties, we applied a tight-binding approach using the Landauer-Büttiker formalism and the Fischer-Lee relationship, by means of a semi-analytic Green's function method within a real-space renormalization (decimation procedure). Our results showed an excellent agreement with results using a tight-binding model with a minimal number of parameters reported so far for these molecular systems.

  16. Excel Initiative: Excellence in Youth Programming

    Directory of Open Access Journals (Sweden)

    Lynne M. Borden

    2015-06-01

    Full Text Available The Excellence in Youth Programming (Excel Initiative strives to support youth programs in delivering high quality programs. The backbone of Excel is the Youth Development Observational Tool (YDOT which allows for the virtual assessment of program staff who work with children and youth ages 9-18 years. The YDOT also allows Excel to provide structured feedback to programs. Excel has several unique features, including a virtual platform and a focus on the relationships between adults and youth participating in after-school programs. Offering structured assessment and interaction online eliminates expenses, provides convenient access for programs around the globe, and allows for unobtrusive assessment of worker-youth interactions. Excel is also integrated into a broader network of resources, tools, and research for those working with children and youth ages 9-18.

  17. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  18. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  19. Multifilamentar superconductor wires of Cu-Nb-Al and Cu-Nb3Sn obtained by a new method

    International Nuclear Information System (INIS)

    Lima, O.F. de

    1985-01-01

    A new method to prepare multifilamentar wires of Cu-Nb 3 Sn which is based on power metallurgy is developed. Wires of Cu+xw%Nb++2wt%Al (x =10,30) were tinned and heat treated for Sn diffusion and reaction (T = 700 0 C), leading to the Nb 3 Sn A 15 phase. Final wires showed microfilament density around 8 x 10 4 mm -2 . The superconducting properties (T sup(c), J sup(c) x H), mechanical properties (tau x epsilon) and eletrical resistivity for Cu-Nb-Al wires were as normally expected. The Cu-Nb 3 Sn wires showed high T sub(c) approx. 17.9 K, very near that for the pure A 15 phase. J sub(c) x H curves were approx. 4 times lower than typical published results for wires prepared by other methods. The experimental evidence shows that J sub(c) increases when decreases the initial Nb particle size. (Author) [pt

  20. X-ray grazing incidence study of inhomogeneous strain relaxation in Si/SiGe wires

    International Nuclear Information System (INIS)

    Hesse, A.; Zhuang, Y.; Holy, V.; Stangl, J.; Zerlauth, S.; Schaeffler, F.; Bauer, G.; Darowski, N.; Pietsch, U.

    2003-01-01

    The elastic strain relaxation in a series of dry-etched periodic multilayer Si/SiGe wire samples with different etching depths was investigated systematically by means of grazing incidence diffraction (GID). The samples were patterned by holographic lithography and reactive ion etching from a Si/SiGe superlattice grown by molecular beam epitaxy. Scanning electron microscopy and atomic force microscopy were employed to obtain information on the shape of the wires. The inhomogeneous strain distribution in the etched wires and in the non-etched part of the multilayers was derived by means of finite element calculations which were used as an input for simulations of the scattered X-ray intensities in depth dependent GID. The theoretical calculations for the scattered intensities are based on distorted-wave Born approximation. The unperturbed scattering potential was chosen with a reduced optical density corresponding to the ratio of wire width and wire period, in order to reflect the main interaction between the incident X-rays and the patterned samples. The calculations are in good agreement with the experimental data demonstrating the variation of strain relaxation with depth

  1. Analysis of X-ray iron and nickel radiation and jets from planar wire arrays and X-pinches

    International Nuclear Information System (INIS)

    Safronova, A S; Kantsyrev, V L; Esaulov, A A; Ouart, N D; Shlyaptseva, V; Williamson, K M; Shrestha, I; Osborne, G C; Weller, M E

    2010-01-01

    University-scale Z-pinch devices are able to produce plasmas with a broad range of sizes, temperatures, densities, their gradients, and opacity properties. Radiative properties of such plasmas depend on material, mass, and configuration of the wire array loads. Experiments with two different types of loads, double planar wire arrays (DPWA) and X-pinches, performed on the 1 MA Zebra generator at UNR are analyzed. X-pinches are made from Stainless Steel (69% Fe, 20% Cr, and 9% Ni) wires. Combined DPWAs consist of one plane from SS wires and another plane from Alumel (95% Ni, 2% Al, 2% Si) wires. The main focus of this work is on the analysis of plasma jets at the early phase of plasma formation and the K-and L-shell radiation generation at the implosion and stagnation phases in experiments with the two aforementioned wire loads. The relevant theoretical tools that guide the data analysis include non-LTE collisional-radiative and wire ablation dynamics models. The astrophysical relevance of the plasma jets as well as of spectroscopic and imaging studies are demonstrated.

  2. Basic study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, M.; Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K.

    2010-01-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  3. Preliminary study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken

    2010-01-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  4. Basic study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, M., E-mail: ogata@rtri.or.j [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  5. Preliminary study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken, E-mail: ogata@rtri.or.j [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)

    2010-06-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  6. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  7. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    Science.gov (United States)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  8. Formation of InN atomic-size wires by simple N adsorption on the In/Si(111)–(4 × 1) surface

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2016-01-01

    Highlights: • N atoms on the surface form bonds with two In atoms and one Si atom. • Surface formation energy calculations show two stable structures with formation of InN atomic-size wires. • Projected density of states shows a tendency to form In−N and Si−N bonds on the surface. • Charge density corroborates the covalent character of the In−N bonds. - Abstract: We have carried out first principles total energy calculations to study the formation of InN atomic-size wires on the In/Si(111)–(4 × 1) surface. In its most favorable adsorption site, a single N atom forms InN arrangements. The deposit of 0.25 monolayers (MLs) of N atoms, result in the breaking of one of the original In chains and the formation of an InN atomic size wire. Increasing the coverage up to 0.5 ML of N atoms results in the formation of two of those wires. Calculated surface formation energies show that for N-poor conditions the most stable configuration is the original In/Si(111)–(4 × 1) surface with no N atoms. Increasing the N content, and in a reduced range of chemical potential, the formation of an InN wire is energetically favorable. Instead, from intermediate to N-rich conditions, two InN atomic wires are more stable. Projected density of states calculations have shown a trend to form covalent bonds between the In−p and N−p orbitals in these stable models.

  9. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  10. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    Science.gov (United States)

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  11. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  12. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  13. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    International Nuclear Information System (INIS)

    Lee, T.-H.; Wang, C.-C.; Huang, T.-K.; Chen, L.-K.; Chou, M.-Y.; Huang, H.-H.

    2009-01-01

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO 2 -based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO 2 on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO 3 /ZrO 2 /SnO and Nb 2 O 5 , respectively, along with TiO 2 on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  14. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  15. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang Xiaoxu; Liu Wei; Liu Qing

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110} α or {112} α slip plane traces in the ferrite.

  16. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  17. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  18. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    Science.gov (United States)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  19. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  20. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    Science.gov (United States)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  1. An investigation into preparation of silver sheathed superconducting wires with a high critical temperature

    International Nuclear Information System (INIS)

    Chaffron, Laurent

    1992-01-01

    We have shown that the critical current density of YBaCuO superconducting wires prepared using 'powder in tube' method is limited by the following principal factors: - cracks and porosity arising from the shrinkage of the powder during sintering, - irregularities in the wire section, - presence of secondary phases in the phase diagram of the three oxides, - incomplete re-oxidation at the centre of the wire, - insufficient, or complete lack of, texture in the wire, - presence of amorphous, non superconducting phase across the grains that blocks grain boundary migration. We have reduced the deleterious effects due to the first four factors by modifying prior nature of the powder, by reinforcing the sheath and by modifying the thermal treatments. We also used creep sintering to produce a strong texture; however, our study shows that texture, though necessary, is not a sufficient condition for a high current. This is because the latter is limited by the presence of the amorphous phase at too many grain boundaries. Finally, we have obtained wires in which grain boundaries are clean and which have very high critical currents by melting the wire in a thermal gradient and by passing it through the gradient very slowly. Such a technique, however, is too slow for producing superconductors. (author) [fr

  2. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

    Science.gov (United States)

    Zheng, Maobo; Xu, Guangquan; Liu, Debao; Zhao, Yue; Ning, Baoqun; Chen, Minfang

    2018-03-01

    Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

  3. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  4. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  5. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  6. Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch

    Science.gov (United States)

    Engelbrecht, Joseph T.; Ouart, Nicholas D.; Qi, Niansheng; de Grouchy, Philip W.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Banasek, Jacob T.; Potter, William M.; Rocco, Sophia V.; Hammer, David A.; Kusse, Bruce R.; Giuliani, John L.

    2018-02-01

    We present experiments performed on the 1 MA COBRA generator using a low density, annular, gas-puff z-pinch implosion as an opening switch to rapidly transfer a current pulse into a single metal wire on axis. This gas-puff on axial wire configuration was studied for its promise as an opening switch and as a means of enhancing the x-ray output of the wire. We demonstrate that current can be switched from the gas-puff plasma into the wire, and that the timing of the switch can be controlled by the gas-puff plenum backing pressure. X-ray detector measurements indicate that for low plenum pressure Kr or Xe shots with a copper wire, this configuration can offer a significant enhancement in the peak intensity and temporal distribution of radiation in the 1-10 keV range.

  7. Modelling on c-Si/a-Si:H wire solar cells: some key parameters to optimize the photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Alvarez J.

    2012-07-01

    Full Text Available Solar cells based on silicon nano- or micro-wires have attracted much attention as a promising path for low cost photovoltaic technology. The key point of this structure is the decoupling of the light absorption from the carriers collection. In order to predict and optimize the performance potential of p- (or n- doped c-Si/ n-(or p- doped a-Si:H nanowire-based solar cells, we have used the Silvaco-Atlas software to model a single-wire device. In particular, we have noticed a drastic decrease of the open-circuit voltage (Voc when increasing the doping density of the silicon core beyond an optimum value. We present here a detailed study of the parameters that can alter the Voc of c-Si(p/a-Si:H (n wires according to the doping density in c-Si. A comparison with simulation results obtained on planar c-Si/a-Si:H heterojunctions shows that the drop in Voc, linked to an increase of the dark current in both structures, is more pronounced for radial junctions due to geometric criteria. These numerical modelling results have lead to a better understanding of transport phenomena within the wire.

  8. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  9. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-01-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm 2 ) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm 2 ) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm 2 , was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature. (paper)

  10. The effect of copper additions in the synthesis of in situ MgB2 Cu-sheathed wires

    International Nuclear Information System (INIS)

    Woźniak, M.; Hopkins, S.C.; Gajda, D.; Glowacki, B.A.

    2012-01-01

    The powder-in-tube (PIT) technique has been used to fabricate copper-sheathed magnesium diboride (MgB 2 ) wires using an insitu reaction method. The effect of copper powder additions, magnesium-boron molar ratio and heat treatment is studied by SEM, XRD, transport critical current I c (B) and resistivity ρ(T, B) measurements. The results show that addition of copper powder to the core of the wire accelerates the formation of MgB 2 and hence increases its amount and greatly decreases the amount of Mg-Cu intermetallic phases present in the core of the wire after heat treatment. Excess magnesium proved to be effective in compensating for Mg loss due to interdiffusion with the Cu of the wire sheath and resulted in less unreacted boron in the core for wires without added Cu, but seems to oppose the accelerated formation of MgB 2 in Cu added wires. The highest critical current density, 2.8 × 10 4 A cm -2 at 3 T and 4.2 K, was achieved for a wire with a stoichiometric Mg:B ratio and 3 at.% added copper powder heat treated at 700 °C for 5 min.

  11. Radiation excited by a charged-particle bunch on a planar periodic wire structure

    Directory of Open Access Journals (Sweden)

    Andrey V. Tyukhtin

    2014-12-01

    Full Text Available The electromagnetic field of a bunch moving in the presence of a plane grid composed of thin parallel wires is considered by using the averaged boundary conditions method. Two different cases of motion are examined. In the first one, the bunch moves at a constant distance from the grid orthogonally to the wires. The excited surface wave is presented in the form of a spectral integral for a thin bunch with an arbitrary longitudinal profile. The wave propagates along the wires and does not decay with distance (if dissipation is negligible. Energy losses of the bunch over a unit path are obtained. In the second case, the bunch orthogonally crosses the wire grid. The volume and surface waves are separately analyzed. Properties of the spectral angular density of energy of volume radiation in the far-field zone are described. The energy losses due to the volume and surface radiation are determined. It is demonstrated that the structure of the surface waves in both cases allows determination of the length of the bunch.

  12. Effect of Platinum Group Metal Doping in Magnesium Diboride Wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Namazkar, Shahla

    2016-01-01

    The effect of some platinum group metals(PGM = Rh, Pd, and Pt) on the microstructure and critical current density of Cu/Nb-sheathed MgB2 wires has been studied using Mg1-x PGMxB2 powders with low doping levels. It was found that Pt and Pd do not enter the MgB2 lattice and have only limited influe...

  13. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  14. Flux pinning in bronze-processed Nb3Sn wires

    International Nuclear Information System (INIS)

    Suenaga, M.; Welch, D.O.

    1980-01-01

    The scaling law derived by Kramer for magnetic flux pinning in high magnetic fields was examined for its applicability to the magnetic field dependence of critical-current densities in the bronze processed monofilamentary Nb 3 Sn wires. From this it was concluded that: (1) its prediction for the form of the dependence of critical current on magnetic field and grain size [/J vector /sub c/ x H vector/ approx. h/sup 1/2/(1-h) 2 (1-a 0 √rho) -2 ] was found to be very good in most cases including wires with very small Nb 3 Sn grains (approx. 400 A). It was found very useful in comparison of J/sub c/ for different wires and in extrapolating to obtain H/sub c2/ for these wires. (2) However, it could not account consistently for the anisotropy in critical current of a tape which was measured with H applied perpendicular and parallel to the tape face. (3) The values of kappa 1 which were determined with the scaling law were too small by a factor of 2 to 3, and the trend in the variation with heat-treating time was opposite to that which is reasonably to be expected. That the behavior of kappa 1 is thus seriously in contradiction with the expected behavior for Nb 3 Sn suggests basic faults in the derivation of the scaling equation for critical currents at high magnetic fields

  15. Minimal performances of high Tc wires for cost effective SMES compared with low Tc's

    International Nuclear Information System (INIS)

    Levillain, C.; Therond, P.G.

    1996-01-01

    On the basis of a 22MJ/10MVA unit without stray field, the authors determine minimal performances for High T c Superconducting (HTS) wires, in order to obtain HTS Superconducting Magnetic Energy Storage (SMES) competitive compared with Low T c Superconducting (LTS) ones. The cost equation mainly considers the wire volume, the fabrication process and losses. They then recommend HTS critical current densities and operating magnetic fields close to the present state of the art for short samples. A 30% gain for HTS SMES compared with LTS one could be expected

  16. Preparation and characterization of Sc doped MgB2 wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Burdusel, M.

    2016-01-01

    in the nominal composition, the formation of Sc–rich impurity phases was evidenced by SEM/EDS observations. The critical current density and accommodation field of the wires are weakly dependant on the Sc content. It is believed that these effects are related more to modifications of the thermal behaviour...

  17. Exploring semiconductor quantum dots and wires by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e Ing Metalurgica y Q. Inorganica, F. de Ciencias, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Gonzalez, L; Ripalda, J M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M; Pennycook, S J, E-mail: sergio.molina@uca.e [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States)

    2010-02-01

    We review in this communication our contribution to the structural characterisation of semiconductor quantum dots and wires by high resolution electron microscopy, both in phase-contrast and Z-contrast modes. We show how these techniques contribute to predict the preferential sites of nucleation of these nanostructures, and also determine the compositional distribution in 1D and 0D nanostructures. The results presented here were produced in the framework of the European Network of Excellence entitled {sup S}elf-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics (SANDiE){sup .}

  18. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.-H. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, C.-C. [Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan County 736, Taiwan (China); Huang, T.-K. [College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, L.-K. [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Chou, M.-Y. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Huang, H.-H., E-mail: hhhuang@ym.edu.t [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China)

    2009-11-20

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO{sub 2}-based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO{sub 2} on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO{sub 3}/ZrO{sub 2}/SnO and Nb{sub 2}O{sub 5}, respectively, along with TiO{sub 2} on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  19. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  20. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  1. Stabilization of Olecranon Fractures by Tension Band Wiring or Plate Osteosynthesis: A Retrospective Study of 41 Cases.

    Science.gov (United States)

    Fournet, Alexandre; Boursier, Jean-François; Corbeau, Solène; Decambron, Adeline; Viateau, Véronique; Fayolle, Pascal; Bedu, Anne-Sophie; Leperlier, Dimitri; Manassero, Mathieu

    2018-01-01

     This article aimed to describe olecranon fracture in dogs and cats and their stabilization with tension band wiring or plate osteosynthesis, and to evaluate complications associated with each technique.  Medical records of cats and dogs that had been surgically treated for olecranon fractures with either tension band wiring or plate osteosynthesis were retrospectively reviewed. The surgical technique, complications and long-term outcomes were assessed.  Forty-one olecranon fractures were included. Fractures were articular, comminuted and open in 90, 31 and 27% of cases, respectively. Tension band wiring and plate osteosynthesis were performed in 22 and 19 fractures, respectively. Complications occurred more commonly after tension band wiring (74%) compared with plate osteosynthesis (27%) ( p  = 0.002) and these were probably related to it being used in comminuted fractures ( p  = 0.01) or to errors in technique. Minor complications included Kirschner wires migration ( n  = 5), pain ( n  = 3), osteomyelitis ( n  = 3), skin breakdown ( n  = 3) and seroma ( n  = 1). Implant failure requiring further fixation ( n  = 4) was observed only in the tension band wiring group. Other major complications included skin wound debridement and closure ( n  = 1) and chronic lameness requiring implant removal ( n  = 7). Long-term functional outcomes were excellent regardless of the technique used.  Plate osteosynthesis should be performed for olecranon fracture repair if technically feasible. Schattauer GmbH Stuttgart.

  2. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  4. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  5. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  6. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  7. Development of superconducting wire and cable for the SSC project in Sumitomo Electric Industries

    International Nuclear Information System (INIS)

    Sashida, T.; Saito, S.; Oku, G.; Kurimoto, K.; Yamada, Y.; Yokota, M.; Ohmatsu, K.; Nagata, M.

    1991-01-01

    As a large production volume of NbTi superconducting wire and cable is required for the SSC project, a production process has been developed at Sumitomo Electric to optimize critical variables of wire properties. To achieve high electrical properties and a high overall yield of NbTi alloy in the fabrication process, the authors have employed carefully designed large size multifilament billets weighing more than 350kg to decrease the number of billets in large production scale. The collider dipole magnet consists of inner and outer cables, and the cable should be as uniform as possible to ensure the performance of the magnets. The authors studied two aspects to obtain such uniformity of superconducting wire; one is the selection of unit weight and the other is the property of critical current density of a strand

  8. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  9. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  10. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Science.gov (United States)

    Asari, Tsukasa; Shibata, Ryosuke; Awano, Hiroyuki

    2017-05-01

    Nanoimprint lithography (NIL) is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS) in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL). We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc) for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  11. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  12. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  13. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  14. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  15. [Effectiveness of mini locking plate combined with Kirschner wire in treatment of comminuted Jones fracture].

    Science.gov (United States)

    Yan, Rongliang; Qu, Jiafu; Cao, Lihai; Liu, Hongda; Chen, Jianghua; Gao, Yan; Peng, Yi

    2018-05-01

    To summarize the effectiveness of mini locking plate combined with Kirschner wire in treatment of comminuted Jones fracture. Between January 2011 and October 2016, 25 cases with comminuted Jones fracture were treated with mini locking plate combined with Kirschner wire. There were 9 males and 16 females with an average age of 31.4 years (range, 16-66 years). The fractures located on the left side in 11 cases and on the right side in 14 cases. The causes of injury included spraining in 21 cases, falling down in 3 cases, and bruise in 1 case. The bone fragment of all cases was more than 3 pieces. The fracture line was mostly Y-shape or T-shape. Twelve of them were combined with other fractures. The time from injury to operation was 1-9 days (mean, 5 days). The mini locking plate and Kirschner wire were removed at 9-12 months postoperatively. At 12 months postoperatively, the pain was evaluated by the visual analogue scale (VAS) score, and the function by the American Orthopaedic Foot & Ankle Society (AOFAS) score. All incisions healed by first intention. All cases were followed up 12-36 months with an average of 21.7 months. Fracture union was observed in all patients without complications such as nonunion, delayed union, and malunion. The fracture union time was 8-12 weeks (mean, 9.4 weeks). At 12 months postoperatively, the VAS score was 1.15±0.87; the AOFAS score was 89.45±6.24, and the results were excellent in 14 cases, good in 9 cases, fair in 1 case, and poor in 1 case, with an excellent and good rate of 92%. The procedure of mini locking plate combined with Kirschner wire for comminuted Jones fracture has such advantages as convenient operation, more rigid fixation, high rate of fracture healing, and good functional recovery in foot.

  16. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  17. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    International Nuclear Information System (INIS)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee; Kim, Soo Young; Kim, Jea Youl; Shin, Sang Yong

    2016-01-01

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  18. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Soo Young; Kim, Jea Youl [RandD Center, KOS Ltd., Yangsan (Korea, Republic of); Shin, Sang Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2016-10-15

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  19. Development of MgB2 superconductor wire with high critical current

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong; Kim, Nam Kyu; Kim, Yi Jeong; Yi, Ji Hye; Lee, Ji Hyun; Tan, Kai Sin

    2009-07-01

    The MgB 2 superconductor with smaller grain size could improve its critical properties by providing flux pinning centers with high grain boundary density. The effects of C doping such as charcoal, paper ash and glycerin on the superconducting properties was investigated for in situ processed MgB 2 samples using low purity semi-crystalline B powder. The results show a decrease in Tc and an enhancement of Jc at high fields for the C-doped samples as compared to the un-doped samples. A combined process of a mechanical ball milling and liquid glycerin (C 3 H 8 O 3 ) treatment of B powder has been conducted to enhance the superconducting properties of MgB 2 . The mechanical ball milling was effective for grain refinement, and a lattice disorder was easily achieved by glycerin addition. With the combined process, the critical properties was further increased due to a higher grain boundary density and a greater C substitution. To get fine grain structure of MgB 2 with high critical current properties, mechanical milling for as-received B powder and low temperature solid-state reaction of 550 or 600 .deg. C were attempted to in situ powder-in-tube processed MgB 2 /Fe wires. The critical current properties of the MgB 2 wires using the milled B powder were enhanced due to a smaller grain size and an increased volume of the superconducting phase. The solid-state reaction of a low temperature process for the samples using the milled B powder resulted in a poorer crystallinity with a smaller grain size, which improved superconducting properties. We established the system to measure the transport current properties of the MgB 2 wires. The field dependence of the transport Jc was evaluated for the MgB 2 wires heat-treated at different heat treatment conditions using ball-milled and glycerin-treated B powder. The MgB 2 magnet was developed and the AC loss of MgB 2 wire was also investigated. A conduction cooling device to cool the MgB 2 coil down to 4 K has been fabricated and the

  20. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  1. Electrical and microstructural characterization of silver sheathed high Tc superconductors wires and ribbons

    International Nuclear Information System (INIS)

    Chaffron, L.; Regnier, P.; Schmirgeld, L.; Maurice, F.; Aguillon, C.; Senoussi, S.

    1991-01-01

    High Tc superconductors wires and ribbons were prepared according to the powder in tube method. It is shown that the electrical performances of the so prepared superconductors can be considerably improved, first by increasing as much as possible the density of the green body before sintering, and afterwards by melt texturing the sintered conductors. Some measurements of the transport critical current density of our conductors as a function of their diameter or their thickness are then presented and compared with indirect values obtained via the Bean method. The highest transport Jc measured in the present study, before melt texturing, are: 2250 and 5100 A/cm 2 at 77 and 63 K respectively, for a 50 μm thick silver sheathed ribbon. These figures compare nicely with the values of the intergranular critical current densities determined from magnetic measurements which are: 2100 and 5000 A/cm 2 at the same temperatures, and 40000 A/cm 2 at 4.2 K. Much higher intergranular values, in the range of 10 5 A/cm 2 were obtained after melt texturing the wires. Finally, microstructural characterizations carried out by X-ray diffraction, electron microprobe analysis and transmission electron microscopy are reported and discussed

  2. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Controlling Cu–Sn mixing so as to enable higher critical current densities in RRP® Nb3Sn wires

    Science.gov (United States)

    Sanabria, Charlie; Field, Michael; Lee, Peter J.; Miao, Hanping; Parrell, Jeff; Larbalestier, David C.

    2018-06-01

    Dipole magnets for the proposed Future Circular Collider (FCC) demand specifications significantly beyond the limits of all existing Nb3Sn wires, in particular a critical current density (J c) of more than 1500 A mm‑2 at 16 T and 4.2 K with an effective filament diameter (D eff) of less than 20 μm. The restacked-rod-process (RRP®) is the technology closest to meeting these demands, with a J c (16 T) of up to 1400 A mm‑2, residual resistivity ratio > 100, for a sub-element size D s of 58 μm (which in RRP® wires is essentially the same as D eff). An important present limitation of RRP® is that reducing the sub-element size degrades J c to as low as 900 A mm‑2 at 16 T for D s = 35 μm. To gain an understanding of the sources of this J c degradation, we have made a detailed study of the phase evolution during the Cu–Sn ‘mixing’ stages of the wire heat treatment that occur prior to Nb3Sn formation. Using extensive microstructural quantification, we have identified the critical role that the Sn–Nb–Cu ternary phase (Nausite) can play. The Nausite forms as a well-defined ring between the Sn source and the Cu/Nb filament pack, and acts as an osmotic membrane in the 300 °C–400 °C range—greatly inhibiting Sn diffusion into the Cu/Nb filament pack while supporting a strong Cu counter-diffusion from the filament pack into the Sn core. This converts the Sn core into a mixture of the low melting point (408 °C) η phase (Cu6Sn5) and the more desirable ε phase (Cu3Sn), which decomposes at 676 °C. After the mixing stages, when heated above 408 °C towards the Nb3Sn reaction, any residual η liquefies to form additional irregular Nausite on the inside of the membrane. All Nausite decomposes into NbSn2 on further heating, and ultimately transforms into coarse-grain (and often disconnected) Nb3Sn which has little contribution to current transport. Understanding this critical Nausite reaction pathway has allowed us to simplify the mixing heat treatment to

  4. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  5. Translating the 2-dimensional mammogram into a 3-dimensional breast: Identifying factors that influence the movement of pre-operatively placed wire.

    Science.gov (United States)

    Park, Ko Un; Nathanson, David

    2017-08-01

    Pre-operative measurements from the skin to a wire-localized breast lesion can differ from operating room measurements. This study was designed to measure the discrepancies and study factors that may contribute to wire movement. Prospective data were collected on patients who underwent wire localization lumpectomy. Clip and hook location, breast size, density, and direction of wire placement were the main focus of the analysis. Wire movement was more likely with longer distance from skin to hook or clip, larger breast size (especially if "fatty"), longer time between wire placement and surgery start time, and medial wire placement in larger breast. Age, body mass index, presence of mass, malignant diagnosis, tumor grade, and clip distance to the chest wall were not associated with wire movement. A longer distance from skin to hook correlated with larger specimen volume. Translation of the lesion location from a 2-dimensional mammogram into 3-dimensional breasts is sometimes discrepant because of movement of the localizing wire. Breast size, distance of skin to clip or hook, and wire exit site in larger breasts have a significant impact on wire movement. This information may guide the surgeon's skin incision and extent of excision. © 2017 Wiley Periodicals, Inc.

  6. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  7. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  8. Effect of Ag in structural, electrical and magnetic properties of Ag-sheated Bi-2223 wires

    Directory of Open Access Journals (Sweden)

    D Sohrabi

    2009-08-01

    Full Text Available  In this study, the superconducting properties of Bi-2223/Ag wires, made by the PIT method have been studied. Powder samples were prepared using conventional solid state reaction method. After calcination, samples with different Ag percent (0, 5, 10, 15, 20, and 25 prepared and sintered at 830 °C. It was shown that Ag addition has not only affected the formation of the desired Bi-2223 phase and the microstructure of these wires, but also influenced on the critical current density (JC and critical temperature.

  9. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  10. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  11. Primary experimental results of wire-array Z-pinches on PTS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X. B., E-mail: caephxb2003@aliyun.com; Zhou, S. T., E-mail: caephxb2003@aliyun.com; Ren, X. D., E-mail: caephxb2003@aliyun.com; Dan, J. K., E-mail: caephxb2003@aliyun.com; Wang, K. L., E-mail: caephxb2003@aliyun.com; Zhang, S. Q., E-mail: caephxb2003@aliyun.com; Li, J., E-mail: caephxb2003@aliyun.com; Xu, Q., E-mail: caephxb2003@aliyun.com; Cai, H. C., E-mail: caephxb2003@aliyun.com; Duan, S. C., E-mail: caephxb2003@aliyun.com; Ouyang, K., E-mail: caephxb2003@aliyun.com; Chen, G. H., E-mail: caephxb2003@aliyun.com; Ji, C., E-mail: caephxb2003@aliyun.com; Wang, M., E-mail: caephxb2003@aliyun.com; Feng, S. P., E-mail: caephxb2003@aliyun.com; Yang, L. B., E-mail: caephxb2003@aliyun.com; Xie, W. P., E-mail: caephxb2003@aliyun.com; Deng, J. J., E-mail: caephxb2003@aliyun.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132∼276 tungsten wires with 5∼10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ∼3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3∼5×10{sup 7} cm/s and the radial convergence ratio is between 10 and 20.

  12. First-principles study of electron transport through monatomic Al and Na wires

    DEFF Research Database (Denmark)

    Kobayashi, Nobuhiko; Brandbyge, Mads; Tsukada, Masaru

    2000-01-01

    We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction...... channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective...

  13. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    Science.gov (United States)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  14. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Dongge Deng

    2016-10-01

    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  15. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Directory of Open Access Journals (Sweden)

    Tsukasa Asari

    2017-05-01

    Full Text Available Nanoimprint lithography (NIL is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL. We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  16. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  17. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  18. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  19. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  20. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  1. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-01-01

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation

  2. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications.

    Science.gov (United States)

    Nithiyanantham, U; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-07-21

    A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.

  3. Majorana edge States in atomic wires coupled by pair hopping.

    Science.gov (United States)

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  4. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  5. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  6. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  7. Reliability Tests of Aluminium Wedge Wire Bonding on Auto-catalytic Silver Immersion Gold (ASIG) PCB Metallization

    CERN Document Server

    Drozd, A; Kaufmann, S; Manolescu, F; McGill, I

    2011-01-01

    The Auto-catalytic Silver Immersion Gold (ASIG) PCB metallization is a new process that has clear advantages for PCB assembly especially with regard to lead-free soldering. As it may become a popular process in the future for electronics used in physics experiments, the quality of this metallization for aluminium wire bonding has been studied. Aluminium wedge wire bonding continues to be the interconnection method of choice for many physics detector sensors, for high density signal routing and for unpackaged die. Although advertised as having good quality for aluminium wire bonding, this study was performed to verify this claim as well as to test the longer term reliability of the wire bonds taking into consideration the environmental conditions and life-expectancy of devices, in particular for high energy physics detector applications. The tests were performed on PCBs made with the ASIG and ENIG (Electro-less Nickel Immersion Gold) processes at the same time in order to make a comparison with the current ind...

  8. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Science.gov (United States)

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  9. Contributions for the modelling of submarine cables – current density and simplified modelling of wired layers

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Ebdrup, Thomas

    2015-01-01

    formulae. The substitution of round wires by equivalent solid layers is tested and tuned by changing the permeability of the insulation and the resistivity of the of the substitution layer. The tuning of these two parameters allows obtaining similar results for both cases even for materials with high...... permeabilities, like steel....

  10. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  11. Estimation and display of beam density profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, S; Mukhopadhyay, T; Roy, A; Mallik, C

    1989-03-15

    A setup in which wire-scanner-type beam-profile monitor data are collected on-line in a nuclear data-acquisition system has been used and a simple algorithm for estimation and display of the current density distribution in a particle beam is described.

  12. Current’s Fluctuations through Molecular Wires Composed of Thiophene Rings

    Directory of Open Access Journals (Sweden)

    Judith Helena Ojeda Silva

    2018-04-01

    Full Text Available We study theoretically the electronic transport and quantum fluctuations in single-molecule systems using thiophene rings as integrated elementary functions, as well as the dependence of these properties with the increase of the coupled rings, i.e., as a quantum wire. In order to analyze the current flow through these molecular systems, the thiophene rings are considered to be connected to metal contacts, which, in general terms, will be related to the application of voltages (bias voltages or gate voltages to generate non-equilibrium behavior between the contacts. Due to the nonlinear behavior that is generated when said voltages are applied, it is possible to observe quantum fluctuations in the transport properties of these molecular wires. For the calculation of the transport properties, we applied a tight-binding approach using the Landauer–Büttiker formalism and the Fischer–Lee relationship, by means of a semi-analytic Green’s function method within a real-space renormalization (decimation procedure. Our results showed an excellent agreement with results using a tight-binding model with a minimal number of parameters reported so far for these molecular systems.

  13. Equilibrium charge distribution on a finite straight one-dimensional wire

    Science.gov (United States)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  14. Equilibrium charge distribution on a finite straight one-dimensional wire

    International Nuclear Information System (INIS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Farouk, Ahmed; Alkhambashi, Majid

    2017-01-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges. (paper)

  15. Mechanical and microstructural characterization of new nickel-free low modulus β-type titanium wires during thermomechanical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Guillem-Martí, J. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Centre for Research in NanoEngineering (CRNE) – UPC, C/Pascual i Vila 15, 08028 Barcelona (Spain); Herranz-Díez, C. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Shaffer, J.E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Avenue, 46809 Fort Wayne (United States); Gil, F.J. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Centre for Research in NanoEngineering (CRNE) – UPC, C/Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2015-06-11

    NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus β-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti–50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future.

  16. Mechanical and microstructural characterization of new nickel-free low modulus β-type titanium wires during thermomechanical treatments

    International Nuclear Information System (INIS)

    Guillem-Martí, J.; Herranz-Díez, C.; Shaffer, J.E.; Gil, F.J.

    2015-01-01

    NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus β-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti–50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future

  17. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  18. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  19. Empolder and application of LiveWire program

    International Nuclear Information System (INIS)

    Zhang Bo; Li Jing; Wang Xiaoming

    2007-01-01

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  20. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  1. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  2. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  3. 47 CFR 32.2321 - Customer premises wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  4. Magnetic domain propagation in Pt/Co/Pt micro wires with engineered coercivity gradients along and across the wire

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, A., E-mail: arctgh@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Gaul, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Urbaniak, M. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Ehresmann, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Stobiecki, F. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2017-08-01

    Highlights: • Electron lithography and ion bombardment were used to modify the Co/Pt micro-wires. • Two-dimensional perpendicular magnetic anisotropy gradient was engineered. • Engineered anisotropy gradient allowed to control domain wall positions in the wires. • Simulations confirm the influence of defects on a remanent state of the wires. - Abstract: Pt(15 nm)/[Co(0.6 nm)/Pt(1.5 nm)]{sub 4} multilayers with perpendicular magnetic anisotropy were patterned into several-micrometer wide wires by electron-beam lithography. Bombarding the wires with He{sup +} ions with a fluence gradient along the wire results in a spatial gradient of switching fields that allows a controllable positioning of domain walls. The influence of the reduced anisotropy near the wire edges causes a remanent state in which the reversal close to the long edges precedes that in the middle of the wires. Experiments using Kerr microscopy prove this effect and micromagnetic simulations corroborate that a decrease of the anisotropy at the edges is responsible for the effect.

  5. Sensitive and simple method for measuring wire tensions

    International Nuclear Information System (INIS)

    Atac, M.; Mishina, M.

    1982-08-01

    Measuring tension of wires in drift chambers and multiwire proportional chambers after construction is an important process because sometimes wires get loose after soldering, crimping or glueing. One needs to sort out wires which have tensions below a required minimum value to prevent electrostatic instabilities. There have been several methods reported on this subject in which the wires were excited either with sinusoidal current under magnetic field or with sinusoidal voltage electrostatically coupled to the wire, searching for a resonating frequency with which the wires vibrate mechanically. Then the vibration is detected either visually, optically or with magnetic pick-up directly touching the wires. Any of these is only applicable to the usual multiwire chamber which has open access to the wire plane. They also need fairly large excitation currents to induce a detectable vibration to the wires. Here we report a very simple method that can be used for any type of wire chamber or proportional tube system for measuring wire tension. Only a very small current is required for the wire excitation to obtain a large enough signal because it detects the induced emf voltage across a wire. A sine-wave oscillator and a digital voltmeter are sufficient devices aside from a permanent magnet to provide the magnetic field around the wire. A useful application of this method to a large system is suggested

  6. Calibration Experiments with a DISA Hot-Wire Anemometer

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Hedberg, S.

    1968-11-01

    From Collis' law and the direction sensitivity relation proposed by Hinze it is possible to derive the following relation between the voltage over the wire, the velocity and the angle of incidence of the flow: (V 2 - V 2 0 )/R(R-R a ) = b(ρu) c (sin 2 ψ + k 2 cos 2 ψ) c/2 . T values of the exponent c and the direction sensitivity coefficient k were determined experimentally in the range 20 2 . It was found that, if V 0 is the voltage measured with no net flow past the wire, c and k are decreasing with increasing values of ρu. In order to check these calibration experiments, shear stress and turbulence measurements were made in a circular channel. For this geometry the shear stress distribution can be estimated theoretically and several earlier experiments can be used for comparisons. These experiments were made at Reynolds numbers 3 x 10 5 - 10 6 , Mach numbers 0.1 - 0.3 and a channel length of 61 diameters. Excellent agreement with the theoretical shear stress distribution (corrected for compressibility effects) and earlier data for the axial and radial turbulence components was obtained when the results of the calibration experiments were used for the evaluation of these measurements Evaluation with a constant value of c or with k 2 equal to zero (as often recommended) gave less good agreement

  7. A New Understanding of the Heat Treatment of Nb-Sn Superconducting Wires

    Science.gov (United States)

    Sanabria, Charlie

    Enhancing the beam energy of particle accelerators like the Large Hadron Collider (LHC), at CERN, can increase our probability of finding new fundamental particles of matter beyond those predicted by the standard model. Such discoveries could improve our understanding of the birth of universe, the universe itself, and/or many other mysteries of matter--that have been unresolved for decades--such as dark matter and dark energy. This is obviously a very exciting field of research, and therefore a worldwide collaboration (of universities, laboratories, and the industry) is attempting to increase the beam energy in the LHC. One of the most challenging requirements for an energy increase is the production of a magnetic field homogeneous enough and strong enough to bend the high energy particle beam to keep it inside the accelerating ring. In the current LHC design, these beam bending magnets are made of Nb Ti superconductors, reaching peak fields of 8 T. However, in order to move to higher fields, future magnets will have to use different and more advanced superconducting materials. Among the most viable superconductor wire technologies for future particle accelerator magnets is Nb3Sn, a technology that has been used in high field magnets for many decades. However, Nb3Sn magnet fabrication has an important challenge: the fact the wire fabrication and the coil assembly itself must be done using ductile metallic components (Nb, Sn, and Cu) before the superconducting compound (Nb3 Sn) is activated inside the wires through a heat treatment. The studies presented in this thesis work have found that the heat treatment schedule used on the most advanced Nb3Sn wire technology (the Restacked Rod Process wires, RRPRTM) can still undergo significant improvements. These improvements have already led to an increase of the figure of merit of these wires (critical current density) by 28%.

  8. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  9. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  10. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  11. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  12. A new technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns, has heretofore been confined excusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  13. SPECIFIC FEATURES OF TECHNOLOGY OF MANUFACTURING A ZINC-COATED TUB WIRE FOR MUZZLE (BOTTLE’ HOOD WIRE

    Directory of Open Access Journals (Sweden)

    D. B. Zuev

    2016-01-01

    Full Text Available The paper presents the main technical specifications of galvanized low carbon wire for muzzles (bottle’hood wire, consistent with the exploitation requirements to the wire in the manufacture and use of muzzles. The main criteria when selecting the steel grade and upon selection of the technological processes are given. 

  14. A hybrid DGTD scheme for transient analysis of electromagnetic field interactions on microwave systems loaded with thin wires

    KAUST Repository

    Li, Ping

    2015-10-15

    Use of the discontinuous Galerkin time-domain (DGTD) method for analyzing electromagnetic field interactions on microwave structures loaded with thin wires has been very limited despite its well-known advantages. Direct application of the three dimensional (3D) DGTD method to such structures calls for very fine volumetric discretizations in the proximity of the thin wires. In this work, to avoid this possible source of computational inefficiency, electromagnetic field interactions on thin wires and the rest of the structures are modeled separately using the modified telegrapher and Maxwell equations, respectively. Then, 1D and 3D DGTD methods are used to discretize them. The coupling between the two resulting matrix systems is realized by introducing equivalent source terms in each equation set. A weighted electric field obtained from the 3D discretization around the wire is introduced as a voltage source in the telegrapher equations. A volume current density obtained from the 1D discretization on the wire is introduced as a current source in the Ampere law equation. © 2015 IEEE.

  15. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Evetts, J E [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  16. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B.A.; Evetts, J.E. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M. [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I. [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  17. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  18. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  19. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  20. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  1. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments.

    Science.gov (United States)

    Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L

    2013-12-01

    Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  3. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  4. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  5. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  6. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  7. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  8. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions.

    Science.gov (United States)

    Iijima, Masahiro; Yuasa, Toshihiro; Endo, Kazuhiko; Muguruma, Takeshi; Ohno, Hiroki; Mizoguchi, Itaru

    2010-01-01

    This study investigated the corrosion properties of ion implanted nickel-titanium wire (Neo Sentalloy Ionguard) in artificial saliva and fluoride mouth rinse solutions (Butler F Mouthrinse, Ora-Bliss). Non ion implanted nickel-titanium wire (Neo Sentalloy) was used as control. The anodic corrosion behavior was examined by potentiodynamic polarization measurement. The surfaces of the specimens were examined with SEM. The elemental depth profiles were characterized by XPS. Neo Sentalloy Ionguard in artificial saliva and Butler F Mouthrinse (500 ppm) had a lower current density than Neo Sentalloy. In addition, breakdown potential of Neo Sentalloy Ionguard in Ora-Bliss (900 ppm) was much higher than that of Neo Sentalloy although both wires had similar corrosion potential in Ora-Bliss (450 and 900 ppm). The XPS results for Neo Sentalloy Ionguard suggested that the layers consisted of TiO(2) and TiN were present on the surface and the layers may improve the corrosion properties.

  9. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  10. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  11. Penetrating cardiac injury by wire thrown from a lawn mower.

    Science.gov (United States)

    Rubio, P A; Reul, G J

    1979-01-01

    The first successful surgically treated case of penetrating heart injury, specifically the right ventricle, caused by a fragment of coat hanger wire thrown by a lawn mower, is reported. Though traumatic heart injuries are rare, this case represents accurate surgical management and judgment, especially in the preoperative phase which resulted in early operating and excellent postoperative results. It is our feeling that if the patient can be transferred safely to the operating room the mortality rate is considerably lowered; however, emergency room thoracotomy, which will undoubtedly result in a greater survival rate from these spectacular injuries, should be performed in the emergency center if cardiac activity ceases or the patient's condition deteriorates considerably.

  12. Lowest-order corrections to the RPA polarizability and GW self-energy of a semiconducting wire

    NARCIS (Netherlands)

    Groot, de H.J.; Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1996-01-01

    We present the results of the addition of lowest-order vertex and self-consistency corrections to the RPA polarizability and the GW self-energy for a semiconducting wire. It is found that, when starting from a local density approximation zeroth-order Green function and systematically including these

  13. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  14. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    Science.gov (United States)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  15. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  16. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  17. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  18. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Donghong Ding

    2016-08-01

    Full Text Available Cast nickel aluminum bronze (NAB alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM. Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.

  19. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Deeney, Christopher E. [National Nuclear Security Administration, Washington, D.C. 20585 (United States); Douglas, Melissa R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chittenden, Jerry [Imperial College, London, SW and 2BW (United Kingdom)

    2011-11-15

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to {approx}5.8 mg. The driver utilized was the {approx}20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of {approx}375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  20. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    International Nuclear Information System (INIS)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H.; Deeney, Christopher E.; Douglas, Melissa R.; Chittenden, Jerry

    2011-01-01

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to ∼5.8 mg. The driver utilized was the ∼20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of ∼375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  1. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  2. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  3. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  4. Effects of drawing and high-pressure sintering on the superconducting properties of (Ba,K)Fe2As2 powder-in-tube wires

    International Nuclear Information System (INIS)

    Pyon, Sunseng; Yamasaki, Yuji; Tamegai, Tsuyoshi; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo

    2015-01-01

    The evolution of the superconducting properties of round wires of (Ba,K)Fe 2 As 2 fabricated by the powder-in-tube (PIT) method is systematically studied. After establishing the method to obtain the largest transport critical current density (J c ) in round wires using the hot isostatic press technique, we investigated how the transition temperature (T c ), J c , and microstructures change at each step of the wire fabrication. Unexpectedly, we find that superconducting properties of the wire core are significantly damaged by the drawing process. Systematic measurements of J c and T c of the core superconductor after each drawing and sintering process clarified the evolution of degradation by the drawing process and recovery by heat treatment. (paper)

  5. LENR BEC Clusters on and below Wires through Cavitation and Related Techniques

    Science.gov (United States)

    Stringham, Roger; Stringham, Julie

    2011-03-01

    During the last two years I have been working on BEC cluster densities deposited just under the surface of wires, using cavitation, and other techniques. If I get the concentration high enough before the clusters dissipate, in addition to cold fusion related excess heat (and other effects, including helium-4 formation) I anticipate that it may be possible to initiate transient forms of superconductivity at room temperature.

  6. Peak effect and superconducting properties of SmFeAsO{sub 0.8}F{sub 0.2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y L; Cui, Y J; Yang, Y; Zhang, Y; Wang, L; Zhao, Y [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C H; Sorrell, C [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-11-15

    Ta-sheathed SmFeAsO{sub 0.8}F{sub 0.2} superconducting wires with T{sub c} = 52.5 K have been fabricated using the powder-in-tube (PIT) method and the superconducting properties of the wires have been investigated. The wires exhibit a very large intragrain critical current density at a temperature below 30 K. A peak effect with maximal J{sub c} = 0.6 MA cm{sup -2} at 10 K under 6 T field was observed. The peak field H{sub pear} is strongly temperature-dependent. A severe weak-link effect depresses the development of global supercurrent owing to a very short coherence length. The wires also show a power law temperature dependence for the irreversibility line with H{sub irr}{approx_equal}(1-T/T{sub c}){sup 1.5}. The H-T phase diagram was found to be similar to that of other superconducting cuprates.

  7. High-performance, stretchable, wire-shaped supercapacitors.

    Science.gov (United States)

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. THE FORMATION OF BIMETALLIC CONNECTION IN WELDER DEPOSITION UNDER LASER WELDING WITH THE FILLER WIRE FEED

    Directory of Open Access Journals (Sweden)

    A. P. Yelistratov

    2017-01-01

    Full Text Available The metallurgical and technological features of welding deposition in a robotic unit with a semiconductor laser are analyzed. The prospects of using beam with low energy density in the spot heating for applying metallic layers using filler wire are shown. 

  9. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1991-09-01

    High magnetization YBaCuO superconductor was prepared with additions of BaSnO 3 , SnO 2 and SiC by partial melt processing. Addition of BaSnO 3 increased the magnetic property of YBaCuO by flux pinning action of finely dispersed BaSnO 3 particles, while addition of SnO 2 decreased the magnetic property, because the size of particle was larger than that of BaSnO 3 . BiPbSrCaCuO superconducting tape of single filament was prepared by powder-in-tube method using silver as a shearth material. The fabrication techniques involves powder packing, swaging, drawing and cold rolling/pressing method. The final dimension of wire after drawing is 1.2mm diameter. The wire was pressed into a tape form with a thickness of 70micron and a width of 3mm. The obtained critical current density of the prepared tape was 2000A/cm 2 at 77K. (Author)

  10. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  11. Lunar Module Wiring Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  12. Electromagnetic characteristic of twin-wire indirect arc welding

    Science.gov (United States)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  13. Carbon wire chamber at sub-atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Charles, G., E-mail: charlesg@ipno.in2p3.fr; Audouin, L., E-mail: audouin@ipno.in2p3.fr; Bettane, J.; Dupre, R.; Genolini, B.; Hammoudi, N.; Imre, M.; Le Ven, V.; Maroni, A.; Mathon, B.; Nguyen Trung, T.; Rauly, E.

    2017-05-21

    Present in many experiments, wire and drift chambers have been used in a large variety of shapes and configurations during the last decades. Nevertheless, their readout elements has not evolved much: tungsten, sometimes gold-plated or aluminum, wires. By taking advantage of the developments in the manufacture of conducting carbon fiber, we could obtain interesting improvements for wire detectors. In this article, we present recent tests and simulations using carbon fibers to readout signal in place of traditional tungsten wires. Unlike metallic wires, their low weight guaranties a reduced quantity of material in the active area.

  14. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications

    Science.gov (United States)

    Nithiyanantham, U.; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-06-01

    A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 +/- 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g-1 was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are

  15. Possibility of material cost reduction toward development of low-cost second-generation superconducting wires

    Science.gov (United States)

    Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya

    2017-10-01

    Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.

  16. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    Science.gov (United States)

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  17. TiO2 Microflowers Assembled by 6-nm Single-Crystal Stranded Wires with Improved Photoelectrochemical Performances

    International Nuclear Information System (INIS)

    Liu, Chunlei; Zhou, Wei; Yu, Li; Zhang, Gong; Qu, Jiuhui; Liu, Huijuan

    2017-01-01

    Highlights: •The 6-nm single-crystal stranded wires of TiO 2 exhibited a photocurrent of 0.33 mA cm −2 compared to that of the P25/TF (0.06 mA cm −2 ), which greatly facilited the electron transfer rate. •A photoelectrochemical (PEC) system combining degradation of bisphenol A and H 2 production was constructed based on the TiO 2 -SWs/TF. •This PEC system exhibited a 94% bisphenol A degradation efficiency within 60 min at 1.2 V and H 2 production simultaneously. •A power consumption of only 0.02 kWh m −3 was consumed by the TiO 2 -SWs/TF in PEC system. •Two pathways for PEC degradation of bisphenol A were proposed based on the intermediates identified by UPLC-Q-TOF-MS. -- Abstract: As the diffusion length of charge carriers in TiO 2 is around 10 nm, it would be an efficient way to increase the photocatalytic properties by controlling the size within 10 nm. Herein, TiO 2 microflowers assembled by 6-nm single-crystal stranded wires grown on Ti foam (TiO 2 -SWs/TF) were synthesized which facilated electron transfer rate with a photocurrent of 0.33 mA cm −2 compared to that of the P25/TF (0.06 mA cm −2 ). A photoelectrochemical (PEC) system combining degradation of bisphenol A and H 2 production was constructed based on the as-obtained TiO 2 -SWs/TF as photoanode and Pt wire as cathode. This PEC system exhibited excellent ability for simultaneous bisphenol A degradation and H 2 production, giving a 94% bisphenol A degradation efficiency within 60 min at 1.2 vs (Ag/AgCl) V with power consumption of only 0.02 kWh m −3 . The excellent PEC degradation of bisphenol A by the TiO 2 -SWs/TF could mainly be ascribed to the fast electron transfer via the 6-nm ultrathin wires and synergetic effect of photocatalysis and electrochemical process. Two pathways for PEC degradation of bisphenol A were proposed based on the intermediates identified by Ultra Performance liquid chromatography-quadruple-time of flight-mass spectrometry (UPLC-Q-TOF-MS).

  18. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  19. Spin-orbit interaction induced anisotropic property in interacting quantum wires

    Directory of Open Access Journals (Sweden)

    Chang Kai

    2011-01-01

    Full Text Available We investigate theoretically the ground state and transport property of electrons in interacting quantum wires (QWs oriented along different crystallographic directions in (001 and (110 planes in the presence of the Rashba spin-orbit interaction (RSOI and Dresselhaus SOI (DSOI. The electron ground state can cross over different phases, e.g., spin density wave, charge density wave, singlet superconductivity, and metamagnetism, by changing the strengths of the SOIs and the crystallographic orientation of the QW. The interplay between the SOIs and Coulomb interaction leads to the anisotropic dc transport property of QW which provides us a possible way to detect the strengths of the RSOI and DSOI. PACS numbers: 73.63.Nm, 71.10.Pm, 73.23.-b, 71.70.Ej

  20. Research on the Statistical Characteristics of Crosstalk in Naval Ships Wiring Harness Based on Polynomial Chaos Expansion Method

    Directory of Open Access Journals (Sweden)

    Chi Yaodan

    2017-08-01

    Full Text Available Crosstalk in wiring harness has been studied extensively for its importance in the naval ships electromagnetic compatibility field. An effective and high-efficiency method is proposed in this paper for analyzing Statistical Characteristics of crosstalk in wiring harness with random variation of position based on Polynomial Chaos Expansion (PCE. A typical 14-cable wiring harness was simulated as the object of research. Distance among interfering cable, affected cable and GND is synthesized and analyzed in both frequency domain and time domain. The model of naval ships wiring harness distribution parameter was established by utilizing Legendre orthogonal polynomials as basis functions along with prediction model of statistical characters. Detailed mean value, mean square error, probability density function and reasonable varying range of crosstalk in naval ships wiring harness are described in both time domain and frequency domain. Numerical experiment proves that the method proposed in this paper, not only has good consistency with the MC method can be applied in the naval ships EMC research field to provide theoretical support for guaranteeing safety, but also has better time-efficiency than the MC method. Therefore, the Polynomial Chaos Expansion method.

  1. Suppression of Red Luminescence in Wire Explosion Derived Eu:ZnO

    Science.gov (United States)

    Pallavi, Bandi; Sathyan, Sneha; Yoshimura, Takuya; Kumar, Praveen; Anbalagan, Kousika; Talluri, Bhusankar; Ramanujam, Sarathi; Ranjan, Prem; Thomas, Tiju

    2018-03-01

    Europium oxide (Eu2O3) is coated on zinc (Zn) wire using the electrophoretic deposition process. The coated Zn wire is subjected to the wire explosion process (WEP) which is rapid (material has ˜ 0.24 at.% doping. This analysis also shows that, unlike another popular material GaN, in the case of ZnO, Eu3+ strictly substitutes for Zn2+ (i.e., dopant replacing a cation-anion pair does not seem possible). It may be noted that Eu3+ in a suitable host is oftentimes reported to be an efficient luminophore. The IR spectra show a band shift from 486 cm-1 to 493 cm-1; with peak shifts from 436 cm-1 to 430 cm-1 in Raman spectra. These too indicate the presence of Eu in the samples. However, at room temperature, only green luminescence (centered at 534 nm) is observed from the sample indicating (1) high concentrations of OZn anti-site defects and Zn vacancies, and (2) concomitant quenching of the luminescence at room temperature. Our results suggest that WEP is viable for synthesizing rare earth doped ceramic materials. However, obtaining efficient phosphors using this approach will likely require, (1) reduction of defect densities, and (2) appropriate passivation using post-processing.

  2. Effect of starting materials and processing variables for the production of discontinuous filament Nb3Sn wire

    International Nuclear Information System (INIS)

    Upadhyay, P.L.; Dew-Hughes, D.

    1986-01-01

    Discontinuous multifilamentary wires of Nb 3 Sn have been prepared from compacted mixtures of 30 wt. %Nb in Cu, extruded, drawn, annealed, tin plated and reacted. Processing variables include starting materials, extrusion ratio and extrusion temperature. Continuous lengths of wire could be satisfactorily produced from compacts of either ultra-pure Nb (VPN about 95 kg mm -2 ) and Cu powder or from centrifugal arc-cast Nb spheroids (VPN about 120 kg mm -2 ) and tough pitch Cu powder. After a total area reduction of 10 4 : 1, the latter materials resulted in long, unbroken, highly regular filaments of Nb about 6μm in diameter. The high degree of perfection of these filaments is due in part to the uniformity of the initial spheroids, compared to the highly irregular hydride-dehydride Nb powder. However their greater hardness requires that the spheroids be coprocessed in a less-pure Cu matrix. Critical currents were measured on helical specimens involving more than 1m length of wire, in fields up to 15T at 4.2 K, after reaction for various times at different temperatures. Overall current densities of 3 X 10 8 Am -2 were obtained at 12T in the best samples. Further reductions are expected to produce material with improved current densities

  3. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  4. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  5. Domain observations of Fe and Co based amorphous wires

    International Nuclear Information System (INIS)

    Takajo, M.; Yamasaki, J.

    1993-01-01

    Domain observations were made on Fe and Co based amorphous magnetic wires that exhibit a large Barkhausen discontinuity during flux reversal. Domain patterns observed on the wire surface were compared with those found on a polished section through the center of the wire. It was confirmed that the Fe based wire consists of a shell and core region as previously proposed, however, there is a third region between them. This fairly thick transition region made up of domains at an angle of about 45 degree to the wire axis clearly lacking the closure domains of the previous model. The Co based wire does not have a clear core and shell domain structure. The center of the wire had a classic domain structure expected of uniaxial anisotropy with the easy axis normal to the wire axis. When a model for the residual stress quenched-in during cooling of large Fe bars is applied to the wire, the expected anisotropy is consistent with the domain patterns in the Fe based wire, however, shape anisotropy still plays a dominant role in defining the wire core in the Co based wire

  6. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.

    Science.gov (United States)

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David E

    2016-08-04

    The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire.

  7. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    International Nuclear Information System (INIS)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli

    2016-01-01

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  8. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shanxi 710049 (China)

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  9. Elaboration and characterization of silver sheathed YBaCuO and BiSrCaCuO wires

    International Nuclear Information System (INIS)

    Regnier, P.; Chaffron, L.; Schmirgeld, L.

    1990-01-01

    We report on our recent progress in the elaboration of silver sheathed high-Tc superconducting wires. It is shown that careful optimization of the swaging and pressing stages leads to a compacity of nearly 100% for the green ceramic, which considerably reduces the problem of its shrinkage in the silver clad during sintering, and consequently increases the critical current density far above 10 3 A/cm 2 at 77 K. Electrical and microstructural characterization of the wires are presented and compared with other published data. In particular, for both YBaCuO and BiSrCaCuO ribbons, it is shown that the thinner the ribbon the higher the critical current density. But this effect is much more pronounced for BiSrCaCuO because, due to partial melting of the former ceramic during the elaboration process, there is a pronounced enhancement of its texture as its thickness is reduced

  10. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  11. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  12. Enhanced J c property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process

    International Nuclear Information System (INIS)

    Jiang, C.H.; Nakane, T.; Hatakeyama, H.; Kumakura, H.

    2005-01-01

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB 2 /Fe wires from MgH 2 and B powders. The pores and cracks resulted from the MgH 2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and J c property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in J c within this study. The reproducibility of our new process on the J c improvement in MgB 2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately

  13. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  14. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  15. Nuclear Quantum Effects in H+ and OH- Diffusion Along Confined Water Wires from Ab Initio Path Integral Molecular Dyanmics

    Science.gov (United States)

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David

    Diffusion of H+ and OH- along water wires provides an efficient mechanism for charge transport that is exploited by biological systems and shows promise in technological applications. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we consider H+ and OH- in finite water wires using density functional theory. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition of the charge. We employ thermostated ring polymer molecular dynamics and extract a ``universal'' diffusion coefficient from simulations with different wire sizes by considering Langevin dynamics on the potential of mean force of the charged species. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate O-O distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire, presumably making them more robust to environment fluctuations.

  16. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  17. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  18. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  19. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  20. A Robust Function to Return the Cumulative Density of Non-Central F Distributions in Microsoft Office Excel

    Science.gov (United States)

    Nelson, James Byron

    2016-01-01

    The manuscript presents a Visual Basic[superscript R] for Applications function that operates within Microsoft Office Excel[superscript R] to return the area below the curve for a given F within a specified non-central F distribution. The function will be of use to Excel users without programming experience wherever a non-central F distribution is…

  1. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    .... Receptacles on a two-wire, single-phase portable or vehicle-mounted generator rated not more than 5kW, where the circuit conductors of the generator are insulated from the generator frame and all other grounded... wiring shall be grounded: (i) Three-wire DC systems. All 3-wire DC systems shall have their neutral...

  2. Acoustic Emission from Elevator Wire Ropes During Tensile Testing

    Science.gov (United States)

    Bai, Wenjie; Chai, Mengyu; Li, Lichan; Li, Yongquan; Duan, Quan

    The acoustic emission (AE) technique was used to monitor the tensile testing process for two kinds of elevator wire ropes in our work. The AE signals from wire breaks were obtained and analyzed by AE parameters and waveforms. The results showed that AE technique can be a useful tool to monitor wire break phenomenon of wire ropes and effectively capture information of wire break signal. The relationship between AE signal characteristics and wire breaks is investigated and it is found that the most effective acoustic signal discriminators are amplitude and absolute energy. Moreover, the wire break signal of two kinds of ropes is a type of burst signal and it is believed that the waveform and spectrum can be applied to analyze the AE wire break signals.

  3. Impedance Characterisation of the SPS Wire Scanner

    CERN Document Server

    AUTHOR|(CDS)2091911; Prof. Sillanpää, Mika

    As a beam diagnostic tool, the SPS wire scanner interacts with the proton bunches traversing the vacuum pipes of the Super Proton Synchrotron particle accelerator. Following the interaction, the bunches decelerate or experience momentum kicks off-axis and couple energy to the cavity walls, resonances and to the diagnostic tool, the scanning wire. The beam coupling impedance and, in particular, the beam induced heating of the wire motivate the characterisation and redesign of the SPS wire scanner. In this thesis, we characterise RF-wise the low frequency modes of the SPS wire scanner. These have the highest contribution to the impedance. We measure the cavity modes in terms of resonance frequency and quality factor by traditional measurement techniques and data analysis. We carry out a 4-port measurement to evaluate the beam coupling to the scanning wire, that yields the spectral heating power. If combined with the simulations, one is able to extract the beam coupling impedance and deduce the spectral dissipa...

  4. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  5. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.

    Science.gov (United States)

    Segal, Nadav; Hell, Jess; Berzins, David W

    2009-06-01

    The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase

  6. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    International Nuclear Information System (INIS)

    Wang Pengxiang; Chen Junhong

    2009-01-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  7. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    Science.gov (United States)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  8. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  9. Excel 2013 formulas

    CERN Document Server

    Walkenbach, John

    2013-01-01

    Maximize the power of Excel 2013 formulas with this must-have Excel reference John Walkenbach, known as ""Mr. Spreadsheet,"" is a master at deciphering complex technical topics and Excel formulas are no exception. This fully updated book delivers more than 800 pages of Excel 2013 tips, tricks, and techniques for creating formulas that calculate, developing custom worksheet functions with VBA, debugging formulas, and much more. Demonstrates how to use all the latest features in Excel 2013 Shows how to create financial formulas and tap into the power of array formulas

  10. External wire-frame fixation of digital skin grafts: a non-invasive alternative to the K-wire insertion method.

    Science.gov (United States)

    Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko

    2014-08-01

    The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  12. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  13. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  14. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  15. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  16. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  17. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    Science.gov (United States)

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  18. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  19. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  20. Excel 2013 simplified

    CERN Document Server

    McFedries, Paul

    2013-01-01

    A friendly, visual approach to learning the basics of Excel 2013 As the world's leading spreadsheet program, Excel is a spreadsheet and data analysis tool that is part of the Microsoft Office suite. The new Excel 2013 includes new features and functionalities that require users of older versions to re-learn the application. However, whether you're switching from an earlier version or learning Excel for the first time, this easy-to-follow visual guide gets you going with Excel 2013 quickly and easily. Numbered steps as well as full-color screen shots, concise information, and helpfu

  1. Wire scanner software and firmware issues

    International Nuclear Information System (INIS)

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  2. Lightning effects on the NASA F-8 digital-fly-by-wire airplane

    Science.gov (United States)

    Plumer, J. A.; Fisher, F. A.; Walko, L. C.

    1975-01-01

    The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.

  3. Critical access hospital informatics: how two rural Iowa hospitals overcame challenges to achieve IT excellence.

    Science.gov (United States)

    Bahensky, James A; Moreau, Brian; Frieden, Rob; Ward, Marcia M

    2008-01-01

    Critical access hospitals often have limited financial and personnel resources to implement today's healthcare IT solutions. Two CAHs in rural Iowa overcame these obstacles and found innovative ways to implement information technology. These hospitals earned recognition from Hospitals & Health Network's Most Wired Magazine for excellence in business processes, customer service, safety and quality, work force management, and public health and safety. Though the hospitals come from different environments-one is part of a system and the other is independent-both exemplify best practices on how to use healthcare IT solutions; engage clinicians from a community setting in informatics decisions; integrate technology into an organization's strategic directions; and support healthcare IT environments.

  4. Metallurgical investigation of wire breakage of tyre bead grade

    Directory of Open Access Journals (Sweden)

    Piyas Palit

    2015-10-01

    Full Text Available Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase.

  5. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  6. Calibration Experiments with a DISA Hot-Wire Anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Hedberg, S

    1968-11-15

    From Collis' law and the direction sensitivity relation proposed by Hinze it is possible to derive the following relation between the voltage over the wire, the velocity and the angle of incidence of the flow: (V{sup 2} - V{sup 2}{sub 0})/R(R-R{sub a}) = b({rho}u){sup c} (sin{sup 2}{psi} + k{sup 2}cos{sup 2}{psi}){sup c/2}. T values of the exponent c and the direction sensitivity coefficient k were determined experimentally in the range 20 < {rho}u < 180 kg/sm{sup 2}. It was found that, if V{sub 0} is the voltage measured with no net flow past the wire, c and k are decreasing with increasing values of {rho}u. In order to check these calibration experiments, shear stress and turbulence measurements were made in a circular channel. For this geometry the shear stress distribution can be estimated theoretically and several earlier experiments can be used for comparisons. These experiments were made at Reynolds numbers 3 x 10{sup 5} - 10{sup 6}, Mach numbers 0.1 - 0.3 and a channel length of 61 diameters. Excellent agreement with the theoretical shear stress distribution (corrected for compressibility effects) and earlier data for the axial and radial turbulence components was obtained when the results of the calibration experiments were used for the evaluation of these measurements Evaluation with a constant value of c or with k{sup 2} equal to zero (as often recommended) gave less good agreement.

  7. Experimental Research of Dynamic Instabilities in the Presence of Coiled Wire Inserts on Two-Phase Flow

    Science.gov (United States)

    Omeroglu, Gokhan; Comakli, Omer; Karagoz, Sendogan; Sahin, Bayram

    2013-01-01

    The aim of this study is to experimentally investigate the effect of the coiled wire insertions on dynamic instabilities and to compare the results with the smooth tube for forced convection boiling. The experiments were conducted in a circular tube, and water was used as the working fluid. Two different pitch ratios (H/D = 2.77 and 5.55) of coiled wire with circular cross-sections were utilised. The constant heat flux boundary condition was applied to the outer side of the test tube, and the constant exit restriction was used at the tube outlet. The mass flow rate changed from 110 to 20 g/s in order to obtain a detailed idea about the density wave and pressure drop oscillations, and the range of the inlet temperature was 15–35°C. The changes in pressure drop, inlet temperature, amplitude, and the period with mass flow rate are presented. For each configuration, it is seen that density wave and pressure drop oscillations occur at all inlet temperatures. Analyses show that the decrease in the mass flow rate and inlet temperature causes the amplitude and the period of the density wave and the pressure drop oscillations to decrease separately. PMID:23365547

  8. Cu-Nb3Sn superconducting wires prepared by ''Copper Liquid Phase Sintering method'' using the Nb-H

    International Nuclear Information System (INIS)

    Resende, A.T. de.

    1985-01-01

    Cu-30% Nb in weighting were prepared by the method of Copper sintering liquid phase the method was improved by substitution of Nb power by Nb-H powder, obtaining a high density material with good mechanical properties, which was reduced to fine. Wire, Without heat treatment. The Cu-Nb 3 Sn wires were obtained by external diffusion process depositing tin in the Cu-30%Nb wires, and by internal diffusion process using the Sn-8.5% Cu in weighting, which was reduced to rods of 3.5 mm. These Cu-30%Nb rods were enclosed in copper tubes and deformed mechanically by rotary swaging and drawing. During the drawing step some wires were fractured, that were analysed and correlated with the microstructure of the Sn-8.5 Wt% Cu alloy. External and internal diffusion samples; after a fast thermal treatment for Sn diffusion, were submited to the temperature of 700 0 C to provide the reaction between Sn and Nb, leading to the Nb 3 Sn phase. Samples with several reaction times, and its influence on T c and J c critical parameters and normal resistivity were prepared and analysed. (author) [pt

  9. Wiring Damage Analyses for STS OV-103

    Science.gov (United States)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  10. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    Science.gov (United States)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  11. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  12. A novel method for shape analysis: deformation of bubbles during wire drawing in doped tungsten

    International Nuclear Information System (INIS)

    Harmat, P.; Bartha, L.; Grosz, T.; Rosta, L.

    2001-01-01

    A novel technique has been developed for monitoring shape and size of microscopic pores, bubbles, second phase particles in deformed PM materials. The anisotropic small angle neutron scattering (ASANS) measurement provides direct visualization of the shape of second phase objects after rolling, swaging, wire drawing. Also in case of mixture of different objects e. g. uniformly elongated bubbles and spherical ones they can be separated and their morphological parameters like relative number density, diameter, aspect ratio can be obtained from the quantitative analysis of ASANS data. Rods and wires from K-AI-Si doped tungsten containing residual porosity and K filled bubbles were studied from 6 mm to 0.2 mm in diameter. The increase of the average aspect ratio (∼1/d) was found to be much slower than expected from the usual theory (∼1/d 3 ). Instead of 'constant volume' assumption, the 'constant length' seems to be reliable. The ASANS investigation revealed also the occurrence of a small amount of spherical bubbles after several steps of wire drawing. (author)

  13. Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhao, Qing; Li, Heng; Yu, Dapeng [State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871 (China); Wu, Hongwei; Zou, Dechun [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-07-10

    Transparent, double-sided, flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, facile, and controllable way. Highly ordered, high-crystal-quality, high-density ZnO nanowire arrays are radially grown on stainless steel, Au, Ag, and Cu microwires, which serve as working electrodes. Pt wires serve as the counter electrodes. Two metal wires are encased in electrolyte between two poly(ethylene terephthalate) (PET) films (or polydimethylsiloxane (PDMS) films) to render the device both flexible and highly transparent. The effect of the dye thickness on the photovoltaic performance of the DSSCs as a function of dye-loading time is investigated systematically. Shorter dye-loading times lead to thinner dye layers and better device performance. A dye-loading time of 20 min results in the best device performance. An oxidation treatment of the metal wires is developed effectively to avoid the galvanic-battery effect found in the experiment, which is crucial for real applications of double-metal-wire DSSC configurations. The device shows very good transparency and can increase sunlight use efficiency through two-sided illumination. The double-wire DSSCs remain stable for a long period of time and can be bent at large angles, up to 107 , reversibly, without any loss of performance. The double-wire-PET, planar solar-cell configuration can be used as window stickers and can be readily realized for large-area-weave roll-to-roll processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling.

    Science.gov (United States)

    Taherinia, Davood; Smith, Christopher E; Ghosh, Soumen; Odoh, Samuel O; Balhorn, Luke; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel

    2016-04-26

    We report the synthesis, transport measurements, and electronic structure of conjugation-broken oligophenyleneimine (CB-OPI 6) molecular wires with lengths of ∼4 nm. The wires were grown from Au surfaces using stepwise aryl imine condensation reactions between 1,4-diaminobenzene and terephthalaldehyde (1,4-benzenedicarbaldehyde). Saturated spacers (conjugation breakers) were introduced into the molecular backbone by replacing the aromatic diamine with trans-1,4-diaminocyclohexane at specific steps during the growth processes. FT-IR and ellipsometry were used to follow the imination reactions on Au surfaces. Surface coverages (∼4 molecules/nm(2)) and electronic structures of the wires were determined by cyclic voltammetry and UV-vis spectroscopy, respectively. The current-voltage (I-V) characteristics of the wires were acquired using conducting probe atomic force microscopy (CP-AFM) in which an Au-coated AFM probe was brought into contact with the wires to form metal-molecule-metal junctions with contact areas of ∼50 nm(2). The low bias resistance increased with the number of saturated spacers, but was not sensitive to the position of the spacer within the wire. Temperature dependent measurements of resistance were consistent with a localized charge (polaron) hopping mechanism in all of the wires. Activation energies were in the range of 0.18-0.26 eV (4.2-6.0 kcal/mol) with the highest belonging to the fully conjugated OPI 6 wire and the lowest to the CB3,5-OPI 6 wire (the wire with two saturated spacers). For the two other wires with a single conjugation breaker, CB3-OPI 6 and CB5-OPI 6, activation energies of 0.20 eV (4.6 kcal/mol) and 0.21 eV (4.8 kcal/mol) were found, respectively. Computational studies using density functional theory confirmed the polaronic nature of charge carriers but predicted that the semiclassical activation energy of hopping should be higher for CB-OPI molecular wires than for the OPI 6 wire. To reconcile the experimental and

  15. Supplemental Analysis Survey of C&P Telephone Inside Wiring.

    Science.gov (United States)

    1986-10-01

    telephone company facilities in 1984. In 1985, among other actions favorable to deregulation and detariffing of inside wiring, the FCC proposed to detariff ...installation of inside wiring, detariff the maintenance of all inside wiring, treat all inside wiring as customer premise equipment and pass ownership...85-148, 50 Fed. let. 13991 (April 9, 1985), pToposing to detariff the installation of simple inside wiring and also to detariff the maintenance of all

  16. Nano-powder production by electrical explosion of wires

    International Nuclear Information System (INIS)

    Mao Zhiguo; Zou Xiaobing; Wang Xinxin; Jiang Weihua

    2010-01-01

    A device for nano-powder production by electrical explosion of wires was designed and built. Eight wires housed in the discharge chamber are exploded one by one before opening the chamber for the collection of the produced nano-powder. To increase the rate of energy deposition into a wire, the electrical behavior of the discharge circuit including the exploding wire was simulated. The results showed that both reducing the circuit inductance and reducing the capacitance of the energy-storage capacitor (keeping the storage energy constant) can increase the energy deposition rate. To better understand the physical processes of the nano-powder formation by the wire vapor, a Mach-Zehnder interferometer was used to record the time evolution of the wire vapor as well as the plasma. A thermal expansion lag of the dense vapor core as well as more than one times of the vapor burst was observed for the first time. Finally, nano-powders of titanium nitride, titanium dioxide, copper oxides and zinc oxide were produced by electrical explosion of wires. (authors)

  17. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  18. Experimental investigation of industrial copper deformed by wire ...

    African Journals Online (AJOL)

    drawing on microstructure and physical properties of industrial copper wires. Copper wires were provided by E.N.I.CA.Biskra (Algeria). We investigated some wires with different strain levels (as received, 1.20, 2.10, and ε = 3.35).

  19. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  20. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Dept.of Physics, GTN Arts College, Dindigul-624 005. India (India); Peter, A. John, E-mail: a.john.peter@gmail.com [P.G & Research Dept.of Physics, Government Arts College, Melur-625 106. Madurai. India (India)

    2016-05-23

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-V narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.

  1. Excellence in the knowledge-based economy: from scientific to research excellence

    DEFF Research Database (Denmark)

    Sørensen, Mads P.; Bloch, Carter Walter; Young, Mitchell

    2016-01-01

    In 2013, the European Union (EU) unveiled its new ‘Composite Indicator for Scientific and Technological Research Excellence’. This is not an isolated occurrence; policy-based interest in excellence is growing all over the world. The heightened focus on excellence and, in particular, attempts...... to define it through quantitative indicators can have important implications for research policy and for the conduct of research itself. This paper examines how the EU's understanding of excellence has evolved in recent years, from the presentation of the Lisbon strategy in 2000 to the current Europe 2020...... strategy. We find a distinct shift in the understanding of excellence and how success in the knowledge-based economy should be achieved: in the early period, excellence is a fuzzy concept, intrinsically embedded in research and researchers and revealed by peer review. In the later period, excellence...

  2. Negative effects of crystalline-SiC doping on the critical current density in Ti-sheathed MgB2(SiC)y superconducting wires

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Luo, Z P; Hoyt, C; Yen, F; Guchhait, S; Lv, B; Markert, J T

    2007-01-01

    Ti-sheathed MgB 2 wires doped with nanosize crystalline-SiC up to a concentration of 15 wt% SiC have been fabricated, and the effects of the SiC doping on the critical current density (J c ) and other superconducting properties studied. In contrast with the previously reported results that nano-SiC doping with a doping range below 16 wt% usually enhances J c , particularly at higher fields, our measurements show that SiC doping decreases J c over almost the whole field range from 0 to 7.3 T at all temperatures. Furthermore, it is found that the degradation of J c becomes stronger at higher SiC doping levels, which is also in sharp contrast with the reported results that J c is usually optimized at doping levels near 10 wt% SiC. Our results indicate that these negative effects on J c could be attributed to the absence of significant effective pinning centres (mainly Mg 2 Si) due to the high chemical stability of the crystalline-SiC particles

  3. Induced Voltage in an Open Wire

    Science.gov (United States)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  4. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  5. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  6. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  7. Performance evaluation of PFBR wire type sodium leak detectors

    International Nuclear Information System (INIS)

    Vijayakumar, G.; Rajan, K.K.; Nashine, B.K.; Chandramouli, S.; Madhusoodanan, K.; Kalyanasundaram, P.

    2011-01-01

    Highlights: → Performance evaluation of wire type leak detectors was conducted in LEENA facility by creating sodium leaks. → The lowest leak rate of 214 g/h was detected in 50 min and the highest detection time was 6 h for a leak rate of 222 g/h. → Factors affecting the leak detection time are packing density of thermal insulation, layout of heater, temperature, etc. → Relationship between leak rate and detection time was established and a leak rate of 100 g/h is likely to be detected in 11.1 h. → Contact resistance of leaked sodium increased to 3.5 kilo ohms in 20 h. - Abstract: Wire type leak detectors working on conductivity principle are used for detecting sodium leak in the secondary sodium circuits of fast breeder reactors. It is required to assess the performance of these detectors and confirm that they are meeting the requirements. A test facility by name LEENA was constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam to test the wire type leak detector lay out by simulating different sodium leak rates. This test facility consists of a sodium dump tank, a test vessel, interconnecting pipelines with valves, micro filter and test section with leak simulators. There are three different test sections in the test set up of length 1000 mm each. These test sections simulate piping of Prototype Fast Breeder Reactor (PFBR) secondary circuit and the wire type leak detector layout in full scale. All test sections are provided with leak simulators. A leak simulator consists of a hole of size one mm drilled in the test section and closed with a tapered pin. The tapered pin position in the hole is adjusted by a screw mechanism and there by the annular gap of flow area is varied for getting different leak rates. Various experiments were conducted to evaluate the performance of the leak detectors by creating different sodium leak rates. This paper deals with the details of wire type leak detector layout for the secondary sodium circuit of

  8. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  9. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  10. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  11. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  12. On grouping individual wire segments into equivalent wires or chains, and introduction of multiple domain basis functions

    CSIR Research Space (South Africa)

    Lysko, AA

    2009-06-01

    Full Text Available The paper introduces a method to cover several wire segments with a single basis function, describes related practical algorithms, and gives some results. The process involves three steps: identifying chains of wire segments, splitting the chains...

  13. Excel 2010 bible

    CERN Document Server

    Walkenbach, John

    2010-01-01

    A comprehensive reference to the newest version of the world's most popular spreadsheet application: Excel 2010 John Walkenbach's name is synonymous with excellence in computer books that decipher complex technical topics. Known as ""Mr. Spreadsheet,"" Walkenbach shows you how to maximize the power of all the new features of Excel 2010. An authoritative reference, this perennial bestseller proves itself indispensable no matter your level of skill, from Excel beginners and intermediate users to power users and potential power users everywhere. Fully updated for the new release, this

  14. The magnetoresistance of sub-micron Fe wires

    Science.gov (United States)

    Blundell, S. J.; Shearwood, C.; Gester, M.; Baird, M. J.; Bland, J. A. C.; Ahmed, H.

    1994-07-01

    A novel combination of electron- and ion-beam lithography has been used to prepare Fe gratings with wire widths of 0.5 μm and wire separations in the range 0.5-4 μm from an Fe/GaAs (001) film of thickness 25 nm. With an in-plane magnetic field applied perpendicular to the length of the wires, a harder magnetisation loop is observed using the magneto-optic Kerr effect (MOKE), compared with that observed in the unprocessed film. We observe a strong effect in the magnetoresistance (MR) when the magnetic field is applied transverse to the wires. It is believed that this effect originates from the highly non-uniform demagnetising field in each wire of the grating. These results demonstrate that the combination of MOKE and MR measurements can provide important information about the magnetisation reversal processes in magnetic gratings and can be used to understand the effect of shape anisotropy on magnetic properties.

  15. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  16. Minimally invasive tension band wiring technique for olecranon fractures.

    Science.gov (United States)

    Takada, Naoya; Kato, Kenji; Fukuta, Makoto; Wada, Ikuo; Otsuka, Takanobu

    2013-12-01

    Some types of implants, such as plates, screws, wires, and nails, have been used for open reduction and internal fixation of olecranon fractures. A ≥ 10 cm longitudinal incision is used for open reduction and internal fixation of olecranon fractures. According to previous studies, tension band wiring is a popular method that gives good results. However, back out of the wires after the surgery is one of the main postoperative complications. Moreover, if the Kirschner wires are inserted through the anterior ulnar cortex, they may impinge on the radial neck, supinator muscle, or biceps tendon. Herein, we describe the minimally invasive tension band wiring technique using Ring-Pin. This technique can be performed through a 2 cm incision. Small skin incisions are advantageous from an esthetic viewpoint. Ring-Pin was fixed by using a dedicated cable wire that does not back out unless the cable wire breaks or slips out of the dedicated metallic clamp. As the pins are placed in intramedullary canal, this technique does not lead to postoperative complications that may occur after transcortical fixation by conventional tension band wiring. Minimally invasive tension band wiring is one of the useful options for the treatment of olecranon fractures with some advantages.

  17. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  18. Excellence in the Knowledge-Based Economy: From Scientific to Research Excellence

    Science.gov (United States)

    Sørensen, Mads P.; Bloch, Carter; Young, Mitchell

    2016-01-01

    In 2013, the European Union (EU) unveiled its new "Composite Indicator for Scientific and Technological Research Excellence." This is not an isolated occurrence; policy-based interest in excellence is growing all over the world. The heightened focus on excellence and, in particular, attempts to define it through quantitative indicators…

  19. Half-metal phases in a quantum wire with modulated spin-orbit interaction

    Science.gov (United States)

    Cabra, D. C.; Rossini, G. L.; Ferraz, A.; Japaridze, G. I.; Johannesson, H.

    2017-11-01

    We propose a spin filter device based on the interplay of a modulated spin-orbit interaction and a uniform external magnetic field acting on a quantum wire. Half-metal phases, where electrons with only a selected spin polarization exhibit ballistic conductance, can be tuned by varying the magnetic field. These half-metal phases are proven to be robust against electron-electron repulsive interactions. Our results arise from a combination of explicit band diagonalization, bosonization techniques, and extensive density matrix renormalization group computations.

  20. Atom chips in the real world: the effects of wire corrugation

    Science.gov (United States)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  1. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  2. Steer-by-wire innovations and demonstrator

    NARCIS (Netherlands)

    Lupker, H.A.; Zuurbier, J.; Verschuren, R.M.A.F.; Jansen, S.T.H.; Willemsen, D.M.C.

    2002-01-01

    Arguments for 'by-wire' systems include production costs, packaging and traffic safety. Innovations concern both product and development process e.g. combined virtual engineering and Hardware-in-the-loop testing. Three Steer-by-wire systems are discussed: a steering system simulator used as a

  3. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  4. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    Energy Technology Data Exchange (ETDEWEB)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States); Elliott, Eric D., E-mail: eric.elliott@osumc.edu [The Ohio State University Wexner Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu; Hanje, A. James, E-mail: James.Hanje@osumc.edu [The Ohio State University Wexner Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine (United States); Saad, Wael E. A., E-mail: wsaad@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States)

    2016-07-15

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  5. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  6. Self-impedances of finite and infinite wires with earth-return

    International Nuclear Information System (INIS)

    Koglin, H.J.; Meyer, E.P.

    1981-01-01

    The electromagnetic field for a thin wire of finite length, embedded in a homogeneous earth of infinite extent in all directions, is given. The distribution of the electric field intensity close to the wire is examined. The mathematical model for the finite wire is expanded by substituting a spheroidal earth-electrode at each end. The external self-impedance of the wire between the earth-electrodes is calculated by integrating the electric field intensity along a presupposed radius. Especially in the case of short wires the results show considerable deviations to the known depth of current penetration as compared to that of an infinitely long wire. By considering the approximations used for short wires in this model, one can draw conclusions on the external self-impedance for short wires above, on and under the earth's surface. (orig.) [de

  7. Electron interaction and spin effects in quantum wires, quantum dots and quantum point contacts: a first-principles mean-field approach

    International Nuclear Information System (INIS)

    Zozoulenko, I V; Ihnatsenka, S

    2008-01-01

    We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots

  8. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  9. ASPIRE-to-Excellence Academy

    Directory of Open Access Journals (Sweden)

    Simon Drees

    2016-07-01

    Full Text Available The ASPIRE-to-Excellence Academy was recently founded at the 2015 Association for Medical Education in Europe (AMEE conference in Glasgow. The academy is new pillar of the ASPIRE-to-Excellence initiative by AMEE, which aims at promoting and encouraging medical schools in achieving excellence in the categories of assessment, student engagement, social accountability or faculty development. The Academy panel consists of the members of the ASPIRE Board and representatives from schools which have been recognised with an ASPIRE-to-excellence award in one or more of the categories. Major goal of the ASPIRE-to-Excellence Academy is to foster collaboration between excellent medical schools and to allow them to exchange experiences and Best Practices. The Academy members are organising workshops and symposia at international conferences to inform medical schools about the ASPIRE-to-Excellence programme and the areas for recognition in excellence as well as to support medical school in preparing their applications.

  10. WIRED magazine announces rave awards nominees

    CERN Document Server

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  11. Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic

    Science.gov (United States)

    Stirling, Leia; Yu, Chih-Han; Miller, Jason; Hawkes, Elliot; Wood, Robert; Goldfield, Eugene; Nagpal, Radhika

    2011-07-01

    Current treatments for gait pathologies associated with neuromuscular disorders may employ a passive, rigid brace. While these provide certain benefits, they can also cause muscle atrophy. In this study, we examined NiTi shape memory alloy (SMA) wires that were annealed into springs to develop an active, soft orthotic (ASO) for the knee. Actively controlled SMA springs may provide variable assistances depending on factors such as when, during the gait cycle, the springs are activated; ongoing muscle activity level; and needs of the wearer. Unlike a passive brace, an active orthotic may provide individualized control, assisting the muscles so that they may be used more appropriately, and possibly leading to a re-education of the neuro-motor system and eventual independence from the orthotic system. A prototype was tested on a suspended, robotic leg to simulate the swing phase of a typical gait. The total deflection generated by the orthotic depended on the knee angle and the total number of actuators triggered, with a max deflection of 35°. While SMA wires have a high energy density, they require a significant amount of power. Furthermore, the loaded SMA spring response times were much longer than the natural frequency of an average gait for the power conditions tested. While the SMA wires are not appropriate for correction of gait pathologies as currently implemented, the ability to have a soft, actuated material could be appropriate for slower timescale applications.

  12. LANSCE-R WIRE-SCANNER ANALOG FRONT-END ELECTRONICS

    International Nuclear Information System (INIS)

    Gruchalla, Michael E.

    2011-01-01

    A new AFE is being developed for the new LANSCE-R wire-scanner systems. The new AFE is implemented in a National Instruments Compact RIO (cRIO) module installed a BiRa 4U BiRIO cRIO chassis specifically designed to accommodate the cRIO crate and all the wire-scanner interface, control and motor-drive electronics. A single AFE module provides interface to both X and Y wire sensors using true DC coupled transimpedance amplifiers providing collection of the wire charge signals, real-time wire integrity verification using the normal dataacquisition system, and wire bias of 0V to +/-50V. The AFE system is designed to accommodate comparatively long macropulses (>1ms) with high PRF (>120Hz) without the need to provide timing signals. The basic AFE bandwidth is flat from true DC to 50kHz with a true first-order pole at 50kHz. Numeric integration in the cRIO FPGA provides real-time pulse-to-pulse numeric integration of the AFE signal to compute the total charge collected in each macropulse. This method of charge collection eliminates the need to provide synchronization signals to the wire-scanner AFE while providing the capability to accurately record the charge from long macropulses at high PRF.

  13. Kirschner Wires : insertion techniques and bone related consequences

    NARCIS (Netherlands)

    Franssen, B.B.G.M.

    2010-01-01

    The Kirschner (K-) wire was first introduced in 1909 by Martin Kirschner. This is a thin unthreaded wire of surgical steel with a diameter of up to three millimeters and a selection of different tips. The use of K-wires is often promoted as a simple technique because of its easy placement,

  14. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  15. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  16. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  17. A New Flying Wire System for the Tevatron

    Science.gov (United States)

    Blokland, Willem; Dey, Joseph; Vogel, Greg

    1997-05-01

    A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.

  18. Seeded perturbations in wire array z-pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Safronova, Alla S.; Maxwell, J.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Bland, Simon Nicholas; Jones, Brent Manley; Chittenden, Jeremy Paul; Garasi, Christopher Joseph; Hall, Gareth Neville; Mehlhorn, Thomas Alan; Deeney, Christopher

    2004-01-01

    The impact of 3D structure on wire array z-pinch dynamics is a topic of current interest, and has been studied by the controlled seeding of wire perturbations. First, Al wires were etched at Sandia, creating 20% radial perturbations with variable axial wavelength. Observations of magnetic bubble formation in the etched regions during experiments on the MAGPIE accelerator are discussed and compared to 3D MHD modeling. Second, thin NaF coatings of 1 mm axial extent were deposited on Al wires and fielded on the Zebra accelerator. Little or no axial transport of the NaF spectroscopic dopant was observed in spatially resolved K-shell spectra, which places constraints on particle diffusivity in dense z-pinch plasmas. Finally, technology development for seeding perturbations is discussed

  19. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  20. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage