WorldWideScience

Sample records for wiring board project

  1. Implementing Cleaner Printed Wiring Board Technologies: Surface Finishes

    Science.gov (United States)

    This document describes the problems, solutions, and time and effort involved in implementing alternative surface finish technologies, and this guide is produced as part of the DfE Printed Wiring Board Project

  2. Gold recovery from printed wiring board using bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Y. [Faculty of Engineering, Osaka Univ. (Japan); Nishikawa, H. [Center for Advanced Science and Innovation, Osaka Univ. (Japan); Takemoto, T. [Joining and Welding Research Inst., Osaka Univ. (Japan)

    2004-07-01

    In the electronic assembly, gold is frequently used as surface plating and a bonding wire. To recover gold from waste electronics, the dissolution process using cyan is a popular method, however, the solution is highly toxic. Accordingly, the environmentally conscious substitute process is preferable. In this study the possibility of Au dissolution from printed wiring boards using bioleaching has been investigated. Chromobacterium violaceum having ability of cyanide formation was used to dissolve Au. The printed wiring boards with gold plating of 0.07nm in thickness were immersed in synthetic medium with C. violaceum. After immersion test for 480h, the gold plating was completely dissolved. The increase in cyanide concentration gave little effect on the enhancement of dissolution of gold, however, the dissolution rate of Au was increased with increasing of dissolved oxygen in the medium. Chromobacterium violaceum produced 0.8mmol/l cyanide but it also decomposed about 60% of cyanide generated, therefore, this dissolution process could be used as an environmentally conscious method. (orig.)

  3. Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; Asaadi, J.; Danaher, J.; Fleming, B. T.; Gardner, R.; Gollapinni, S.; Grosso, R.; Guenette, R.; Littlejohn, B. R.; Lockwitz, S.; Raaf, J. L.; Soderberg, M.; John, J. St.; Strauss, T.; Szelc, A. M.; Yu, B.

    2017-03-01

    In this paper we describe how the readout planes for the MicroBooNE Time Projection Chamber were constructed, assembled and installed. We present the individual wire preparation using semi-automatic winding machines and the assembly of wire carrier boards. The details of the wire installation on the detector frame and the tensioning of the wires are given. A strict quality assurance plan ensured the integrity of the readout planes. The different tests performed at all stages of construction and installation provided crucial information to achieve the successful realization of the MicroBooNE wire planes.

  4. Printed Wiring Board Cleaner Technologies Substitutes Assessment: Making Holes Conductive

    Science.gov (United States)

    This document presents comparative risk, competitiveness, and resource requirements on technologies for performing the “making holes conductive” function during printed wiring board manufacturing.

  5. Computer aided production of manufacturing CAMAC-wired boards by the multiwire-technique

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M; Brehmer, W

    1975-10-01

    The multiwire-technique is a computer controlled wiring method for the manufacturing of circuit boards with insulated conductors. The technical data for production are dimensional drawings of the board and a list of all points which are to be connected. The listing must be in absolute co-ordinates including a list of all soldering points for component parts and a reproducible print pattern for inscription. For this wiring method a CAMAC standard board, a layout plan with alpha-numeric symbols, and a computer program which produces the essential technical data were developed. A description of the alpha-numeric symbols, the quality of the program, recognition and checking of these symbols, and the produced technical data is presented. (auth)

  6. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    Science.gov (United States)

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  7. Environmental and economic implications of a shift to halogen-free printed wiring boards

    Energy Technology Data Exchange (ETDEWEB)

    Bergendahl, C.G.; Johansson, G.; Zackrisson, M. [IVF Industrial Research and Development Corp., Moelndal (Sweden); Lichtenvort, K. [Technical Univ. of Berlin (Germany); Nyyssoenen, J. [Aspocomp Oy, Salo (Finland)

    2004-07-01

    The 'Restriction of Hazardous Substances Directive' (RoHS) and the 'Waste from Electrical and Electronic Equipment Directive' (WEEE) enforced by the European Commission require new materials and processes to be implemented in the production of electrical and electronic equipment (EEE). In response to this, the project grEEEn (Cost Management System for greening Electrical and Electronic Equipment) was defined and carried out within the 5th framework programme of the EU. This paper presents the grEEEn method and the outcome of applying the method on a case study. The study addressed the material shift in printed wiring boards (PWBs), from the traditional FR4 material containing halogenated flame retardants to halogen-free FR4 materials. The paper presents the product, process and scenario modelling and the results from analysing costs, environmental profile and legal compliance. (orig.)

  8. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)

    International Nuclear Information System (INIS)

    Savi, Daniel; Kasser, Ueli; Ott, Thomas

    2013-01-01

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given

  9. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Daniel, E-mail: d.savi@umweltchemie.ch [Dipl. Environmental Sci. ETH, büro für umweltchemie, Zurich (Switzerland); Kasser, Ueli [Lic. Phil. Nat. (Chemist), büro für umweltchemie, Zurich (Switzerland); Ott, Thomas [Dipl. Phys. ETH, Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil (Switzerland)

    2013-12-15

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.

  10. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  11. Meeting of the ITER CTA Project Board

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2002-01-01

    The meeting of the ITER co-ordinated technical activities project board took place in Tokyo, Japan, on 21 January 2002, coinciding with the second Negotiators meeting (N2). Twelve participants, project board members and experts from Canada, European Union, the Russian Federation and the international team attended the meeting. The project board agreed to provide an R and D plan by June 2002, to be linked with the procurement allocation, for the period following the CTA. The ITER International Team Leader developed a proposal on establishing the working groups for drafting technical specifications for the most urgent procurement items

  12. High-speed autoverifying technology for printed wiring boards

    Science.gov (United States)

    Ando, Moritoshi; Oka, Hiroshi; Okada, Hideo; Sakashita, Yorihiro; Shibutani, Nobumi

    1996-10-01

    We have developed an automated pattern verification technique. The output of an automated optical inspection system contains many false alarms. Verification is needed to distinguish between minor irregularities and serious defects. In the past, this verification was usually done manually, which led to unsatisfactory product quality. The goal of our new automated verification system is to detect pattern features on surface mount technology boards. In our system, we employ a new illumination method, which uses multiple colors and multiple direction illumination. Images are captured with a CCD camera. We have developed a new algorithm that uses CAD data for both pattern matching and pattern structure determination. This helps to search for patterns around a defect and to examine defect definition rules. These are processed with a high speed workstation and a hard-wired circuits. The system can verify a defect within 1.5 seconds. The verification system was tested in a factory. It verified 1,500 defective samples and detected all significant defects with only a 0.1 percent of error rate (false alarm).

  13. Meeting of the ITER CTA project board

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2002-01-01

    This is information about meeting of the ITER CTA project board, which took place in Moscow, Russian Federation on 22 April 2002 on the occasion of the Third Negotiators Meeting (N3). Thirteen participants, representing PB members and experts from Canada (CA), the European Union (EU), Japan(JA), the Russian federation (RF) and the International Team (IT) attended the meeting chaired by Acad. E. Velikhov. The Project Board took note of the comments made concerning the status of the Participants Teams(PTs)

  14. Meeting of the ITER CTA Project Board

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2001-01-01

    The meeting of the ITER CTA Project Board took place in Toronto, Canada on 7 November 2001, on the occasion of the first Negotiations Meeting. Twelve participants, representing PB members and experts from Canada, the EU, Japan, the RF and the international Team (IT), attended the meeting chaired by Acad. E. Velikhov. Discussions on the preliminary work programme for the CTA and organizational arrangements for the IT and PT took most of the time of the meeting. The Project Board approved the preliminary work programme as presented by the IT leader

  15. Final Technical Report: The Water-to-Wire (W2W) Project

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Daniel N. [Free Flow Power Corporation, Boston, MA (United States); Edward, Lovelace C. [Free Flow Power Corporation, Boston, MA (United States)

    2013-12-24

    The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

  16. Final ITER CTA project board meeting

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2003-01-01

    The final ITER CTA Project Board Meeting (PB) took place in Barcelona, Spain on 8 December 2002. The PB took notes of the comments concerning the status of the International Team and the Participants Teams, including Dr. Aymar's report 'From ITER to a FUSION Power Reactor' and the assessment of the ITER project cost estimate

  17. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    Science.gov (United States)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  18. A Software Suite for Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  19. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  20. A new wire chamber front-end system, based on the ASD-8 B chip

    International Nuclear Information System (INIS)

    Kruesemann, B.A.M.; Bassini, R.; Ellinghaus, F.; Frekers, D.; Hagemann, M.; Hannen, V.M.; Heynitz, H. von; Heyse, J.; Rakers, S.; Sohlbach, H.; Woertche, H.J.

    1999-01-01

    The Focal-Plane Polarimeter (FPP) for the Big-Bite Spectrometer van den Berg (Nucl. Instr. and Meth. B 99 (1995) 637ff) at the KVI requires the read-out of four large-area MWPCs and two VDCs with 3872 wires in total. The EUROSUPERNOVA collaboration (SNOVA) developed a digital 16 channel preamplifier front-end board, housing two amplifier-shaper-discriminatorchips ASD-8 B. The main features of this board are a fast single-wire readout, a high integration density, a low power consumption and compatibility to common instrumentation standards. The board represents the first successfully running application of the ASD-8 for wire chamber readout. (author)

  1. Meeting of the ITER CTA Project Board

    International Nuclear Information System (INIS)

    2001-01-01

    Full text: A preparatory meeting of the Co-ordinated Technical Activities (CTA) Project Board took place in Vienna on 16 July 2001. The Board Members of Canada, EU, Japan, RF and of the CTA International Team participated in the Meeting, which was chaired by Acad. E. Velikhov. The major item on the Meeting Agenda was the discussion of the scope of the CTA. In this discussion the following comments were expressed: One of the prime objectives during the CTA is to develop technical specifications for procurement of critical items (magnets, vacuum vessel, and buildings). It was noted that the discussions with potential suppliers should confirm manufacturing processes in details in order to explore possible schedule reduction strategies. Safety analysis and licensing preparation should proceed on all proposed sites up to the preferred site designation, to ensure the overall implementation schedule is minimized and to resolve major technical issues needed for licensing. Several R and D issues remain to be further developed during the CTA. Special attention should be given by the Participants to two areas: Diagnostics; Heating and Current Drive Systems. Arrangements for continuation of the ITER Physics Expert Groups activities should be provided. To this end a new framework, called International Tokamak Physics Activity, is being planned. The Board encouraged the Participants' Representatives in the Co-ordinating committee of this activity to support the preparation for urgent Topical Group Meetings. The Board agreed that the Design Authority will be invested in the International Team and that proposals for site specific design changes should be agreed upon by the International Team Leader before being studied in detail. The Meeting agreed on some arrangements which will remain from the EDA, namely the ITER EDA Council Office in Moscow as Office of the PB Chair, and the ITER Office located at the IAEA in Vienna as agreed by the IAEA. The Board recommended that effective

  2. Developing and Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  3. Final report to the Atomic Energy Control Board on project management capabilities using NAOP as a case study

    International Nuclear Information System (INIS)

    Masters, P.

    1998-01-01

    The purpose of this report is to identify practices of the Atomic Energy Control Board that support or detract from the implementation of collaborative cross-functional project management and to recommend ways and means of increasing the Board's ability to respond to projects. Ontario Hydro's Nuclear Asset Optimization Program (NAOP) and the Board's response to that program form the basis of a case study for the purposes of this report. Issues examined include: Whether the Board follows a logical project management framework when it addresses projects such as the NAOP; where the Board exhibits good practices in addressing project such as the NAOP; and where the Board needs to develop better practices

  4. Basic study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, M.; Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K.

    2010-01-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  5. Preliminary study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken

    2010-01-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  6. Basic study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, M., E-mail: ogata@rtri.or.j [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  7. Preliminary study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken, E-mail: ogata@rtri.or.j [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)

    2010-06-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  8. Development of superconducting wire and cable for the SSC project in Sumitomo Electric Industries

    International Nuclear Information System (INIS)

    Sashida, T.; Saito, S.; Oku, G.; Kurimoto, K.; Yamada, Y.; Yokota, M.; Ohmatsu, K.; Nagata, M.

    1991-01-01

    As a large production volume of NbTi superconducting wire and cable is required for the SSC project, a production process has been developed at Sumitomo Electric to optimize critical variables of wire properties. To achieve high electrical properties and a high overall yield of NbTi alloy in the fabrication process, the authors have employed carefully designed large size multifilament billets weighing more than 350kg to decrease the number of billets in large production scale. The collider dipole magnet consists of inner and outer cables, and the cable should be as uniform as possible to ensure the performance of the magnets. The authors studied two aspects to obtain such uniformity of superconducting wire; one is the selection of unit weight and the other is the property of critical current density of a strand

  9. A New Flying Wire System for the Tevatron

    Science.gov (United States)

    Blokland, Willem; Dey, Joseph; Vogel, Greg

    1997-05-01

    A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.

  10. Meeting of the ITER CTA Project Board

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2002-01-01

    The meeting of the ITER CTA Project Board (PB) took place in Toronto, Canada on 16 September 2002 on the occasion of the fifth Negotiations Meeting (N-5). Thirteen participants, PB members and experts from Canada, EU, Japan, RF and the International Team (IT) attended the meeting chaired by Acad. E. Velikhov. PB heard progress reports of the participating parties and the comments concerning the status of participants team (PT) and the IT were presented

  11. Fabrication and installment of hard-wired I and C works for the neutral beam injection system of the KSTAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun; In, Sang Ryul; Yoon, Jae Sung

    2004-01-01

    Instrumentation and Control(I and C) of the neutral beam injection(NBI) system for the K-STAR national fusion research project has been working from the start of the project to answer diverse requests arising from various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Some examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. They are one of those integral parts for the proper operation of the NBI system. Examples of those hard-wired I and C works are introduced in this presentation

  12. Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry.

    Science.gov (United States)

    Lam, Carl W; Lim, Seong-Rin; Schoenung, Julie M

    2011-05-15

    Modern manufacturing of printed wiring boards (PWBs) involves extensive use of various hazardous chemicals in different manufacturing steps such as board preparation, circuit design transfer, etching and plating processes. Two complementary environmental screening methods developed by the U.S. EPA, namely: (i) the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) and (ii) Risk-Screening Environmental Indicators (RSEI), are used to quantify geographic and chemical environmental impacts in the U.S. PWB manufacturing industry based on Toxics Release Inventory (TRI) data. Although the release weight percentages of industrial chemicals such as methanol, glycol ethers and dimethylformamide comprise the larger fraction of reported air and water emissions, results indicate that lead, copper and their compounds' releases correspond to the highest environmental impact from toxicity potentials and risk-screening scores. Combining these results with further knowledge of PWB manufacturing, select alternative chemical processes and materials for pollution prevention are discussed. Examples of effective pollution prevention options in the PWB industry include spent etchant recovery technologies, and process and material substitutions. In addition, geographic assessment of environmental burden highlights states where promotion of pollution prevention strategies and emissions regulations can have the greatest effect to curb the PWB industry's toxic release impacts. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. PROBABILISTIC INTEREST RATE SETTING WITH A SHADOW BOARD: A DESCRIPTION OF THE PILOT PROJECT

    OpenAIRE

    TIMO HENCKEL; SHAUN VAHEY; LIZ WAKERLY

    2011-01-01

    This study aims to assess the scope for monetary policymakers to aggregate probabilistic interest rate advice. The members of a Shadow Board give probabilistic assessments of the appropriate (target) interest rate for Australia in real time. The pilot project will be running each month from August to December (inclusive) 2011, with the Shadow Board giving advice shortly before each decision by the Reserve Bank of Australia (RBA) Board.

  14. Lunar Module Wiring Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  15. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  16. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  17. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    Science.gov (United States)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of

  18. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  19. Studies of IBL wire bonds operation in a ATLAS-like magnetic field.

    CERN Document Server

    Alvarez Feito, D; Mandelli, B

    2015-01-01

    At the Large Hadron Collider (LHC) experiments, most of silicon detectors use wire bonds to connect front-end chips and sensors to circuit boards for the data and service trans- missions. These wire bonds are operated in strong magnetic field environments and if time varying currents pass through them with frequencies close to their mechanical resonance frequency, strong resonant oscillations may occur. Under certain conditions, this effect can lead to fatigue stress and eventually breakage of wire bonds. During the first LHC Long Shutdown, the ATLAS Pixel Detector has been upgraded with the addition of a fourth innermost layer, the Insertable B-Layer (IBL), which has more than 50000 wire bonds operated in the ATLAS 2 T magnetic field. The results of systematic studies of operating wire bonds under IBL-like conditions are presented. Two different solutions have been investigated to minimize the oscillation amplitude of wire bonds.

  20. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  1. A new technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns, has heretofore been confined excusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  2. Development and implementation of a residency project advisory board.

    Science.gov (United States)

    Dagam, Julie K; Iglar, Arlene; Kindsfater, Julie; Loeb, Al; Smith, Chad; Spexarth, Frank; Brierton, Dennis; Woller, Thomas

    2017-06-15

    The development and implementation of a residency project advisory board (RPAB) to manage multiple pharmacy residents' yearlong projects across several residency programs are described. Preceptor and resident feedback during our annual residency program review and strategic planning sessions suggested the implementation of a more-coordinated approach to the identification, selection, and oversight of all components of the residency project process. A panel of 7 department leaders actively engaged in residency training and performance improvement was formed to evaluate the residency project process and provide recommendations for change. These 7 individuals would eventually constitute the RPAB. The primary objective of the RPAB at Aurora Health Care is to provide oversight and a structured framework for the selection and execution of multiple residents' yearlong projects across all residency programs within our organization. Key roles of the RPAB include developing expectations, coordinating residency project ideas, and providing oversight and feedback. The development and implementation of the RPAB resulted in a significant overhaul of our entire yearlong resident project process. Trends toward success were realized after the first year of implementation, including consistent expectations, increased clarity and engagement in resident project ideas, and more projects meeting anticipated endpoints. The development and implementation of an RPAB have provided a framework to optimize the organization, progression, and outcomes of multiple pharmacy resident yearlong projects in all residency programs across our pharmacy enterprise. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  3. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  4. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  5. Specifications, tests, and installation of wires and cables for the Diablo Canyon Nuclear Power Project

    International Nuclear Information System (INIS)

    Dan, F.J.

    1977-01-01

    The process of selecting wires and cables for the Diablo Canyon Nuclear Power Project is described. The criteria for the fire and environmental tests, the basis for the specifications, and the reasons for the final choice and acceptance are outlined. A short section is dedicated to the installation of cables in raceways with reference to separation and color coding. Also covered are the selection and testing of fire stops and the selection of seismic supports

  6. Fabrication and installment of the hard-wired I and C works for the neutral beam injection test stand of the K-STAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun

    2004-12-01

    Instrumentation and Control(I and C) of the neutral beam injection test stand (NBI-TS) for the K-STAR national fusion research project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. Another one to be mentioned is the interlock circuitry. One of the interlock circuits are related to the coolant flow failure. The other is the interlock circuit related to the vacuum failure. All of the above mentioned circuitry now constitutes integral parts for the proper operation of the NBI system; details of those hard-wired I and C work are described in this report

  7. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  8. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Pitsianis, N; Yin, FF; Ren, L

    2015-01-01

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  9. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  10. Cleanliness of disposable vs nondisposable electrocardiography lead wires in children.

    Science.gov (United States)

    Addison, Nancy; Quatrara, Beth; Letzkus, Lisa; Strider, David; Rovnyak, Virginia; Syptak, Virginia; Fuzy, Lisa

    2014-09-01

    Mediastinitis costs hospitals thousands of dollars a year and increases the incidence of patient morbidity and mortality. No studies have been done to evaluate adenosine triphosphate (ATP) counts on disposable and nondisposable electrocardiography (ECG) lead wires in pediatric patients. To compare the cleanliness of disposable and nondisposable ECG lead wires in postoperative pediatric cardiac surgery patients by measuring the quantity of ATP (in relative luminescence units [RLUs]). ATP levels correlate with microbial cell counts and are used by institutions to assess hospital equipment and cleanliness. A prospective, randomized trial was initiated with approval from the institutional review board. Verbal consent was obtained from the parents/guardians for each patient. Trained nurses performed ATP swabs on the right and left upper ECG cables on postoperative days 1, 2, and 3. This study enrolled 51 patients. The disposable ECG lead wire ATP count on postoperative day 1 (median, 157 RLUs) was significantly lower (P disposable ECG lead wires (median, 200 RLUs) was also lower (P = .06) than the count for the nondisposable ECG lead wires (median, 453 RLUs). Results of this study support the use of disposable ECG lead wires in postoperative pediatric cardiac surgery patients for at least the first 48 hours as a direct strategy to reduce the ATP counts on ECG lead wires. ©2014 American Association of Critical-Care Nurses.

  11. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  12. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  13. Murky Projects and Uneven Information Policies: A Case Study of the Psychological Strategy Board and CIA

    Directory of Open Access Journals (Sweden)

    Susan Maret

    2018-02-01

    Full Text Available This case study discusses the Truman and Eisenhower administration's (1951-1953 short-lived Psychological Strategy Board (PSB. Through the lens of declassified documents, the article recounts the history and activities of the Board, including its relationship with the Central Intelligence Agency (CIA and clandestine projects that involve human experimentation. Primary documents of the period suggest that institutional secrecy, coupled with inconsistent information policies, largely shielded CIA's BLUEBIRD, ARTICHOKE, and MKULTRA from the Board. This subject has not been previously reported in the research literature, and supplements existing historical understanding of the PSB's mission under the broad umbrella of psychological warfare.

  14. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  15. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  16. Industrial Technology Modernization Program. Category 2 Project. Printed Wiring Board (PWB) Process Fixture

    Science.gov (United States)

    1987-08-31

    78725 Fort Worth, TX 76101 Ba. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER I_ ZAgO (If applicable...14 1 -J j _j i 4 31 00 00.. m ~C> -LJ -C LAC 090 CV Id 19o ]60a %KA.])0 V’s I W 3d Tracor Aerospace 2.0 PROJECT DESCRIPTION Preliminary design...PMRTS J PRODUCTLINE BREAKOUT - NO. DIR, I iS BOW~4 PPUTIM rlAA OM" M L DM NC6 L x W THK .0, x 2.; 1CULNG HCLZ DVV= M3=JG ~ MZ TO UM= MD 2/B Or BMW i i

  17. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  18. 29 CFR 1910.305 - Wiring methods, components, and equipment for general use.

    Science.gov (United States)

    2010-07-01

    ... temporary wiring installations. (i) Temporary electrical power and lighting installations of 600 volts... project or purpose for which the wiring was installed. (iii) Temporary electrical installations of more... 29 Labor 5 2010-07-01 2010-07-01 false Wiring methods, components, and equipment for general use...

  19. Pattern Generator for Bench Test of Digital Boards

    Science.gov (United States)

    Berkun, Andrew C.; Chu, Anhua J.

    2012-01-01

    All efforts to develop electronic equipment reach a stage where they need a board test station for each board. The SMAP digital system consists of three board types that interact with each other using interfaces with critical timing. Each board needs to be tested individually before combining into the integrated digital electronics system. Each board needs critical timing signals from the others to be able to operate. A bench test system was developed to support test of each board. The test system produces all the outputs of the control and timing unit, and is delivered much earlier than the timing unit. Timing signals are treated as data. A large file is generated containing the state of every timing signal at any instant. This file is streamed out to an IO card, which is wired directly to the device-under-test (DUT) input pins. This provides a flexible test environment that can be adapted to any of the boards required to test in a standalone configuration. The problem of generating the critical timing signals is then transferred from a hardware problem to a software problem where it is more easily dealt with.

  20. Departmental Appeals Board Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Decisions issued by the Chair and Board Members of the Departmental Appeals Board concerning determinations in discretionary, project grant programs, including...

  1. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    Science.gov (United States)

    Kim, Y. H.; Kwon, H. J.; Cho, Y. S.

    2006-12-01

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful.

  2. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.H. [PEFP, KAERI, DaeJeon (Korea, Republic of)]. E-mail: yhkim72@kaeri.re.kr; Kwon, H.J. [PEFP, KAERI, DaeJeon (Korea, Republic of); Cho, Y.S. [PEFP, KAERI, DaeJeon (Korea, Republic of)

    2006-12-21

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful.

  3. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    International Nuclear Information System (INIS)

    Kim, Y.H.; Kwon, H.J.; Cho, Y.S.

    2006-01-01

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful

  4. A study on the effectiveness of task manager board game as a training tool in managing project

    Science.gov (United States)

    Yusof, Shahrul Azmi Mohd; Radzi, Shanizan Herman Md; Din, Sharifah Nadera Syed; Khalid, Nurhafizah

    2016-08-01

    Nowadays, games have become one of the useful tools in training. Many instructors choose to use games to enhance the way of delivering the subject. Failure to apply the suitable tool in training will lead to discouragement in learning and causing waste to the resources. An effective game will help the student understand the concept quickly. It can also help students to get involve in experiential learning where the student can manage and solve the problem as in the actual situation. This study will focus on the effectiveness of board game as a training tool for managing projects. This game has 4 tasks to be completed by students. They will be divided into a group of 4 or 5. Two methods are used in this study, pilot test, and post-test. These methods are chosen to analyze the effectiveness of using Task Manager Board Game as a teaching tool and the improvement of student's knowledge in project management. Three sub-components assessed were motivation, user experience and learning using case studies on Kirkpatrick's level one base on the perception of the students. The result indicated that the use of Task Manager board game as a training tool for managing project has a positive impact on students. It helps students to experience the situation of managing projects. It is one of the easiest ways for improving time management, human resources and communication skill.

  5. WIRED 4 - A Generic Event Display Plugin for JAS 3

    International Nuclear Information System (INIS)

    Donszelmann, M.

    2004-01-01

    WIRED 4 is an experiment independent event display plugin module for the JAS 3 (Java Analysis Studio) generic analysis framework. Both WIRED and JAS are written in Java. WIRED, which uses HepRep (HEP Representables for Event Display) as its input format, supports viewing of events using either conventional 3D projections as well as specialized projections, such as a fish-eye or a ρ-Z projection. Projections allow the user to scale, rotate, position or change parameters on the plot as he wishes. All interactions are handled as separate edits which can be undone and/or redone, so the user can try out things and get back to a previous situation. All edits are scriptable by any of the scripting languages supported by JAS, such as pnuts, jython or java itself. Hits and tracks can be picked to display physics information and cuts can be made on physics parameters to allow the user to filter the number of objects drawn into the plot. Multiple event display plots can be laid out on pages combined with histograms and other plots, available from JAS itself or from other plugin modules. Configuration information on the state of all plots can be saved and restored allowing the user to save his session, share it with others or later continue where he left off. This version of WIRED is written to be easily extensible by the user/developer. Projections, representations, interaction handlers and edits are all services and new ones can be added by writing additional plugins. Both JAS 3 and WIRED 4 are built on top of the FreeHEP Java Libraries, which support a multitude of vector graphics output formats, such as PostScript, PDF, SVG, SWF and EMF, allowing document quality output of event display plots and histograms

  6. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    Science.gov (United States)

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.

  7. Wire system aging assessment and condition monitoring (WASCO)

    International Nuclear Information System (INIS)

    Fantoni, P.F.

    2007-04-01

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report contains some test results of a method for wire system condition monitoring, developed at the Halden Reactor Project, called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. (au)

  8. Survey on paediatric tumour boards in Europe: current situation and results from the ExPo-r-Net project.

    Science.gov (United States)

    Juan Ribelles, A; Berlanga, P; Schreier, G; Nitzlnader, M; Brunmair, B; Castel, V; Essiaf, S; Cañete, A; Ladenstein, R

    2018-01-08

    Under the ExPO-r-NeT project (European Expert Paediatric Oncology Reference Network for Diagnostics and Treatment), we aimed to identify paediatric oncology tumour boards in Europe to investigate the kind of technologies and logistics that are in place in different countries and to explore current differences between regions. A 20-question survey regarding several features of tumor boards was designed. Data collected included infrastructure, organization, and clinical decision-making information from the centres. The survey was distributed to the National Paediatric Haematology and Oncology Societies that forwarded the survey to the sites. For comparative analysis, respondents were grouped into four geographical regions. The questionnaire was distributed amongst 30 countries. Response was obtained from 23 (77%) that altogether have 212 paediatric oncology treating centres. A total of 121 institutions answered (57%). Ninety-one percent of the centres hold multidisciplinary boards; however, international second consultations are performed in 36% and only 15% participate on virtual tumor boards. Videoconferencing facilities and standard operational procedures (SOPs) are available in 49 and 43% of the centres, respectively. There were statistically significant differences between European regions concerning meeting infrastructure and organization/logistics: specific room, projecting equipment, access to medical records, videoconferencing facilities, and existence of SOPs. Paediatric tumor boards are a common feature in Europe. To reduce inequalities and have equal access to healthcare, a virtual network is needed. Important differences on the functioning and access to technology between regions in Europe have been observed and need to be addressed.

  9. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  10. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  11. Alignment tools used to locate a wire and a laser beam in the VISA undulator project

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Z.; Ruland, R.; Dix, B.; Arnett, D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1999-07-01

    Within the framework of the LCLS (Linac Coherent Light Source), a small experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments, each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {mu}m. This very demanding alignment is carried out in two steps. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90 deg C.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {mu}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {mu}m. It is desired to keep the errors from the wire finder and laser finder at the few {mu}m level. (authors)

  12. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu [KAERI, Taejon (Korea, Republic of); Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M. [Institute of Electrophysics (Russian Federation)

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully.

  13. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M.

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully

  14. Annual coded wire tag program, Washington: Missing production groups. Annual report for 1998

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.

    1999-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program--Missing Production Groups for Columbia River Hatcheries'' project. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries

  15. Tests of the wire ageing induced by radiation in the barrel muon chambers of the CMS experiment at LHC

    International Nuclear Information System (INIS)

    Conti, E.; Ballarini, R.; Gasparine, F.

    1999-01-01

    In CMS the barrel muon detectors are drift tubes (DT) filled with Ar/CO 2 gas. Materials of the DT in contact with the gas can outgas pollutant substances during irradiation which may cause a loss of gain or a worsening of the time resolution (wire ageing) during the multiplication process. This article presents the laboratory tests performed to verify that the materials used in DT do not induce wire ageing. The tests concern all the materials inside the DT which are in contact with the gas: 1) mylar tape with glue based on reticulated silicon polymers, 2) Al tape with mono-acrylic glue, 3) bare FR4 boards for HV, and 4) complete FR4 boards for HV (with cables, resistors, capacitors and glue). Both Al and mylar are known to be safe from the point of view of ageing, so the tests concern essentially the glues. For all the above materials, the result is negative, it means that no change of the wire gain has been measured within a few percents which is the sensitivity of the apparatus. (A.C.)

  16. Low power consumption mini rotary actuator with SMA wires

    Science.gov (United States)

    Manfredi, Luigi; Huan, Yu; Cuschieri, Alfred

    2017-11-01

    Shape memory alloys (SMAs) are smart materials widely used as actuators for their high power to weight ratio despite their well-known low energy efficiency and limited mechanical bandwidth. For robotic applications, SMAs exhibit limitations due to high power consumption and limited stroke, varying from 4% to 7% of the total length. Hysteresis, during the contraction and extension cycle, requires a complex control algorithm. On the positive side, the small size and low weight are eminently suited for the design of mini actuators for robotic platforms. This paper describes the design and construction of a light weight and low power consuming mini rotary actuator with on-board contact-less position and force sensors. The design is specifically intended to reduce (i) energy consumption, (ii) dimensions of the sensory system, and (iii) provide a simple control without any need for SMA characterisation. The torque produced is controlled by on-board force sensors. Experiments were performed to investigate the energy consumption and performance (step and sinusoidal angle profiles with a frequency varying from 0.5 to 10 Hz and maximal amplitude of {15}\\circ ). We describe a transient capacitor effect related to the SMA wires during the sinusoidal profile when the active SMA wire is powered and the antagonist one switched-off, resulting in a transient current time varying from 300 to 400 ms.

  17. The European project Merlin on multi-gigabit, energy-efficient, ruggedized lightwave engines for advanced on-board digital processors

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Karppinen, M.; Tanskanen, A.; Heikkinen, V.; Westbergh, P.; Gustavsson, J.; Larsson, A.; Grüner-Nielsen, L.; Sotom, M.; Venet, N.; Ko, M.; Micusik, D.; Kissinger, D.; Ulusoy, A. C.; King, R.; Safaisini, R.

    2017-11-01

    Modern broadband communication networks rely on satellites to complement the terrestrial telecommunication infrastructure. Satellites accommodate global reach and enable world-wide direct broadcasting by facilitating wide access to the backbone network from remote sites or areas where the installation of ground segment infrastructure is not economically viable. At the same time the new broadband applications increase the bandwidth demands in every part of the network - and satellites are no exception. Modern telecom satellites incorporate On-Board Processors (OBP) having analogue-to-digital (ADC) and digital-to-analogue converters (DAC) at their inputs/outputs and making use of digital processing to handle hundreds of signals; as the amount of information exchanged increases, so do the physical size, mass and power consumption of the interconnects required to transfer massive amounts of data through bulk electric wires.

  18. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  19. Applying systems engineering in the civil engineering industry : an analysis of systems engineering projects of a Dutch water board

    NARCIS (Netherlands)

    de Graaf, R. S. (Robin); Vromen, R. M.(Rick); Boes, J. (Hans)

    2017-01-01

    The past decade, practice and literature have shown an increasing interest in Systems Engineering (SE) in the civil engineering industry. The aim of this study is to analyse to what extent SE is applied in six civil engineering SE projects of a Dutch water board. The projects were analysed using a

  20. SpaceWire Tiger Team Findings and Suggestions

    Science.gov (United States)

    Ishac, Joseph A.

    2011-01-01

    This technical report intends to highlight the key findings and recommendations of the SpaceWire Tiger Team for the CoNNeCT project. It covers findings which are technical in nature, covering design concepts and approaches.

  1. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  2. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  3. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    Science.gov (United States)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  4. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components

    Science.gov (United States)

    Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.

    2007-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.

  7. A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification

    International Nuclear Information System (INIS)

    Yin Fangfang; Guan Huaiqun; Lu Wenkai

    2005-01-01

    The technologies with kilovoltage (kV) and megavoltage (MV) imaging in the treatment room are now available for image-guided radiation therapy to improve patient setup and target localization accuracy. However, development of strategies to efficiently and effectively implement these technologies for patient treatment remains challenging. This study proposed an aggregated technique for on-board CT reconstruction using combination of kV and MV beam projections to improve the data acquisition efficiency and image quality. These projections were acquired in the treatment room at the patient treatment position with a new kV imaging device installed on the accelerator gantry, orthogonal to the existing MV portal imaging device. The projection images for a head phantom and a contrast phantom were acquired using both the On-Board Imager TM kV imaging device and the MV portal imager mounted orthogonally on the gantry of a Varian Clinac TM 21EX linear accelerator. MV projections were converted into kV information prior to the aggregated CT reconstruction. The multilevel scheme algebraic-reconstruction technique was used to reconstruct CT images involving either full, truncated, or a combination of both full and truncated projections. An adaptive reconstruction method was also applied, based on the limited numbers of kV projections and truncated MV projections, to enhance the anatomical information around the treatment volume and to minimize the radiation dose. The effects of the total number of projections, the combination of kV and MV projections, and the beam truncation of MV projections on the details of reconstructed kV/MV CT images were also investigated

  8. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  9. Setup and programming of a one-wire temperature grid

    Energy Technology Data Exchange (ETDEWEB)

    Vischer, Janna [Georg-August-Universitaet, Goettingen (Germany)

    2016-07-01

    This project aims at building a field of ten by ten temperature Sensors as a prototype of a more precise temperature measurement in an inner detector layer. So it is possible to get a better resolution of the temperature near the sensitive pixel detectors there. A prominent example of such a detector is ATLAS at CERN. It is desirable to use as few wires as possible. This can be achieved with the One-wire technology where all sensors are connected in a row. They can be approached individually by unique addresses. With the help of an Arduino microcontroller the data can be read out, saved and displayed as a visual temperature map. This project was executed during the Netzwerk Teilchenwelt Projektwochen at CERN.

  10. Design project of the device for measuring the radioactivity of wires; Projekat uredjaja za merenje radioaktivnosti zica

    Energy Technology Data Exchange (ETDEWEB)

    Bokalovic, P; Bulovic, Lj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes the detailed design description and engineering drawings of the device and equipment for measuring the radioactivity of a wire. The wire is irradiated in the reactor core. The activity of the wire proportional to the neutron flux enables determining the neutron flux distribution. Activity is measured by GM counter.

  11. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the front-end readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10/100/1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micromegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies wi...

  12. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the frontend readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10=100=1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micormegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies will...

  13. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  14. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  18. Develop discard criteria for non-spin wire ropes

    CSIR Research Space (South Africa)

    Hecker, GFK

    2004-01-01

    Full Text Available The initial project objective was to correlate the level of internal broken wire indications, obtained using a magnetic rope test instrument, with rope strength loss and then to propose a given indication level at which non-spin ropes...

  19. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  20. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  1. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  2. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. CityInfo Boards : a new marketing communications tool

    OpenAIRE

    Tähkäpää, Matti

    2012-01-01

    New CityInfo boards were introduced in December 2009. This project was executed in cooperation with City of Turku and Veikkaus. The objective of this pilot project was to clean up the cityscape as well as support the local sports and culture organizations that are organizing events in Turku. CityInfo boards are divided into three sections; top of the is reserved for welcome greeting of Turku, right side of the board has the logo of Veikkaus, and the left side has electronic screen with changi...

  4. Scintillation counter and wire chamber front end modules for high energy physics experiments

    International Nuclear Information System (INIS)

    Baldin, Boris; DalMonte, Lou

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of ∼20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with ∼100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of ∼4 (micro)s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of ∼0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  5. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

    Science.gov (United States)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.

    2015-12-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  7. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  8. Augmentation of board games using smartphones

    DEFF Research Database (Denmark)

    Kulsinskas, Arturas; Balan, Catalin; Egede Bukdahl, Nicholas

    2015-01-01

    This paper contains details about research into the effect of digital augmentation on social presence in board games. A case study of the board game Tobago was performed during the project and a prototype application for smartphones was developed in order to compare the players’ social presence...

  9. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  10. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  11. Linac beam core modeling from wire-scanner data

    International Nuclear Information System (INIS)

    Law, A.G.

    1977-08-01

    This study introduces mathematical modeling of accelerator beams from data collected by wire scanners. Details about a beam core D(x,x',y,y') are examined in several situations: (a) for a discretization of the projection into xy-space, a maximum-entropy solution and a minimum-norm solution are developed and discussed, (b) for undiscretized xy-subspace, a two-dimensional Gaussian approximation D(x,.,y,.) = a exp [α(x-x 0 ) 2 + β(x-x 0 )(y-y 0 ) + γ(y-y 0 ) 2 ] is obtained by least squares, and (c) for four-dimensional space, the fit of a single Gaussian to data from a succession of wire scanners is investigated

  12. A New Superconducting Wire for Future Accelerators

    CERN Multimedia

    2006-01-01

    The CARE/NED project has developed a new superconducting wire that can achieve very high currents (1400 amps) at high magnetic fields (12 teslas). Cross-section of the CARE/NED wire produced by SMI. As we prepare to enter a new phase of particle physics with the LHC, technological development is a continuous process to ensure the demands of future research are met. The next generation of colliders and upgrades of the present ones will require significantly larger magnetic fields for bending and focusing the particle beams. NED (Next European Dipole) is one of the projects taking on this challenge to push technology beyond the present limit (see: More about NED). The magnets in the LHC rely on niobium titanium (NbTi) as the superconducting material, with a maximum magnetic field of 8 to 10T (tesla). In order to exceed this limitation, a different material together with the corresponding technology needs to be developed. NED is assessing the suitability of niobium tin (Nb3Sn), which has the potential to at le...

  13. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  14. Developing a reliable signal wire attachment method for rail.

    Science.gov (United States)

    2014-11-01

    The goal of this project was to develop a better attachment method for rail signal wires to improve the reliability of signaling : systems. EWI conducted basic research into the failure mode of current attachment methods and developed and tested a ne...

  15. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  16. Visible emission from exploding wire in water

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Prukner, Václav; Schmidt, Jiří; Koláček, Karel; Štraus, Jaroslav; Frolov, Oleksandr

    2007-01-01

    Roč. 53, č. 10 (2007), s. 53-53 ISSN 0003-0503. [The 61st Annual Gaseous Electronic Conference. Dallas,Texas, 13.10.2008-17.10.2008] R&D Projects: GA ČR GA202/06/1324 Institutional research plan: CEZ:AV0Z20430508 Keywords : Exploding wire * emission Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  18. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  19. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  20. BioWires: DNA-Based Nanowires for Conductivity-Enhanced, Self-Assembling Nanoelectronics

    Data.gov (United States)

    National Aeronautics and Space Administration — The BioWires project seeks to overcome two central issues identified in TA10-Nanotechnology: first, the miniaturization of nanoelectronics systems with features less...

  1. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  2. Development of a miniaturized watch-type dosimeter using a silicon printed-circuit board

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Sakamaki, Tsuyoshi; Matsumoto, Iwao; Aoyama, Kei; Nakamura, Takashi

    2008-01-01

    The electrical personal dosimeter using a silicon semiconductor sensor has the advantage of real time response and alarm function, which can prevent unexpected over-exposure. We tried to develop a miniaturized watch-type dosimeter by incorporating the silicon semiconductor sensor on a silicon printed-circuit board. Thin film resistors, capacitors and wiring patterns are formed on a downsized printed-circuit board. Electronic parts including transistors are mounted by soldering on the silicon printed-circuit board. The dosimeter is further miniaturized by downsizing the amplifier circuit, the semiconductor radiation sensor, the power supply circuit, setting parts and alarm part. The performance of the developed dosimeter was evaluated with respect to the gamma-ray spectra, angular dependence and linearity to dose equivalent rate, and it was confirmed that this dosimeter has the performance equivalent to a commercially available electrical personal dosimeter. (author)

  3. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  4. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  5. Inspection of anode and field wires for the COMPASS drift chamber, DC5, with Environmental Scanning Electron Microscope

    Science.gov (United States)

    Cyuzuzo, Sonia

    2014-09-01

    The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13

  6. Gender balance on company boards: a summary from a research project about the impact of the Norwegian gender quota legislation

    OpenAIRE

    2015-01-01

    This report summarizes main findings from the research project: Effects of gender balance in corporate boards. The project is financed by the Ministry of Children, Equality and Social Inclusion. The report consists of nine chapters. The introductory chapter will provide key information about the gender quota legislation, as well as describe the policy process that led to the gender balance legislation; the second chapter will present some of the existing research on the gender balance regulat...

  7. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  8. Non-destructive X-ray examination of weft knitted wire structures

    Science.gov (United States)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  9. Measurement of the wire tension and position of the muon detector in the CMS project

    International Nuclear Information System (INIS)

    Niu Weiping

    2004-01-01

    The Large Hadron Collider (LHC) is currently being constructed at CERN including the ATLAS (A Toroidal LHC Apparatus) and CMS. It this report, it is have a sample introduction of CMS Muon detector, the drift tube introduction and chamber construction. The scope of this report covers the drift tube design and technical description; measurement of the wire tension of the Muon detector and the quality control; measurement of the wire position of the Muon detector and the quality control and so on. (authors)

  10. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  11. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  12. Annual coded wire tag program (Washington) missing production groups : annual report 2000; ANNUAL

    International Nuclear Information System (INIS)

    Dammers, Wolf; Mills, Robin D.

    2002-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded-wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-00 was met with few modifications to the original FY-00 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-00 were decoded. Under Objective 3, this report summarizes available recovery information through 2000 and includes detailed information for brood years 1989 to 1994 for chinook and 1995 to 1997 for coho

  13. Women on Corporate Boards in Bosnia and Herzegovina, FYR Macedonia, and Serbia

    OpenAIRE

    Djulic, Katarina; Kuzman, Tanja

    2013-01-01

    In January 2013, International Finance Corporation (IFC) launched a research project entitled women on corporate boards in Bosnia and Herzegovina, FYR Macedonia, and Serbia. The purpose of the project was to gather information on the representation of women on corporate boards and to learn about the determinants of female board membership in these countries. Which skills and knowledge do w...

  14. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  15. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  16. Software pi/4 DQPSK Modem: A Student Project Using the TMS320-C6201 EVM Board

    OpenAIRE

    Weiss, S; Braithwaite, SJ; Stewart, RD

    2000-01-01

    This paper reports on a student project performed at the University of Southampton jointly by 4th year MEng students within the course "Advanced Radio Communications". The aim was to design a software modem capable of transmitting 16kb/s of data, whereby random number generation, advanced modulation, pulse shaping, synchronisation, and error counting techniques had to be applied. The ultimate aim was the implementation on a Texas Instruments TMS320-C6201 EVM board, which dictated some of the ...

  17. Using WIRED to study Simulated Linear Collider Detector Events

    Energy Technology Data Exchange (ETDEWEB)

    George, A

    2004-02-05

    The purpose of this project is to enhance the properties of the LCD WIRED Event Display. By extending the functionality of the display, physicists will be able to view events with more detail and interpret data faster. Poor characteristics associated with WIRED can severely affect the way we understand events, but by bringing attention to specific attributes we open doors to new ideas. Events displayed inside of the LCD have many different properties; this is why scientists need to be able to distinguish data using a plethora of symbols and other graphics. This paper will explain how we can view events differently using clustering and displaying results with track finding. Different source codes extracted from HEP libraries will be analyzed and tested to see which codes display the information needed. It is clear that, through these changes certain aspects of WIRED will be recognized more often allowing good event display which lead to better physics results.

  18. WIRED World Wide Web Interactive Remote Event Display

    CERN Document Server

    Ballaminut, A; Dönszelmann, M; Van Herwijnen, Eric; Köper, D; Korhonen, J; Litmaath, M; Perl, J; Theodorou, A; Whiteson, D; Wolff, E

    2000-01-01

    WIRED is a framework, written in Java, to build High Energy Physics event displays that can be used across the network. To guarantee portability across all platforms, WIRED is implemented in the Java language and uses the Swing user interface component set. It can be used as a stand-alone application or as an applet inside a WWW browser. The graphical user interface allows for multiple views and for multiple controls acting on those views. A detector tree control is available to toggle the visibility of parts of the events and detector geometry. XML (Extensible Markup Language), RMI (Remote Method Invocation) and CORBA loaders can be used to load event data as well as geometry data, and to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and non-Cartesian projections (e.g. fish-eye, rho-phi, rho-Z, phi-Z) provide special views to get a better understanding of events. WIRED has grown to be a framework in use and under development in several HEP experiments (ATLAS, CHORUS, DELPHI, LHCb, B...

  19. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  20. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  1. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  2. Hard X-ray nanoimaging method using local diffraction from metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hidekazu, E-mail: htakano@sci.u-hyogo.ac.jp; Konishi, Shigeki; Shimomura, Sho; Azuma, Hiroaki; Tsusaka, Yoshiyuki; Kagoshima, Yasushi [Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2014-01-13

    A simple hard X-ray imaging method achieving a high spatial resolution is proposed. Images are obtained by scanning a metal wire through the wave field to be measured and rotating the sample to collect data for back projection calculations; the local diffraction occurring at the edges of the metal wire operates as a narrow line probe. In-line holograms of a test sample were obtained with a spatial resolution of better than 100 nm. The potential high spatial resolution of this method is shown by calculations using diffraction theory.

  3. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  4. F-8 Digital Fly-by-Wire (DFBW) in flight over snow capped mountains

    Science.gov (United States)

    1973-01-01

    F-8 Digital Fly-by-Wire (DFBW) aircraft in flight over snow capped mountains. Externally identical to a standard Navy F-8C, this aircraft had its control system replaced initially by a primary system using an Apollo digital computer. The backup system used three analog computers. When the pilot moved the airplane's stick and rudder, electronic signals went to the computer, which would generate signals to move the control surfaces. The system was designed so that the digital fly-by-wire aircraft would handle almost identically to a standard F-8C. Later, in Phase 2, the aircraft used three IBM AP-101 computers for its flight control system. The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide. Digital-fly-by-wire

  5. Academic and Institutional Review Board Collaboration to Ensure Ethical Conduct of Doctor of Nursing Practice Projects.

    Science.gov (United States)

    Foote, Jan M; Conley, Virginia; Williams, Janet K; McCarthy, Ann Marie; Countryman, Michele

    2015-07-01

    Navigating the regulations to protect human subjects and private health information for Doctor of Nursing Practice (DNP) projects can be a formidable task for students, faculty, and the institutional review board (IRB). Key stakeholders from the University of Iowa College of Nursing and the Human Subjects Office developed a standardized process for DNP students to follow, using a decision algorithm, a student orientation to the human subjects review process conducted by faculty and IRB chairs and staff, and a brief Human Subjects Research Determination form. Over 2 years, 109 students completed the process, and 96.3% of their projects were deemed not to be human subjects research. Every student submitted documentation of adherence to the standardized process. Less time was spent by students, faculty, and the IRB in preparing and processing review requests. The interprofessional collaboration resulted in a streamlined process for the timely review of DNP projects. Copyright 2015, SLACK Incorporated.

  6. Analytical thermal modelling of multilayered active embedded chips into high density electronic board

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2013-01-01

    Full Text Available The recent Printed Wiring Board embedding technology is an attractive packaging alternative that allows a very high degree of miniaturization by stacking multiple layers of embedded chips. This disruptive technology will further increase the thermal management challenges by concentrating heat dissipation at the heart of the organic substrate structure. In order to allow the electronic designer to early analyze the limits of the power dissipation, depending on the embedded chip location inside the board, as well as the thermal interactions with other buried chips or surface mounted electronic components, an analytical thermal modelling approach was established. The presented work describes the comparison of the analytical model results with the numerical models of various embedded chips configurations. The thermal behaviour predictions of the analytical model, found to be within ±10% of relative error, demonstrate its relevance for modelling high density electronic board. Besides the approach promotes a practical solution to study the potential gain to conduct a part of heat flow from the components towards a set of localized cooled board pads.

  7. Wire system aging assessment and condition monitoring (WASCO)

    International Nuclear Information System (INIS)

    Fantoni, P.F.; Nordlund, A.

    2006-04-01

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  8. Wire system aging assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. [Institutt for energiteknikk (Norway); Nordlund, A. [Chalmers Univ. of Technology (Sweden)

    2006-04-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  9. WIRED — World Wide Web interactive remote event display

    Science.gov (United States)

    Ballaminut, A.; Colonello, C.; Dönszelmann, M.; van Herwijnen, E.; Köper, D.; Korhonen, J.; Litmaath, M.; Perl, J.; Theodorou, A.; Whiteson, D.; Wolff, E.

    2001-10-01

    WIRED ( http://wired.cern.ch/) is a framework, written in Java, to build High Energy Physics event displays that can be used across the network. To guarantee portability across all platforms, WIRED is implemented in the Java language and uses the Swing user interface component set. It can be used as a stand-alone application or as an applet inside a WWW browser. The graphical user interface allows for multiple views and for multiple controls acting on those views. A detector tree control is available to toggle the visibility of parts of the events and detector geometry. XML (Extensible Markup Language), RMI (Remote Method Invocation) and CORBA loaders can be used to load event data as well as geometry data, and to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and non-Cartesian projections (e.g., fisheye, ρ- φ, ρ- Z, φ- Z) provide special views to get a better understanding of events. A special Java interpreter allows physicists to write small scripts to interact with their data and its display. WIRED has grown to be a framework in use and under development in several HEP experiments (ATLAS, CHORUS, DELPHI, LHCb, BaBar, D0 and ZEUS). WIRED event displays have also proven to be useful to explain High Energy Physics to the general public. Both CERN, in its traveling exhibition and MicroCosm, and RAL, during its open days, have displays set up.

  10. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  11. PROJECT, MANUFACTURING AND QUALIFICATION OF MACHINE TO ROTARY BENDING OF NITI SUPERELASTIC WIRES IN FATIGUE TESTS

    Directory of Open Access Journals (Sweden)

    William Marcos Muniz Menezes

    2014-03-01

    Full Text Available In this work it was developed a rotating bending apparatus for fatigue tests of superelastic NiTi wires, and other materials with high elasticity. It was evaluated the performance, robustness, operability, and reliability through testing of 1 mm thick stainless steel wires. This device is mounted on a steel frame and features semiautomatic rotation speed control, time and testing bath temperature for sample immersion. The equipment qualification tests were performed controlling the following parameters: deformation of the wire, power level and ambient temperature. The results indicated lower discrepancies for the following parameters evaluated: number of cycles in fatigue life, rotation speed, the bath temperature and arc angle of rupture. Besides the reliability, the robustness and operability of the equipment also meet the purpose of the research as evidenced by the small number of failures in the qualification tests and calibration.

  12. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  13. Gap asymptotics in a weakly bent leaky quantum wire

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Kondej, S.

    2015-01-01

    Roč. 48, č. 49 (2015), s. 495301 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schroedinger operators * delta interaction * leaky quantum wires * weak perturbation * asymptotic expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  14. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  15. The EM SSAB Annual Work Plan Process: Focusing Board Efforts and Resources - 13667

    Energy Technology Data Exchange (ETDEWEB)

    Young, Ralph [Paducah Citizens Advisory Board (United States)

    2013-07-01

    One of the most daunting tasks for any new member of a local board of the Environmental Management Site Specific Advisory Board (EM SSAB) is to try to understand the scope of the clean-up activities going on at the site. In most cases, there are at least two or three major cleanup activities in progress as well as monitoring of past projects. When planning for future projects is added to the mix, the list of projects can be long. With the clean-up activities involving all major environmental media - air, water, soils, and groundwater, new EM SSAB members can find themselves totally overwhelmed and ineffective. Helping new members get over this initial hurdle is a major objective of EM and all local boards of the EM SSAB. Even as members start to understand the size and scope of the projects at a site, they can still be frustrated at the length of time it takes to see results and get projects completed. Many project and clean-up timelines for most of the sites go beyond 10 years, so it's not unusual for an EM SSAB member to see the completion of only 1 or 2 projects over the course of their 6-year term on the board. This paper explores the annual work planning process of the EM SSAB local boards, one tool that can be used to educate EM SSAB members into seeing the broader picture for the site. EM SSAB local work plans divide the site into projects focused on a specific environmental issue or media such as groundwater and/or waste disposal options. Projects are further broken down into smaller segments by highlighting major milestones. Using these metrics, local boards of the EM SSAB can start to quantify the effectiveness of the project in achieving the ultimate goal of site clean-up. These metrics can also trigger board advice and recommendations for EM. At the beginning of each fiscal year, the EM SSAB work plan provides a road map with quantifiable checkpoints for activities throughout the year. When the work plans are integrated with site

  16. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  17. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang Xiaoxu; Liu Wei; Liu Qing

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110} α or {112} α slip plane traces in the ferrite.

  18. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  19. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  20. New constructions of wire ropes for the industry

    Directory of Open Access Journals (Sweden)

    ŠŠaderová Jana

    1996-03-01

    Full Text Available The wire ropes are used in different industrial fields. Their construction depends on the type of equipment and its purpose. Most frequently we meet with ropes at different transport and hoisting equipments and very freqently in the civil industry. For users characteristics are important which must meet requirements of the individual regulations and standards of the selection of wire ropes for the concrete equipment. The most important is the factor of safety being safeguarded by the corresponding bearing capacity of the rope. The service life of rope is interesting for the user, too, because of having an influence on the economy of the equipment on which the rope is working. These problems are solved by the grant project at our department . We are aimed at questions of the optimization of construction of wire rope with regard to their geometric construction and service life. Respectively on the basis of elaborated computer software eightstrand ropes of parallel construction were disigned and produced at the Drôtov ň a Hlohovec. The results of the fatigue tests confirmed their better qualitative properties, longer service life and economy advantages for users, too. Their using is possible and suitable on the new hoisting eguipment on the surface, in the undeground and in the hole drilling industry. By the application of the computer technique is also possible to improve the parametres of six-strands` construction of rope, the classic and parallel constructions, especially their bearing capacity. This fact follows from the knowledge that for the production of rope we use calculated diameters of wires, which secure better utilization of the metal cross-section of the wire ropes.

  1. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...

  2. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  3. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  4. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  5. A contribution to the energy supply of innovative drive-by-wire vehicle concepts; Beitrag zur Energieversorgung innovativer Drive-by-Wire-Fahrzeugkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Sieglin, Erik

    2009-07-01

    Due to an increasing number of functions and driver assistance systems, the architecture of modern vehicles ever becomes more complex. This especially results in an increasing expenditure with the integration of new assistance systems. In order to oppose against this trend, one approach is the centralization of data processing. In this case, a drive-by-wire architecture without mechanical relapse level particularly is suitable. The contribution under consideration therefore supplies methods and approaches with which a suitable power supply is specified and realized. Their function can be verified. Apart from the aspects in terms of safety engineering, board specific questions are observed. The explanation of the procedure takes place using a prototypical structure as an example. Additionally, the hardware-in-the-loop-simulator and the processing of the tests are described.

  6. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  7. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  8. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  10. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  11. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  12. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  13. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  14. Annual coded wire tag program (Washington) missing production groups: annual report for 1997; ANNUAL

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.; Ashbrook, C.

    1998-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Councils (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-97 was met with few modifications to the original FY-97 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-97 were decoded. Under Objective 3, survival, contribution and stray rate estimates for the 1991-96 broods of chinook and 1993-96 broods of coho have not been made because recovery data for 1996-97 fisheries and escapement are preliminary. This report summarizes recovery information through 1995

  15. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  16. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  17. Time Distribution Using SpaceWire in the SCaN Testbed on ISS

    Science.gov (United States)

    Lux, James P.

    2012-01-01

    A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.

  18. Corrosion of NiTi wires with cracked oxide layer

    Czech Academy of Sciences Publication Activity Database

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, M.; Sedlák, Petr

    2014-01-01

    Roč. 23, č. 7 (2014), s. 2659-2668 ISSN 1059-9495. [International Conference on Shape Memory and Superelastic Technologies (SMST 2013). Praha, 21.05.2013-24.05.2013] R&D Projects: GA ČR GPP108/12/P111; GA ČR GAP107/12/0800; GA MŠk(CZ) 7E11058 EU Projects: European Commission(XE) 262806 - SmartNets Institutional support: RVO:68378271 ; RVO:61388998 Keywords : bending * electrochemical corrosion tests * martensitic transformation * shape memory alloy * superelastic NiTi wires Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.998, year: 2014

  19. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yu

    2011-02-01

    Full Text Available 【Abstract】Objective: To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. Methods: This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years. The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. Results: All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood’s rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. Conclusions: The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages. Key words: Sternoclavicular joint; Dislocations; Bone wires; Fracture fixation, internal

  20. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  1. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  2. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  3. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  4. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  5. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Progress in second-generation HTS wire development and manufacturing

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J.

    2008-01-01

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid

  7. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  8. Safety measures for the main control board replacement project at Ikata units 1 and 2

    International Nuclear Information System (INIS)

    Hashimoto, Nozomu; Tada, Kenji

    2013-01-01

    When Units 1 and 2 of the Ikata Power Station underwent replacement of their main control boards, control cabinets, and associated equipment, it was necessary to remove all the control boards, cabinets, and cables from the control building including from the main control room. This meant the loss of operation and monitoring functions in the main control room and functions of control cabinets. To maintain the operation and monitoring functions required under plant shutdown conditions, temporary operation and monitoring equipment (i.e., temporary main control board) was installed in the temporary main control room. The advance preparations included a trial switching from the permanent to the temporary main control board to identify and address potential problems in advance. When the replacement work was underway, a work schedule sheet posted in the temporary and the permanent control rooms was used to prevent human errors caused by operators’ recognition errors. Monitoring and control signals were switched from the old boards to the temporary boards and from the temporary boards to the new boards at appropriate timings to ensure plant safety during the replacement operation. (author)

  9. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  10. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  11. Pension Fund Governing Board

    CERN Multimedia

    HR Department

    2008-01-01

    Note The CERN pension scheme is based on the principle of defined benefits, so beneficiaries continue to receive the benefits to which they are entitled in accordance with the Rules of the Pension Fund. This means that pension entitlements under the Rules are not directly affected by the financial crisis and the current economic situation. However, the adjustment of pensions to the cost of living is not automatic and, under the method applied since 2006, must take into account the Fund’s financial position. Meeting of the Pension Fund Governing Board The Pension Fund Governing Board held its eighth meeting at ESO in Garching, Germany (near Munich) on 24 October 2008. Before starting its work, the Governing Board had the privilege of hearing an opening address by Professor Tim de Zeeuw, the Director General of ESO. Professor de Zeeuw described the mission of ESO and the ambitious projects of his organisation, which performs astronomy observations using telescopes located in...

  12. Pension Fund Governing Board

    CERN Multimedia

    HR Department

    2008-01-01

    Note The CERN pension scheme is based on the principle of defined benefits, so beneficiaries continue to receive the benefits to which they are entitled in accordance with the Rules of the Pension Fund. This means that pension entitlements under the Rules are not directly affected by the financial crisis and the current economic situation. However, the adjustment of pensions to the cost of living is not automatic and, under the method applied since 2006, must take into account the Fund’s financial position. Meeting of the Pension Fund Governing Board The Pension Fund Governing Board held its eighth meeting at ESO in Garching (near Munich), Germany on 24 October 2008. Before starting its work, the Governing Board had the privilege of hearing an opening address by Professor Tim de Zeeuw, the Director General of ESO. Professor de Zeeuw described the mission of ESO and the ambitious projects of his organisation, which performs astronomy observations using telescopes located in Chile. The Director-General receiv...

  13. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  14. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  15. MgB2 superconducting wires basics and applications

    CERN Document Server

    2016-01-01

    The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods. A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.

  16. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  17. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  18. Insulation and Heat Treatment of Bi-2212 Wires for Wind-and-React Coils

    International Nuclear Information System (INIS)

    Hwang, Peter K.F.

    2007-01-01

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2-inch dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  19. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  20. Water Science and Technology Board annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This annual report of the Water Science and Technology Board (WSTB) summarizes the activities of the Board and its subgroups during 1988, its sixth year of existence. Included are descriptions of current and recently completed projects, new activities scheduled to begin in 1989, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is intended to provide an introduction to the WSTB and summary of its program for the year.

  1. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    Science.gov (United States)

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  2. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Science.gov (United States)

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  3. Progress in second-generation HTS wire development and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@superpower-inc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2008-09-15

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid.

  4. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  5. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  6. Development of an electronic board for a neutrino telescope project

    International Nuclear Information System (INIS)

    Gabrielli, Alessandro; Gandolfi, Enzo; Ricci, Pier Paolo

    2006-01-01

    The NEMO (NEutrino Mediterranean Observatory) collaboration is involved in research and development for the construction of an underwater km 3 scale Cherenkov neutrino detector. The detector will consist of about four thousands of optical modules that interface with coaxial cables to electronics cards. The detector is connected to the shore by an electro-optical cable for data transmission and power supply. The board also provides signal synchronization, filtering, data compression and packing. We describe the details of this electronic control part, which has been developed using commercial components and the very high-speed, Hardware Description Language (VHDL). The design was implemented on a programmable device. A test-bench system was also designed using a PC-based acquisition board running on the National Instrument LabVIEW environment

  7. On-Board Mining in the Sensor Web

    Science.gov (United States)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  8. Empolder and application of LiveWire program

    International Nuclear Information System (INIS)

    Zhang Bo; Li Jing; Wang Xiaoming

    2007-01-01

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  9. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  10. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  11. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  12. Visualizations as Projection Devices

    DEFF Research Database (Denmark)

    Harty, Chris; Holm Jacobsen, Peter; Tryggestad, Kjell

    The aim of this paper is to inquire into the role of project visualizations in shaping healthcare spaces and practices. The study draws upon an ethnographic field study from a large on-going hospital construction project in Denmark, and focuses on the early phases of on-boarding the design team...... into the project organization. During the on-boarding visualizations multiplies in form, content and purpose, ranging from paper and digitally based projections of clinical work spaces and practices for the future hospital building in use, to paper and digitally based projections of the cost budget and time...

  13. 47 CFR 32.2321 - Customer premises wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  14. Magnetic domain propagation in Pt/Co/Pt micro wires with engineered coercivity gradients along and across the wire

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, A., E-mail: arctgh@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Gaul, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Urbaniak, M. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Ehresmann, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Stobiecki, F. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2017-08-01

    Highlights: • Electron lithography and ion bombardment were used to modify the Co/Pt micro-wires. • Two-dimensional perpendicular magnetic anisotropy gradient was engineered. • Engineered anisotropy gradient allowed to control domain wall positions in the wires. • Simulations confirm the influence of defects on a remanent state of the wires. - Abstract: Pt(15 nm)/[Co(0.6 nm)/Pt(1.5 nm)]{sub 4} multilayers with perpendicular magnetic anisotropy were patterned into several-micrometer wide wires by electron-beam lithography. Bombarding the wires with He{sup +} ions with a fluence gradient along the wire results in a spatial gradient of switching fields that allows a controllable positioning of domain walls. The influence of the reduced anisotropy near the wire edges causes a remanent state in which the reversal close to the long edges precedes that in the middle of the wires. Experiments using Kerr microscopy prove this effect and micromagnetic simulations corroborate that a decrease of the anisotropy at the edges is responsible for the effect.

  15. Sensitive and simple method for measuring wire tensions

    International Nuclear Information System (INIS)

    Atac, M.; Mishina, M.

    1982-08-01

    Measuring tension of wires in drift chambers and multiwire proportional chambers after construction is an important process because sometimes wires get loose after soldering, crimping or glueing. One needs to sort out wires which have tensions below a required minimum value to prevent electrostatic instabilities. There have been several methods reported on this subject in which the wires were excited either with sinusoidal current under magnetic field or with sinusoidal voltage electrostatically coupled to the wire, searching for a resonating frequency with which the wires vibrate mechanically. Then the vibration is detected either visually, optically or with magnetic pick-up directly touching the wires. Any of these is only applicable to the usual multiwire chamber which has open access to the wire plane. They also need fairly large excitation currents to induce a detectable vibration to the wires. Here we report a very simple method that can be used for any type of wire chamber or proportional tube system for measuring wire tension. Only a very small current is required for the wire excitation to obtain a large enough signal because it detects the induced emf voltage across a wire. A sine-wave oscillator and a digital voltmeter are sufficient devices aside from a permanent magnet to provide the magnetic field around the wire. A useful application of this method to a large system is suggested

  16. Electron dopable molecular wires based on the extended viologens

    Czech Academy of Sciences Publication Activity Database

    Kolivoška, Viliam; Gál, Miroslav; Pospíšil, Lubomír; Valášek, Michal; Hromadová, Magdaléna

    2011-01-01

    Roč. 13, č. 23 (2011), s. 11422-11429 ISSN 1463-9076 R&D Projects: GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400802; GA MŠk(CZ) MEB041006 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : electron transfer * spectroelectrochemistry * molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.573, year: 2011

  17. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  18. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  19. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  20. SPECIFIC FEATURES OF TECHNOLOGY OF MANUFACTURING A ZINC-COATED TUB WIRE FOR MUZZLE (BOTTLE’ HOOD WIRE

    Directory of Open Access Journals (Sweden)

    D. B. Zuev

    2016-01-01

    Full Text Available The paper presents the main technical specifications of galvanized low carbon wire for muzzles (bottle’hood wire, consistent with the exploitation requirements to the wire in the manufacture and use of muzzles. The main criteria when selecting the steel grade and upon selection of the technological processes are given. 

  1. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  2. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  3. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  4. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  5. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments.

    Science.gov (United States)

    Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L

    2013-12-01

    Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  7. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  8. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  9. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  10. A gating grid driver for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tangwancharoen, S.; Lynch, W.G.; Barney, J.; Estee, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shane, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Tsang, M.B., E-mail: tsang@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Y. [Department of Physics, Tsinghua University, Beijing 100084 (China); Isobe, T.; Kurata-Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Murakami, T. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606–8502 (Japan); Xiao, Z.G. [Department of Physics, Tsinghua University, Beijing 100084 (China); Zhang, Y.F. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2017-05-01

    A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 µs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 µs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 µs.

  11. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  12. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  13. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.

    2011-01-01

    Complete text of publication follows. The computer simulations based on Monte Carlo method and the ModeCEB software program were carried out in connection with EB radiation set-up for crosslinking of electrical wire and cable insulation, located at the Center for Radiation Research and Technology of the Institute of Nuclear Chemistry and Technology. The theoretical predictions for absorbed dose distribution in irradiated electrical wire and cable insulation caused by scanned EB were compared to the experimental results of irradiation which were carried out in the experimental set-up based on ILU 6 electron accelerator, which is characterized by the following parameters: Electron energy 0.5-2.0 MeV; Average beam current 40-10 mA, pulse duration 400 μs; Width of scanning up to 80 cm; Scan frequency up to 50 Hz. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for different process parameters; electrical wire and cable geometry (thickness of insulation layers and cupper wire diameter), type of polymer isolation, electron energy, energy spread, geometry of electron beam and electrical wire and cable distribution at irradiation zone. The geometry of electron beam distribution in irradiation zone was measured using TVA and PVC foil dosimeters for electron energy range available in ILU 6 accelerator. The temperature rise of irradiated electrical wire and irradiation homogeneity were evaluated for different experimental conditions to optimize process parameters. The obtained results of computer simulation were supported by experimental data of dose distribution based on gel-fraction measurements. Such agreement indicates that computer simulation ModeCEB is correct and sufficient for modelling of absorbed dose distribution in multi-layer circular objects irradiated with scanned electron beams. Acknowledgement: The R and D activities are supported by the European

  14. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  15. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  16. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  17. The Problem: Low-Achieving Districts and Low-Performing Boards

    Directory of Open Access Journals (Sweden)

    David E. Lee

    2014-10-01

    Full Text Available Effective school districts maintain superintendent and school board collegiality which can foster success and connectedness among members. Delagardelle and Alsbury (2008 found that superintendents and board members are not consistent in their perceptions about the work the board does, and Glass (2007 found that states do not require boards to undergo evaluation for effectiveness. In the current study, 115 board meetings were observed using the School Board Video Project (SBVP survey, which was created in 2012 by researchers to uncover school board meetings’ effectiveness. MANOVA, Univariate ANOVA, and Pearson Chi-Square test results revealed significant differences between low-, medium-, and high-performing districts’ school board meetings. Evidence indicated that low-performing districts’ board meetings were: less orderly; had less time spent on student achievement; lacked respectful and attentive engagement across speakers; had board meeting members who seemed to advance their own agenda; had less effective working relationships among the governance team; had fewer board members who relied on the superintendent for advice and input; had one member, other than the board president, stand out for taking excessive time during meetings; and did not focus on policy items as much as high- and medium-performing school districts. The research concluded that more school board members from low-performing districts needed training to improve their effectiveness. Furthermore, highly refined and target-enhanced school board training programs might lead to lasting governance success and more effective teaming that could improve district, and ultimately, student achievement.

  18. Canada-Nova Scotia Offshore Petroleum Board Annual report 1998-1999

    International Nuclear Information System (INIS)

    1999-01-01

    The Canada-Nova Scotia Offshore Petroleum Board is responsible for ensuring safe working conditions for offshore petroleum activities, protecting the environment during offshore petroleum operations, and managing offshore petroleum resources. This annual report includes financial statements of the Board for the fiscal year ending March 31, 1999. The projects undertaken by the Board in 1998-1999 included a technical audit of the Sable Offshore Energy Project, a resource assessment of the area known as the 'Gully', and resolving a complication regarding publicly available resource data for calls for bids for NS98-1 and NS98-2. A list of exploration licences in place in the Nova Scotia Offshore area was presented. Their total work bid was just over $188 million. In 1998, the Board's exploration activity included the review and approval for nine seismic programs. The Board also continues to monitor the extended Cohasset Benefits Plan to cover the scope of PanCanadian's Exploratory Drilling Program. This report included statements of financial position, revenue and expenditure, changes in financial position, and notes to the financial statements including accounting policies, accounts receivable, deferred revenue and commitments. The report also admitted uncertainty due to the year 2000 issue. It stated that it is not possible to be certain that all aspects of the year 2000 issue affecting the Board will be fully resolved. tabs., figs

  19. X-ray shadow projection microscopy of microwires

    International Nuclear Information System (INIS)

    Kasatkin, Yu.I.; Kasyuga, L.Z.; Kasyuga, P.I.; Kozyrev, A.S.; Khanonkin, A.A.

    1981-01-01

    The X-ray shadow projection microscopy as a method for testing geometrical parameters of microwires is considered. Two X-ray-optical circuits for measuring geometrical parameters of wires are described. It is shown that the coefficient of increase of the circuits does not depend on geometrical parameters of the wire under testing, and it is determined solely by the construction peculiarities of the circuits. The testability of geometric parameters of a wire, using DRON-2.0 X-ray diffractometer or its like, is discussed [ru

  20. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  1. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  2. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  3. The LiveWire Project final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.D.; Nelson, T.T. [Enova Technology, San Diego, CA (United States); Kelly, J.C.; Dominguez, H.A. [Paragon Consulting Services, La Verne, CA (United States)

    1997-10-01

    Utilities across the US have begun pilot testing a variety of hardware and software products to develop a two-way communications system between themselves and their customers. Their purpose is to reduce utility operating costs and to provide new and improved services for customers in light of pending changes in the electric industry being brought about by deregulation. A consortium including utilities, national labs, consultants, and contractors, with the support of the Department of Energy (DOE) and the Electric Power Research Institute (EPRI), initiated a project that utilized a hybrid fiber-coax (HFC) wide-area network integrated with a CEBus based local area network within the customers home. The system combined energy consumption data taken within the home, and home automation features to provide a suite of energy management services for residential customers. The information was transferred via the Internet through the HFC network, and presented to the customer on their personal computer. This final project report discusses the design, prototype testing, and system deployment planning of the energy management system.

  4. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Deeney, Christopher E. [National Nuclear Security Administration, Washington, D.C. 20585 (United States); Douglas, Melissa R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chittenden, Jerry [Imperial College, London, SW and 2BW (United Kingdom)

    2011-11-15

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to {approx}5.8 mg. The driver utilized was the {approx}20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of {approx}375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  5. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    International Nuclear Information System (INIS)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H.; Deeney, Christopher E.; Douglas, Melissa R.; Chittenden, Jerry

    2011-01-01

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to ∼5.8 mg. The driver utilized was the ∼20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of ∼375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  6. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  7. High-performance, stretchable, wire-shaped supercapacitors.

    Science.gov (United States)

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Canada-Nova Scotia Offshore Petroleum Board annual report, 1992-1993

    International Nuclear Information System (INIS)

    1993-06-01

    The Canada-Nova Scotia Offshore Petroleum Board was established as the agency responsible for the regulation of the hydrocarbon resources in the Nova Scotia offshore. The Board evaluates resource potential, administers petroleum exploration and production rights, approves offshore activities, and approves benefits and development plans. The main activities of the Board in 1992-1993 are summarized and financial statements are presented. Highlights include production of 572,300 m 3 of oil during the first production season of LASMO Nova Scotia Ltd.'s Cohasset development, the first commercial offshore oil production for Canada; four major resource evaluation projects in the Glenelg Field, the Laurentian sub-basin, the Fundy Rift Basin, and the Panuke Field; holding of discussions between Nova Scotia, Newfoundland, and Canada on the maritime boundary lines between respective offshore petroleum board jurisdictions, in the wake of a June 1992 determination of the disputed maritime boundary around St. Pierre et Miquelon; and amendments of certain safety-related legislation applicable to offshore operations. Employment benefits of the Cohasset project during 1992 totalled ca 470 Nova Scotians and 120 other Canadians. 3 tabs

  9. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  10. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  11. Carbon wire chamber at sub-atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Charles, G., E-mail: charlesg@ipno.in2p3.fr; Audouin, L., E-mail: audouin@ipno.in2p3.fr; Bettane, J.; Dupre, R.; Genolini, B.; Hammoudi, N.; Imre, M.; Le Ven, V.; Maroni, A.; Mathon, B.; Nguyen Trung, T.; Rauly, E.

    2017-05-21

    Present in many experiments, wire and drift chambers have been used in a large variety of shapes and configurations during the last decades. Nevertheless, their readout elements has not evolved much: tungsten, sometimes gold-plated or aluminum, wires. By taking advantage of the developments in the manufacture of conducting carbon fiber, we could obtain interesting improvements for wire detectors. In this article, we present recent tests and simulations using carbon fibers to readout signal in place of traditional tungsten wires. Unlike metallic wires, their low weight guaranties a reduced quantity of material in the active area.

  12. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    Science.gov (United States)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  13. US DOE Perspectives on Advisory Board Effectiveness - 13539

    International Nuclear Information System (INIS)

    Adler, David

    2013-01-01

    Federal missions on the Oak Ridge Reservation began with the Manhattan Project, and continues today with major facilities supporting the Nation's Science and National Security missions. While most of the land area on the Oak Ridge Reservation is free of environmental impacts from these activities, significant legacy contamination is associated with specific facilities and past waste management areas. In 1989, the Oak Ridge Reservation (ORR) was placed on National Priorities List, and DOE established its Office of Environmental Management that same year. Three years later, in 1992, the Federal Facility Agreement for the reservation was signed. Three years afterward, the Oak Ridge Site Specific Advisory Board was established to augment ongoing public involvement activities related to Oak Ridge Reservation cleanup activities. One of the early and most impactful decisions the board made was to organize the End Use Working Group. This broad-based group of board members, DOE representatives, and members of the public was formed in 1997 to study future uses for contaminated areas of the reservation. The group was instrumental in building consensus in the Oak Ridge community regarding the long-term end state of reservation lands. The group's recommendations were a fundamental input into Record's of Decision subsequently developed to establish cleanup requirements across the ORR, and they continue to influence decisions being made today. In developing its recommendations on end states, the End Use Working Group came to the realization that long-term stewardship of contaminated areas of the reservation would be necessary, in some cases in perpetuity. It was from this concept that the Oak Ridge SSAB's 15-year involvement in stewardship would begin. A stewardship committee formed by the End Use Working Group wrote Volume 1 of the Stakeholder Report on Stewardship. This document-and its companion Volume 2, which was written a year later-form a crucial foundation for stewardship

  14. US DOE Perspectives on Advisory Board Effectiveness - 13539

    Energy Technology Data Exchange (ETDEWEB)

    Adler, David [US DOE (United States)

    2013-07-01

    Federal missions on the Oak Ridge Reservation began with the Manhattan Project, and continues today with major facilities supporting the Nation's Science and National Security missions. While most of the land area on the Oak Ridge Reservation is free of environmental impacts from these activities, significant legacy contamination is associated with specific facilities and past waste management areas. In 1989, the Oak Ridge Reservation (ORR) was placed on National Priorities List, and DOE established its Office of Environmental Management that same year. Three years later, in 1992, the Federal Facility Agreement for the reservation was signed. Three years afterward, the Oak Ridge Site Specific Advisory Board was established to augment ongoing public involvement activities related to Oak Ridge Reservation cleanup activities. One of the early and most impactful decisions the board made was to organize the End Use Working Group. This broad-based group of board members, DOE representatives, and members of the public was formed in 1997 to study future uses for contaminated areas of the reservation. The group was instrumental in building consensus in the Oak Ridge community regarding the long-term end state of reservation lands. The group's recommendations were a fundamental input into Record's of Decision subsequently developed to establish cleanup requirements across the ORR, and they continue to influence decisions being made today. In developing its recommendations on end states, the End Use Working Group came to the realization that long-term stewardship of contaminated areas of the reservation would be necessary, in some cases in perpetuity. It was from this concept that the Oak Ridge SSAB's 15-year involvement in stewardship would begin. A stewardship committee formed by the End Use Working Group wrote Volume 1 of the Stakeholder Report on Stewardship. This document-and its companion Volume 2, which was written a year later-form a crucial

  15. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H + LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  16. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  17. Domain observations of Fe and Co based amorphous wires

    International Nuclear Information System (INIS)

    Takajo, M.; Yamasaki, J.

    1993-01-01

    Domain observations were made on Fe and Co based amorphous magnetic wires that exhibit a large Barkhausen discontinuity during flux reversal. Domain patterns observed on the wire surface were compared with those found on a polished section through the center of the wire. It was confirmed that the Fe based wire consists of a shell and core region as previously proposed, however, there is a third region between them. This fairly thick transition region made up of domains at an angle of about 45 degree to the wire axis clearly lacking the closure domains of the previous model. The Co based wire does not have a clear core and shell domain structure. The center of the wire had a classic domain structure expected of uniaxial anisotropy with the easy axis normal to the wire axis. When a model for the residual stress quenched-in during cooling of large Fe bars is applied to the wire, the expected anisotropy is consistent with the domain patterns in the Fe based wire, however, shape anisotropy still plays a dominant role in defining the wire core in the Co based wire

  18. Integrating citizen advisory boards in public participation: Lessons from the field

    International Nuclear Information System (INIS)

    Snyder, S.

    1995-01-01

    Citizen advisory boards have been used successfully, particularly by the chemical industry, as programs for public participation. Now the U.S. Department of Energy (DOE) has responded to a growing demand for more direct citizen involvement in environmental restoration decision making. The experience of the site-specific advisory board at the department's Fernald Environmental Management Project near Cincinnati provides lessons that contribute to the development of a model for the most efficient use of citizen advisory boards

  19. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  20. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  1. 76 FR 55138 - Sunshine Notice; Board of Directors Meeting; September 22, 2011

    Science.gov (United States)

    2011-09-06

    ... 2013 Budget. 3. Recommendations of the Ad-Hoc Board Committee on Governance. 4. Finance Project--India. 5. Finance Project--Nigeria. 6. Finance Project--Thailand. 7. Finance Project--Kenya. 8. Approval of... obtained from Connie M. Downs at (202) 336-8438. Connie M. Downs, Corporate Secretary, Overseas Private...

  2. The quality assurance of superconducting wire and cable for SSC magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Baggett, P.; Capone, D.

    1991-03-01

    The success of the SSC depends on the consistency and uniformity of the superconducting magnets used in the main collider rings and the high energy booster. To a great extent the success of the magnets depends upon the quality of the superconductor wire and cable used in coil windings. As the SSC project has begun its transition from Research to Development, a new laboratory organization has been established to carry the design requirements from concept to reality. The SSCL Magnet Systems Division Quality Assurance Group has been working on the development of a quality management and analysis system for insuring superconductor uniformity through the understanding and control of manufacturing variation. Key areas of the QA activity include: the design and development of a computer database and analysis system for the collection and statistical analysis of superconductor materials data (containing: source physical and chemical properties, billet process history, and final product performance data); and the development of wire and cable product specifications which focus on the control of variation. As a result of this work several new concepts have been developed which will affect the traditional approach to superconductor wire and cable production. 18 refs., 5 figs., 1 tab

  3. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  4. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  5. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  6. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  7. Water Science and Technology Board annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) and its subgroups during 1989, it seventh year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1990, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is an introduction to the WSTB and its program for the year. 4 figs.

  8. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  9. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    .... Receptacles on a two-wire, single-phase portable or vehicle-mounted generator rated not more than 5kW, where the circuit conductors of the generator are insulated from the generator frame and all other grounded... wiring shall be grounded: (i) Three-wire DC systems. All 3-wire DC systems shall have their neutral...

  10. Acoustic Emission from Elevator Wire Ropes During Tensile Testing

    Science.gov (United States)

    Bai, Wenjie; Chai, Mengyu; Li, Lichan; Li, Yongquan; Duan, Quan

    The acoustic emission (AE) technique was used to monitor the tensile testing process for two kinds of elevator wire ropes in our work. The AE signals from wire breaks were obtained and analyzed by AE parameters and waveforms. The results showed that AE technique can be a useful tool to monitor wire break phenomenon of wire ropes and effectively capture information of wire break signal. The relationship between AE signal characteristics and wire breaks is investigated and it is found that the most effective acoustic signal discriminators are amplitude and absolute energy. Moreover, the wire break signal of two kinds of ropes is a type of burst signal and it is believed that the waveform and spectrum can be applied to analyze the AE wire break signals.

  11. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  12. Impedance Characterisation of the SPS Wire Scanner

    CERN Document Server

    AUTHOR|(CDS)2091911; Prof. Sillanpää, Mika

    As a beam diagnostic tool, the SPS wire scanner interacts with the proton bunches traversing the vacuum pipes of the Super Proton Synchrotron particle accelerator. Following the interaction, the bunches decelerate or experience momentum kicks off-axis and couple energy to the cavity walls, resonances and to the diagnostic tool, the scanning wire. The beam coupling impedance and, in particular, the beam induced heating of the wire motivate the characterisation and redesign of the SPS wire scanner. In this thesis, we characterise RF-wise the low frequency modes of the SPS wire scanner. These have the highest contribution to the impedance. We measure the cavity modes in terms of resonance frequency and quality factor by traditional measurement techniques and data analysis. We carry out a 4-port measurement to evaluate the beam coupling to the scanning wire, that yields the spectral heating power. If combined with the simulations, one is able to extract the beam coupling impedance and deduce the spectral dissipa...

  13. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  14. Formation of InN atomic-size wires by simple N adsorption on the In/Si(111)–(4 × 1) surface

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2016-01-01

    Highlights: • N atoms on the surface form bonds with two In atoms and one Si atom. • Surface formation energy calculations show two stable structures with formation of InN atomic-size wires. • Projected density of states shows a tendency to form In−N and Si−N bonds on the surface. • Charge density corroborates the covalent character of the In−N bonds. - Abstract: We have carried out first principles total energy calculations to study the formation of InN atomic-size wires on the In/Si(111)–(4 × 1) surface. In its most favorable adsorption site, a single N atom forms InN arrangements. The deposit of 0.25 monolayers (MLs) of N atoms, result in the breaking of one of the original In chains and the formation of an InN atomic size wire. Increasing the coverage up to 0.5 ML of N atoms results in the formation of two of those wires. Calculated surface formation energies show that for N-poor conditions the most stable configuration is the original In/Si(111)–(4 × 1) surface with no N atoms. Increasing the N content, and in a reduced range of chemical potential, the formation of an InN wire is energetically favorable. Instead, from intermediate to N-rich conditions, two InN atomic wires are more stable. Projected density of states calculations have shown a trend to form covalent bonds between the In−p and N−p orbitals in these stable models.

  15. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  16. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    International Nuclear Information System (INIS)

    Wang Pengxiang; Chen Junhong

    2009-01-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  17. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    Science.gov (United States)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  18. Instrumental Genesis in GeoGebra Based Board Game Design

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2013-01-01

    In this paper I address the use of digital tools (GeoGebra) in open ended design activities, with primary school children. I present results from the research and development project “Creative Digital Mathematics”, which aims to use the pupil’s development of mathematical board games as a vehicle...... in their work with GeoGebra and how they relate their work with GeoGebra and mathematics to fellow pupils and real life situations. The results show that pupils’ consider development of board games as meaningful mathematical activity, and that they develop skills with GeoGebra, furthermore the pupils considers...... potential use of their board game by classmates in their design activities....

  19. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  20. Contact wire positions and contact forces. Measurements at high-speed lines in China; Fahrdrahtlage und Kontaktkraefte. Messungen an Hochgeschwindigkeitsstrecken in China

    Energy Technology Data Exchange (ETDEWEB)

    Heland, Joerg; Rick, Frank; Sarnes, Bernhard [DB Systemtechnik GmbH, Muenchen (Germany); Puschmann, Rainer [Siemens AG, Erlangen (Germany). Infrastructure and Cities

    2012-07-15

    The reliable energy transmission from overhead contact line to pantograph of traction units without interruption decides on the successful operation of high-speed railway lines. Measurements of contact wire position and contact forces are suited to assess interaction of overhead contact line and pantograph. Chinese Railways actually implement the biggest electrification program for high-speed lines worldwide. For these projects contact wire position and contact forces are monitored by procedures developed in Germany. The experience confirms that keeping the contact wire position within the specified limits lead to a superior energy transmission up to 350 km/h. (orig.)

  1. Cascade Model for Online Discussion Boards in an E-Learning Environment

    Directory of Open Access Journals (Sweden)

    Vibha Kumar

    2010-03-01

    Full Text Available This report is an outcome of five years of teaching and managing groups of students in an online learning environment. Some course management software allow the user to create groups and add different links within each group. Distinct platforms, with various sections, can be formed within those links for any given project. Students, as well as instructors, can manage the project for 6 to 8 weeks, cascading one discussion board into one or multiple platforms. This provides better understanding of the project material due to the step by step layout of the given exercise, leading to increased group management and greater communication among the student group members. This report provides the step-by-step procedure for cascading one discussion board into platforms, to manage online projects and provide a more controlled online environment for students in higher education.

  2. External wire-frame fixation of digital skin grafts: a non-invasive alternative to the K-wire insertion method.

    Science.gov (United States)

    Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko

    2014-08-01

    The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  3. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  4. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  5. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  6. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  7. Information technology and the board of directors.

    Science.gov (United States)

    Nolan, Richard; McFarlan, F Warren

    2005-10-01

    Ever since the Y2K scare, boards have grown increasingly nervous about corporate dependence on information technology. Since then, computer crashes, denial of service attacks, competitive pressures, and the need to automate compliance with government regulations have heightened board sensitivity to IT risk. Unfortunately, most boards remain largely in the dark when it comes to IT spending and strategy, despite the fact that corporate information assets can account for more than 50% of capital spending. A lack of board oversight for IT activities is dangerous, the authors say. It puts firms at risk in the same way that failing to audit their books would. Companies that have established board-level IT governance committees are better able to control IT project costs and carve out competitive advantage. But there is no one-size-fits-all model for board supervision of a company's IT operations. The correct approach depends on what strategic "mode" a company is in whether its operations are extremely dependent on IT or not, and whether or not it relies heavily on keeping up with the latest technologies. This article spells out the conditions under which boards need to change their level of involvement in IT decisions, explaining how members can recognize their firms' IT risks and decide whether they should pursue more aggressive IT governance. The authors delineate what an IT governance committee should look like in terms of charter, membership, duties, and overall agenda. They also offer recommendations for developing IT policies that take into account an organization's operational and strategic needs and suggest what to do when those needs change. Given the dizzying pace of change in the world of IT, boards can't afford to ignore the state of their IT systems and capabilities. Appropriate board governance can go a long way toward helping a company avoid unnecessary risk and improve its competitive position.

  8. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  9. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  10. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  11. Design of a hybrid (wired/wireless) acquisition data system for monitoring of cultural heritage physical parameters in Smart Cities.

    Science.gov (United States)

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-03-25

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  12. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  13. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  14. Wire scanner software and firmware issues

    International Nuclear Information System (INIS)

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  15. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  16. Metallurgical investigation of wire breakage of tyre bead grade

    Directory of Open Access Journals (Sweden)

    Piyas Palit

    2015-10-01

    Full Text Available Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase.

  17. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  18. Wire gaseous coordinate detectors and their applications in biomedical research

    International Nuclear Information System (INIS)

    Peshekhonov, V.D.

    1986-01-01

    Wire gaseous coordinate detectors continue to be a basic tool in experimental high-energy physics and are being intensively introduced into related areas of science and technology, particularly biomedical research. The constant evolution of these detectors allows broad application of their new modificatons: multistep chambers, low-pressure detectors, time-projection chambers, and so on, so that detector systems are enriched with new possibilities. In this review we give the operating principles and fundamental parameters of these detectors and discuss some examples of how they are used in experimental physics. We also explore some of the features of the use of these detectors for research in molecular biology and medical diagnostics for examples of existing and projected setups

  19. Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections

    Science.gov (United States)

    Zhang, Bin; Yang, Xiaokuo; Liu, Jiahao; Li, Weiwei; Xu, Jie

    2018-02-01

    Nanomagnet logic (NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects. Project supported by the National Natural Science Foundation of China (No. 61302022) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University (Nos. 2015BSKYQD03, 2016KYMZ06).

  20. A potential environment for lasing below 15 nm initiated by exploding wire in water

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Prukner, Václav; Schmidt, Jiří; Frolov, Oleksandr; Štraus, Jaroslav

    2010-01-01

    Roč. 28, č. 1 (2010), s. 61-67 ISSN 0263-0346. [International Conference on the Frontiers of Plasma Physics and Technology/4th./. Kathmandu, Nepal, 06.04.2009-10.04.2009] R&D Projects: GA MŠk LA08024; GA MŠk(CZ) LC528; GA AV ČR KAN300100702; GA AV ČR KJB100430702 Institutional research plan: CEZ:AV0Z20430508 Keywords : exploding wire in water * modeling of wire explosion * measurement of H-alpha line profile Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.656, year: 2010 http://journals.cambridge.org/action/displayFulltext?type=1&fid=7482804&jid=LPB&volumeId=28&issueId=01&aid=7482796

  1. Wiring Damage Analyses for STS OV-103

    Science.gov (United States)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  2. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    Science.gov (United States)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  3. Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions

    Czech Academy of Sciences Publication Activity Database

    Yeap, W. S.; Bevk, D.; Liu, X.; Krýsová, Hana; Pasquarelli, A.; Vanderzande, D.; Lutsen, L.; Kavan, Ladislav; Fahlman, M.; Maes, W.; Haenen, K.

    2014-01-01

    Roč. 4, AUG 2014 (2014), s. 42044-42053 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Functionalizations * Light-harvesting * Molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.840, year: 2014

  4. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  5. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  6. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  7. Supplemental Analysis Survey of C&P Telephone Inside Wiring.

    Science.gov (United States)

    1986-10-01

    telephone company facilities in 1984. In 1985, among other actions favorable to deregulation and detariffing of inside wiring, the FCC proposed to detariff ...installation of inside wiring, detariff the maintenance of all inside wiring, treat all inside wiring as customer premise equipment and pass ownership...85-148, 50 Fed. let. 13991 (April 9, 1985), pToposing to detariff the installation of simple inside wiring and also to detariff the maintenance of all

  8. Nano-powder production by electrical explosion of wires

    International Nuclear Information System (INIS)

    Mao Zhiguo; Zou Xiaobing; Wang Xinxin; Jiang Weihua

    2010-01-01

    A device for nano-powder production by electrical explosion of wires was designed and built. Eight wires housed in the discharge chamber are exploded one by one before opening the chamber for the collection of the produced nano-powder. To increase the rate of energy deposition into a wire, the electrical behavior of the discharge circuit including the exploding wire was simulated. The results showed that both reducing the circuit inductance and reducing the capacitance of the energy-storage capacitor (keeping the storage energy constant) can increase the energy deposition rate. To better understand the physical processes of the nano-powder formation by the wire vapor, a Mach-Zehnder interferometer was used to record the time evolution of the wire vapor as well as the plasma. A thermal expansion lag of the dense vapor core as well as more than one times of the vapor burst was observed for the first time. Finally, nano-powders of titanium nitride, titanium dioxide, copper oxides and zinc oxide were produced by electrical explosion of wires. (authors)

  9. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  10. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  11. Processing of flexible high-Tc superconducting wires

    International Nuclear Information System (INIS)

    Lee, B.I.; Modi, V.

    1989-01-01

    Wires superconducting at temperatures above 77 K are produced by using YBa 2 Cu 3 O 7 materials. Flexibility was obtained by support from prefabricated fibers or a metallic coating on the extruded YBa 2 Cu 3 O 7 wires. The microstructure, the T c and the critical current densities of the wires were determined. Processing variables and steps are described

  12. Experimental investigation of industrial copper deformed by wire ...

    African Journals Online (AJOL)

    drawing on microstructure and physical properties of industrial copper wires. Copper wires were provided by E.N.I.CA.Biskra (Algeria). We investigated some wires with different strain levels (as received, 1.20, 2.10, and ε = 3.35).

  13. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  14. New On-board Microprocessors

    Science.gov (United States)

    Weigand, R.

    Two new processor devices have been developed for the use on board of spacecrafts. An 8-bit 8032-microcontroller targets typical controlling applications in instruments and sub-systems, or could be used as a main processor on small satellites, whereas the LEON 32-bit SPARC processor can be used for high performance controlling and data processing tasks. The ADV80S32 is fully compliant to the Intel 80x1 architecture and instruction set, extended by additional peripherals, 512 bytes on-chip RAM and a bootstrap PROM, which allows downloading the application software using the CCSDS PacketWire pro- tocol. The memory controller provides a de-multiplexed address/data bus, and allows to access up to 16 MB data and 8 MB program RAM. The peripherals have been de- signed for the specific needs of a spacecraft, such as serial interfaces compatible to RS232, PacketWire and TTC-B-01, counters/timers for extended duration and a CRC calculation unit accelerating the CCSDS TM/TC protocol. The 0.5 um Atmel manu- facturing technology (MG2RT) provides latch-up and total dose immunity; SEU fault immunity is implemented by using SEU hardened Flip-Flops and EDAC protection of internal and external memories. The maximum clock frequency of 20 MHz allows a processing power of 3 MIPS. Engineering samples are available. For SW develop- ment, various SW packages for the 8051 architecture are on the market. The LEON processor implements a 32-bit SPARC V8 architecture, including all the multiply and divide instructions, complemented by a floating-point unit (FPU). It includes several standard peripherals, such as timers/watchdog, interrupt controller, UARTs, parallel I/Os and a memory controller, allowing to use 8, 16 and 32 bit PROM, SRAM or memory mapped I/O. With on-chip separate instruction and data caches, almost one instruction per clock cycle can be reached in some applications. A 33-MHz 32-bit PCI master/target interface and a PCI arbiter allow operating the device in a plug-in card

  15. 76 FR 72009 - Sunshine Act Notice-December 8, 2011 Board of Directors Meeting

    Science.gov (United States)

    2011-11-21

    .... 2. Insurance Project--Middle East and Africa. 3. Finance Project--Maghreb and North Africa. 4... Closed Session of the October 27, 2011 Board of Directors Meeting. 6. Pending Major Projects. Written summaries of the projects to be presented will be posted on OPIC's Web site on or about November 17, 2011...

  16. Induced Voltage in an Open Wire

    Science.gov (United States)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  17. Board Task Performance

    DEFF Research Database (Denmark)

    Minichilli, Alessandro; Zattoni, Alessandro; Nielsen, Sabina

    2012-01-01

    identify three board processes as micro-level determinants of board effectiveness. Specifically, we focus on effort norms, cognitive conflicts and the use of knowledge and skills as determinants of board control and advisory task performance. Further, we consider how two different institutional settings....... The findings show that: (i) Board processes have a larger potential than demographic variables to explain board task performance; (ii) board task performance differs significantly between boards operating in different contexts; and (iii) national context moderates the relationships between board processes...... and board task performance....

  18. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  19. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  20. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  1. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  2. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  3. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  4. Turning Schools Around: The National Board Certification Process as a School Improvement Strategy

    Science.gov (United States)

    Jaquith, Ann; Snyder, Jon

    2016-01-01

    Can the National Board certification process support school improvement where large proportions of students score below grade level on standardized tests? This SCOPE study examines a project that sought to seize and capitalize upon the learning opportunities embedded in the National Board certification process, particularly opportunities to learn…

  5. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  6. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  7. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  8. Center of gravity estimation using a reaction board instrumented with fiber Bragg gratings

    Science.gov (United States)

    Oliveira, Rui; Roriz, Paulo; Marques, Manuel B.; Frazão, Orlando

    2018-03-01

    The purpose of the present work is to construct a reaction board based on fiber Bragg gratings (FBGs) that could be used for estimation of the 2D coordinates of the projection of center of gravity (CG) of an object. The apparatus is consisted of a rigid equilateral triangular board mounted on three supports at the vertices, two of which have cantilevers instrumented with FBGs. When an object of known weight is placed on the board, the bending strain of the cantilevers is measured by a proportional wavelength shift of the FBGs. Applying the equilibrium conditions of a rigid body and proper calibration procedures, the wavelength shift is used to estimate the vertical reaction forces and moments of force at the supports and the coordinates of the object's CG projection on the board. This method can be used on a regular basis to estimate the CG of the human body or objects with complex geometry and density distribution. An example is provided for the estimation of the CG projection coordinates of two orthopaedic femur bone models, one intact, and the other with a hip stem implant encased. The clinical implications of changing the normal CG location by means of a prosthesis have been discussed.

  9. U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    International Nuclear Information System (INIS)

    Nannipieri, P; Anichini, M; Barsocchi, L; Becatti, G; Buoni, L; Celi, F; Catarsi, A; Di Giorgio, P; Fattibene, P; Ferrato, E; Guardati, P; Mancini, E; Meoni, G; Nesti, F; Piacquadio, S; Pratelli, E; Quadrelli, L; Viglione, A S; Zanaboni, F; Mameli, M

    2017-01-01

    U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign. (paper)

  10. On grouping individual wire segments into equivalent wires or chains, and introduction of multiple domain basis functions

    CSIR Research Space (South Africa)

    Lysko, AA

    2009-06-01

    Full Text Available The paper introduces a method to cover several wire segments with a single basis function, describes related practical algorithms, and gives some results. The process involves three steps: identifying chains of wire segments, splitting the chains...

  11. New technologies for fire suppression on board naval craft, FiST

    NARCIS (Netherlands)

    Rahm, M.; Hiltz, J.; Wal, R. van der; Hertzberg, T.; Lindström, J.

    2014-01-01

    For three years Canada, Sweden and the Netherlands have been investigating new technologies for fire suppression on board naval crafts within the FiST project. The project has focused on a number of technologies. These included the evaluation of water based fire suppression systems and in particular

  12. The magnetoresistance of sub-micron Fe wires

    Science.gov (United States)

    Blundell, S. J.; Shearwood, C.; Gester, M.; Baird, M. J.; Bland, J. A. C.; Ahmed, H.

    1994-07-01

    A novel combination of electron- and ion-beam lithography has been used to prepare Fe gratings with wire widths of 0.5 μm and wire separations in the range 0.5-4 μm from an Fe/GaAs (001) film of thickness 25 nm. With an in-plane magnetic field applied perpendicular to the length of the wires, a harder magnetisation loop is observed using the magneto-optic Kerr effect (MOKE), compared with that observed in the unprocessed film. We observe a strong effect in the magnetoresistance (MR) when the magnetic field is applied transverse to the wires. It is believed that this effect originates from the highly non-uniform demagnetising field in each wire of the grating. These results demonstrate that the combination of MOKE and MR measurements can provide important information about the magnetisation reversal processes in magnetic gratings and can be used to understand the effect of shape anisotropy on magnetic properties.

  13. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  14. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  15. Minimally invasive tension band wiring technique for olecranon fractures.

    Science.gov (United States)

    Takada, Naoya; Kato, Kenji; Fukuta, Makoto; Wada, Ikuo; Otsuka, Takanobu

    2013-12-01

    Some types of implants, such as plates, screws, wires, and nails, have been used for open reduction and internal fixation of olecranon fractures. A ≥ 10 cm longitudinal incision is used for open reduction and internal fixation of olecranon fractures. According to previous studies, tension band wiring is a popular method that gives good results. However, back out of the wires after the surgery is one of the main postoperative complications. Moreover, if the Kirschner wires are inserted through the anterior ulnar cortex, they may impinge on the radial neck, supinator muscle, or biceps tendon. Herein, we describe the minimally invasive tension band wiring technique using Ring-Pin. This technique can be performed through a 2 cm incision. Small skin incisions are advantageous from an esthetic viewpoint. Ring-Pin was fixed by using a dedicated cable wire that does not back out unless the cable wire breaks or slips out of the dedicated metallic clamp. As the pins are placed in intramedullary canal, this technique does not lead to postoperative complications that may occur after transcortical fixation by conventional tension band wiring. Minimally invasive tension band wiring is one of the useful options for the treatment of olecranon fractures with some advantages.

  16. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  17. Board effectiveness: Investigating payment asymmetry between board members and shareholders

    Directory of Open Access Journals (Sweden)

    Wuchun Chi

    2008-01-01

    Full Text Available Board members may well be responsible for dissension between themselves and shareholders since they are simultaneously the setters and receivers of both board remuneration and dividends. They may act out of their own personal interests at the expense of external shareholders. We investigate the impact of ownership structure, board structure and control deviation on payment asymmetry, where excessively high remuneration is paid to board members but considerably lower dividends are distributed to shareholders. We find strong evidence confirming that the smaller the shareholdings of board members and outside blockholders are, the more asymmetric the payments are. With controlling family members on the board and a higher percentage of seats held by independent board members, there is a slight reduction in the likelihood and severity of payment asymmetry. In addition, it is abundantly clear that the larger the board seat-control deviation is, the greater is the likelihood and severity of payment asymmetry. While prior research has primarily focused on board-manager agency issues, the board-shareholder perspective could be even more important in that it is the board that is the most directly delegated agent of shareholders, not the managers

  18. Atom chips in the real world: the effects of wire corrugation

    Science.gov (United States)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  19. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  20. Corrosion Induced Loss of Capacity of Post Tensioned Seven Wire Strand Cable Used in Multistrand Anchor Systems Installed at Corps Projects

    Science.gov (United States)

    2016-12-01

    wedges. Method 4: Using a plastic -coated aluminum wire mesh to act as a cushion around the cable to reduce the bite of the serrations in the wedges...PT seven-wire strand cable surrounded by copper sheet layers and the wedges. Method 6: Using one wrap of 0.005 in. bronze shim stock to act as a...sterilized before use to reduce the presence of biological agents that will affect the sample during shipment. Plastics are lighter than glass

  1. Steer-by-wire innovations and demonstrator

    NARCIS (Netherlands)

    Lupker, H.A.; Zuurbier, J.; Verschuren, R.M.A.F.; Jansen, S.T.H.; Willemsen, D.M.C.

    2002-01-01

    Arguments for 'by-wire' systems include production costs, packaging and traffic safety. Innovations concern both product and development process e.g. combined virtual engineering and Hardware-in-the-loop testing. Three Steer-by-wire systems are discussed: a steering system simulator used as a

  2. Board of Directors or Supervisory Board

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article analyses the legal consequences of the choice now available to Danish public limited companies, which can now opt for a two-tier management structure, in which the management board undertakes both the day-to-day and the overall management, while a supervisory board exercises control...... over the management board, including its appointment and dismissal. The article considers which companies a two-tier structure may be relevant for, and reviews the consequences for the composition, election and functioning of the company organs....

  3. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  4. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    Energy Technology Data Exchange (ETDEWEB)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States); Elliott, Eric D., E-mail: eric.elliott@osumc.edu [The Ohio State University Wexner Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu; Hanje, A. James, E-mail: James.Hanje@osumc.edu [The Ohio State University Wexner Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine (United States); Saad, Wael E. A., E-mail: wsaad@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States)

    2016-07-15

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  5. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  6. Self-impedances of finite and infinite wires with earth-return

    International Nuclear Information System (INIS)

    Koglin, H.J.; Meyer, E.P.

    1981-01-01

    The electromagnetic field for a thin wire of finite length, embedded in a homogeneous earth of infinite extent in all directions, is given. The distribution of the electric field intensity close to the wire is examined. The mathematical model for the finite wire is expanded by substituting a spheroidal earth-electrode at each end. The external self-impedance of the wire between the earth-electrodes is calculated by integrating the electric field intensity along a presupposed radius. Especially in the case of short wires the results show considerable deviations to the known depth of current penetration as compared to that of an infinitely long wire. By considering the approximations used for short wires in this model, one can draw conclusions on the external self-impedance for short wires above, on and under the earth's surface. (orig.) [de

  7. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  8. WIRED magazine announces rave awards nominees

    CERN Document Server

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  9. COLLABORATION BOARD (CB56) 22/06/07

    CERN Multimedia

    T. Virdee

    Thesis and Industrial Awards (L. Foa) C. Vander Velde has resigned from the Thesis Awards Committee and was thanked for her contributions. A replacement was being sought. A mail announcing the 2007 Award would be circulated to the whole collaboration. The schedule was as usual, with the deadline for nominations September 18th, and would be included in the mail and posted on the web. There was no action planned for Industrial Awards, but Project Managers could make suggestions to D. Campi before the September CMS Week. Contribution Update (L. Foa) The Collaboration Board Advisory Group was progressing well with updating the Constitution, but parts were still incomplete. However, certain parts were needed for the immediate business of the Board, and these had been posted on the Agenda for approval. Section 2.1 had been substantially revised, defining more clearly the roles of the Conference, Publications and Thesis Awards Committee, as well as that of the Authorship Board, how their members were appoint...

  10. LANSCE-R WIRE-SCANNER ANALOG FRONT-END ELECTRONICS

    International Nuclear Information System (INIS)

    Gruchalla, Michael E.

    2011-01-01

    A new AFE is being developed for the new LANSCE-R wire-scanner systems. The new AFE is implemented in a National Instruments Compact RIO (cRIO) module installed a BiRa 4U BiRIO cRIO chassis specifically designed to accommodate the cRIO crate and all the wire-scanner interface, control and motor-drive electronics. A single AFE module provides interface to both X and Y wire sensors using true DC coupled transimpedance amplifiers providing collection of the wire charge signals, real-time wire integrity verification using the normal dataacquisition system, and wire bias of 0V to +/-50V. The AFE system is designed to accommodate comparatively long macropulses (>1ms) with high PRF (>120Hz) without the need to provide timing signals. The basic AFE bandwidth is flat from true DC to 50kHz with a true first-order pole at 50kHz. Numeric integration in the cRIO FPGA provides real-time pulse-to-pulse numeric integration of the AFE signal to compute the total charge collected in each macropulse. This method of charge collection eliminates the need to provide synchronization signals to the wire-scanner AFE while providing the capability to accurately record the charge from long macropulses at high PRF.

  11. Kirschner Wires : insertion techniques and bone related consequences

    NARCIS (Netherlands)

    Franssen, B.B.G.M.

    2010-01-01

    The Kirschner (K-) wire was first introduced in 1909 by Martin Kirschner. This is a thin unthreaded wire of surgical steel with a diameter of up to three millimeters and a selection of different tips. The use of K-wires is often promoted as a simple technique because of its easy placement,

  12. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  13. Energy transformation in Z-pinch and plasma focus discharges with wire and wire-in-liner loads

    International Nuclear Information System (INIS)

    Kubes, Pavel; Kravarik, Jozef; Klir, Daniel; Scholz, Marek; Paduch, Marian; Tomaszewski, Krzysztof; Karpinski, Leslaw; Bakshaev, Yury L.; Blinov, Peter I.; Chernenko, Andrey S.; Dan'ko, Sergey A.; Korolev, Valery D.; Shashkov, Andrey Y.; Tumanov, Victor I.

    2002-01-01

    The results of the study of the Z-pinch and plasma-focus plasmas at presence of the axial C, Al, or Cu wires of sufficient high diameter are discussed in this paper. The wire was positioned on the top of the inner electrode of the PF 1000 plasma focus (1.8 MA, IPPLM Warsaw), or at the axis with or without the tungsten or alumine wire array load at the S-300 facility (3 MA, RRC Kurchatov Institute, Moscow), and at the axis of the small Z-pinch Z-150 (50 kA, CTU Prague). The plasma corona around the wire was generated both by the current going through the wires and by the implosion of the wire array or of the current sheath. The experiments showed interesting results often observed in some shots of Z-pinch type discharges - existence of helical structures, two relatively long and stable pinch phases, oscillation of pinch diameter, and back return of the plasma exploding from the pinch. All these observed phenomena can be evolved by spontaneous self-generation and transformation of the axial magnetic field in the pinch during the plasma implosion and explosion. A configuration of axial and azimuthal magnetic field confines the plasma and later transforms or dissipates during a few tens or hundreds ns. A fast transformation of internal magnetic fields can induce a sufficiently high electric field for generation of keV particles and radiation. Study and usage of Z-pinch discharges is connected with solving of two principal problems, limitation of instability development and a way of generation of high energy particles and radiation. The first problem is partially solved by the faster increase of the current, by better cylindrical symmetry of the load and plasma, by higher density of the plasma or by the presence of a stronger magnetized plasma

  14. Electromagnetic densification of MgB2/Cu wires

    International Nuclear Information System (INIS)

    Woźniak, M; Glowacki, B A

    2014-01-01

    Electromagnetic compaction of in situ MgB 2 /Cu wire has been achieved using a custom-built 200 J device. The monofilament core packing density was increased by 8% and up to 31% for unreacted and reacted wires respectively. The higher density of the MgB 2 core resulted in a critical current density increase of up to 75% in comparison to that for cold-drawn-only wire. Applying this treatment to a wire with Cu powder additions to the core and with an optimized heat treatment resulted in one of the highest ever reported values of J c for MgB 2 /Cu wires of 6.83 × 10 3  A cm −2 at 4.2 K and 6 T. (paper)

  15. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  16. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  17. Seeded perturbations in wire array z-pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Safronova, Alla S.; Maxwell, J.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Bland, Simon Nicholas; Jones, Brent Manley; Chittenden, Jeremy Paul; Garasi, Christopher Joseph; Hall, Gareth Neville; Mehlhorn, Thomas Alan; Deeney, Christopher

    2004-01-01

    The impact of 3D structure on wire array z-pinch dynamics is a topic of current interest, and has been studied by the controlled seeding of wire perturbations. First, Al wires were etched at Sandia, creating 20% radial perturbations with variable axial wavelength. Observations of magnetic bubble formation in the etched regions during experiments on the MAGPIE accelerator are discussed and compared to 3D MHD modeling. Second, thin NaF coatings of 1 mm axial extent were deposited on Al wires and fielded on the Zebra accelerator. Little or no axial transport of the NaF spectroscopic dopant was observed in spatially resolved K-shell spectra, which places constraints on particle diffusivity in dense z-pinch plasmas. Finally, technology development for seeding perturbations is discussed

  18. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  19. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  20. Self Healing Coating/Film Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  1. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  2. ''Water bath'' effect during the electrical underwater wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Ratakhin, N. A.; Grinenko, A.; Krasik, Ya. E.

    2007-01-01

    The results of a simulation of underwater electrical wire explosion at a current density >10 9 A/cm 2 , total discharge current of ∼3 MA, and rise time of the current of ∼100 ns are presented. The electrical wire explosion was simulated using a one-dimensional radiation-magnetohydrodynamic model. It is shown that the radiation of the exploded wire produces a thin conducting plasma shell in the water in the vicinity of the exploding wire surface. It was found that this plasma shell catches up to 30% of the discharge current. Nevertheless, it was shown that the pressure and temperature of the wire material remain unchanged as compared with the idealized case of the electrical wire explosion in vacuum. This result is explained by a 'water bath' effect

  3. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    Science.gov (United States)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  4. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  5. A project for recovering mercury from fluorescent tubes from schools in the Grand Erie District School Board

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-15

    Mercury is a persistent, toxic substance that poses a serious threat to the environment and human health. Mercury compounds can be carried hundreds of kilometers once airborne and inhaling mercury vapours or ingesting mercury can cause serious injury or death. In Canada, mercury is regularly found in thousands of products such as fluorescent lamps, thermostats, fever thermometers and button batteries, as well as a variety of industrial applications. This report discussed a project that was undertaken by the Recycling Council of Ontario (RCO) that targeted schools, within the Grand Erie District School Board (GEDSB), to pilot a program over a period of 3 months to track, collect and recycle sufficient number of fluorescent tubes. The purpose was to successfully divert 2200 mgs of mercury that may otherwise be destined for landfill. The primary objective of the pilot project was to establish an operating system to collect and recycle fluorescent tube lighting and develop recycling guidelines for the GEDSB that would be transferable to other school districts. The report discussed why fluorescent lamp recycling was needed and outlined the project partners. One recycling partner's recycling process, Fluorescent Lamp Recyclers (FLR) was described. The report also discussed regulations affecting the handling and disposal of fluorescent lamps in Ontario. GEDSB's, RCO's and FLR's responsibilities in the project were outlined. The methodology and florescent lamp collection process were described. The report also presented the collection schedule and results. It was concluded that with very little effort, significant amounts of fluorescent lamps could be diverted, preventing mercury from entering landfills. refs., tabs., figs., appendices.

  6. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  7. NASA/BAE SYSTEMS SpaceWire Effort

    Science.gov (United States)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  8. Characterization of NbTi multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Vellego, G.

    1988-01-01

    Pirelli is developing superconducting mulfilamentary NbTi wires, with current carrying capacities of up to 500 A, for use in magnetic resonance imaging (MRI) systems and in small research magnets. Pirelli and IFUSP have developed a system for assessing wire performance, whose quality is comparable to the equivalent systems at the Brookhaven National Laboratory (BNL) and at the National Bureau of Standards (NBS). In particular, a high sensitivity is required for critical current measurements, so that the modern criteria for definition of critical current can be used. These involve conductor resistivities of the order of 10 -12 ohm-cm. The methods of measurements of critical current in applied magnetic fields, of residual resistance ratio and of copper to superconductor ratio are described. The results of the first tests performed in Pirelli wires and in wires of other manufacturers are described. These include tests on a NBS standard reference material. These results are of the same quality as results obtained at BNL or NBS on the same wires. So this system can be very useful throughout the Pirelli program. (author) [pt

  9. Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems

    Science.gov (United States)

    Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)

    2000-01-01

    We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.

  10. 46 CFR 111.30-19 - Buses and wiring.

    Science.gov (United States)

    2010-10-01

    ... control wiring must be— (1) Suitable for installation within in a switchboard enclosure and be rated at 90... 46 Shipping 4 2010-10-01 2010-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping... REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...

  11. Chemistry of radiation damage to wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF 4 /iC 4 H 10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF 4 -rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF 4 , acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF 4 /iC 4 H 10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C 2 H 6 . Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl 3 F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  12. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides.

    Science.gov (United States)

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-06-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.

  13. Patients overwhelmingly prefer inpatient boarding to emergency department boarding.

    Science.gov (United States)

    Viccellio, Peter; Zito, Joseph A; Sayage, Valerie; Chohan, Jasmine; Garra, Gregory; Santora, Carolyn; Singer, Adam J

    2013-12-01

    Boarding of admitted patients in the emergency department (ED) is a major cause of crowding. One alternative to boarding in the ED, a full-capacity protocol where boarded patients are redeployed to inpatient units, can reduce crowding and improve overall flow. Our aim was to compare patient satisfaction with boarding in the ED vs. inpatient hallways. We performed a structured telephone survey regarding patient experiences and preferences for boarding among admitted ED patients who experienced boarding in the ED hallway and then were subsequently transferred to inpatient hallways. Demographic and clinical characteristics, as well as patient preferences, including items related to patient comfort and safety using a 5-point scale, were recorded and descriptive statistics were used to summarize the data. Of 110 patients contacted, 105 consented to participate. Mean age was 57 ± 16 years and 52% were female. All patients were initially boarded in the ED in a hallway before their transfer to an inpatient hallway bed. The overall preferred location after admission was the inpatient hallway in 85% (95% confidence interval 75-90) of respondents. In comparing ED vs. inpatient hallway boarding, the following percentages of respondents preferred inpatient boarding with regard to the following 8 items: rest, 85%; safety, 83%; confidentiality, 82%; treatment, 78%; comfort, 79%; quiet, 84%; staff availability, 84%; and privacy, 84%. For no item was there a preference for boarding in the ED. Patients overwhelmingly preferred the inpatient hallway rather than the ED hallway when admitted to the hospital. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  16. Laparoscopic extraction of fractured Kirschner wire from the pelvis

    Directory of Open Access Journals (Sweden)

    Vinaykumar N Thati

    2014-01-01

    Full Text Available Kirschner wire is a sharp stainless steel guide wire commonly used in fixation of fractured bone segments. There are case reports of migrated K wire from the upper limb into the spine and chest, and from the lower limb in to the abdomen and pelvis. Here, we present a case report of accidental intra-operative fracture of K wire during percutaneous femoral nailing for sub-trochanteric fracture of right femur, which migrated in to the pelvis when the orthopaedician tried to retrieve the broken segment of the K wire. This case highlights the use of laparoscopy as minimally invasive surgical option.

  17. NASA requirements and applications environments for electrical power wiring

    International Nuclear Information System (INIS)

    Stavnes, M.W.; Hammond, A.N.

    1992-01-01

    Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations have been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. This paper presents the electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications

  18. Low-reflective wire-grid polarizers with absorptive interference overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motofumi [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Takada, Akio; Yamada, Takatoshi; Hayasaka, Takashi; Sasaki, Kouji; Takahashi, Eiji; Kumagai, Seiji, E-mail: m-snki@me.kyoto-u.ac.jp [Devices Technology Department, Devices Division, Sony Chemical and Information Device Corporation, 3-4-1 Sakuragi, Tagajyo, Miyagi 985-0842 (Japan)

    2010-04-30

    Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an antireflection (AR) coating owing to the interference along with the absorption in the absorptive layer. A wide variety of materials can be used for AR coatings by tuning the thicknesses of both the absorptive and the gap layers. This AR concept has been applied to reduce the reflectance of WG polarizers of Al. FeSi{sub 2} as an absorptive layer has been deposited by the glancing angle deposition technique immediately on the top of Al wires covered with a thin SiO{sub 2} layer as a gap layer. For the optimum combination of the thicknesses of FeSi{sub 2} and SiO{sub 2}, the reflectance becomes lower than a few per cent, independent of the polarization, whereas the transmission polarization properties remain good. Because low-reflective (LR) WG polarizers are completely composed of inorganic materials, they are useful for applications requiring high-temperature durability such as liquid crystal projection displays.

  19. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  20. Beam Position and Phase Monitor - Wire Mapping System

    International Nuclear Information System (INIS)

    Watkins, Heath A.; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  1. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  2. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  3. Mechanical characterization of Cu-Zn wire electrode base used in EDM and study of influence of the process of machining on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Sedjal, H., E-mail: hasedjal@yahoo.fr; Amirat, B. [Département of Mechanical engineering, University of M.MAMMERI, Tizi Ouzou (Algeria); Aichour, M.; Marouf, T.; Chitroub, M. [Engineering and Material Sciences Laboratory, Department of Metallurgy, Polytechnic national school, Algiers (Algeria)

    2015-03-30

    This work is part of a Research National project (PNR) carried out by the group of research of the engineering and material sciences laboratory of the polytechnic national school at Algiers in collaboration with company BCR, which relates to “the characterization of the wire intended for the EDM of matrices metal. The goal of this work is to bring metallographic explanations on the wire electrode used by the machine ROBOFIL 290P, mechanically characterized this wire as of knowing of advantage about the process of its manufacturing (wiredrawing, .) The methods of studies used are it micro Vickers pyramid hardness, the tensile test, optical microscopy and scan electronic microscopy SEM.

  4. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  5. Demonstrating the Effect of Particle Impact Dampers on the Random Vibration Response and Fatigue Life of Printed Wiring Assemblies

    Science.gov (United States)

    Knight, Brent; Montgomery, Randall; Geist, David; Hunt, Ron; LaVerde, Bruce; Towner, Robert

    2013-01-01

    In a recent experimental study, small Particle Impact Dampers (PID) were bonded directly to the surface of printed circuit board (PCB) or printed wiring assemblies (PWA), reducing the random vibration response and increasing the fatigue life. This study provides data verifying practicality of this approach. The measured peak strain and acceleration response of the fundamental out of plane bending mode was significantly attenuated by adding a PID device. Attenuation of this mode is most relevant to the fatigue life of a PWA because the local relative displacements between the board and the supported components, which ultimately cause fatigue failures of the electrical leads of the board-mounted components are dominated by this mode. Applying PID damping at the board-level of assembly provides mitigation with a very small mass impact, especially as compared to isolation at an avionics box or shelf level of assembly. When compared with other mitigation techniques at the PWA level (board thickness, stiffeners, constrained layer damping), a compact PID device has the additional advantage of not needing to be an integral part of the design. A PID can simply be bonded to heritage or commercial off the shelf (COTS) hardware to facilitate its use in environments beyond which it was originally qualified. Finite element analysis and test results show that the beneficial effect is not localized and that the attenuation is not due to the simple addition of mass. No significant, detrimental reduction in frequency was observed. Side-by-side life testing of damped and un-damped boards at two different thicknesses (0.070" and 0.090") has shown that the addition of a PID was much more significant to the fatigue life than increasing the thickness. High speed video, accelerometer, and strain measurements have been collected to correlate with analytical results.

  6. WE-E-18A-11: Fluoro-Tomographic Images From Projections of On-Board Imager (OBI) While Gantry Is Moving

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Hu, E; Yu, C; Lasio, G [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2014-06-15

    Purpose: A method to generate a series of fluoro-tomographic images (FTI) of the slice of interest (SOI) from the projection images of the On-board imager (OBI) while gantry is moving is developed and tested. Methods: Tomographic image via background subtraction, TIBS has been published by our group. TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). We extended the idea to 4D TIBS, which enables to generate from the projection of different gantry angles. A set of background images for different angles are prepared. A background image at a given gantry angle is subtracted from the projection image at the same angle to generate a TIBS image. Then the TIBS image is converted to a reference angle. The 4D TIBS is the set of TIBS that originated from gantry angles other than the reference angle. Projection images of lung patients for CBCT acquisition are used to test the 4D TIBS. Results: Fluoroscopic images of a coronal plane of lung patients are acquired from the CBCT projections at different gantry angles and times. Change of morphology of hilar vessels due to breathing and heart beating are visible in the coronal plane, which are generated from the set of the projection images at gantry angles other than antero-posterior. Breathing surrogate or sorting process is not needed. Unlike tomosynthesis, FTI from 4D TIBS maintains the independence of each of the projections thereby reveals temporal variations within the SOI. Conclusion: FTI, fluoroscopic imaging of a SOI with x-ray projections, directly generated from the x-ray projection images at different gantry angles is tested with a lung case and proven feasible. This technique can be used for on-line imaging of moving targets. NIH Grant R01CA133539.

  7. Core Support of the Board on Mathematical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-04-04

    This proposal summarizes activities conducted by the Board on Mathematical Sciences (BMS) during the period August 1, 1994 to July 31, 1995 and describes future plans of the Board for the period August 1, 1995 to July 31, 1998. We are requesting core support in the amount of $105,000 ($35,000 each year) from the Department of Energy for the additional three-year period. The BMS activities supported exclusively by core funding are the annual Department Chairs Colloquia, the National Science and Technology Symposia, specific reports, the initiation of all projects, continuous oversight of all activities, and partial core support of the Committee on Applied and Theoretical Statistics (CATS). Other activities of the Board include giving recommendations on research directions to federal agencies, and reports on education in the mathematical sciences, interaction of mathematical sciences with other areas, health of the mathematical sciences, and emerging research directions.

  8. Modelling aluminium wire bond reliability in high power OMP devices

    NARCIS (Netherlands)

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  9. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating ... beam size measurements to extract the phase space of the electron and positron ... the laser-wire (LW), instead of a conventional solid wire.

  10. In-situ experimental evidence on R-phase related deformation processes in activated NiTi wires

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Sedlák, Petr; Landa, Michal; Novák, Václav; Lukáš, Petr

    438-440, - (2006), s. 579-584 ISSN 0921-5107 R&D Projects: GA AV ČR IAA1048107; GA ČR GA202/04/2016 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10480505; CEZ:AV0Z20760514 Keywords : memory alloys * NiTi wires * ultrasonics * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. Towards a wire-mediated coupling of trapped ions

    Science.gov (United States)

    Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut

    2008-03-01

    Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.

  12. Mechanical characterisation of orthodontic superelastic Ni-Ti wires

    Energy Technology Data Exchange (ETDEWEB)

    Arrigoni, M.; Pietrabissa, R. [Politecnico di Milano, Milano (Italy). Lab. of Biological Structure Mechanics; Auricchio, F.; Petrini, L. [Politecnico di Milano, Milano (Italy). Lab. of Biological Structure Mechanics; Pavia Univ. (Italy). Dept. of Structural Mechanics; Cacciafesta, V. [Politecnico di Milano, Milano (Italy). Lab. of Biological Structure Mechanics; Pavia Univ. (Italy). Dept. of Orthodontia

    2001-11-01

    Nowadays, the orthodontic treatment is improving thanks to the introduction of Ni-Ti super-elastic alloy wires in the ordinary therapy. Indeed, laboratory tests performed in the last decade have shown that Ni-Ti superelastic wires are able to satisfy the ideal requirements for fixed arch-wire appliance: high flexibility, minimal distortion or plastic deformation, light constant force production over a wide range of displacements. On the other hand, many orthodontic companies produce Ni-Ti arch-wires, without giving detailed specifications on their superelastic characteristics. To improve the knowledge on real properties for these products, an experimental campaign on different commercial arch-wires has been started at the Laboratory of Biological Structure Mechanics (LABS) at the Politecnico di Milano (Italy). This work presents the first step of the research, concerning the comparison between the behaviour of four types of wires (two produced by ORMCO and two produced by 3M/Unitek) under monotonic and cyclic isothermal tensile tests. The results show significant differences between the products in terms of elastic modulus, stress values of the loading-unloading plateau, hysteresis amplitude, spring-back capacity, shape recovery capability, strain rate effect and fatigue behaviour. (orig.)

  13. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  14. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    Hedayati Dezfuli, F; Shahria Alam, M

    2013-01-01

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  15. Self-organization of mesoscopic silver wires by electrochemical deposition

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  16. Failure analysis of the fractured wires in sternal perichronal loops.

    Science.gov (United States)

    Chao, Jesús; Voces, Roberto; Peña, Carmen

    2011-10-01

    We report failure analysis of sternal wires in two cases in which a perichronal fixation technique was used to close the sternotomy. Various characteristics of the retrieved wires were compared to those of unused wires of the same grade and same manufacturer and with surgical wire specifications. In both cases, wire fracture was un-branched and transgranular and proceeded by a high cycle fatigue process, apparently in the absence of corrosion. However, stress anlysis indicates that the effective stress produced during strong coughing is lower than the yield strength. Our findings suggest that in order to reduce the risk for sternal dehiscence, the diameter of the wire used should be increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Board members’ contribution to strategy: The mediating role of board internal processes

    Directory of Open Access Journals (Sweden)

    Carmen Barroso-Castro

    2017-05-01

    Full Text Available This study aims to explore what directors do on the board, to what extent the processes occurring in the board allow the sharing and integrating of the existing knowledge, thus facilitating the board members’ contributions to strategy. We adopt the view that the internal board processes increase the impact of the cognitive resources on board performance. Using survey data from 200 large Spanish companies we demonstrate that directors’ level of knowledge of the firm and board job-related diversity positively influence the degree of the board's strategic involvement. Additionally, the internal processes that take place within the board – particularly Cognitive Conflict, the Critical and Independent Approach and the Comprehensive Discussion Process – influence the board's strategic involvement and play a partial mediating role on the aforementioned relationships. However, our results show no evidence for a positive relationship between Board Meeting Dynamics and the board's strategic involvement.

  18. Physical analysis for designing nested-wire arrays on Z-pinch implosion

    International Nuclear Information System (INIS)

    Yang Zhenhua; Liu Quan; Ding Ning; Ning Cheng

    2005-01-01

    Z-pinch experiments have demonstrated that the X-ray power increases 40% with a nested-wire array compared with that with a single-layered wire array. The design of the nested-wire array on Z accelerator is studied through the implosion dynamics and the growth of RT instabilities. The analysis shows that the nested-wire array does not produce more total X-ray radiation energy than the single-layered wire array, but it obviously increases the X-ray power. The radius of the outer array of the nested-wire array could be determined based on the radius of the optimized single-layered. The masses of the outer and inner arrays could be determined by the implosion time of the nested-wire array, which is roughly the same as that of the single-layered wire array. Some suggestions are put forward which may be helpful in the nested-wire array design for Z-pinch experiments. (authors)

  19. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  20. Problems associated with iridium-192 wire implants

    International Nuclear Information System (INIS)

    Arnott, S.J.; Law, J.; Ash, D.; Flynn, A.; Paine, C.H.; Durrant, K.R.; Barber, C.D.; Dixon-Brown, A.

    1985-01-01

    Three incidents are reported, from different radiotherapy centres, in which an implanted iridium-192 wire remained in the tissues of a patient after withdrawal of the plastic tubing in which it was contained. In each case the instrument used to cut the wire had probably formed a hook on the end of the wire which caused it to catch in the tissues. Detailed recommendations are made for avoiding such incidents in the future, the most important of which is that the patient should be effectively monitored after the supposed removal of all radioactive sources. (author)

  1. "Crows on the Wire": Intermediality in Applied Drama and Conflict Transformation--"Humanising" the Police in Northern Ireland

    Science.gov (United States)

    Jennings, Matt

    2016-01-01

    "Crows on the Wire" (COTW) is an intermedial project deploying applied theatre, educational drama and digital performance [Dixon, S. (2007). "Digital Performance: A History of New Media in Theatre, Dance, Performance Art and Installation." Cambridge, MA: MIT Press] to explore the recent history of the peace process in Northern…

  2. Design, construction and quality control of resistive-Micromegas anode boards for the ATLAS experiment

    Science.gov (United States)

    Kuger, F.; Iengo, P.

    2018-02-01

    For the upcoming upgrade of the forward muon stations of the ATLAS detector, 1280m2 of Micromegas chambers have to be constructed. The industrialization of anode board production is an essential precondition. Design and construction methods of these boards have been optimized towards mass production. In parallel quality control procedures have been developed and established. The first set of large size Micromegas anode boards has finally been produced in industries and demonstrates the feasibility of the project on full-scale.

  3. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  4. Four-atom period in the conductance of monatomic al wires

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2003-01-01

    We present first-principles calculations based on density functional theory for the conductance of monatomic Al wires between Al(111) electrodes. In contrast to the even-odd oscillations observed in other metallic wires, the conductance of the Al wires is found to oscillate with a period of four ...... atoms as the length of the wire is varied. Although local charge neutrality can account for the observed period, it leads to an incorrect phase. We explain the conductance behavior using a resonant transport model based on the electronic structure of the infinite wire....

  5. Inductor Design Comparison of Three-wire and Four-wire Three-phase Voltage Source Converters in Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    This paper studies the inductor design for three-wire and four-wire power factor correction converter (PFC). Designing the efficient inductor for this converter (regardless of connecting the midpoint to the ground) requires a comprehensive knowledge of the inductor current and voltage behavior....... This paper investigates how changing three-wire PFC to four-wire counterpart influences the inductor design in terms of size, losses, and overall efficiency of the converter. Therefore, the inductor current and voltage waveforms are analyzed and generalized in both cases for one switching cycle to build...... a foundation for comparison. Accordingly, the analyses are able to interpret the differences between both configurations and explain the core losses and the copper losses of inductors, especially those caused by the high frequency ac current ripple. Finally, two inductors are designed for a 5 kW PFC...

  6. An ad-hoc fretting wear tribotester design for thin steel wires

    Directory of Open Access Journals (Sweden)

    Llavori Iñigo

    2018-01-01

    Full Text Available Steel wire ropes experience fretting wear damage when the rope runs over a sheave promoting an oscillatory motion between the wires. Consequently, wear scars appear between the contacting wires leading to an increase of the stress field and the following rupture of the wires due to fatigue. That is why the understanding and prediction of the fretting wear phenomena of thin wires is fundamental in order to improve the performance of steel wire ropes. The present research deals with the design of an ad-hoc fretting wear test machine for thin wires. The test apparatus is designed for testing thin wires with a maximum diameter of 1.0 mm, at slip amplitudes ranging from 5 to 300 μm, crossing angle between 0-90°, and contacting force ranging from 0,5 to 5 N. The working principle of displacement amplitude and contacting force as well as the crossing angle between the wires are described. Preliminary studies for understanding the fretting wear characteristics are presented, analysing 0.45 mm diameter cold-drawn eutectoid carbon steel (0.8% C wires (tensile strength higher than 3000 MPa.

  7. Experimental study on manufacturing of grits-spiral- distribution electroplated wire saw

    Directory of Open Access Journals (Sweden)

    Yufei GAO

    2016-12-01

    Full Text Available In order to obtain high performance electroplating diamond wire saw, experimental studies are conducted for development of grits-spiral-distribution electroplated diamond wire saw using sand-suspend electroplating method. The influences of pre-plating cathode current density, grits electro-embedding cathode current density and time on composite deposite coating appearance and grits distribution of wire saw are analyzed, and the sawing experiment is carried out by using the trial wire saw. The results show that good bonding strength between the coating and the steel wire can be obtained when the adopted cathode current density is 5.0 A/dm2 at pre-plating stage; good coating and girts distribution can be obtained when the adopted cathode current density is 5.0 A/dm2 and the electroplating time is 7~8 min at grits electro-embedding stage. By winding insulation wire on the surface of steel wire and reasonably selecting technological parameters before pre-plating can make the diamond wire saw with grits-spiral-distribution on surface, and the new type of wire saw has a better crumbs-clearing effect in wire sawing process.

  8. Turning Schools Around: The National Board Certification Process as a School Improvement Strategy. Research Brief

    Science.gov (United States)

    Jaquith, Ann; Snyder, Jon

    2016-01-01

    Can the National Board certification process support school improvement where large proportions of students score below grade level on standardized tests? This SCOPE study examines a project that sought to seize and capitalize upon the learning opportunities embedded in the National Board certification process, particularly opportunities to learn…

  9. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  10. The wire optical test: a thorough analytical study in and out of caustic surface, and advantages of a dynamical adaptation

    Science.gov (United States)

    Alejandro Juárez-Reyes, Salvador; Sosa-Sánchez, Citlalli Teresa; Silva-Ortigoza, Gilberto; de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Ortega-Vidals, Paula

    2018-03-01

    Among the best known non-interferometric optical tests are the wire test, the Foucault test and Ronchi test with a low frequency grating. Since the wire test is the seed to understand the other ones, the aim of the present work is to do a thorough study of this test for a lens with symmetry of revolution and to do this study for any configuration of the object and detection planes where both planes could intersect: two, one or no branches of the caustic region (including the marginal and paraxial foci). To this end, we calculated the vectorial representation for the caustic region, and we found the analytical expression for the pattern; we report that the analytical pattern explicitly depends on the magnitude of a branch of the caustic. With the analytical pattern we computed a set of simulations of a dynamical adaptation of the optical wire test. From those simulations, we have done a thorough analysis of the topological structure of the pattern; so we explain how the multiple image formation process and the image collapse process take place for each configuration, in particular, when both the wire and the detection planes are placed inside the caustic region, which has not been studied before. For the first time, we remark that not only the intersections of the object and detection planes with the caustic are important in the change of pattern topology; but also the projection of the intersection between the caustic and the object plane mapped onto the detection plane; and the virtual projection of the intersection between the caustic and the detection plane mapped onto the object plane. We present that for the new configurations of the optical system, the wire image is curves of the Tschirnhausen’s cubic, the piriform and the deformed eight-curve types.

  11. A Laser-Wire System for the International Linear Collider

    International Nuclear Information System (INIS)

    Delerue, N.; Dixit, S.; Gannaway, F.; Howell, D.; Qurshi, M.; Blair, G.; Boogert, S.; Boorman, G.; Driouichi, C.; Deacon, L.; Aryshev, A.; Karataev, P.; Terunuma, N.; Urakawa, J.; Brachmann, A.; Frisch, J.; Ross, M.

    2009-01-01

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires.

  12. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires.

  13. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  14. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  15. Mechanical optimisation of a high-precision fast wire scanner at CERN

    CERN Document Server

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  16. Structural evolution and drawability in laser dieless drawing of fine nickel wires

    International Nuclear Information System (INIS)

    Li Yonggang; Quick, Nathaniel R.; Kar, Aravinda

    2003-01-01

    Drawability of Nickel 200 wires in laser dieless drawing was investigated. Influencing factors under consideration include the laser power, the heat-treatment state (as-drawn or annealed), and the initial wire diameter. Microstructural evolutions in laser dieless drawing were studied by scanning electron microscopy (SEM). The wires exhibit optimal drawability at an intermediate laser power range corresponding to the wire temperature in the range of 1000-1300 K. The as-drawn precursor wire has better drawability than that of the annealed wire. The drawability decreases as the precursor wire diameter deceases. Microcrystalline structures were found in nickel 200 wires after being laser-drawn from as-drawn precursor wires. These experimental observations are explained using the concepts of dynamic recovery and recrystallization

  17. Thermal hydraulic evaluation of advanced wire-wrapped assemblies

    International Nuclear Information System (INIS)

    Wei, J.P.

    1975-01-01

    The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs

  18. Torsion-induced magnetoimpedance in nanocrystalline Fe-based wires

    International Nuclear Information System (INIS)

    Santos, J.D.; Olivera, J.; Alvarez, P.; Sanchez, T.; Perez, M.J.; Sanchez, M.L.; Gorria, P.; Hernando, B.

    2007-01-01

    The magnetic field influence on the real and imaginary parts of axial-diagonal (ζ zz ) and off-diagonal (ζ φz ) components of the surface magnetoimpedance (MI) tensor has been studied in amorphous and nanocrystalline Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 wires. Twisted and untwisted wires were annealed at a temperature near to that of primary crystallization. The MI response has been measured at 1MHz and 5mA rms drive current in all the samples. Even though the higher values for both components of the MI tensor are achieved for the untwisted annealed wire, the most interesting features are observed in the torsion annealed wire

  19. Graphene wire medium: Homogenization and application

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, Dmitry N.; Lavrinenko, Andrei

    2012-01-01

    In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example of the g......In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example...... of the graphene wire medium application we demonstrate a reconfigurable hyperlens for the terahertz subwavelength imaging capable of resolving two sources with separation λ0/5 in the far-field....

  20. 47 CFR 76.802 - Disposition of cable home wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring. (a)(1) Upon voluntary termination of cable service by a subscriber in a single unit installation, a...

  1. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    International Nuclear Information System (INIS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-01-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (I c ) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum I c was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO)

  2. Status report : Terra Nova project environmental assessment panel : recommendations

    International Nuclear Information System (INIS)

    2002-01-01

    An application to the Canada-Newfoundland Offshore Petroleum Board (CNOPB) was submitted by Petro-Canada on August 5, 1996, notifying of its intent to develop the petroleum resources located at the Terra Nova field. The provincial and federal governments jointly appointed the Terra Nova Project Environmental Panel, and the board of the CNOPB referred to it the application documents for review. The environmental effects, considerations of human safety incorporated into the design and operation of the Project, the general approach to the development and exploitation of the petroleum resources, and the employment and industrial benefits expected to be derived from the Project were the issues under review by the Panel. On April 22, 1997, public hearings into the review began, and the final report was submitted to governments and the Board in August 1997. The report included 75 recommendations. The Project was approved in Decision 97.02 in December 1997, and the Board dealt with each of the recommendations. The respective positions of the Governments of Canada and Newfoundland and Labrador with regard to the recommendations that fell outside the jurisdiction of the Board were made public. A status report on every one of the 75 recommendations is provided in the present report. The recommendation is repeated, the verbatim response taken from Decision 97.02 included, followed by the status of the response. The production operations phase of the Project accounts for approximately 65 per cent of the recommendations. January 20, 2002 was the date the Project was begun

  3. MANAGEMENT BOARD OF 30 OCTOBER 06 (MB98)

    CERN Multimedia

    Progress on CMS Organization A detailed report will be given in November. P. McBride from Fermilab is nominated to become Deputy Computing Coordinator and the Management Board endorsed the nomination. The nomination of the Physics Coordinator is imminent. The Board was informed of changes in the US CMS Management; J. Butler will replace D. Green as the US Programme Manager, at a date still to be determined, and L. Bauerdick will become head of the CMS centre at Fermilab. G. Tonelli together with A. Petrilli will take over the responsibility for ensuring that the Memoranda of Agreement for running CMS are produced and G. Tonelli will also take over the oversight of the Forward Region. Various issues have not yet been addressed including communications and outreach, the interactions between Project Managers and CMS central Management, the composition of the Management Board and a Commissioning Plan for start up. The milestones must be revamped before the December LHCC meeting. An issue which has arisen...

  4. Prediction of grain deformation in drawn copper wire

    OpenAIRE

    Chang Chao-Cheng; Wang Zi-Wei; Huang Chien-Kuo; Wu Hsu-Fu

    2015-01-01

    Most copper wire is produced using a drawing process. The crystallographic texture of copper wire, which is strongly associated with grain deformation, can have a profound effect on the formability and mechanical and electrical properties. Thus, the ability to predict grain deformation in drawn copper wire could help to elucidate the evolution of microstructure, which could be highly valuable in product design. This study developed a novel method for predicting grain deformation in drawn copp...

  5. Water-cooled grid ''wires'' for direct converters

    International Nuclear Information System (INIS)

    Schwer, C.J.

    1976-01-01

    A study was conducted to determine the feasibility of internal convective cooling of grid ''wires'' for direct converters. Detailed computer calculations reveal that the use of small diameter water cooled tubes as grid ''wires'' is feasible for a considerable range of lengths and thermal fluxes

  6. 78 FR 66384 - Membership of the Merit Systems Protection Board's Performance Review Board

    Science.gov (United States)

    2013-11-05

    ... MERIT SYSTEMS PROTECTION BOARD Membership of the Merit Systems Protection Board's Performance Review Board AGENCY: Merit Systems Protection Board. ACTION: Notice. SUMMARY: Notice is hereby given of the members of the Merit Systems Protection Board's Performance Review Board. DATES: November 5, 2013...

  7. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  8. 29 CFR 1926.405 - Wiring methods, components, and equipment for general use.

    Science.gov (United States)

    2010-07-01

    ... Electrical Installation Safety Requirements § 1926.405 Wiring methods, components, and equipment for general... lighting wiring methods which may be of a class less than would be required for a permanent installation... subpart for permanent wiring shall apply to temporary wiring installations. Temporary wiring shall be...

  9. Institutional review boards' attitudes towards remuneration in paediatric research

    DEFF Research Database (Denmark)

    Flege, Marius M; Thomsen, Simon F

    2017-01-01

    Remuneration in paediatric research poses an ethical dilemma. Too large a sum might cause parents to enrol their children in research projects with no benefit for the child, whereas too modest a sum might hamper recruitment. The institutional review boards have the responsibility to only approve ...

  10. LabVIEW Interface for PCI-SpaceWire Interface Card

    Science.gov (United States)

    Lux, James; Loya, Frank; Bachmann, Alex

    2005-01-01

    This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.

  11. Tensile stress dependence of the magnetostatic interaction between Fe-rich wires

    International Nuclear Information System (INIS)

    Gawronski, P.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; KuIakowski, K.

    2005-01-01

    We study the influence of the applied tensile stress on the magnetostatic interaction between two amorphous Fe-rich wires. The hysteresis loop is measured for: (i) conventional wires produced by in-rotation-water method, with diameter of 125μm (ii) cold-drawn wires with diameter of 50μm. The stress dependence of the interaction field is evaluated from the shape of the hysteresis loops, which show characteristic two-step behaviour. These steps mark the values of the switching field of the wires. For the conventional wires the tensile stress dependence of the interaction field can be explained as a result of the tensile stress dependence of the magnetization. For the cold-drawn wires, the interaction field shows a maximum with the applied stress. This behaviour is interpreted as a consequence of a local variation of the domain structure at the wire ends. It modifies the stray field, and-as a consequence-the switching field of the neighbouring wire

  12. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  13. Submerged-arc wire electrodes with nickel-plated surfaces

    International Nuclear Information System (INIS)

    Hagen, H. vom.

    1976-01-01

    The article reports on the development of SANWELD welding rods at GARHYTTAN's which is a wire free of impurities, copper, and hydrogen with a nickel surface. It is producted according to the SANBOND process. The wire has an optimum of mechanical quality grades depending on the powder used for welding, especially an improvement of notch impact strength. The elongation, especially the long-time values, are improved, hydrogen cracks are excluded depending on the correct powder or protective gas, and the low-temparature values are improved. An attendant phenomenon, which is not unimportant, is that the wires are practically corrosion-resistant in the non-welded state. The wire is suitable for submerged-arc welding in steam boilers and pressure vessels. (IHoe) [de

  14. Transmission channels through Na and Al atom wire

    DEFF Research Database (Denmark)

    Kobayashi, N.; Brandbyge, Mads; Tsukada, M.

    1999-01-01

    First-principles calculations of the transmission channels of single-atom-width Na and Al atom wires bridged between metallic jellium electrodes are presented. For the Na wire, a single channel contributes to the conduction with an almost full quantization value, 2e(2)/h. The conductance...... is insensitive to the geometrical change since the Fermi energy is located above the onset energy of the channel showing the quantization of conductance. On the other hand, for the Al wire. three channels contribute to the conduction. The Fermi energy is placed just at the onset of the second and the third...... channels, and the channel transmissions are very sensitive to the geometrical changes of the wires. (C) 1999 Elsevier Science B.V. All rights reserved....

  15. Researching on Control Device of Prestressing Wire Reinforcement

    Science.gov (United States)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  16. Cold atoms in microscopic traps: from wires to chips

    International Nuclear Information System (INIS)

    Cassettari, D.

    2000-05-01

    This thesis reports on the experimental demonstration of magnetic guides, traps and beam splitters for neutral atoms using current carrying wires. A straight wire allows to create two basic guide configurations: the magnetic field generated by the wire alone produces a guide where atoms in a strong field seeking state perform orbits around the wire (Kepler guide); by adding an external magnetic field, atoms in a weak field seeking state are guided at the location where the external field and the field generated by the wire cancel out (side guide). Furthermore, bending the wire in various shapes allows to modify the side guide potential and hence to create a large variety of three dimensional traps. A relevant property of these potentials is that higher trapping gradients are obtained by decreasing the current flowing in the wires. As the trap is compressed, it also moves closer to the wire. This feature has allowed us to create microscopic potentials by using thin wires designed on a surface (atom chip) by means of high resolution microfabrication techniques. Wires mounted on a surface have the advantage of being more robust and able to sustain larger currents due to their thermal coupling with the substrate. In our experiment we have developed methods to load these traps and guides with laser cooled atoms. Our first investigations have been performed with free standing wires which we have used to study the Kepler guide, the side guide and a three dimensional Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled

  17. Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board

    International Nuclear Information System (INIS)

    Chiu, K.-C.; Chen, C.-S.

    2007-01-01

    A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper

  18. Forming the face of green products : Mood boards and early consumer involvement in ship interior design

    NARCIS (Netherlands)

    Murto, P.; Ahola, M.; Person, F.E.O.K.

    2013-01-01

    In this paper, we study mood boards and the process by which they can be used to understand consumer inferences about environmental sustainability in the early stages of green product development. As a component of a research project on sustainable ship design, we created mood boards showcasing

  19. Hospital board effectiveness: relationships between board training and hospital financial viability.

    Science.gov (United States)

    Molinari, C; Morlock, L; Alexander, J; Lyles, C A

    1992-01-01

    This study examined whether hospital governing boards that invest in board education and training are more informed and effective decision-making bodies. Measures of hospital financial viability (i.e., selected financial ratios and outcomes) are used as indicators of hospital board effectiveness. Board participation in educational programs was significantly associated with improved profitability, liquidity, and occupancy levels, suggesting that investment in the education of directors is likely to enhance hospital viability and thus increase board effectiveness.

  20. 47 CFR 76.806 - Pre-termination access to cable home wiring.

    Science.gov (United States)

    2010-10-01

    ... the installation of their own cable home wiring; or connect additional home wiring, splitters or other... and other equipment used in the installation of home wiring) meets reasonable technical specifications... 47 Telecommunication 4 2010-10-01 2010-10-01 false Pre-termination access to cable home wiring. 76...

  1. Transparency in nanophotonic quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2009-03-28

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  2. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  3. Cutting techniques of reinforced concrete by wire sawing

    International Nuclear Information System (INIS)

    Miyao, Hidehiko; Komatsu, Junji; Kamiyama, Yoshinori; Yasoshima, Harunori; Kukino, Yoshinori; Yamamoto, Yuichi; Miyazaki, Takashi; Aritomi, Masanori

    1995-01-01

    The Research Association for Nuclear Facility Decommissioning (RANDEC) has been carrying out demonstration tests to improve current technologies for decommissioning. The conceptual dismantling system has been studied and basic cutting tests have been carried out by wire sawing. In terms of waste management and dismantling efficiency, the diamond wire saw cutting method has advantages for cutting radioactive concrete in large blocks. A conceptual design for a dismantling system for various concrete shieldings of nuclear facilities has been developed and diamond wire sawing has been designed and manufactured. The basic cutting tests by wire sawing have been carried out to obtain quantitative data, in addition to the conceptual design of a dismantling system for biological shielding of various power reactors (PWR, BWR, GCR) and cell walls of nuclear fuel cycle facilities. On the basis of the conceptual dismantling system and quantitative cutting performance data, wire sawing equipment has been manufactured for use in nuclear facilities. This study was performed on consignment for the Science and Technology Agency of Japan. (author)

  4. Longitudinal magnetic bistability of electroplated wires

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Garcia-Miquel, H.; Vazquez, M.; Svalov, A.V.; Vas'kovskiy, V.O.

    2002-01-01

    Fe 20 Ni 74 Co 6 and Fe 20 Ni 64 Co 16 1 μm thick magnetic tubes electroplated onto Cu 98 Be 2 conductive wire have been investigated in as-deposited state, after heat treatment under longitudinal magnetic field for 1 h at 330 deg. C, and after rf-sputtering deposition of the additional 2 μm Fe 19 Ni 81 layer. Heat treatments and an additional layer deposition modify the shape of hysteresis loops. Magnetically bistable behaviour, observed after the field annealing at a temperature of 330 deg. C, is studied as a function of the length of the samples. This is the first report by our knowledge on the bistable behaviour of the electroplated wires. The bistability of these wires is promising for applications such as tagging or pulse generator applications

  5. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  6. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined

  7. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  8. Evaluation of Effects of Sterilization on Mechanical Properties of Orthodontic Wires

    Directory of Open Access Journals (Sweden)

    Sridhar Kannan

    2012-01-01

    Results: Dry heat sterilization, autoclave, 2% glutaraldehyde solution had no effect on ultimate tensile strength, 0.1% yield strength, modulus of elasticity and percentage elongation of stainless steel and elgiloy wires. Tensile strength and yield strength of Nitinol and b-titanium wires together with percentage elongation of b-titanium wires significantly increased following dry heat sterilization and autoclave. No detrimental effects on properties of wires were observed. These sterilization procedures could be safely recommended for sterilization of orthodontic wires.

  9. Method for wrapping a wire round a nuclear fuel rod

    International Nuclear Information System (INIS)

    Nakayasu, Fumio.

    1974-01-01

    Object: To provide a method for winding a wire round a nuclear fuel rod with accurate pitches without imparting any local strain or torsion to the wire. Structure: A wire is fixed on one end of the fuel rod, and the other end of the wire is secured to a universal joint leaving a winding allowance to the fuel rod. The wire is linearly stretched by a predetermined tension through the universal joint so as to provide an angle of development theta corresponding to the desired winding pitch, and then, the fuel rod may be rotated so that the end of the wire on the side of the universal joint is moved towards the fuel rod so as to render the angle of development theta constant in proportion to said rotation of the fuel rod. (Kamimura, M.)

  10. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  11. Dynamical analysis of surface-insulated planar wire array Z-pinches

    Science.gov (United States)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  12. Electron transport in quantum wires: possible current instability mechanism

    International Nuclear Information System (INIS)

    Sablikov, V.A.

    2001-01-01

    The electrons nonlinear and dynamic transition in quantum wires connecting the electron reservoirs, are studies with an account of the Coulomb interaction distribution of electron density between the reservoirs and the wire. It is established that there exist two processes, leading to electrical instability in such structure. One of them is expressed in form of multistability of the charge accumulated in the wire, and negative differential conductivity. The other one is connected with origination of negative dynamic conductivity in the narrow frequency range near the resonance frequency of the charge waves on the wire length [ru

  13. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  14. Optimization of arc-start performance by wire-feeding control for GMA welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jong Gu; Ryu, Gyeong Su; Rhee, Se Hun [Hanyang University, Seoul (Korea, Republic of); Kim, Dong Cheol; Kang, Mun Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Park, Young Whan [Pukyong National University, Busan (Korea, Republic of)

    2013-02-15

    The wire feeding system for gas metal arc welding usually consists of a wire feeder and a torch. In many industries, the distance between the wire feeder and the torch is generally 3 m to 5 m. In a conventional wire feeder, a direct current (DC) motor is used for wire feeding. However, a significant problem with this system is the impossibility of feedback control because of inner or outer impedance. In this paper, a digital wire feeder was developed by using a DC encoder motor and a push-pull torch. An optimized wire-feeding system was also developed by experiment. The welding process was observed using a high-speed camera. The resulting wire-feeding system exhibits low spatter generation and arc stability.

  15. Single Wire Detector Performance Over One Year of Operation

    CERN Document Server

    Hervas Aguilar, David Alberto

    2014-01-01

    Abstract When ionizing radiation passes through gas chambers in single wire detectors gas molecules separate into ions and electrons. By applying a strong localized electric field near the single wire an avalanche of electrons is created and it can be collected. The current produced in the wire is then proportional to the energy of the particle detected. Nevertheless, many factors can contribute to detector aging effects which are visible in a loss of gain caused by deposition of contaminants on the collecting wire. This study consists on novel data analysis techniques used to process large amounts of data produced by two simultaneously running single wire detectors. Aging effects are analyzed while environmental fluctuations are corrected for. A series of scripts carry out data filtering, data matching, corrections, and finally trend plotting by using ROOT’s extensive libraries developed at CERN.

  16. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    Science.gov (United States)

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  17. Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    International Nuclear Information System (INIS)

    Malagoli, A; Lee, P J; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C; Ghosh, A K; Scheuerlein, C; Di Michiel, M

    2013-01-01

    It is well known that longer Bi-2212 conductors have significantly lower critical current density (J c ) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5–240 cm lengths of state-of-the-art, commercial Ag alloy sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of J c away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers J c , often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full J c of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled. (paper)

  18. Applying CASE Tools for On-Board Software Development

    Science.gov (United States)

    Brammer, U.; Hönle, A.

    For many space projects the software development is facing great pressure with respect to quality, costs and schedule. One way to cope with these challenges is the application of CASE tools for automatic generation of code and documentation. This paper describes two CASE tools: Rhapsody (I-Logix) featuring UML and ISG (BSSE) that provides modeling of finite state machines. Both tools have been used at Kayser-Threde in different space projects for the development of on-board software. The tools are discussed with regard to the full software development cycle.

  19. Effectiveness of a large mimic panel in an existing nuclear power plant central control board

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Satoh, Hiroyuki; Sasajima, Katsuhiro; Kawano, Ryutaro; Shibuya Shinya

    1999-01-01

    We conducted the analysis of the nuclear power plant (NPP) operators' behaviors under emergency conditions by using training simulators as a joint research project by Japanese BWR groups for twelve years. In the phase-IV of this project we executed two kinds of experiments to evaluate the effectiveness of the interfaces. One was for evaluations of the interfaces such as CRTs with touch screen, a large mimic panel, and a hierarchical annunciator system introduced in the newly developed ABWR type central control board. The other was that we analyzed the operators' behaviors in emergency conditions by using the first generation BWR type central control board which was added new interfaces such as a large display screen and demarcation on the board to help operators to understand the plant. The demarcation is one of the visual interface improvements and its technique is that a line enclosing several components causes them to be perceived as a group.The result showed that both the large display panel Introduced in ABWR central control board and the large display screen in the existing BWR type central control board improved the performance of the NPP operators in the experiments. It was expected that introduction of the large mimic panel into the existing BWR type central control boards would improve operators' performance. However, in the case of actual installation of the large display board into the existing central control boards, there are spatial and hardware constraints. Therefore the size of lamps, lines connecting from symbols of the pumps or valves to the others' will have to be modified under these constraints. It is important to evaluate the displayed information on the large display board before actual installation. We made experiments to solve these problems by using TEPCO's research simulator which is added a large mimic panel. (author)

  20. Atom chips in the real world: the effects of wire corrugation

    OpenAIRE

    Schumm , Thorsten; Estève , Jérôme; Aussibal , Christine; Figl , Cristina; Trebbia , Jean-Baptiste; Nguyen , Hai; Mailly , Dominique; Bouchoule , Isabelle; Westbrook , Christoph I; Aspect , Alain

    2005-01-01

    International audience; We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps u...

  1. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  2. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  3. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  4. Assessing the MR compatibility of dental retainer wires at 7 Tesla.

    Science.gov (United States)

    Wezel, Joep; Kooij, Bert Jan; Webb, Andrew G

    2014-10-01

    To determine the MR compatibility of common dental retainer wires at 7 Tesla in terms of potential RF heating and magnetic susceptibility effects. Electromagnetic simulations and experimental results were compared for dental retainer wires placed in tissue-mimicking phantoms. Simulations were then performed for a human model with wire in place. Finally, image quality was assessed for different scanning protocols and wires. Simulations and experimental data in phantoms agreed well, with the length of the wire correlating to maximum heating in phantoms being approximately 47 mm. Even in this case, no substantial heating occurs when scanning within the specific absorption rate (SAR) guidelines for the head. Image distortions from the most ferromagnetic dental wire were not significant for any brain region. Dental retainer wires appear to be MR compatible at 7 Tesla. Copyright © 2013 Wiley Periodicals, Inc.

  5. The effects of sterilization on the tensile strength of orthodontic wires.

    Science.gov (United States)

    Staggers, J A; Margeson, D

    1993-01-01

    The purpose of this study was to evaluate the effect of sterilization on the tensile strength of 0.016" beta-titanium, nickel titanium and stainless steel wires. Three common methods of sterilization--autoclaving, dry heat and ethylene oxide--were evaluated in three test trials involving zero, one and five sterilization cycles. For each of the test trials, five pieces each of 0.016" TMA, 0.016" Sentalloy and 0.016" Tru-chrome stainless steel wires were sterilized using a standard autoclave. Five other pieces of each of the same wires were sterilized in a dryclave, while an additional five pieces of each of the three wire types were sterilized using ethylene oxide. The ultimate tensile strengths of the wires were then determined using an Instron Universal Testing Machine. The data were compared for statistical differences using analysis of variance. The results showed that dry heat sterilization significantly increased the tensile strength of TMA wires after one cycle, but not after five cycles. Autoclaving and ethylene oxide sterilization did not significantly alter the tensile strength of TMA wires. Dry heat and autoclave sterilization also significantly increased the tensile strength of Sentalloy wires, but the mean strength after five sterilization cycles was not significantly different than after one cycle. Ethylene oxide sterilization of Sentalloy wires did not significantly alter the tensile strengths of that wire. There were no significant differences in the tensile strengths of the stainless steel wires following zero, one or five cycles for any of the sterilization methods.

  6. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft fractures in children: A treatment concept.

    Science.gov (United States)

    Sahu, Ramji Lal

    2013-09-01

    Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be treated surgically. In the present study, Kirschner wires (K-wire) were used to achieve a closed intramedullary fixation of humeral shaft fractures. The objective of this study was to evaluate the efficacy of intramedullary K-wires for the treatment of humeral shaft fracture in children. This prospective study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from June 2005 to June 2010. Sixty-eight children with a mean age of 7.7 years (range, 2-14 years) were recruited from Emergency and out patient department having closed fracture of humerus shaft. All patients were operated under general anaesthesia. All patients were followed for 12 months. Out of 68 patients, 64 patients underwent union in 42-70 days with a mean of 56 days. Complications found in four patients who had insignificant delayed union which were united next 3 weeks. Intramedullary K-wires were removed after an average of 5 months without any complications. The results were excellent in 94.11% and good in 5% children. This technique is simple, quick to perform, safe and reliable and avoids prolonged hospitalization with good results and is economical.

  7. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  8. Initial arch wires for alignment of crooked teeth with fixed orthodontic braces.

    Science.gov (United States)

    Wang, Yan; Jian, Fan; Lai, Wenli; Zhao, Zhihe; Yang, Zhi; Liao, Zhengyu; Shi, Zongdao; Wu, Taixiang; Millett, Declan T; McIntyre, Grant T; Hickman, Joy

    2010-04-14

    The initial arch wire is the first arch wire to be inserted into the fixed appliance at the beginning of orthodontic treatment and is used mainly for correcting crowding and rotations of teeth. With a number of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause the least amount of root resorption and pain during the initial aligning stage of treatment. To identify and assess the evidence for the effects of initial arch wires for alignment of teeth with fixed orthodontic braces in relation to alignment speed, root resorption and pain intensity. We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (30th November 2009), CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to 30th November 2009) and EMBASE (1980 to 30th November 2009). Reference lists of articles were also searched. There was no restriction with regard to publication status or language of publication. We contacted all authors of included studies to identify additional studies. Randomised controlled trials (RCTs) of initial arch wires to align crooked teeth with fixed orthodontic braces were selected. Only studies involving patients with upper and/or lower full arch fixed orthodontic appliances were included. Two review authors were responsible for study selection, validity assessment and data extraction. All disagreements were resolved by discussion amongst the review team. Corresponding authors of included studies were contacted to obtain missing information. Seven RCTs, with 517 participants, provided data for this review. Among them, five trials investigated the speed of initial tooth alignment comparing: 0.016 inch ion-implanted A-NiTi wire versus 0.016 inch A-NiTi versus 0.0175 multistrand stainless steel wire; 0.016x0.022 inch medium force active M-NiTi wire versus 0.016x0.022 inch graded force active M-NiTi wire versus 0.0155 inch multistrand

  9. Luttinger liquid behavior of weakly disordered quantum wires

    International Nuclear Information System (INIS)

    Palevski, A.; Levy, E.; Karpovski, M.; Tsukernik, A.; Dwir, B.; Kapon, E.

    2005-01-01

    Full Text:The talk will be devoted to the electronic transport in quantum nano wires. The temperature dependence of the conductance in long V-groove quantum wires fabricated in GaAs/AlGaAs heterostructures is consistent with recent theories given within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our quantum wires, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which exceeds the range of validity of a perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g

  10. Institutional review board challenges related to community-based participatory research on human exposure to environmental toxins: A case study

    Directory of Open Access Journals (Sweden)

    Rudel Ruthann A

    2010-07-01

    Full Text Available Abstract Background We report on the challenges of obtaining Institutional Review Board (IRB coverage for a community-based participatory research (CBPR environmental justice project, which involved reporting biomonitoring and household exposure results to participants, and included lay participation in research. Methods We draw on our experiences guiding a multi-partner CBPR project through university and state Institutional Review Board reviews, and other CBPR colleagues' written accounts and conference presentations and discussions. We also interviewed academics involved in CBPR to learn of their challenges with Institutional Review Boards. Results We found that Institutional Review Boards are generally unfamiliar with CBPR, reluctant to oversee community partners, and resistant to ongoing researcher-participant interaction. Institutional Review Boards sometimes unintentionally violate the very principles of beneficence and justice which they are supposed to uphold. For example, some Institutional Review Boards refuse to allow report-back of individual data to participants, which contradicts the CBPR principles that guide a growing number of projects. This causes significant delays and may divert research and dissemination efforts. Our extensive education of our university Institutional Review Board convinced them to provide human subjects protection coverage for two community-based organizations in our partnership. Conclusions IRBs and funders should develop clear, routine review guidelines that respect the unique qualities of CBPR, while researchers and community partners can educate IRB staff and board members about the objectives, ethical frameworks, and research methods of CBPR. These strategies can better protect research participants from the harm of unnecessary delays and exclusion from the research process, while facilitating the ethical communication of study results to participants and communities.

  11. Contextual influences on school effectiveness : The role of school boards

    NARCIS (Netherlands)

    Hofman, RH

    1995-01-01

    The purpose of this research project is to investigate if characteristics of school boards and their administrative control do explain variance among schools in pupil achievement in the cognitive domain. A combination of findings of research on school effectiveness and organizational effectiveness,

  12. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  13. Comparing Thermal Stability of NbTi and Nb$_3$Sn Wires

    CERN Document Server

    Breschi, M; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb$_{3}$Sn wires in pool boiling Helium I. A comparison of the quench behavior of two typical NbTi and Nb$_{3}$Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb$_{3}$Sn wires are reported and analyzed. It is shown that the Nb$_{3}$Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operation current and pulse duration and magnetic field. It is shown that the Nb$_{3}$Sn wire exhibits a ‘kink’ of the quench energy ...

  14. Behavior of NiTiNb SMA wires under recovery stress or prestressing.

    Science.gov (United States)

    Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong

    2012-01-05

    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.

  15. Electrical short circuit and current overload tests on aircraft wiring

    Science.gov (United States)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  16. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  17. Reasons for decision in the matter of Enbridge Pipelines Inc. Line 4 Extension Project : facilities[Application dated 28 June 2007 for the Line 4 Extension Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    In June 2007, Enbridge Pipelines Inc. applied for approval to extend Line 4 of its Mainline pipeline upstream from Hardisty to Edmonton, Alberta. The project would relieve a potential bottleneck and would also add an additional line across this segment to increase system security and flexibility. The average annual capacity of Line 4 would be 140,000 cubic metres per day. The Enbridge Mainline from Edmonton to Hardisty currently includes 3 oil pipelines, while the Enbridge Mainline downstream of Hardisty includes 4 oil pipelines. This document presented the views of the Board regarding the construction and operation of the project facilities; public and Aboriginal consultation; environmental and socio-economic matters; land matters; tolls and tariffs; and, supply, markets, financing and economics. The Board noted that the benefits of this project outweigh the burdens associated with it. The project required an environmental assessment under the Canadian Environmental Assessment Act which found that it is not likely to cause significant adverse environmental effects. In its approval of the project, the Board attached 15 conditions, including a requirement for Enbridge to file an updated Environmental Protection Plan for the Board's approval. The Board also approved Enbridge's application for its tolling method and to reactivate 3 sections of pre-existing pipeline. 3 tabs., 3 figs., 3 appendices.

  18. Areva - Press release from the Supervisory Board

    International Nuclear Information System (INIS)

    Marie, Patricia; Briand, Pauline; Floquet-Daubigeon, Fleur; Michaut, Maxime; Scorbiac, Marie de; Repaire, Philippine du

    2012-01-01

    . Moreover, it asked the Executive Board to finalize in the shortest possible time frame the internal procedure applicable to the review and validation of the various projects and decisions creating a commitment, and the procedures for monitoring their execution. In addition, it noted that the deliberations of the Executive Board, like those of the bodies or authorities having received delegation of authority from it, must be systematically documented in writing, and asked the Executive Board to ensure that this rule is thoroughly applied. It asked the Executive Board to install a resources and reserves committee under its direct authority, responsible for validating each year the resource and reserve estimates appearing in the Reference Document, based on the work of the Reserves Department. This committee, which will involve one or more recognized external experts, shall specify the methods and schedule for updating resources and reserves. Its work shall be reported on an annual basis to the Audit Committee. Reference to the installation and operation of this committee shall appear in the Reference Document published by AREVA. Lastly, it asked the Executive Board to study the transformation of the legal form of the company into a limited liability company with a board of directors. A summary of the ad hoc committee's report to the Supervisory Board is given in appendix

  19. Heat resistant wire and cable and heat shrinkable tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Keiji [Sumitomo Electric Industries Ltd. (Japan)

    1994-12-31

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR`s, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of E{beta} radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 {approx} 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented.

  20. Faraday and Kerr Effects Diagnostics for Underwater Exploding Wires

    Science.gov (United States)

    Sarkisov, G. S.; Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2012-10-01

    Two-channel laser polarimeter was used to measure magnetic and electric fields in vicinity of underwater exploding wire. Nd:YAG Q-switch laser with 532nm wavelength, 100mJ energy and 5ns pulse width was used for probing. Single wire, parallel wires and X and V- shaped wires was used in experiments. Electric and magnetic field induced birefringes in the water results in changing of polarization stage of probing beam after propagation through this anisotropic medium. Magnetic field results in circular anisotropy of the water, while electric field creates linear anisotropy. Magnetic field results in rotation of polarization plan of linear-polarized probing beam. Electric field effect is more complicated- polarization plan of the laser beam subjected to pulsation and changing of ellipticity. Effect of electric field depends on initial probing geometry- angle between electrical field vector E and polarization plane of probing wave. In our exploding wire experiments we found influence of both Faraday and Kerr effects. It was demonstrated existence of Kerr effect inside bubbles at high voltage electrode. Effect of magnetic fields interaction for multi-wire loads was observed.

  1. Heat resistant wire and cable and heat shrinkable tubes

    International Nuclear Information System (INIS)

    Keiji Ueno

    1994-01-01

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR's, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of Eβ radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 ∼ 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented

  2. Development of a new type of three-component composite superconducting wire

    International Nuclear Information System (INIS)

    Onishi, T.

    1977-01-01

    A new type of multifilamentary composite superconducting wire is described. This wire consists of seven filaments, each of which is a fine tubular Nb 50% Ti wire, filled with high purity aluminium and embedded in a cupronickel matrix. The results of experiments carried out on the stability and ac losses of this wire are presented. (author)

  3. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  4. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  5. Wire compensation: Performance, SPS MDs, pulsed system

    CERN Document Server

    Dorda, U

    2008-01-01

    A wire compensation (BBLR) scheme has been proposed in order to improve the long range beam-beam performance of the nominal LHC and its phase 1 and phase 2 upgrades[1]. In this paper we present experimental experience of the CERN SPS wires (BBLR) and report on progress with the RF BBLR.

  6. Test plan for Enraf Series 854 level gauge wire testing

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1994-01-01

    An Enraf Series 854 level gauge was installed on tank 241-S-106 during the first week of June 1994. On August 11, 1994, the gauge's stainless steel measuring wire broke. After examination and laboratory analysis, it was determined that the wire broke due to severe chloride ion corrosion. It is suspected that the chloride ion contamination came from the radiation induced breakdown of the polyvinyl chloride (PVC) riser liner. It is well documented that the breakdown of PVC due to radiation produces chloride containing compounds. This document provides a qualification test plan to remove and have analyzed the wire in all of the Enraf Series 854 that have been installed to date. These tests will confirm the presence or absence of chloride ions in the PVC liners and/or on the Enraf measuring wires installed in the tanks. This test will involve removing the 316 stainless steel wire drums from all of the existing Enraf Series 854 level gauges that have been installed. New 316 stainless steel wire drums shall be installed into the gauges and the gauges will be placed back into service. The wire that is removed from the gauges shall be sent to the 222-S Lab or the Pacific Northwest Laboratory (PNL) for analysis. Additional wire replacements will occur at intervals as determined necessary by the results of the laboratory analyses

  7. US-guided preoperative hook-wire localization of nonpalpable breast lesions

    International Nuclear Information System (INIS)

    Shin, Tae Beom; Lee, Sang Kwon; Kim, Hye Jung; Ryeom, Hun Kyu; Kim, Tae Hun; Kim, Yong Ju; Kang, Duk Sik; Lee, Young Ha; Park, Ho Yong

    2000-01-01

    To evaluate the feasibility and efficacy of US-guided preoperative wire localization of nonpalpable breast lesions. US-guided preoperative wire localization was performed upon 45 nonpalpable breast lesions including 14 nonpalpable masses, 11 nonpalpable masses with microcalcifications, 11 ductal lesions, 9 with microcalcifications. No local anesthesia was performed during the localization procedure. Under the US-guidance, the needle with the hook-wire was inserted into the lesion until the hook of the wire reached 1 cm beyond the posterior margin of the lesion. Precise wire positioning was confirmed by mammography. Specimen radiography or specimen ultrasonography was performed in all cases. US-guided preoperative wire localization was successfully achieved in all cases. The time required for US-guided wire localization was less than five minutes. All lesions were successfully removed by surgical excision. Successful removal was confirmed by specimen radiography or specimen ultrasonography, gross findings of the specimen and consistency between radiographic and pathologic findings. The histologic diagnosis of 45 lesions were 7 ductal carcinoma in situ, 8 invasive ductal carcinoma, 6 fibroadenoma, 8 intraductal papilloma, 2 atypical ductal hyperplasia, and 14 fibrocystic changes. No complications were occurred during and after the procedure. US-guided preoperative wire localization for excisional biopsy is simple, safe, and accurate method in the histologic diagnosis of nonpalpable breast lesions detectable with ultrasonography.

  8. US-guided preoperative hook-wire localization of nonpalpable breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Tae Beom; Lee, Sang Kwon; Kim, Hye Jung; Ryeom, Hun Kyu; Kim, Tae Hun; Kim, Yong Ju; Kang, Duk Sik; Lee, Young Ha; Park, Ho Yong [Kyungpook National University College of Medicine, Taegu (Korea, Republic of)

    2000-12-15

    To evaluate the feasibility and efficacy of US-guided preoperative wire localization of nonpalpable breast lesions. US-guided preoperative wire localization was performed upon 45 nonpalpable breast lesions including 14 nonpalpable masses, 11 nonpalpable masses with microcalcifications, 11 ductal lesions, 9 with microcalcifications. No local anesthesia was performed during the localization procedure. Under the US-guidance, the needle with the hook-wire was inserted into the lesion until the hook of the wire reached 1 cm beyond the posterior margin of the lesion. Precise wire positioning was confirmed by mammography. Specimen radiography or specimen ultrasonography was performed in all cases. US-guided preoperative wire localization was successfully achieved in all cases. The time required for US-guided wire localization was less than five minutes. All lesions were successfully removed by surgical excision. Successful removal was confirmed by specimen radiography or specimen ultrasonography, gross findings of the specimen and consistency between radiographic and pathologic findings. The histologic diagnosis of 45 lesions were 7 ductal carcinoma in situ, 8 invasive ductal carcinoma, 6 fibroadenoma, 8 intraductal papilloma, 2 atypical ductal hyperplasia, and 14 fibrocystic changes. No complications were occurred during and after the procedure. US-guided preoperative wire localization for excisional biopsy is simple, safe, and accurate method in the histologic diagnosis of nonpalpable breast lesions detectable with ultrasonography.

  9. Recent developments in wire chamber tracking at SSC

    International Nuclear Information System (INIS)

    Ogren, H.

    1990-01-01

    All of the major SSC proposed detectors use wire chambers in their tracking systems. The feasibility of wire chambers in an SSC detector has now been established by a number of groups planning detectors at SSC. The major advances during the past year in understanding straw tube drift chambers are presented and several innovations in gaseous wire chambers are discussed. The R and D section will concentrate on progress in drift cell design, electronics and signal processing, and engineering aspects of the tracking designs

  10. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  11. Experimental study of parallel multi-tungsten wire Z-pinch

    International Nuclear Information System (INIS)

    Huang Xianbin; China Academy of Engineering Physics, Mianyang; Lin Libin; Yang Libing; Deng Jianjun; Gu Yuanchao; Ye Shican; Yue Zhengpu; Zhou Shaotong; Li Fengping; Zhang Siqun

    2005-01-01

    The study of three parallel tungsten wire loads and five parallel tungsten wire loads implosion experiment on accelerator 'Yang' are reported. Tungsten wires (φ17 μm) with separation of 1 mm were used. The pinch was driven by a 350 kA peak current, 80 ns 10%-90% rise time. By means of pinhole camera and X-ray diagnostics technology, a non-uniform plasma column is formed among the wires and soft X-ray pulse are observed. the change of load current are analyzed, the development of sausage instability and kink instability, 'hot spot' effect and dispersion spot for plasma column are also discussed. (authors)

  12. The sub-wavelength imaging performance of disordered wire media

    International Nuclear Information System (INIS)

    Powell, David A.

    2008-01-01

    An analysis of the sub-wavelength imaging performance of disordered thin wire media is undertaken, in order to understand how its performance may be affected by manufacturing errors. The structure is found to be extremely robust to disorder which keeps the wires parallel. Variation in the orientation of the wires and their longitudinal position causes more significant degradation in the image quality, which is quantified numerically

  13. The dBoard: a Digital Scrum Board for Distributed Software Development

    DEFF Research Database (Denmark)

    Esbensen, Morten; Tell, Paolo; Cholewa, Jacob Benjamin

    2015-01-01

    In this paper we present the dBoard - a digital Scrum Board for distributed Agile software development teams. The dBoard is designed as a 'virtual window' between two Scrum team spaces. It connects two locations with live video and audio, which is overlaid with a synchronized and interactive...... digital Scrum board, and it adapts the fidelity of the video/audio to the presence of people in front of it. The dBoard is designed to work (i) as a passive information radiator from which it is easy to get an overview of the status of work, (ii) as a media space providing awareness about the presence...... of remote co-workers, and (iii) as an active meeting support tool. The paper presents a case study of distributed Scrum in a large software company that motivates the design of the dBoard, and details the design and technical implementation of the dBoard. The paper also reports on an initial user study...

  14. Locating the displacement of the steel wire implantation with the stereotactic mammography

    International Nuclear Information System (INIS)

    Ma Jie; Xu Jianmin; Sun Guomin; Sun Guoping; Zang Da; Zhou Dongxian; Mai Peicheng

    2007-01-01

    Objective: To analyze the manifestation, reason, the processing method of the steel wire implantation with the stereotactic mammography to improve the accuracy of the preoperative positioning. Methods: Seventy-nine cases which got the stereotactic steel wire implantation. In 96 lesions, 13 had steel wire displacement. Among them, 5 cases got steel wire displacement during the stereotactic process, 5 cases got steel wire displacement after the stereotactic process, 2 cases got steel wire displacement during the operation, one case did not show the calcification on the postoperative radiography. Results: The steel wire displacement occurred in 5 cases during the stereotactic process came from the patients and doctors respectively and the repositioning was needed. The steel wire displacement after the stereoscopic positioning was attributed to the overdose injection of local anesthesia, which led to the mismatch between the depth of Z axis of the mammary gland and the actual depth the computer given, the incorrect method for needle placement, and, neglecting whether the steel wire have got the lesion anchored when pulling out the needle set of steel wire hood, besides, these three kinds of instances above were all exaggerated by the accordion effect. For the displacement within 2 cm, the lesion can be excised toward the pathological change direction according to the position that steel wire prompted and re-place the second steel wire, putting the J-shaped steel wire into the needle hood and taking it out of the body. After repositioning, 2 cases had the steel wire prolapse during operation, which resulted from the over-lifting of the steel wire. After placing the steel wire, the radiologist should give an accurate description on the depth and direction to the surgeon and the notch should be taken for incision from the steel wire head end which is proximate to skin. The postoperative specimen from one case had no calcification, which might be related to the condition

  15. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Pure silver nanoparticles in double distilled water were generated via simple physical method using pure (99.9%) silver wires with 0.2 mm diameter. These wires have been exploded in water by bringing them into sudden contact with pure (99.9%) silver plate when subjected to a potential difference of 36 V DC. High current.

  16. Vibrating wire apparatus for periodic magnetic structure measurement

    International Nuclear Information System (INIS)

    Temnykh, A.B.

    2003-01-01

    Devices with periodic magnetic structures such as wigglers and undulators are often key elements in synchrotron radiation sources. In applications where the coherence of the emitted radiation is important, magnetic field errors distorting the periodicity of the field can significantly reduce the performance of the devices. Thus, the measurement, localization, and correction of the field errors can be a critical issue. This article presents a new method for magnetic field measurements in periodic magnetic structures. The method uses a vibrating taut wire passing through the magnetic structure, and it involves measurements of the amplitudes and phases of the standing waves excited on the wire by the Lorentz force between an AC current in the wire and the surrounding magnetic field. For certain arrangements of the wire, vibrations in the wire will be excited by only non-periodic magnetic field component, i.e., by the error field. By measuring the phase and amplitude of these waves, one can reconstruct the error field distribution and then correct it. The method was tested on a permanent magnet wiggler with 19.8 cm period and a peak field of ∼7000G. It demonstrated ∼0.6G RMS sensitivity, δB rms /B rms ∼1.2x10 -4 and spatial resolution sufficient to identify poles generating the field error. Good agreement was found between field error measurements obtained with the vibrating wire method and with traditional Hall probe field mapping

  17. Pull-pull position control of dual motor wire rope transmission.

    Science.gov (United States)

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  18. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  19. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  20. Anisotropic intrinsic spin Hall effect in quantum wires

    International Nuclear Information System (INIS)

    Cummings, A W; Akis, R; Ferry, D K

    2011-01-01

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)