Sample records for wireline seafloor drill

  1. Active Wireline Heave Compensation for Ocean Drilling (United States)

    Goldberg, D.; Liu, T.; Swain, K.; Furman, C.; Iturrino, G. J.


    The up-and-down heave motion of a ship causes a similar motion on any instruments tethered on wireline cable below it. If the amplitude of this motion is greater than a few tens of cm, significant discrepancy in the depth below the ship is introduced, causing uncertainty in the acquired data. Large and irregular cabled motions also increase the risk of damaging tethered instruments, particularly those with relatively delicate sensors. In 2005, Schlumberger and Deep Down, Inc built an active wireline heave compensator (AHC) system for use onboard the JOIDES Resolution to compensate for heave motion on wireline logging tools deployed in scientific drill holes. The goals for the new AHC system were to (1) design a reliable heave compensation system; and (2) devise a robust and quantitative methodology for routine assessment of compensation efficiency (CE) during wireline operations. Software programs were developed to monitor CE and the dynamics of logging tools in real-time, including system performance under variable parameters such as water depth, sea state, cable length, logging speed and direction. We present the CE results from the AHC system on the JOIDES Resolution during a 5-year period of recent IODP operations and compare the results to those from previous compensation systems deployed during ODP and IODP. Based on new data under heave conditions of ±0.2-2.0 m and water depths of 300-4,800 m in open holes, the system reduces 65-80% of downhole tool displacement under stationary conditions and 50-60% during normal logging operations. Moreover, down/up tool motion at low speeds (300-600 m/h) reduces the system's CE values by 15-20%, and logging down at higher speeds (1,000-1,200 m/h) reduces CE values by 55-65%. Furthermore, the system yields slightly lower CE values of 40-50% without tension feedback of the downhole cable while logging. These results indicate that the new system's compensation efficiency is comparable to or better than previous systems

  2. Wireline Deep Drill for the Exploration of Icy Bodies (United States)

    Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.


    One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.

  3. Auto-Gopher-II: an autonomous wireline rotary-hammer ultrasonic drill (United States)

    Badescu, Mircea; Lee, Hyeong Jae; Sherrit, Stewart; Bao, Xiaoqi; Bar-Cohen, Yoseph; Jackson, Shannon; Chesin, Jacob; Zacny, Kris; Paulsen, Gale L.; Mellerowicz, Bolek; Kim, Daniel


    Developing technologies that would enable future NASA exploration missions to penetrate deeper into the subsurface of planetary bodies for sample collection is of great importance. Performing these tasks while using minimal mass/volume systems and with low energy consumption is another set of requirements imposed on such technologies. A deep drill, called Auto-Gopher II, is currently being developed as a joint effort between JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher II is a wireline rotary-hammer drill that combines formation breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted auger bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that has been developed as an adaptable tool for many drilling and coring applications. The USDC uses an intermediate free-flying mass to transform high frequency vibrations of a piezoelectric transducer horn tip into sonic hammering of the drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher and then integrated into a rotary hammer device to develop the Auto-Gopher-I. The lessons learned from these developments are being integrated into the development of the Auto- Gopher-II, an autonomous deep wireline drill with integrated cuttings and sample management and drive electronics. Subsystems of the wireline drill are being developed in parallel at JPL and Honeybee Robotics Ltd. This paper presents the development efforts of the piezoelectric actuator, cuttings removal and retention flutes and drive electronics.

  4. Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill (United States)

    Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck


    Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper

  5. Impacts on seafloor geology of drilling disturbance in shallow waters. (United States)

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L


    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  6. Influence of borehole-eccentred tools on wireline and logging-while-drilling sonic logging measurements

    KAUST Repository

    Pardo, David


    We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method that delivers highly accurate solutions of linear visco-elasto-acoustic problems in the frequency domain. The analysis focuses on WL instruments equipped with monopole or dipole sources and LWD instruments with monopole excitation. Analysis of the main propagation modes obtained from frequency dispersion curves indicates that the additional high-order modes arising as a result of borehole-eccentricity interfere with the main modes (i.e., Stoneley, pseudo-Rayleigh and flexural). This often modifies (decreases) the estimation of shear and compressional formation velocities, which should be corrected (increased) to account for borehole-eccentricity effects. Undesired interferences between different modes can occur at different frequencies depending upon the properties of the formation and fluid annulus size, which may difficult the estimation of the formation velocities. © 2013 European Association of Geoscientists & Engineers.

  7. Operational Review of the First Wireline In Situ Stress Test in Scientific Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Casey Moore


    Full Text Available Scientific ocean drilling’s first in situ stress measurement was made at Site C0009A during Integrated Ocean Drilling Program (IODP Expedition 319 as part of Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE Stage 2. The Modular Formation Dynamics Tester (MDT, Schlumbergerwireline logging tool was deployed in riser Hole C0009A to measure in situ formation pore pressure, formation permeability (often reported as mobility=permeability/viscosity, and the least principal stress (S3 at several isolated depths (Saffer et al., 2009; Expedition 319 Scientists, 2010. The importance of in situ stress measurements is not only for scientific interests in active tectonic drilling, but also for geomechanical and well bore stability analyses. Certain in situ tools were not previously available for scientific ocean drilling due to the borehole diameter and open hole limits of riserless drilling. The riser-capable drillship, D/V Chikyu,now in service for IODP expeditions, allows all of the techniques available to estimate the magnitudes and orientations of 3-D stresses to be used. These techniques include downhole density logging for vertical stress, breakout and caliper log analyses for maximum horizontal stress, core-based anelastic strain recovery (ASR, used in the NanTroSEIZE expeditions in 2007–2008, and leak-off test (Lin et al., 2008 and minifrac/hydraulic fracturing (NanTroSEIZE Expedition319 in 2009. In this report, the whole operational planning process related to in situ measurements is reviewed, and lessons learned from Expedition 319 are summarized for efficient planning and testing in the future.

  8. Mini-CORK observatories using the MeBo seafloor drill rig - a new development for long-term data acquisition and sampling in shallow boreholes (United States)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.


    State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces


    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec


    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  10. Surface mapping and drilling of extinct seafloor massive sulphide deposits (eSMS) from the TAG Hydrothermal Field, 26oN: A tale of two `Jaspers' (United States)

    Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.


    Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal

  11. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  12. Wireline logging tool catalog; 2nd edition

    International Nuclear Information System (INIS)



    This catalog facilitates wireline logging by (1) drawing up programs, (2) showing the adaptation of tools to downhole conditions, drilling fluids, and formations to be measured, and (3) monitoring operations such as recording speeds and calibration control. This edition now represents the tools and services of five additional companies beyond the two companies in the first edition. The participating companies are: BPB Instrument Ltd, Dresser Atlas, Gearhart Geoservices, Micro Log, Prakla Seismos, Schlumberger, and Welex. For quick consultation of the catalog, the tools are classified by ''families.'' For each family of tools, there is a background to the technology and an explanation of the principles of measurement and applications, along with examples of recorded curves. Case documents submitted by service companies include technical data sheets, sketches of tools and their main combinations, and examples of calibration

  13. Broadband Wireline Provider Service: Other Copper Wireline; BBRI_otherCopper12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Other Copper Wireline" technology. In Rhode Island, this category...

  14. A wireline piston core barrel for sampling cohesionless sand and gravel below the water table (United States)

    Zapico, Michael M.; Vales, Samuel; Cherry, John A.


    A coring device has been developed to obtain long and minimally disturbed samples of saturated cohesionless sand and gravel. The coring device, which includes a wireline and piston, was developed specifically for use during hollow-stem auger drilling but it also offers possibilities for cable tool and rotary drilling. The core barrel consists of an inner liner made of inexpensive aluminum or plastic tubing, a piston for core recovery, and an exterior steel housing that protects the liner when the core barrel is driven into the aquifer. The core barrel, which is approximately 1.6m (5.6 feet) long, is advanced ahead of the lead auger by hammering at the surface on drill rods that are attached to the core barrel. After the sampler has been driven 1.5m (5 feet), the drill rods are detached and a wireline is used to hoist the core barrel, with the sample contained in the aluminum or plastic liner, to the surface. A vacuum developed by the piston during the coring operation provides good recovery of both the sediment and aquifer fluids contained in the sediment. In the field the sample tubes can be easily split along their length for on-site inspection or they can be capped with the pore water fluids inside and transported to the laboratory. The cores are 5cm (2 inches) in diameter by 1.5m (5 feet) long. Core acquisition to depths of 35m (115 feet), with a recovery greater than 90 percent, has become routine in University of Waterloo aquifer studies. A large diameter (12.7cm [5 inch]) version has also been used successfully. Nearly continuous sample sequences from sand and gravel aquifers have been obtained for studies of sedimentology, hydraulic conductivity, hydrogeochemistry and microbiology.

  15. The Auto-Gopher: A Wireline Rotary-Percussive Deep Sampler (United States)

    Bar-Cohen, Yoseph; Zacny, Kris; Badescu, Mircea; Lee, Hyeong Jae; Sherrit, Stewart; Bao, Xiaoqi; Paulsen, Gale L.; Beegle, Luther


    Accessing regions on planetary bodies that potentially preserved biosignatures or are presently habitable is vital to meeting NASA solar system "Search for Life" exploration objectives. To address these objectives, a wireline deep rotary-percussive corer called Auto-Gopher was developed. The percussive action provides effective material fracturing and the rotation provides effective cuttings removal. To increase the drill's penetration rate, the percussive and rotary motions are operated simultaneously. Initially, the corer was designed as a percussive mechanism for sampling ice and was demonstrated in 2005 in Antarctica reaching about 2 m deep. The lessons learned suggested the need to use a combination of rotation and hammering to maximize the penetration rate. This lesson was implemented into the Auto-Gopher-I deep drill which was demonstrated to reach 3-meter deep in gypsum. The average drilling power that was used has been in the range of 100-150 Watt, while the penetration rate was approximately 2.4 m/hr. Recently, a task has started with the goal to develop Auto-Gopher-II that is equipped to execute all the necessary functions in a single drilling unit. These functions also include core breaking, retention and ejection in addition drilling. In this manuscript, the Auto-Gopher-II, its predecessors and their capability are described and discussed.

  16. Drilling Load Model of an Inchworm Boring Robot for Lunar Subsurface Exploration

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang


    Full Text Available In the past decade, the wireline robot has received increasing attention due to the advantages of light weight, low cost, and flexibility compared to the traditional drilling instruments in space missions. For the lunar subsurface in situ exploration mission, we proposed a type of wireline robot named IBR (Inchworm Boring Robot drawing inspiration from the inchworm. Two auger tools are utilized to remove chips for IBR, which directly interacted with the lunar regolith in the drilling process. Therefore, for obtaining the tools drilling characteristics, the chips removal principle of IBR is analyzed and its drilling load model is further established based on the soil mechanical theory in this paper. And then the proposed theoretical drilling load model is experimentally validated. In addition, according to the theoretical drilling load model, this paper discusses the effect of the drilling parameters on the tools drilling moments and power consumption. These results imply a possible energy-efficient control strategy for IBR.

  17. VT Wireline Broadband Availability by Census Block - 06-2013 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  18. VT Wireline Broadband Availability by Census Block - 12-2011 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  19. VT Wireline Broadband Availability by Census Block - 06-2011 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  20. VT Wireline Broadband Availability by Census Block - 12-2010 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  1. VT Wireline Broadband Availability by Census Block - 06-2010 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  2. VT Wireline Broadband Availability by Census Block - 12-2012 (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  3. Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor (United States)

    Badescu, Mircea; Ressa, Aaron; Jae Lee, Hyeong; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi


    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  4. The Use Of The Measurement While Drilling (Mwd) Data In ...

    African Journals Online (AJOL)

    The use of the Measurement While Drilling (MWD) tool in formation evaluation has proved invaluable in terms of operational cost, time and reliability of data. The tool suffers less from invasion effect when compared to conventional wireline tools and so can be deployed in hostile borehole environments. Measurement While ...

  5. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.


    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  6. Prediction of diagenesis and reservoir quality using wireline logs ...

    African Journals Online (AJOL)

    Reservoir quality is mainly controlled by environment deposit type and diagenesis processes. To investigate such subject we usually proceed to microscopic techniques. Absence of outcrops and missing of core samples let us use conventional wireline logs and core lab measurements as primary data. Direct lecture of well ...

  7. Downhole water management and robotic valve manipulation on electric wireline

    Energy Technology Data Exchange (ETDEWEB)

    Schwanitz, Brian [Welltec, Alleroed (Denmark); Petersen, Erik; Farias, Eduardo [Welltec do Brasil Ltda., Rio de Janeiro, RJ (Brazil)


    Due to high operating cost and challenging environments, the oil and gas industry is facing an increasing demand to identify areas where new intervention solutions can be applied. Down hole water management and robotic valve manipulation are some of the areas where new approaches are finding critical success. A new technology has enabled increased recovery rates by managing produced water and allowing remote mechanical manipulation of down hole valves on wireline. These services are possible when applying a robotic stroking device and a wireline key tool.This paper will examine the challenges and present case histories illustrating how advanced technological solutions were applied to overcome operational problem in order to enhance reservoir performance and well productivity. Specifically the paper will illustrate both how isolating sliding side door and setting bridge plug in high x-flow using wireline stroker and tractor technologies water cut were reduced from 85% to 5% and from 90% to 45% respectively and shifting isolation sleeve and open and close sliding sleeve replacing conventional methods with a solution that runs on electrical wireline meant a revolution within the oil and gas industry. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Farrington; Martin L. Gildea; J. Christopher Bianchi


    The first phase of development of a wireline cone penetrometer system for multiple tool usage was completed under DOE award number DE-AR26-98FT40366. Cone penetrometer technology (CPT) has received widespread interest and is becoming more commonplace as a tool for environmental site characterization activities at several Department of Energy (DOE) facilities. Although CPT already offers many benefits for site characterization, the wireline system can improve CPT technology by offering greater utility and increased cost savings. Currently the use of multiple CPT tools during a site characterization (i.e. piezometric cone, chemical sensors, core sampler, grouting tool) must be accomplished by withdrawing the entire penetrometer rod string to change tools. This results in multiple penetrations being required to collect the data and samples that may be required during characterization of a site, and to subsequently seal the resulting holes with grout. The wireline CPT system allows multiple CPT tools to be interchanged during a single penetration, without withdrawing the CPT rod string from the ground. The goal of the project is to develop and demonstrate a system by which various tools can be placed at the tip of the rod string depending on the type of information or sample desired. Under the base contract, an interchangeable piezocone and grouting tool was designed, fabricated, and evaluated. The results of the evaluation indicate that success criteria for the base contract were achieved. In addition, the wireline piezocone tool was validated against ASTM standard cones, the depth capability of the system was found to compare favorably with that of conventional CPT, and the reliability and survivability of the system were demonstrated.

  9. Electrical properties of seafloor massive sulfides (United States)

    Spagnoli, Giovanni; Hannington, Mark; Bairlein, Katharina; Hördt, Andreas; Jegen, Marion; Petersen, Sven; Laurila, Tea


    Seafloor massive sulfide (SMS) deposits are increasingly seen as important marine metal resources for the future. A growing number of industrialized nations are involved in the surveying and sampling of such deposits by drilling. Drill ships are expensive and their availability can be limited; seabed drill rigs are a cost-effective alternative and more suitable for obtaining cores for resource evaluation. In order to achieve the objectives of resource evaluations, details are required of the geological, mineralogical, and physical properties of the polymetallic deposits and their host rocks. Electrical properties of the deposits and their ore minerals are distinct from their unmineralized host rocks. Therefore, the use of electrical methods to detect SMS while drilling and recovering drill cores could decrease the costs and accelerate offshore operations by limiting the amount of drilling in unmineralized material. This paper presents new data regarding the electrical properties of SMS cores that can be used in that assessment. Frequency-dependent complex electrical resistivity in the frequency range between 0.002 and 100 Hz was examined in order to potentially discriminate between different types of fresh rocks, alteration and mineralization. Forty mini-cores of SMS and unmineralized host rocks were tested in the laboratory, originating from different tectonic settings such as the intermediate-spreading ridges of the Galapagos and Axial Seamount, and the Pacmanus back-arc basin. The results indicate that there is a clear potential to distinguish between mineralized and non-mineralized samples, with some evidence that even different types of mineralization can be discriminated. This could be achieved using resistivity magnitude alone with appropriate rig-mounted electrical sensors. Exploiting the frequency-dependent behavior of resistivity might amplify the differences and further improve the rock characterization.

  10. Mind the seafloor (United States)

    Boetius, Antje; Haeckel, Matthias


    As human use of rare metals has diversified and risen with global development, metal ore deposits from the deep ocean floor are increasingly seen as an attractive future resource. Japan recently completed the first successful test for zinc extraction from the deep seabed, and the number of seafloor exploration licenses filed at the International Seabed Authority (ISA) has tripled in the past 5 years. Seafloor-mining equipment is being tested, and industrial-scale production in national waters could start in a few years. We call for integrated scientific studies of global metal resources, the fluxes and fates of metal uses, and the ecological footprints of mining on land and in the sea, to critically assess the risks of deep-sea mining and the chances for alternative technologies. Given the increasing scientific evidence for long-lasting impacts of mining on the abyssal environment, precautionary regulations for commercial deep-sea mining are essential to protect marine ecosystems and their biodiversity.

  11. 47 CFR 68.106 - Notification to provider of wireline telecommunications. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Notification to provider of wireline telecommunications. 68.106 Section 68.106 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... of Terminal Equipment § 68.106 Notification to provider of wireline telecommunications. (a) General...

  12. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)


    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  13. Tesco's Bob Tessari: launching a drilling revolution

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.


    The 'Casing Drilling' technology, patented by Tesco, which allows operators to simultaneously drill, case and evaluate oil and gas wells, is described. The system is claimed to substantially reduce the amount of lost circulation, loss of well control and bore hole instability problems that have been documented to account for about 25 per cent of total rig time on a well, and at least $4 billion (or 10 per cent of the $40 billion annual global drilling tab) spent on 'unscheduled events' associated with tripping drill pipe. With the Casing Drilling process, wells are drilled using standard oilfield casing instead of drill pipe. The host of downhole problems associated with tripping in and out of the hole are avoided, as the casing pipe is never removed. Instead, drill bits and other downhole tools are tripped through the casing with wireline at a rate of about 500 ft per minute, drastically reducing tripping time. Tesco also developed the portable top drive, the manufacture and rental of which constitutes a large part of the company's business, besides helping technologically to make Casing Drilling possible. Much of the company's success is attributed to the tenacity and zest for innovative approaches of the company's CEO, Bob Tessari, who is largely responsible for the company finding itself at the centre of a drilling technology revolution.

  14. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.


    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  15. The final frontier: Tesco takes evolution of casing drilling system offshore

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.


    Tesco Corporation is complementing its smaller 4 1/2-inch casing-while-drilling (CWD) tools by designing a series of 13 3/8-inch and a 9 5/8-inch underreamers and cutters to accommodate the larger diameter holes typical of offshore drilling. Tesco is building its own rig; it is a single rated to 3,000 metres that can be moved in seven loads with an overall 100 ton load rating. The unit features dimensional drilling capability in addition to features such as logging-while-drilling, and measurement-while-drilling. A conventional coring unit is employed via wireline. To date, Tesco has successfully overcome two of the main challenges in developing the new drilling process, i. e. to guarantee that casing can be run in high compression loads without damage to connections, and to develop an underreamer cutting structure to destroy rock at a rate comparable to conventional rotary drilling. The wireline retrieval system, which is 100 per cent reliable in running mode, but only 70 per cent successful in the retrieval mode, is the next challenge to be overcome. Tesco claims a 40 per cent reduction in overall 'spud to release' time, however, the main advantage claimed for the system is that the casing system protects the integrity of the hole as it is being drilled.

  16. Broadband Wireline Provider Service: Symmetric xDSL; BBRI_DSLsym12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via Symmetric xDSL technology. Broadband availability is summarized at...

  17. Broadband Wireline Provider Service: Cable Modem - Other; BBRI_cableOther12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Cable Modem - Other" technology. Broadband availability is...

  18. Broadband Wireline Provider Service: Asymmetric xDSL; BBRI_DSLasym12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via Asymmetric xDSL technology. Broadband availability is summarized...

  19. Broadband Wireline Provider Service: Cable Modem - DOCSIS 3.0; BBRI_cableDOCSIS12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Cable Modem - DOCSIS 3.0" technology. Broadband availability is...

  20. Broadband Wireline Provider Service: Optical Carrier - Fiber to the End User; BBRI_fiber12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Optical Carrier - Fiber to the End User" technology. Broadband...

  1. Converged wireline and wireless signal transport over optical fibre access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Osadchiy, Alexey Vladimirovich


    This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality.......This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality....

  2. Deep Rotary-Ultrasonic Core Drill for Exploration of Europa and Enceladus (United States)

    Paulsen, G. L.; Zacny, K.; Bar-Cohen, Y.; Beegle, L. W.; Corsetti, F. A.; Mellerowicz, B.; Badescu, M.; Sherrit, S.; Ibarra, Y.


    Since water is an important requisite for life as we know it, likely exobiologic exploration targets in our Solar System include Mars, Europa, and Enceladus, where water/ice is known to exist. Because of oxidizing nature of Mars atmosphere, as well as increased radiation at the surfaces of Mars, Europa and Enceladus, samples must be acquired from the subsurface at greater depths, presenting a great challenge to off-world drilling design. For the past 3 years, we have been developing a prototype wireline coring drill, called the Auto-Gopher, for the capability to acquire samples from hundreds of meters depth. The drill is capable of penetrating both rock and ice. However, because of large geological uncertainty on Mars and issues related to borehole collapse, we specifically target ice formations present on Europa and Enceladus. The main feature of the Auto-Gopher is its wireline operation. The drill is essentially suspended on a tether and the motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill (plus core) is retracted from the borehole by a pulley system (the pulley system can be either on the surface or integrated into a top part of the drill itself). Once on the surface, the core is deposited into a sample transfer system, and the drill is lowered back into the hole in order to drill the next segment. Each segment is typically 10 cm long. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections. With traditional continuous drill string systems (the major competition to the Autor-Gopher), new drill sections need to be added to the string as the drill gets deeper. This of course requires multiple drill sections, which add significantly to the mass of the system very quickly, and requires

  3. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R


    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  4. Towards a distributed infrastructure for research drilling in Europe (United States)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.


    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will

  5. Developments in wireline in-situ rock stress measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Holzberg, Bruno; Gmach, Helmut [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)


    This paper presents recent developments of in-situ stress measurements with wireline tools. The stress measurements are based on the micro hydraulic techniques that can be initialized when an interval is pressurized by pumping fluid until a tensile fracture begins or by packers fracturing (sleeve fracturing). Ultrasonic and Micro-resistivity borehole image logs (before and after the testes) are used as a complement, in order to observe the fractures created by the tests, evaluating the mechanical behavior of the formation. An offshore case study is presented, where shales and tight sandstones at depths deeper than 4500 meters depth were successfully evaluated. A workflow to succeed on stress measurements on such environments is proposed, what includes a planning phase: where breakdown pressures ranges are estimated and compared with the capacity of the tools, a Real Time Monitoring phase, where a decision tree is proposed to help on quick decisions while testing, and an interpretation phase, where appropriate techniques are indicated to evaluate the results. Also, the paper presents the main operational needs to succeed on such environments. Basically, such tests require an entirely software controlled, motorized and modular design tool consisting of dual packer (DP), pump out and flow control modules (Figure 1). These modules were upgraded for the present environment: conditions such as temperatures above 300 deg F, formation pressures above 10,000 psia, very low formation permeability, high pressure differential need and oil based mud (OBM) environment. (author)

  6. Contamination tracer testing with seabed drills: IODP Expedition 357 (United States)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.


    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  7. Oman Drilling Project Phase I Borehole Geophysical Survey (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.


    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  8. The NGDC Seafloor Sediment Grain Size Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGDC (now NCEI) Seafloor Sediment Grain Size Database contains particle size data for over 17,000 seafloor samples worldwide. The file was begun by NGDC in 1976...

  9. Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander


    . In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format...... radio-over-fiber (RoF) systems; this is a promising solution to implement broadband seamless wireless -wireline access networks. This project successfully concluded in autumn 2013, and is being follow up by another Marie Curie project entitled “flexible edge nodes for dynamic optical interconnection...

  10. Seafloor Observatory Science: a Review

    Directory of Open Access Journals (Sweden)

    L. Beranzoli


    Full Text Available The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999. For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995. Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources (Summerhayes, 1996. The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000. Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003. This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A

  11. 76 FR 11407 - Review of Wireline Competition Bureau Data Practices, Computer III Further Remand Proceedings... (United States)


    ... Docket No. 10-132; FCC 11-15] Review of Wireline Competition Bureau Data Practices, Computer III Further... removal of the narrowband comparably efficient interconnection (CEI) and open network architecture (ONA... track the organization set forth in the NPRM in order to facilitate our internal review process. Initial...

  12. 76 FR 20976 - Wireline Competition Bureau Releases 2011 Annual Telecommunications Reporting Worksheet (FCC Form... (United States)


    ... FURTHER INFORMATION CONTACT: Nicholas Degani, Wireline Competition Bureau, Competition Policy Division, at... revised the Form and instructions to make the process of preparing Form 499-A more user-friendly for... sections. (3) Moving the table used to determine whether a filer is de minimis for universal service...

  13. 47 CFR 1.20007 - Additional assistance capability requirements for wireline, cellular, and PCS telecommunications... (United States)


    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Additional assistance capability requirements for wireline, cellular, and PCS telecommunications carriers. 1.20007 Section 1.20007 Telecommunication... telecommunications carriers. (a) Definition—(1) Call-identifying information. Call identifying information means...

  14. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.


    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  15. Acoustic seafloor classification: Potential and limitations.

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Technology, Vol. 9, No. 2, 2014 vCopyright Journal of Ocean Technology 2014 Acoustic Seafloor Classification: Potential and Limitations When sound waves interact with the seafloor and/or penetrate into the sediments beneath, the incident energy... to the acquired data, and therefore seafloor classification is imperative prior to inversion modelling. This is in part due to the fact that at low to medium frequencies (100 to 10,000 Hz) the estimated model parameters fluctuate due to the sound signal...

  16. MeBo70 Seabed Drilling on a Polar Continental Shelf: Operational Report and Lessons From Drilling in the Amundsen Sea Embayment of West Antarctica (United States)

    Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.


    A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.

  17. Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data (United States)

    Roslin, A.; Esterle, J. S.


    The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

  18. Workshop on Requirements for Robotic Underwater Drills in U.S. Marine Geoscience Research (United States)

    Sager, W. W.; Johnson, H. P.; Dick, H.; Fryer, P.


    At present, subsurface hard rock samples and sediment cores deeper than ~30 m must be acquired using a drill ship, but a drill ship has severe limitations: high cost, limited availability, and poor performance in some lithologies. Many marine geoscience studies require more sampling than can be provided by the drill ship, samples from those problem lithologies, or samples from locations where the drill ship cannot go. Robotic underwater drills may help satisfy this need. Twenty-five scientists and engineers, representing a variety of academic institutions and scientific interests, met on November 3 and 4, 2000, to discuss how to bring about the ready access to robotic underwater drills for scientists engaged in academic research. The workshop considered what science programs would benefit from robotic drills, how many drills of what specifications are needed, and how such drills should be supported. The consensus was that there is a widespread need for a several drills. Most scientists wish for a Robotic Ocean-Bottom drill (ROBO-drill) that can core 50-100 m below the seafloor, with either rotary diamond bits or hydraulic corer, and retrieve cores >5 cm diameter from water depths up to ~4500 m. Although this big ROBO-drill has the widest application, attendees also favored three "niche" drills with different configurations. On the smaller end, there is a need for mini-ROBO-drill that is simple, can work in deeper water, is easily shipped and maintained, and would likely have a single core barrel 1-2 m in length. This drill would be for projects in which small penetration is adequate but cost is a primary concern. An ROV-based drill is also needed, attached to a widely available platform. With high maneuverability and excellent imaging capability, the ROV-drill would be the equivalent of a geologist roaming the seafloor with a rock hammer. There also may be a need for a slightly larger, single-barrel drill that can core up to ~5 m depth to reach below small sediment

  19. Logging-while-drilling and wireline velocities: Site NGHP-01-10, Krishna-Godavari Basin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Al-Bulushi, S.; Dewangan, P.

    could present more steady-state periods of fracture growth, where fluid and hydrate could be existing separately in the fractures. Despite the obvious presence of fracture, we have demonstrated an isotropic rock model. However, we do not intend... 7841 1. Boone Pickens School of Geology, Oklahoma State University, Stillwater, Oklahoma 74078, USA 2. CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India Abstract: At site NGHP-01-10, Krishna-Godavari Basin, India...

  20. KIGAM Seafloor Observation System (KISOS) for the baseline study in monitoring of gas hydrate test production in the Ulleung Basin, Korea (United States)

    Lee, Sung-rock; Chun, Jong-hwa


    For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in

  1. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder


    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... had been introduced. The Berkner Island (Antarctica) drill is also an extended HT drill capable of drilling 2 m long cores. The success of the mechanical design of the HT drill is manifested by over 12 km of good-quality ice cores drilled by the HT drill and its derivatives since 1995. Udgivelsesdato...

  2. EX1301 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  3. EX0901 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  4. Deck41 Surficial Seafloor Sediment Description Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deck41 is a digital summary of surficial sediment composition for 36,401 seafloor samples worldwide. Data include collecting source, ship, cruise, sample id,...

  5. EX1104 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  6. EX1105 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  7. EX1608 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  8. EX1702 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  9. EX1403 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  10. EX1505 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  11. EX1006 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  12. EX1101 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  13. EX1204 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  14. EX1603 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  15. EX0905 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  16. EX0903 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  17. EX0904 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  18. EX1703 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  19. EX1701 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  20. EX1704 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  1. EX1705 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  2. EX1302 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  3. EX1003 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  4. EX1607 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  5. EX1609 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  6. EX0907 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  7. Seafloor backscatter signal simulation and classification

    Digital Repository Service at National Institute of Oceanography (India)

    Mahale, V.; El Dine, W.G.; Chakraborty, B.

    In this paper, simulation study is initiated to observe the interaction effect of the sound signal with different seafloors types and its classification. Simulation of the echo envelope signal is done by accurately formulating a mathematical model...

  8. EX1305 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  9. EX1303 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  10. The NGDC Seafloor Sediment Geotechnical Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGDC Seafloor Sediment Geotechnical Properties Database contains test engineering properties data coded by students at NGDC from primarily U.S. Naval...

  11. EX1604 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  12. EX1201 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  13. EX1601 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  14. EX1606 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  15. EX1401 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  16. Engineering for Deep Sea Drilling for Scientific Purposes (United States)


    much smaller. In addition, personnel will have to be trained, detailed procedures developed, and new types of bottomhole and seafloor instrumentation...the Gulf of Mexico appears to have released some 3 million barrels of crude oil. 394 Site selection for scientific deep sea drilling should be...tidal and other currents in the deepest part of the ocean, there is relatively little vertical mixing of water because of the effect of temperature

  17. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser


    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  18. Towards convergence of wireless and wireline signal transport in broadband access networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Tafur Monroy, Idelfonso


    Hybrid optical wireless access networks are to play an important role in the realization of the vision of delivery of broadband services to the end-user any time, anywhere and at affordable costs. We present results of experiments conducted over a field deployed optical fibre links we successfull...... demonstrated converged wireless and wireline signal transport over a common fibre infrastructure. The type of signal used in this field deployed experiments cover WiMax, Impulse-radio ultra-wideband (UWB) and coherent transmission of baseband QPSK and radio-over-fibre signals....

  19. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic (United States)

    Amirov, Elnur


    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real

  20. Drilling for energy resources

    Energy Technology Data Exchange (ETDEWEB)


    Drilling is integral to the exploration, development, and production of most energy resources. Oil and natural gas, which are dependent on drilling technology, together account for about 77% of the energy sources consumed in the US. Thus, the limitations of current drilling technology also restrict the rate at which new energy supplies can be found, extracted, and brought to the marketplace. The purpose of the study reported was to examine current drilling technology, suggest areas where additional research and development (R and D) might significantly increase drilling rates and capabilities, and suggest a strategy for improving drilling technology. An overview is provided of the US drilling industry. The drilling equipment and techniques now used for finding and recovering oil, natural gas, coal, shale oil, nuclear fuels, and geothermal energy are described. Although by no means exhaustive, these descriptions provide the background necessary to adequately understand the problems inherent in attempts to increase instantaneous and overall drilling rates.

  1. Effect of Seafloor Current on low Frequency Seismic Noise Observed in the Seafloor (United States)

    Araki, E.; Kawaguchi, K.; Matsumoto, H.; Sugioka, H.; Ito, A.; Suetsugu, D.; Kaneda, Y.


    Seismometer installed in the seafloor is affected by water flow in the seafloor. Such effect is significant especially for low frequencies below 0.1 Hz. Burial of seismometer, or installation using deep borehole, is suggested to reduce effect of seafloor current. There are a number of examples showing burial in the seafloor significantly reduce low frequency seismic noise. The reason for such improvement is explained by improved seafloor coupling of seismometer and reduction of tilting effect due to force from water flow by minimizing area of seismometer exposed in the water flow. Another mechanism is that turbulence in the seafloor current impose load on the seafloor that deforms and tilt the seafloor. There are few example, though, to demonstrate a model which explain relationship between speed of seafloor water flow and expected low frequency seismic noise quantitatively. We are currently planning to build seafloor broadband seismic network off Kii Peninsula, Honshu, Japan, where recurrence of magnitude 8 class earthquake is expected in the future. In such location, a network of broadband seismometer will be deployed in the seafloor. In order to design for optimum low frequency performance of seismometers, we conducted test installation of three broadband seismometers (Guralp CMG3T) closely, within 150m distances from each other. The test observation was conducted in the Kumano Basin, from late December, 2007 to early February, 2008. The one cylindrical seismometer was buried in the seafloor, while the other two sit on the seafloor. The seafloor seismometers were different in that the one had grid type anchor and the other had wide planar anchor. Difference in these arrangements was intended to find optimum design of seismometer package and installation method. Differential pressure gauges, a seafloor current meter, thermometers were installed to monitor environmental change during the test observation. Observation data from deployed broadband seismometers

  2. Robotic Planetary Drill Tests (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.


    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  3. Ultrasonic drilling apparatus (United States)

    Duran, E.L.; Lundin, R.L.


    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  4. Analysis of Adaptive Interference Cancellation Using Common-Mode Information in Wireline Communications

    Directory of Open Access Journals (Sweden)

    Per Ola Börjesson


    Full Text Available Joint processing of common-mode (CM and differential-mode (DM signals in wireline transmission can yield significant improvements in terms of throughput compared to using only the DM signal. Recent work proposed the employment of an adaptive CM-reference-based interference canceller and reported performance improvements based on simulation results. This paper presents a thorough investigation of the cancellation approach. A subchannel model of the CM-aided wireline channel is presented and the Wiener solutions for different adaptation strategies are derived. It is shown that a canceller, whose coefficients are adapted while the far-end transmitter is silent, yields a signal-to-noise power ratio (SNR that is higher than the SNR at the DM channel output for a large class of practically relevant cases. Adaptation while the useful far-end signal is present yields a front-end whose output SNR is considerably lower compared to the SNR of the DM channel output. The results are illustrated by simulations based on channel measurement data.

  5. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang


    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  6. Applications of Seafloor Mapping Using Precise Sonars

    Directory of Open Access Journals (Sweden)

    Jerneja Fridl


    Full Text Available Seafloor measurements using single-beam, multi-beam, sub-bottom, and side-scan sonars which enable detailed mapping of solid objects in sediments, seafloor structure and depth can provide useful information for marine traffic as well as scientific studies. The measurements obtained using these technologies, which provide a large number of points, make possible the preparation of an accurate digital bathymetric model. The most widely used application of these kinds of measurements is undoubtedly to determine depths of marinas, berths and shipping channels, especially around large commercial ports. However, their importance in the discovery and investigation of undersea archaeological sites such as shipwrecks, ancient piers, and amphorae is not to be ignored. The data are also useful for geologists, since they can provide clues as to the type of seafloor and the composition of rocks underneath the sediments. They can also be helpful to nature conservationists in locating and studying undersea springs and grassy areas of the seafloor which provide habitat for marine fauna. In order to facilitate access to data by users, we are developing an “undersea information system” containing different layers of data in various forms and with different types of content. Findings from the latest research can be added to the system. A system set up in this way would allow for faster production of three-dimensional seafloor models, more detailed charts and a variety of thematic maps.

  7. EMSO: European Multidisciplinary Seafloor Observatory (United States)

    Favali, Paolo


    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006,, is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011,, and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  8. HydroPulse Drilling

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Kolle


    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  9. Universal drill jig (United States)

    Stringer, E. J.


    Inexpensive jig can steadily guide drill at selected angles to flat plane from any direction. Jig uses two mutually perpendicular bevel bodies, each corresponding to interval settings. Drill block has spline on one side to engage groove on bevel body at selected angle. Angles are set by loosening wing nuts, tilting drill block to desired angle until spline engages groove, and tightening nuts.

  10. 78 FR 42699 - Application for Review of a Decision of the Wireline Competition Bureau by Dooly County School... (United States)


    ..., in April 2003, the Commission released the Schools and Libraries Second Report and Order, 68 FR 36931... Commission to 60 days. The Schools and Libraries Second Report and Order did not, however, address the...] Application for Review of a Decision of the Wireline Competition Bureau by Dooly County School System; Schools...

  11. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders


    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  12. Addressing submarine geohazards through scientific drilling (United States)

    Camerlenghi, A.


    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  13. Measured and Estimated Seafloor Topography - Poster (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 34 by 53 inch full-color poster is report WDC for MGG RP-1. In many areas of the global ocean, the depth of the seafloor is not well known because survey lines...

  14. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi


    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms

  15. Seafloor weathering buffering climate: numerical experiments (United States)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.


    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  16. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)


    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  17. Drilling gas hydrates with the sea floor drill rig MARUM-MeBo (United States)

    Freudenthal, Tim; Bohrmann, Gerhard; Wefer, Gerold


    Large amounts of methane are bound in marine gas hydrate deposits. Local conditions like pressure, temperature, gas and pore water compositions define the boundaries of gas hydrate stability within the ocean sediments. Depending on those conditions gas hydrates can occur within marine sediments at depth down to several hundreds of meters up to sea floor. These oceanic methane deposits are widespread along continental margins. By forming cement in otherwise soft sediments gas hydrates are stabilizing the seafloor on continental slopes. Drilling operations are required for understanding the distribution of gas hydrates as well as for sampling them to study the composition, microstructure and its geomechanical and geophysical properties. The sea floor drill rig MARUM-MeBo200 has the capability to drill down to 200 m below sea floor well within the depth of major gas hydrate occurrences at continental margins. This drill rig is a transportable sea floor drill rig that can be deployed from a variety of multi-purpose research vessels. It is deployed on the sea bed and controlled from the vessel. It is the second generation MeBo (Freudenthal and Wefer, 2013) and was developed from 2011 to 2014 by MARUM in cooperation with BAUER Maschinen GmbH. Long term experiences with the first generation MeBo70 that was operated since 2005 on 15 research expeditions largely contributed to the development of MeBo200. It was first tested in October 2014 from the research vessel RV SONNE in the North Sea. In this presentation the suitability of MARUM-MeBo for drilling marine gas hydrates is discussed. We report on experiences drilling gas hydrates on two research expeditions with MeBo70. A research expedition for sampling gas hydrates in the Danube Paleodelta with MeBo200 as well as technical developments for improving the suitability of MeBo for gas hydrate exploration works are planned within the project SUGAR3 funded by the Federal Government for Economy and Energy (BMWi). Freudenthal

  18. 21. century drilling rigs -- Tesco introduces new modular design

    Energy Technology Data Exchange (ETDEWEB)



    Development of a modular, hydraulic, self-elevating drilling rig, dubbed the `21. century drilling rig` was announced by the Tesco Corporation. The rig equipment is housed in 8 by 20 by 8.5 feet high sea containers that can be handled by a 20-ton oilfield picker. These containers, weighing about 15,000 to 20,000 pounds on average, eliminate the need for heavy and bulky standard oilfield skid buildings, besides avoiding costly over-width and over-weight permits. The containers can be easily shipped around the world at a fraction of the cost of shipping standard oilfield skid buildings. Time for shipping on land is comparable to conventional rigs, but with the added advantage of smaller and lighter loads, promising fewer transportation problems during spring breakup. Tesco also designed and built an 85-foot long, triple-axle, 24-wheel catwalk trailer to transport the top drive, drawworks and double telescoping mast as one unit. Another novel characteristic of this unit is that the hydraulic system is capable of selectable distribution of power to the main functions such as the top drive, drawworks, or mud pump, similar to the electric SCR rig. The rig also features a computerized control system managed by programmable logic controllers. The split crown and split block to facilitate wireline work, are other innovative features worthy of note.

  19. Nuclear Tools For Oilfield Logging-While-Drilling Applications (United States)

    Reijonen, Jani


    Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

  20. Reconsidering Volcanic Ocean Island Hydrology: Recent Geophysical and Drilling Results (United States)

    Thomas, D. M.; Pierce, H. A.; Lautze, N. C.


    Recent results of geophysical surveys and exploratory drilling in Hawaii have suggested that Hawaii's hydrogeology may be more complex than has been generally recognized. Instead of a more-or-less homogeneous pile of highly permeable eruptive basalts that are intermittently punctuated by volcanic dikes confined to calderas and rift zones, we are finding that dike compartmentalization is occurring outside of recognized rift zones, leading to significantly higher volumes of stored groundwater within the island. Analysis of recent geophysical surveys have shown local water table elevations that are substantially higher than can be accounted for by the high hydraulic conductivities of Hawaiian basalts. Recent diamond wireline drilling results have also shown that sub-horizontal variations in permeability, associated with significant changes in eruptive character (e.g. explosive vs effusive activity) are acting as significant perching and confining bodies over significant aerial extents and suggest that these features also contribute to increased storage of recharge. Not only is storage much higher than previously assumed, these features appear to impact subsurface groundwater flow in ways that are not accounted for in traditional methods of computing sustainable yields for near shore aquifers: where buried confining formations extend to depths well below sea level, higher elevation recharge is being intercepted and diverted to deep submarine groundwater discharge well below depths that are typically investigated or quantified. We will provide a summary of the recent geophysical survey results along with a revised conceptual model for groundwater circulation within volcanic ocean islands.

  1. Wire-line logging analysis of the 2007 JOGMEC/NRCan/Aurora Mallik gas hydrate production test well

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Takayama, T.; Nakamizu, M.; Yamamoto, K. [Japan Oil, Gas and Metals National Corp., Mihama-ku, Chiba (Japan); Dallimore, S.; Mwenifumbo, J.; Wright, F. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Kurihara, M.; Sato, A. [Japan Oil Engineering Co., Chuo-ku, Tokyo (Japan); Al-Jubori, A. [Schlumberger Canada Ltd., Calgary, AB (Canada)


    Japan Oil, Gas and Metals National Corporation and Natural Resources Canada performed a full scale production test in the Mallik field, in Canada's Mackenzie Delta in April, 2007 in order to evaluate the productivity of methane hydrate (MH) by the depressurization method. The program involved an extensive wire-line logging program to evaluate reservoir properties; determine production/water injection intervals; evaluate cement bonding; and, interpret MH dissociation behavior throughout the production. The paper presented a review of the extensive wire-line logging program. It showed the role and workflow of wire-line logging applied in the production well. The well log evaluation for MH bearing zone was the primary focus of the paper. The paper discussed the objectives of the program as well as tools used as part of the study, including several new open hole wire-line logging tools such as magnetic resonance scanner, Rt Scanner, sonic scanner, as well as other advanced logging tools used to obtain data on the occurrence of MH, lithology, MH pore saturation, porosity and permeability. Perforation intervals of the production and water injection zones were selected using a multidisciplinary approach. Candidate test intervals considering lithology, MH pore saturation, initial effective permeability and absolute permeability were identified based on the results of geological interpretation and open hole logging analysis. Reservoir layer models were built to allow for reservoir numerical simulations for several perforation scenarios. Using the results of well log analysis, reservoir numerical simulation, and consideration of operational constraints, a MH bearing formation from 1093 to 1105 mKB was selected for 2007 testing. Three zones were selected for injection of produced water. It was concluded that at the perforation interval of the MH bearing formation (1093-1105 mKB) a selective dissociation was observed in the lateral direction. 20 refs., 3 tabs., 9 figs.

  2. Geochemical Arrays at Woolsey Mound Seafloor Observatory (United States)

    Sleeper, K.; Wilson, R. M.; Chanton, J.; Lapham, L.; Farr, N.; Camilli, R.; Martens, C. S.; Pontbriand, C.


    A suite of geochemical monitoring arrays has been developed for the Woolsey Mound Seafloor Observatory in the northern Gulf of Mexico to evaluate the oceanographic and tectonic forcing factors on the formation and stability of gas hydrates. These arrays are designed to collect sustained, time-series data of chemical concentrations, gradients and fluxes from the subsurface to the seafloor and into the near bottom water column. A Pore Fluid Array provides time-series measurements of methane, sulfate and salinity in subsurface pore waters to evaluate microbial activity, hydrate formation and/or hydrate dissociation. A Chimney Sampler Array collects in situ chemical and physical readings at the benthic boundary. The array is designed around a vertical cylinder with a known volume and washout rate for measuring chemical gradients and flux at the seafloor. The Benthic Boundary Layer Array extends into the water column with a package of sensors in a node close to the seafloor and a similar node 20 m above the seafloor to evaluate upward, downward and transversely advecting fluids. The three arrays can be used in concert to evaluate a release of methane by the dissociation of gas hydrates: the Pore Fluid Array identifies the breakdown of gas hydrates in the subsurface, the Chimney Array determines the rate of flux at the seafloor and the Benthic Boundary Layer Array evaluates the fate of the release in the water column. Combining the data from the geochemical arrays with output from the geophysical arrays provides key information to evaluate the specific and relative importance of tectonic and oceanographic triggers for hydrate dissociation. New probes and deployment platforms have been developed for the installation and maintenance of the arrays and new systems are in place and under development for the recovery of the data. Generally, the complete array or its components have to be recovered to download the data. However, this summer 2011, a new optic modem system was

  3. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)


    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  4. Hydraulic rotary drill

    Energy Technology Data Exchange (ETDEWEB)

    Kacy, J.; Pochaba, K.


    Presents a novel patented hydraulic drill for use in soft and medium hard rock. Indicates its numerous advantages resulting mainly from the driving method employing water/oil emulsion or hydraulic systems of heading machines or cutter loaders in mines. Provides technical data of the new drill and compares it with the PWR and OWRO drills used until now. The drill has a feed pressure of 15-25 bar, maximum rotation (at 25 bar pressure) of 1400 per minute, maximum moment of inertia 200 Nm, working medium - 5% emulsion, hydraulic oil, weight - 14 kg. Describes applications of the drill which has been approved for operation in environments of the IVth methane hazard category.

  5. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.


    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  6. Drill-motor holding fixture (United States)

    Chartier, E. N.; Culp, L. N.


    Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

  7. Drilling technologies in hydrogeological survey


    Vorlíček, Petr


    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  8. Seafloor Topographic Analysis in Staged Ocean Resource Exploration (United States)

    Ikeda, M.; Okawa, M.; Osawa, K.; Kadoshima, K.; Asakawa, E.; Sumi, T.


    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-expense and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We designed a method to focus mineral deposit prospective area in multi-stages (the regional survey, semi-detail survey and detail survey) by extracted topographic features of some well-known seafloor massive sulfide deposits from seafloor topographic analysis using seafloor topographic data acquired by the bathymetric survey. We applied this procedure to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. In Addition, we tried to create a three-dimensional model of seafloor topography by SfM (Structure from Motion) technique using multiple image data of Chimney distributed around well-known seafloor massive sulfide deposit taken with Hi-Vision camera mounted on ROV in detail survey such as geophysical exploration. Topographic features of Chimney was extracted by measuring created three-dimensional model. As the result, it was possible to estimate shape of seafloor sulfide such as Chimney to be mined by three-dimensional model created from image data taken with camera mounted on ROV. In this presentation, we will discuss about focusing mineral deposit prospective area in multi-stages by seafloor topographic analysis using seafloor topographic data in exploration system for seafloor massive sulfide deposit and also discuss about three-dimensional model of seafloor topography created from seafloor image data taken with ROV.

  9. Exploring Subseafloor Life with the Integrated Ocean Drilling Program

    Directory of Open Access Journals (Sweden)

    Patricia Sobecky


    Full Text Available Deep drilling of marine sediments and igneous crust offers a unique opportunity to explore how life persists and evolves in the Earth’s deepest subsurface ecosystems. Resource availability deep beneath the seafloor may impose constraints on microbial growth and dispersal patterns that differ greatly from those in the surface world. Processes that mediate microbial evolution and diversity may also be very different in these habitats, which approach and probably passthe extreme limits of life. Communities in parts of the deep subsurface may resemble primordial microbial ecosystems, and may serve as analogues of life on other planetary bodies, such as Mars or Europa, that have or once had water.

  10. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)


    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  11. 75 FR 54912 - Drill Pipe and Drill Collars From China (United States)


    ... COMMISSION Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... the Act (19 U.S.C. 1671b) are being provided to manufacturers, producers, or exporters in China of...

  12. 75 FR 10501 - Drill Pipe and Drill Collars from China (United States)


    ... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... Government of China.\\2\\ \\1\\ The record is defined in sec. 207.2(f) of the Commission's Rules of Practice and...

  13. Subsurface drill string (United States)

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID


    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  14. Drill pipe protector development

    Energy Technology Data Exchange (ETDEWEB)

    Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others


    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  15. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library


    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...


    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Fowley, M.


    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  17. Modeling pellet impact drilling process (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.


    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  18. 4.5 Years of Seafloor Uplift in Middle Valley, Juan de Fuca Ridge: Modeling a Source Mechanism (United States)

    Inderbitzen, K. E.; Becker, K.; Davis, E. E.


    Currently, in-situ seafloor and basement pressures are continuously monitored and recorded by an ODP subseafloor hydrogeological observatory (CORK) located in Middle Valley, Juan de Fuca Ridge. Hole 857D was drilled in 1991 in thickly sedimented crust to a depth of 936 mbsf and instrumented with an original CORK that was replaced in 1996. A small hydrothermal field consisting of two isolated chimneys and several diffuse flow sites is located ~800 meters northeast of Hole 857D and has been visited periodically by submersible/ROV since 1999. Declining seafloor pressure recorded at 857D showed apparent seafloor uplift over a 4.5 year period, and this is supported by differences in wellhead depths measured by the submersible Alvin. The rate of uplift is ~0.6 m/yr over its duration (2005-2010) and has reduced mean seafloor pressure by ~28 kPa, equivalent to nearly 3 meters of head. This uplift rate is four times the re-inflation rate observed at Axial Seamount following its 1998 eruption. Initially the uplift observed at 857D did not have any observed effect on local high-temperature hydrothermal venting. However operations during 2010 in Middle Valley revealed not only distinct changes at the hydrothermal field to the northeast, but also a shutdown of high-temperature venting to the north of 857D. A high-resolution pressure data logger was deployed at 857D in June 2010, providing a concurrent dataset for seafloor and basement pressures in addition to the downhole logger. We will present new results from Middle Valley including the latest downloaded data, and show results of numerical modeling that help constrain the potential source mechanism for physical uplift in this region.


    Energy Technology Data Exchange (ETDEWEB)

    George L. Scott III


    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and

  20. Offshore drilling effects in Brazilian SE marine sediments: a meta-analytical approach. (United States)

    Dore, Marina Pereira; Farias, Cássia; Hamacher, Cláudia


    The exploration and production of oil and gas reserves often result to drill cutting accumulations on the seafloor adjacent to drill locations. In this study, the detection of drilling influence on marine sediments was performed by meta-analytical comparison between data from pre- and post-drilling surveys undertaken in offshore Campos Basin, southeast of Brazil. Besides this overall appraisal on the geochemical variables, a multivariate assessment, considering only the post-drilling data, was performed. Among the variables, fines content, carbonates, total organic carbon, barium, chromium, copper, iron, manganese, nickel, lead, vanadium, zinc, and total petroleum hydrocarbons, only barium, copper, and hydrocarbons were related to drilling impacts. In relation to the point of discharge, relative elevated levels in the post-drilling campaigns were observed preferentially up to 500 m in the northeast and southwest directions, associated to the Brazil Current-predominant direction. Other distributed concentrations in the surroundings seem to indicate the dilution and dispersion of drilling waste promoted by meteoceanographic factors.

  1. Reservoir Characterisation Using Wireline Evaluation And Poststack Seismic Inversion: A Lancelot Field, Southern North Sea, U.K. case study

    International Nuclear Information System (INIS)

    Mojisola, A.


    Improved reservoir characterization has been a major factor in the worldwide gain in oil recovery efficiencies over the last decades. This is because inadequate reservoir characterization, usually due to lack of appropriate tools can cause significant errors in petroleum reservoir performance prediction thereby preventing the full potential of a reservoir from being achieved. This work employs the use of wireline logs and the seismic inversion process to characterize the reservoirs in the Lancelot field. An initial reservoir analysis was carried out using the wireline evaluation. Five potential reservoirs were delineated. Thereafter reservoir parameters such as porosity, water saturation, water saturation, net-to-gross ratio of the delineated reservoirs were estimated. The seismic inversion process depends on four factors; the wavelet, the tie between the well logs and the seismic, the inversion algorithm employed and the initial model. Therefore before the main inversion, parameter tests were carried out to determine the best wavelet extraction algorithm and best inversion algorithm suited for he available data. A wavelet with a length of 70ms and a taper length of 20ms gave a close approximation of a zero phase wavelet with a stable spectrum and high dominant frequency. Based on quantitative assessment of the available inversion algorithms, the constrained blocky inversion produced the best result. Acoustic impedance, velocity and porosity sections were produced from the inverted input seismic. By incorporating geological and wireline evaluation results as constraints, the output from the inversion process were analysed. The result shows lateral variation in the reservoirs qualities of the delineated reservoirs. The seismic inversion process confirmed the Rotliegend sandstone as a prospect with a range of porosity predicted from the inversion

  2. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer


    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  3. Petrographic drill cutting analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thom, R. [Core Laboratories Canada Ltd., Calgary, AB (Canada)


    Some of the diagnostic tools which are available to determine valuable reservoir rock information from drill cuttings were described. For example, valuable information can be obtained from drill cuttings and petrographic thin sections regarding mineralogy, facies, pore systems, reservoir quality and fluid sensitivity. This paper described the best ways to pick representative drill cuttings from vials. Colour and texture are among the most important determining factors. New guidelines from the Alberta Energy and Utilities Board have made it possible to obtain thin sections from drill cuttings from a competitor`s wells. Up to 12 chips from each vial can be removed for thin section scanning electron microscopy (SEM) analysis. X-ray diffraction (XRD) analysis of drill chips is not recommended because it is usually not possible to obtain enough sample material. Another powerful tool to investigate and characterize pore systems is the Mercury Injection Capillary Pressure technique. This technique makes it possible to characterize the pore system and to determine pore throat size distribution, permeability/porosity, producible reserves, capillary pressure, effective versus non-effective porosity, irreducible water saturation, and height above free water. The most reliable and valuable information is obtained from sandstone and carbonate aggregate chips in which the pore system is preserved. It was also noted that core porosity can be empirically derived if a trend line is constructed using sections prepared from an equivalent cored zone. Permeability can be derived in much the same way. 9 figs.

  4. Incentive drilling contracts

    International Nuclear Information System (INIS)

    Moomjian, C.A. Jr.


    Incentive drilling contracts historically have been based on the footage and turnkey concepts. Because these concepts have not been used widely in the international and offshore arenas, this paper discusses other innovative approaches to incentive contracts. Case studies of recently completed or current international and offshore contracts are presented to describe incentive projects based on a performance bonus (Case 1), lump sum per well (Case 2), target time and cap for a specified hole section (Case 3), and per-well target time (Case 4). This paper concludes with a review and comparison of the case studies and a general discussion of factors that produce successful innovative incentive programs that enhance drilling efficiency

  5. Cost assessment for abyssal seafloor waste isolation (United States)

    Jin, Di; Kite-Powell, Hauke L.


    We develop an integrated model for estimating the internal cost of abyssal seafloor waste isolation. The model captures the major economic, engineering, geographic and social factors that influence the management cost for sewage sludge and municipal incinerator ash. Considering five representative metropolitan areas and five proposed abyssal study sites, we apply this model to produce cost estimates for four deep-ocean waste delivery system concepts. The results show that the unit cost depends primarily on regional waste volume, the marine delivery system and transportation distance. Based on available data, the abyssal ocean option may be competitive with present land-based disposal costs in New York City. The option is less competitive in other metropolitan areas.

  6. Coupled seismoacoustic modes on the seafloor (United States)

    Butler, Rhett; Lomnitz, Cinna


    Wave-to-wave coupling arises when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface [Ewing et al., 1957]. A distinctive signal is observed at the Hawaii-2 Observatory for purely oceanic paths from earthquakes on the Blanco and Mendocino Fracture Zones, off the coast of North America. The signal appears to be a composite of undispersed higher Rayleigh modes propagating along the ocean floor both in the sediments and in the water. The new coupled modes are identified by their frequency composition and their phase and group velocities. Seismoacoustic coupling at the seafloor is conditioned on (a) the presence of a low-velocity interface at the ocean floor, and (b) the wavelength of the Rayleigh component being shorter than the depth of the water layer.

  7. Measurement Space Drill Support (United States)


    calendar within the CoBP SharePoint portal but it is not updated or maintained. The center Ops are notified if they are hosting the event since a...Recommendation: It is recommended that the center operations office within TRAC maintain the SharePoint calendar with upcoming MS drills and notify other

  8. Mars Science Laboratory Drill (United States)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt


    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  9. Gel Evolution in Oil Based Drilling Fluids


    Sandvold, Ida


    Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of new drilling techniques such as long deviated sections and drilling in ultra-deep waters, the standard of required performance of the drilling fluids continue to increase. Narrow pressure margins and low tolerance for barite sag requires accurate prediction of the gel evolution in drilling fluids. Increased knowledge of how dri...

  10. Drilling subsurface wellbores with cutting structures (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona


    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  11. Method of drilling with magnetorheological fluid

    NARCIS (Netherlands)

    Zitha, P.L.J.


    A method of drilling a bore hole into a stratum, wherein via the drill hole drilling fluid is introduced and fed to the drill head. In order to avoid dilution or leak-off of the drilling fluid the same is in accordance with the invention a magnetorheological drilling fluid, and when an undesirable

  12. EX1504L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  13. EX0909L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  14. EX1103L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  15. EX1404L3 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  16. EX1502L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  17. EX1502L3 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  18. EX1503L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  19. EX1205L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  20. EX0909L4 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  1. EX1004L4 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  2. EX1004L3 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  3. EX1004L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  4. EX1004L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  5. EX1504L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  6. EX1605L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  7. EX1205L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  8. Assessment of impact on seafloor features in INDEX area

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Observations on seafloor features from subbottom profiling and seabed photography data show that the undisturbed and natural conditions before the benthic disturbance undergo a substantial change after operation of the disturber. The effects can...

  9. EX1402L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  10. EX1402L3 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  11. EX1404L1 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  12. EX1504L4 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  13. EX1304L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  14. EX1202L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  15. EX1202L3 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  16. EX1605L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  17. EX1103L2 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  18. EX1504L3 Seafloor Mapping Products Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of multibeam survey mapping products generated by the Okeanos Explorer seafloor mapping team on data collected on NOAA Ship Okeanos Explorer during...

  19. Fluorescence sensing system for seafloor massive sulfides (United States)

    Yamazaki, T.; Okanishi, D.; Nagano, H.; Nakatani, N.; Arai, R.


    Seafloor Massive Sulfides (SMS) including Au, Ag, Cu, Zn, Pb and some rare earth elements exist in exclusive economic zones (EEZ) of Pacific island countries and the ones in Japan’s EEZ are the largest and very much attractive. However, there are many problems to be solved for the development. The most important point is the location of ore dressing. If SMS were dressed in the water, energy and cost of transport would drastically decrease. Therefore, fundamental ore dressing method which is an optical measurement, fluorescence sensing system in water is studied. It seems to be able to apply to exploration and mining. No sun light means that ideal optical measurements are possible under artificial one in deep water. However, quite less studies have been done for the optical measurements because general sensing methods at deep water are sound and supersonic waves. Using a light system, the light attenuation and fluorescence characteristics in water are studied. From this study, it is revealed that fluorescence sensing system is applicable and useful for the development of SMS.

  20. Ubiquity of microplastics in coastal seafloor sediments. (United States)

    Ling, S D; Sinclair, M; Levi, C J; Reeves, S E; Edgar, G J


    Microplastic pollutants occur in marine environments globally, however estimates of seafloor concentrations are rare. Here we apply a novel method to quantify size-graded (0.038-4.0mm diam.) concentrations of plastics in marine sediments from 42 coastal and estuarine sites spanning pollution gradients across south-eastern Australia. Acid digestion/density separation revealed 9552 individual microplastics from 2.84l of sediment across all samples; equating to a regional average of 3.4 microplastics·ml -1 sediment. Microplastics occurred as filaments (84% of total) and particle forms (16% of total). Positive correlations between microplastic filaments and wave exposure, and microplastic particles with finer sediments, indicate hydrological/sediment-matrix properties are important for deposition/retention. Contrary to expectations, positive relationships were not evident between microplastics and other pollutants (heavy metals/sewage), nor were negative relationships with neighbouring reef biota detected. Rather, microplastics were ubiquitous across sampling sites. Positive associations with some faunal-elements (i.e. invertebrate species richness) nevertheless suggest high potential for microplastic ingestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Model-based acoustic remote sensing of seafloor characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    De, Ch.; Chakraborty, B.

    =UTF-8 3868 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011 Model-Based Acoustic Remote Sensing of Seafloor Characteristics Chanchal De and Bishwajit Chakraborty, Member, IEEE Abstract—The characterization... of the estimated values of seafloor roughness spectrum parameters with the values of sediment mean grain size are compared with published information available in the literature. Index Terms—Acoustic remote sensing, backscatter model, echo envelope, inversion, mean...

  2. Converged Wireless and Wireline Access System Based on Optical Phase Modulation for Both Radio-Over-Fiber and Baseband Signals

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jensen, Jesper Bevensee; Zibar, Darko


    -to-zero differential quaternary phase-shift keyed signal and a 5.25-GHz RoF carrying 1.25 Gb/s, enables the use of identical optical receiver structures. The experimental results show that both receivers achieve error-free operation after 80-km standard single-mode fiber transmission. The proposed scheme has potential......We propose and experimentally investigate a scheme for transmitting a phase-modulated radio-over-fiber (RoF) signal along an existing fiber infrastructure without degradation of the existing baseband signal. Optical phase encoding of both signals, namely a baseband 21.4-Gb/s nonreturn...... applications for converged wireless and wireline optical access networks....

  3. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun


    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  4. 3D Marine MT Modeling for a Topographic Seafloor (United States)

    Zhang, B., Sr.; Yin, C.; Ren, X.; Liu, Y.; Huang, X.; Liu, L.


    As an effective geophysical tool, marine magnetotelluric (MMT) exploration has been widely used in offshore oil and gas exploration. Accordingly, the MMT forward modelling has made big progress. However, most of the researches are focused on a flat seafloor. In this paper, we present a 3D finite-element (FE) algorithm for marine MT forward modelling based on unstructured grids that can accurately model the MMT responses for a topographic seafloor. The boundary value problem for the forward modelling is described by an Helmholtz equation together with the boundary conditions derived by assuming the electrical polarizations respectively along the x- and y-direction on the top surface of the modelling domain. Applying the Galerkin method to the boundary value problem and substituting the unstructured finite-element vector shape function into the equation, we derive the final large linear system for the two polarizations, from which the EM fields is obtained for the calculation of impedance apparent resistivities and phases. To verify the effectiveness of our algorithm, we compare our modelling results with those by Key's (2013) 2D marine MT open source code of Scripps Institution of Oceanography (Figure 1). From Figure 1, one sees that the two agree well, implying that our 3D modelling method based unstructured FE is an effective modelling tool for topographic seafloor. From the MMT modelling responses for other topographic seafloor models (not shown here), we further observe that 1) the apparent resistivities have a similar profile pattern to the topography at the seafloor; 2) at the edges of the topography, there exist sharp changes; 3) the seafloor topography may dominate the responses from the abnormal bodies under the seafloor. This paper is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900)

  5. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.


    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  6. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins (United States)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.


    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  7. An Experiment on GPS/A Seafloor Positioning in the Central Part of Kumano-nada, Central Japan (United States)

    Fujimoto, H.; Sweeney, A.; Miura, S.; Kido, M.; Osada, Y.


    Kumano-nada, northeast of Kii Peninsula in the central part of Japan, is a seismogenic zone of the M-8 class Tonankai earthquakes that occurred repeatedly at an interval of about 100 years. The MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) initiated a 5-year program in 2003 for seafloor observations in and around Kumano-nada. Nagoya and Tohoku Universities initiated experiments on GPS/A seafloor positioning to monitor crustal deformation in the subduction zone with a focus on investigation of the effect of sound velocity structure in the ocean on seafloor positioning (e.g., Tadokoro et al., this meeting). Tohoku group deployed five precision acoustic transponders (PXPs) jointly developed with Scripps Institution of Oceanography in the central part of Kumano-nada at depths of about 2,000m. The deployed PXPs A, B, C, and D form a diamond on the seafloor, and PXPs C, D, and E form a triangle. Although three typhoons were in the way of our 12-day cruise in August this year, we carried out GPS/A observation for several days. After an observation for locating the precise position of each PXP, we tried to keep the buoy near the center of the diamond or the triangle. The vessel held the position within 20-30m from the center, and the buoy_fs position was kept with 100m from the center. Kinematic GPS positioning is now under processing with GEONET data observed in Kii Peninsula. We also tried monitoring the sound velocity structure with 3 sets of inverted echo sounders (IESs) deployed near the PXPs C, D, and E. The IESs can monitor temporal and spatial variation in the sound velocity structure in the triangle array of PXPs. We plan to carry out the second GPS/A observation in November. The result is worthy of notice. Strange earthquakes of magnitude 6.9, 7.4, and 6.4 occurred on the nearest Nankai Trough axis on September 5-7, 2004. Co-seismic crustal deformation observed by the GEONET was about 4 cm near the coast of Kii Peninsula. The

  8. Mapping the seafloor, with end users in mind (United States)

    Lecours, V.


    In the last 25 years, as more seafloor data and user-friendly analysis tools have become available, the amount and diversity of applications making use of such data have considerably increased. While limitations in the utility of the data caused by the data collection and processing methods may be quite apparent to experts, such limitations may be less obvious to users with different background and expertise. For instance, it has been acknowledged many times in the literature that seafloor data are often treated as true representations of the seafloor rather that as models. This lack of understanding brings hidden dangers to unsuspecting end users misusing data, which may result in misleading outcomes/conclusions for different applications like marine geomorphology, marine habitat mapping, marine conservation, and management of marine resources. In this paper, I identify common practices of both data producers and users that can prevent a proper use of seafloor data. Using seafloor data from a variety of locations and sources, I demonstrate how the choice of soundings interpolator, elements of data quality, scale alterations, and backscatter representation can impact applications. I show how these elements propagate throughout analyses and directly influence outcomes, sometimes in predictable ways (e.g. in marine geomorphology) and sometimes in unpredictable ways (e.g. in marine habitat mapping). Regardless of the final use of seafloor data, better and more transparent error and uncertainty quantification and representation should be implemented at the data collection, processing, and analysis levels. Complete metadata should always be documented, with elements related to data provenance, survey, scale, error and uncertainty quantification, and any other information relevant to further use of seafloor data, in order to create a community of users aware of data quality and limitations. As the number of applications using seafloor data increases, some of the

  9. Seasonal seafloor oxygen dynamics on the Romanian Black Sea Shelf (United States)

    Friedrich, Jana; Balan, Sorin; van Beusekom, Justus E.; Naderipour, Celine; Secrieru, Dan


    The Black Sea suffers from the combined effects of anthropogenic eutrophication, overfishing and climate forcing. As a result, its broad and shallow western shelf in particular has a history of ecosystem collapse during the 1970s to the mid-1990s, which followed a slow recovery since the late 1990s due to reduction in anthropogenic pressures. Because of eutrophication, increased oxygen consumption caused recurrent widespread seasonal seafloor hypoxia in a system that is already naturally prone to decrease in bottom water oxygen during summer. On the shelf, reduced bottom water ventilation is a strong natural driver for seafloor hypoxia, due to strong seasonal thermohaline stratification as a result of freshwater inflow from the large rivers Danube, Dniester and Dniepro. To understand the present seasonal dynamics of seafloor oxygen on the Romanian shelf, a seafloor mooring was deployed in 2010 and 2016 during summer and autumn, for three and six months, respectively. The mooring, consisting of an Aanderaa SEAGUARD sensor package attached to an acoustic release, was deployed in 30 m water depth in the Portita region - north of Constanta and south of the Danube River Mouths. The in-situ time series of seafloor oxygen, temperature, turbidity, salinity, and current velocities and directions, combined with CTD profiles, benthic oxygen consumption rates based on ex-situ incubations of sediment cores, and pelagic oxygen respiration rates provide a set of information that allows biological and hydrophysical controls on seafloor oxygen to be identified. We observed the built-up of the thermohaline stratification during late spring and early summer, accompanied by steady decrease in bottom water oxygen. Superimposed settling of particles to the seafloor eventually led to the formation of seafloor hypoxia in late summer. Anticyclonic currents resemble diurnal tidal cycles, albeit low in magnitude. The effects of a strong rainstorm and a Danube flood event in late September

  10. Quantitative characterization of abyssal seafloor with transit multibeam backscatter data (United States)

    Pockalny, R. A.; Ferrini, V. L.


    The expanding volume of deep-water multibeam echosounder data provides emerging opportunities for the improved characterization of the abyssal seafloor. Nearly 500 cruises criss-cross the oceans with modern wide-swath multibeam systems, and these cruise tracks have imaged a variety of morphologic, tectonic and magmatic environments. The qualitative analysis of the seafloor backscatter data strongly suggests a local and regional variability that correlates with sediment thickness, sediment type and/or depositional environment. We present our initial attempts to develop a method that quantifies this observed seafloor backscatter variability and to explore the causes and potential implications of this variability. Our approach is rooted in the Angular Range Analysis methodology, which utilizes changes in backscatter amplitude observed as a function of grazing angle, to characterize the seafloor. The primary difference in our approach is that we do not invert for geo-acoustical parameters, but rather explores empirical relationships between geological observations and stacked slope and y-intercept values. In addition, we also include the mean and the variance of detrended backscatter measurements. Our initial results indicate intriguing relationships between backscatter parameters and the CaCO3 content of surface sediments. Seafloor regions reported to have high manganese nodule concentrations also tend to have characteristic trends in backscatter parameters. We will present these regional correlations as well as some preliminary statistical analyses of the backscatter parameters and key environmental factors.

  11. Studying Fin Whales with Seafloor Seismic Networks (United States)

    Wilcock, W. S.; Soule, D. C.; Weirathmueller, M.; Thomson, R.


    context of swimming behavior and net migration. Because the fin whale calls are repetitive, they are very amendable to the application of seismic correlation techniques and the double difference location method. While the typical uncertainty for an automatic location within the network is ~500 m, successive calls can be located relative to each other by the double difference method with a precision of ~20 m, which is similar to the length of the whale. As storage capabilities of seafloor instruments increase, OBSs could be made even more useful for marine mammal studies by expanding their upper frequency limit, either by increasing the sampling rate of the hydrophone channel or incorporating a compact standalone hydrophone package on the OBS frame.

  12. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.


    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been a...

  13. Introduction to the special issue on submarine geohazard records and potential seafloor instability

    Directory of Open Access Journals (Sweden)

    Song-Chuen Chen Jia-Jyun Dong


    Full Text Available Submarine landslides frequently occur in passive continental margins or active margins (Hampton et al. 1996; Wynn et al. 2000; Mienert et al. 2002; Korup et al. 2007; Twichell et al. 2009; Cukur et al. 2016. Submarine landslides have been studied extensively not only for scientific research but also for submarine geohazards. Submarine landslides could jeopardize marine infrastructures, such as offshore drilling platforms or submarine telecommunication cables, and could even trigger disastrous tsunamis (Bondevik et al. 2005; Harbitz et al. 2006; Hornbach et al. 2007, 2008; Hsu et al. 2008; Su et al. 2012; Tappin et al. 2014; Li et al. 2015. For instance, one disastrous tsunami hitting the coastal area of southwestern Taiwan in 1781 or 1782 was reported (Chen 1830; Hsu 1983; the tsunami event was probably generated by submarine landslides in the offshore area of southwestern Taiwan (Li et al. 2015. Moreover, several submarine landslides triggered by the 2006 Pingtung earthquake have induced turbidity currents off southwest Taiwan and destroyed about 14 submarine telecommunication cables off SW Taiwan (Hsu et al. 2008. The area of southwest Taiwan currently has a dense population (more than 3 million people in total, one deep-water Kaohsiung Port, several tanks of liquefied natural gas and a nuclear power plant on the coast (Fig. 1. Numerous submarine telecommunication cables exist off SW Taiwan. If a considerable tsunami event would hit again the costal area of SW Taiwan, the damage could very serious. Likewise, there are two nuclear power plants on the coast of northern Taiwan (Fig. 2, and the population in northern Taiwan has more than 10 million people. Submarine telecommunication cables also exist off northern Taiwan. In any case, it is important to understand the status of seafloor stability in the offshore areas of SW and NE Taiwan. For that, this special issue of submarine geohazard records and potential seafloor instability is aimed to

  14. 30 CFR 33.34 - Drilling test. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  15. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)


    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  16. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems (United States)

    Rouxel, O. J.


    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  17. Ultrasonic rotary-hammer drill (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)


    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  18. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.


    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  19. Surgical drilling: design and performance of an improved drill. (United States)

    Saha, S; Pal, S; Albright, J A


    The majority of twist drills used in orthopaedics are very similar to chisel pointed metal drilling bits. Modifications usually observed are reduction of the point angle to 90 deg and sometimes grinding of the entire cutting lip at 0 deg rake angle, which appeared to have been made arbitrarily without any advantage. We have attempted to design a surgical drill bit with the objective of minimization of the drilling thrust and temperature and effective removal of bone chips. Our results showed that the presence of the chisel edge was mainly responsible for increasing the thrust force and the temperature developed. The effects of a constant feed rate and thrust on the peak temperature were also examined. The combined effect of the helix and the point angles on the rake angle which in turn determines the cutting efficiency was analyzed for various types of surgical bits. Based on our results and previously published data from the literature an optimized drill bit was designed with a split point, a point angle of 118 deg, a parabolic flute, and a helix angle of 36 deg and its performance was compared with other existing surgical drill bits. For drilling in compact bone, the new design decreased the thrust load by 45 percent an the peak temperature rise by 41 percent. Similar improvements were also recorded for drilling bone cement. The time of drilling a bone cortex was also significantly reduced and "walking" on the curved bone surface was eliminated and dimensional tolerance on hole sizes was improved. The new design is likely to reduce the time of surgery and also minimize the tissue damage.

  20. GeoSEA: Geodetic Earthquake Observatory on the Seafloor (United States)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin


    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  1. Seafloor observatories a new vision of the Earth from the abyss

    CERN Document Server

    Favali, Paolo; De Santis, Angelo


    This book addresses the important and apparently simple question: ""How can continuous and reliable monitoring at the seafloor by means of seafloor observatories extend exploration and improve knowledge of our planet?""

  2. Acoustic characterization of seafloor sediment employing a hybrid method of neural network architecture and fuzzy algorithm

    Digital Repository Service at National Institute of Oceanography (India)

    De, C.; Chakraborty, B.

    Seafloor sediment is characterized acoustically in the western continental shelf of India using the echo features extracted from normal incidence single-beam echo sounder backscatter returns at 33 and 210 kHz. The seafloor sediment characterization...

  3. Seafloor classification using echo- waveforms: A method employing hybrid neural network architecture

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; DeSouza, C.; Das, P.

    This letter presents seafloor classification study results of a hybrid artificial neural network architecture known as learning vector quantization. Single beam echo-sounding backscatter waveform data from three different seafloors of the western...

  4. Seafloor classification using acoustic backscatter echo-waveform - Artificial neural network applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.

    Seafloor classification using echo-waveform data acquired through echo-sounding systems is well known method [1]. Understanding of the seafloor characteristics is important, however, requires suitable classifications technique. In general, seafloor..., scattering of sound signal is generally controlled by these factors, and multi-parameter scattering models based seafloor classification using echo waveform data were attempted. However, such model based techniques are data independent and may not allow...

  5. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.


    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  6. Mapping beneath the seafloor: AUV sub-bottom profilers, sediment thickness and resource potential (United States)

    Yeo, I. A.; Vardy, M. E.; Holwell, D.; North, L.; Murton, B. J.


    Most AUV seafloor exploration focuses primarily on collecting high-resolution bathymetric and backscatter data in order to identify and map features of interest. Sub-bottom profiler data provides an essential third dimension that can illuminate not only the thickness of overlying sediment packets, but also the scale and tectonic setting of surface features. In this study we present results of high-resolution sub-bottom profiler surveys of Tropic Seamount, a 3000m tall, 40km wide, flat-topped gyot located 400km south of the Canary Islands. We show how the application of AUV derived sub-bottom profiler data can be used to assess the thickness and extent of ferromanganese crusts covering the summit and underlying thin pelagic sediment cover. Bespoke chirp signals at two altitudes were used to increase the likelihood of resolving thin (tens of cm) layers of crust. Drill cores were obtained from an ROV and used to constrain and calibrate the profiler data. The cores show variable crustal thicknesses of zero to 14 cm of FeMn crustal cover over a partially phosphoritised, vuggy, often poorly lithified limestone basement. Initial measurements of sound velocities suggest differences between the limestone basement and the crust of only a few hundred meters per second. Sub-cores, drilled from large samples collected during the cruise were analysed in the NOC Acoustic Pulse Tube and with X-Ray Computer Tomography to better understand how variations in lithology, crustal thickness, surface texture and internal structure affect the returning geoacoustic signal. We discuss the pros and cons of different surveying patterns, altitudes and chirps, the relative usefulness of sub-bottom profiler data in different environments, and the value added by sub-bottom profiler surveying as opposed to bathymetric surveying alone.

  7. Slippiń and Slidiń: Capturing the Earth in Motion below the Seafloor (United States)

    Strasser, M.


    Since the beginning of ocean drilling, sampling and dating seismically imaged tectono-stratigraphic sections and recovering rocks from active faults of marine plate-boundary systems has advanced our understanding of subduction zone structures and evolution. It further evidenced the dynamic nature of deformation, fluid flow and fluxes within such systems. With the advancement in developing borehole observatories, monitoring data is increasingly becoming available to analyze and quantify the dynamic processes, such as those leading to and resulting from earthquakes, slides and tsunamis. Combined with knowledge gained from seismological studies, IODP drilling efforts at Costa Rica, Hikurangi, Japan Trench, Nankai and Sumatra margins contribute invaluable observatory data and core samples, the analyses and derived research results of which are fundamentally changing the way fault slip behavior, seafloor instability and tsunamigenesis are understood. Short instrumental records, however, limit our perspective of maximum magnitude and recurrence of such submarine geohazard processes. Examining past events expressed as sedimentary or geochemical perturbations preserved in the marine record provides IODP the key to address this challenge: Recent efforts included sampling mass-transport deposits to study causes and consequences of submarine slides. For the Nankai accretionary margin, we documented the submarine landslide history spanning ˜2.5 million years. The modes and scales of slides were linked to the different morphotectonic settings in which they occurred. The timing of major slides hints at climate preconditioning for sediment instability and reveals that margin destabilization does not occur systematically during all megathrust earthquakes. However, new observation after recent earthquakes and studies using lakes as model basins discovered a new mode of dynamic earthquake ground motion response for surficial (export the deep sea.

  8. Acoustical properties of drill strings

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.


    The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

  9. Tectonic reorganization in the Indian Ocean: Evidences from seafloor crenulations

    Digital Repository Service at National Institute of Oceanography (India)

    Kessarkar, P.M.

    these lineaments, oriented in N-S, NW-SE and E-W directions, vary in time and space. A sharp change in nature and orientation of these seafloor lineaments, as well as of magnetic anomalies, occurs along 73~'E long., which appears to act as contact between older...

  10. Southern Ocean Predicted Seafloor Topography Poster - MGG9 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36 by 48 inch full color poster is MGG Report 9. In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships...

  11. Quantification of Organic richness through wireline logs: a case study of Roseneath shale formation, Cooper basin, Australia (United States)

    Ahmad, Maqsood; Iqbal, Omer; Kadir, Askury Abd


    The late Carboniferous-Middle Triassic, intracratonic Cooper basin in northeastern South Australia and southwestern Queensland is Australia's foremost onshore hydrocarbon producing region. The basin compromises Permian carbonaceous shale like lacustrine Roseneath and Murteree shale formation which is acting as source and reservoir rock. The source rock can be distinguished from non-source intervals by lower density, higher transit time, higher gamma ray values, higher porosity and resistivity with increasing organic content. In current dissertation we have attempted to compare the different empirical approaches based on density relation and Δ LogR method through three overlays of sonic/resistivity, neutron/resistivity and density/resistivity to quantify Total organic content (TOC) of Permian lacustrine Roseneath shale formation using open hole wireline log data (DEN, GR, CNL, LLD) of Encounter 1 well. The TOC calculated from fourteen density relations at depth interval between 3174.5–3369 meters is averaged 0.56% while TOC from sonic/resistivity, neutron/resistivity and density/resistivity yielded an average value of 3.84%, 3.68%, 4.40%. The TOC from average of three overlay method is yielded to 3.98%. According to geochemical report in PIRSA the Roseneath shale formation has TOC from 1 – 5 wt %.There is unpromising correlations observed for calculated TOC from fourteen density relations and measured TOC on samples. The TOC from average value of three overlays using Δ LogR method showed good correlation with measured TOC on samples.

  12. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations (United States)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.


    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  13. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Wire-line log-based stratigraphy of flood basalts from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Boldreel, Lars O.


    Full Text Available The present study shows that it is possible to use conventional borehole logs to perform a detailed lithological/stratigraphical division of a column of subaerially extruded basalt. A stratigraphical division of the subaerial flood basalts penetrated by the Lopra-1/1A well has been carried out using new wire-line logging data measured in 1996 in the interval 200–2489 m depth. Resistivity data acquired in the interval 200–2178 m depth during 1981 after the initial drilling of the Lopra-1 well have also been incorporated. Eighty-six individual flow units, 18 compound flows and two dolerite dykes have been identified by combining the NPHI porosity, RHOB density, P-, S- and Stonely-sonic transit time, calliper and resistivity logs. Fifty-two sedimentary/tuffaceous layers have also been identified using the CGR and SGR gamma ray and potassium logs in combination with the aforementioned logs. Within the flow units, sonic velocity, density and resistivity are highest in the core where porosity is lowest. This relation is reversed in the uppermost and basal zones of the flow units. The sonic velocity in the core seems to be independent of the thickness of the flow unit. Porous zones seem abundant in some cores and the total section of cores containing porous zones constitutes more than 70% of the thickness of its flow unit, but where porous zones are absent the core makes up only roughly 50% of the thickness of the flow. It is suggested that the flow units with porous cores represent aa flows (88% of the flow units and the others pahoehoe flows (12% of the flow units.The log pattern of the flow units (crust, core and basal zone is similar to log patterns reported from other basalt plateaux. However the patterns in Lopra-1/1A show a larger variation than elsewhere,suggesting that the flow units are more complex vertically than previously thought. Statistical analysis of P-, S- and Stonely-waves, RHOB, NPHI, resistivity, gamma and calliper logs has

  14. Seafloor 2030 - Building a Global Ocean Map through International Collaboration (United States)

    Ferrini, V. L.; Wigley, R. A.; Falconer, R. K. H.; Jakobsson, M.; Allen, G.; Mayer, L. A.; Schmitt, T.; Rovere, M.; Weatherall, P.; Marks, K. M.


    With more than 85% of the ocean floor unmapped, a huge proportion of our planet remains unexplored. Creating a comprehensive map of seafloor bathymetry remains a true global challenge that can only be accomplished through collaboration and partnership between governments, industry, academia, research organizations and non-government organizations. The objective of Seafloor 2030 is to comprehensively map the global ocean floor to resolutions that enable exploration and improved understanding of ocean processes, while informing maritime policy and supporting the management of natural marine resources for a sustainable Blue Economy. Seafloor 2030 is the outcome of the Forum for Future of Ocean Floor Mapping held in Monaco in June 2016, which was held under the auspices of GEBCO and the Nippon Foundation of Japan. GEBCO is the only international organization mandated to map the global ocean floor and is guided by the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission of UNESCO. The task of completely mapping the ocean floor will require new global coordination to ensure that both existing data are identified and that new mapping efforts are coordinated to help efficiently "map the gaps." Fundamental to achieving Seafloor 2030 will be greater access to data, tools and technology, particularly for developing and coastal nations. This includes bathymetric post-processing and analysis software, database technology, computing infrastructure and gridding techniques as well as the latest developments in seafloor mapping methods and emerging crowd-sourced bathymetry initiatives. The key to achieving this global bathymetric map is capacity building and education - including greater coordination between scientific research and industry and the effective engagement of international organizations such as the United Nations.

  15. Linking downhole logging data with geology and drilling /coring operations - Example from Chicxulub Expedition 364. (United States)

    Lofi, Johanna; Smith, Dave; Delahunty, Chris; Le Ber, Erwan; Mellet, Claire; Brun, Laurent; Henry, Gilles; Paris, Jehanne


    Expedition 364 was a joint IODP/ICDP mission specific platform expedition to explore the Chicxulub impact crater buried below the Yucatán continental shelf. In April and May 2016, our Expedition drilled a single borehole at Site M0077A into the crater's peak ring. It allowed recovering 303 excellent quality cores from 505.7 to 1334.7 meters below sea floor and acquiring more than 5.8 km of high resolution open hole logs. Downhole logs are rapidly collected, continuous with depth, and measured in situ; these data are classically interpreted in terms of stratigraphy, lithology, porosity, fluid content, geochemical composition and structure of the formation drilled. Downhole logs also allow assessing borehole quality (eg. shape and trajectory), and can provide assistance for decision support during drilling operations. In this work, Expedition 364 downhole logs are used to improve our understanding of the drilling/coring operation history. Differentiating between natural geological features and borehole artifacts are also critical for data quality assessment. The set of downhole geophysical tools used during Expedition 364 was constrained by the scientific objectives, drilling/coring technique, hole conditions and temperature at the drill site. Wireline logging data were acquired with slimline tools in three logging phases at intervals 0-503, 506-699 and 700-1334 mbsf. Logs were recorded either with standalone logging tools or, for the first time in IODP, with stackable slimline tools. Log data included total gamma radiation, sonic velocity, acoustic and optical borehole images, resistivity, conductivity, magnetic susceptibility, caliper and borehole fluid parameters. The majority of measurements were performed in open borehole conditions. During the drilling operations some problems were encountered directly linked to the geology of the drilled formation. For example, two zones of mud circulation losses correlate in depth with the presence of karst cavities or open

  16. Limit of crustal drilling depth

    Directory of Open Access Journals (Sweden)

    Y.S. Zhao


    Full Text Available Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources, facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth's crust. In order to understand the limit of drilling depth in the Earth's crust, we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system. Then the critical temperature-pressure coupling conditions that result in borehole instability are derived. Finally, based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling, the limit of drilling depth in the Earth's crust is formulated with ground temperature.

  17. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo


    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  18. Drilling Damage in Composite Material

    Directory of Open Access Journals (Sweden)

    Luís Miguel P. Durão


    Full Text Available The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  19. Synthesis of engineering designs of drilling facilities (United States)

    Porozhsky, K.


    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  20. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.


    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  1. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington


    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  2. Exploring frontiers of the deep biosphere through scientific ocean drilling (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.


    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  3. Seafloor Dunes: Viability as an Analog to Venusian Dunes (United States)

    Neakrase, L. D.; Titus, T. N.


    Dune fields on Venus have been limited to two potential sites discovered during the analysis of Magellan Synthetic Aperture Radar (SAR) data acquired in the 1990s. Several other potential locations could also contain possible dunes but are indistinguishable from other bedforms in the SAR data. Exact morphologies of Venusian dunes are in part speculation due to radar resolution limits that in turn mask the exact formation conditions based on radar data alone. However, near surface winds measured by the Soviet Venera landers were similar to seafloor current speeds (1-2 m s-1) responsible for ripple and dune formation on the seafloor. This similarity suggests that there is a potential for material to be moved on the Venusian surface if present, though most likely for different shear stress conditions. We examine the viability of using terrestrial seafloor dunes and ripples as a possible analog to Venus by comparison of fluid properties of traditional aeolian dune formation with that of the Venusian near-surface atmosphere and seafloor ocean current conditions throughout the literature. Typical surface materials could range in density from 2600 to 3000+ kg m-3 for carbonates or silica (seafloor) to basaltic sands (Venus?) with particle sizes on the order of 100 µm. Similarity of the flow regimes rests heavily on the density/viscosity of the flow medium as shown in historic wind tunnel studies of ripple and dune formation across planetary environments on Earth, Mars, and Venus. Kinematic velocity values could vary from 1.5x10-5 m2 s-1 for Earth atmosphere to values approaching 10-6 m2 s-1 for subaqueous or 2.5x10-7 m2 s-1 for Venus (or Venus analog wind tunnel studies). These values lead to particle Reynolds numbers (Re = Dp*u*t / nu; Dp-particle diameter, u*t-friction velocity, nu-kinematic velocity of fluid) on order of 1.7 for Earth air, 5 for water, and 10 for Venus. We plan to explore how these values affect the drag forces for a range of conditions pertaining to

  4. Developments of next generation of seafloor observatories in MARsite project (United States)

    Italiano, Francesco; Favali, Paolo; Zaffuto, Alfonso; Zora, Marco; D'Anca, Fabio


    The development of new generation of autonomous sea-floor observatories is among the aims of the EC supersite project MARsite (MARMARA Supersite; FP7 EC-funded project, grant n° 308417). An approach based on multiparameter seafloor observatories is considered of basic importance to better understand the role of the fluids in an active tectonic system and their behaviour during the development of the seismogenesis. To continuously collect geochemical and geophysical data from the immediate vicinity of the submerged North Anatolian Fault Zone (NAFZ) is one of the possibilities to contribute to the seismic hazard minimization of the Marmara area. The planning of next generation of seafloor observatories for geo-hazard monitoring is a task in one of the MARsite Work Packages (WP8). The activity is carried out combining together either the experience got after years of investigating fluids and their interactions with the seafloor and tectonic structures and the long-term experience on the development and management of permanent seafloor observatories in the main frame of the EMSO (European Multidisciplinary Seafloor and water-column Observatory, Research Infrastructure. The new generation of seafloor observatories have to support the observation of both slow and quick variations, thus allow collecting low and high-frequency signals besides the storage of long-term dataset and/or enable the near-real-time mode data transmission. Improvements of some the seafloor equipments have been done so far within MARsite project in terms of the amount of contemporary active instruments, their interlink with "smart sensor" capacities (threshold detection, triggering), quality of the collected data and power consumption reduction. In order to power the multiparameter sensors the digitizer and the microprocessor, an electronic board named PMS (Power Management System) with multi-master, multi-slave, single-ended, serial bus Inter-Integrated Circuit (I²C) interface

  5. Deep Seafloor Acoustic Backscattering Measurements Using Sea Beam (United States)


    physical optics [Born and Wolf , 1970], both approaches consider that the sound field scattered by the seafloor consists of elementary waves in mutual phase...VViley-Interscience, 1971. Born M. and E. Wolf , Principles of Optics, Pergamon Press, 1970. 4th edition. Brekhovskikh L. and Yu Lysanov... Iberian penninsula, in Physics of sound in marine sediments, pp. 373-445, Plenum Press, 1974. Clay C. S. and H. Medwin, Chapter 10 and Appendix 10

  6. Acoustic seafloor sediment classification using self-organizing feature maps

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kaustubha, R.; Hegde, A.; Pereira, A.

    and variations within the sediment matrix. Sound signal scattering is generally controlled by these factors, and multiparameter scattering model-based seafloor classification is generally employed [1]–[4]. Recently, Chakraborty and Pathak [1] have carried out... (Honeywell–Elac) by using an interface that was fed to a programmable delay circuit [1]. The sounding trigger from the echosounder initialized the delay period. The delay circuit tracked the received echo and a gate was set for the digitization...

  7. Berengario's drill: origin and inspiration. (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J


    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.

  8. Effects of tones associated with drilling activities on bowhead whale calling rates.

    Directory of Open Access Journals (Sweden)

    Susanna B Blackwell

    Full Text Available During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus, northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs deployed on the seafloor over ~7 weeks in Aug-Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A "tone index" was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the "dose" of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort.

  9. The Application of Biodiesel as an Environmental Friendly Drilling Fluid to Drill Oil and Gas Wells


    Ismail, Abdul Razak


    The oil and gas industries need to use oil based drilling fluids to drill troublesome rock layers such as sensitive shale formation or to drill very deep oil and gas wells. However, using oil based drilling fluids will create pollution and therefore, environmental regulations on discharge of such drilling fluids have become more stringent because it will give tremendous impacts on the marine life and ecosystem. This research is conducted to formulate a new environmental friendly drilling flui...

  10. Drilling force and temperature of bone under dry and physiological drilling conditions (United States)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong


    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  11. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan


    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  12. Gas monitoring during drilling substantiates hydrogen occurrence and eliminates corrosion as source

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, E.D.; Coveney, R.M. Jr.; Zeller, E.J.; Angino, E.E.; Dreschhoff, G.A.M.


    Chromatograms from the simultaneous use of 2 gas sniffers, one monitoring hydrocarbon gases and one monitoring H/sub 2/, while drilling 5 uncased exploratory bore holes in Paleozoic rocks in Kansas substantiates that H/sub 2/N/sub 2/-rich gas emissions are from the sedimentary rocks above the Central North American rift system and are not the result of corrosion of casing pipe. The gases extend over an area of more than 100 mi/sup 2/, within which they appear to be migrating through formation waters along permeable zones at the silty to sandy base of pyritic shales. H/sub 2/ was detected in various zones from +/- 500 ft depth in the Indian Cave Sandstone (Pennsylvanian) to depths of 2100 ft in the Hunton Limestone (Silurian-Devonian). Negative peaks (noncombustible), which overlapped the H/sub 2/ positive peaks on the Wheatstone Bridge chromatograms, are thought to indicate N/sub 2/ gas. Possible N/sub 2/ gas occurs from about 1300 to 2100 ft, from the Heebner Shale Member (Pennsylvanian) to the Hunton Limestone. H/sub 2//N/sub 2/ peaks on the chromatograms correlate well with the crossover peaks indicative of gas zones on open-hole wireline logs.

  13. Uranium prospecting by percussive drilling

    International Nuclear Information System (INIS)

    Dionne, G.M.


    The Societe de developpent da la Baie James (SDBJ) is carrying out mineral exploration in the region surrounding its hydroelectric development, in partnership with several companies experienced in exploration. In 1977 one joint venture consisting of SDBJ, Eldorado Nuclear Ltd., and Seru Nucleaire (Canada) made use of percussive drilling techniques in its search for uranium, hoping to take advantage of the rapid progress and greater mobility offered by this method. Details of the equipment and techniques used, with particular adaptations made necessary by the remote and rugged terrain, are given. It was concluded that percussive drilling is a useful technique. It is capable of a depth of up to 150 meters; the cost is relatively low (around $11.40 per drilled foot); its mobility and the rapid emplacement of equipment are important factors; and productivity is good, ideally 10 meters per hour. (LL)

  14. Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc (United States)

    Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi


    To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.

  15. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)


    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  16. How has the Long Island Sound Seafloor Changed Over Time? (United States)

    Mayo, E. C.; Nitsche, F. O.


    The present Long Island Sound (LIS) was mainly shaped by the last glaciation and the sea level transgression that followed. Today the LIS is an important ecosystem that provides a critical habitat to numerous plant and animal species, and is important to the stability of several economies including fishing, boating, and tourism. Determining where erosion, transportation and deposition of sediment is occurring is important for sustainable development in and around the sound. Calculating the rate of change of the seafloor, identifying the hot spots where the most change is occurring, and determining which processes impact the scale of change are important for preserving the economy and ecology that depend on the sound. This is especially true as larger and more frequent storms comparable to hurricane Sandy are anticipated due to climate change. We used older bathymetric data (collected 1990-2001 by the National Oceanic and Atmospheric Administration) and compared those with the more recently collected LIS bathymetric data covering the same areas (collected 2012-2014 by a collaborative LIS mapping project with NOAA, the States of New York and Connecticut). Using Geographic Information Systems (GIS) we analyzed and mapped the differences between these two datasets to determine where and by how much the seafloor has changed. The results show observable changes in the LIS seafloor on the scale of 1-2 meters over this 10-20 year period. The scale and type of these changes varies across the sound. The rates of change observed depends on the area of the sound, as each area has different factors to account for that controls sediment movement. We present results from five areas of the sound that had data from 1990-2001 and 2012-2014 and that highlight different key processes that change the seafloor. Observed changes in tidal inlets are mostly controlled by existing morphology and near shore sediment transport. In areas with strong bottom currents the data show migrating

  17. Observations of Seafloor Roughness in a Tidally Modulated Inlet (United States)

    Lippmann, T. C.; Hunt, J.


    The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet

  18. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng


    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  19. Application of Ester based Drilling Fluid for Shale Gas Drilling (United States)

    Sauki, Arina; Safwan Zazarli Shah, Mohamad; Bakar, Wan Zairani Wan


    Water based mud is the most commonly used mud in drilling operation. However, it is ineffective when dealing with water-sensitive shale that can lead to shale hydration, consequently wellbore instability is compromised. The alternative way to deal with this kind of shale is using synthetic-based mud (SBM) or oil-based mud (OBM). OBM is the best option in terms of technical requirement. Nevertheless, it is toxic and will create environmental problems when it is discharged to onshore or offshore environment. SBM is safer than the OBM. The aim of this research is to formulate a drilling mud system that can carry out its essential functions for shale gas drilling to avoid borehole instability. Ester based SBM has been chosen for the mud formulation. The ester used is methyl-ester C12-C14 derived from palm oil. The best formulation of ester-based drilling fluid was selected by manipulating the oil-water ratio content in the mud which are 70/30, 80/20 and 90/10 respectively. The feasibility of using this mud for shale gas drilling was investigated by measuring the rheological properties, shale reactivity and toxicity of the mud and the results were compared with a few types of OBM and WBM. The best rheological performance can be seen at 80/20 oil-water ratio of ester based mud. The findings revealed that the rheological performance of ester based mud is comparable with the excellent performance of sarapar based OBM and about 80% better than the WBM in terms of fluid loss. Apart from that, it is less toxic than other types of OBM which can maintain 60% prawn's survival even after 96 hours exposure in 100,000 ppm of mud concentration in artificial seawater.

  20. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.


    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  1. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren


    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  2. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.


    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  3. Geothermal well drilling manual at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez P., A.; Flores S., M.


    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimize hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.

  4. Facility for testing ice drills (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.


    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  5. Acoustic characterization of seafloor habitats on the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Rao, B.R.; Desai, R.G.P.; Ingole, B.S.; Janakiraman, G.

    . Sci.: 64(3); 2007; 551-558 2 Introduction Understanding sound-signal characteristics from the seafloor is very complicated because of variations in the physical parameters at different scales. For seafloor characterization, the vertical incidence... the sound-signal scattering. Studies using multi-parameter-based scattering models have been employed for seafloor classification and characterization, using the echo-peak probability density function (Rice PDF). Rice PDF-based studies provide mixed...

  6. Spectrum Gamma Ray bore hole logging while tripping with the sea floor drill rig MARUM-MeBo (United States)

    Freudenthal, Tim; Steinke, Stephan; Mohtadi, Mahyar; Hebbeln, Dierk; Wefer, Gerold


    The robotic Sea Floor Drill Rig MARUM-MeBo developed at the MARUM Center for Marine Environmental Sciences at the University of Bremen was used to retrieve long sediment cores at two sites in the northern South China Sea. Both sites are located in about 1000 m water depth in southeasterly and southwesterly direction of the Pearl River mouth, respectively. South East Asian Monsoon variability controls terrigenous material transport by rivers into the South China Sea. The Pearl River is one of the largest rivers of the region that discharges into the northern South China Sea. The terrigenous fraction of marine sediments of the northern South China Sea therefore provides an excellent archive for reconstructing past variability of the South East Asian Monsoon system. In analogy to the drilling strategy within the Integrated Ocean Drilling Program IODP multiple holes were drilled in order to generate continuous spliced records at both sites. Overall the MARUM-MeBo drilled 374 m during 5 deployments with a maximum drilling depth of 80.85 m and an average core recovery of 94 %. Here we present first results of bore hole logging conducted during 4 of the 5 deployments with a spectrum gamma ray (SGR) probe adapted for the use with MARUM-MeBo. This probe is an autonomous slim hole probe that is used in the logging while tripping mode. This method is especially favorable for remote controlled drilling and logging operation. The probe is equipped with its own energy source and data storage. The probe is lowered into the drill string after the target wire-line coring depth is reached and after the last inner core barrel has been retrieved. When the probe has landed on the shoulder ring at the bottom of the hole, the drill string is pulled out and disassembled. The probe, while being raised with the drill string, continuously measures the geophysical properties of the in situ sediments and rocks. Since the bore hole is stabilized during the tripping process by the drill string

  7. Underwater Hyperspectral Imaging (UHI) for Assessing the Coverage of Drill Cuttings on Benthic Habitats (United States)

    Erdal, I.; Sandvik Aas, L. M.; Cochrane, S.; Ekehaug, S.; Hansen, I. M.


    Larger-scale mapping of seabed areas requires improved methods in order to obtain effective and sound marine management. The state of the art for visual surveys today involves video transects, which is a proven, yet time consuming and subjective method. Underwater hyperspectral imaging (UHI) utilizes high color sensitive information in the visible light reflected from objects on the seafloor to automatically identify seabed organisms and other objects of interest (OOI). A spectral library containing optical fingerprints of a range of OOI's are used in the classification. The UHI is a push-broom hyperspectral camera utilizing a state of the art CMOS sensor ensuring high sensitivity and low noise levels. Dedicated lamps illuminate the imaging area of the seafloor. Specialized software is used both for processing raw data and for geo-localization and OOI identification. The processed hyperspectral image are used as a reference when extracting new spectral data for OOI's to the spectral library. By using the spectral library in classification algorithms, large sea floor areas can automatically be classified. Recent advantages in UHI classification includes mapping of areas affected by drill cuttings. Tools for automated classification of seabed that have a different bottom composition than adjacent baseline areas are under development. Tests have been applied to a transect in gradient from the drilling hole to baseline seabed. Some areas along the transect were identified as different compared to baseline seabed. The finding was supported by results from traditional seabed mapping methods. We propose that this can be a useful tool for tomorrows environmental mapping and monitoring of drill sites.

  8. Microhole Drilling Tractor Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Western Well Tool


    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a

  9. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.


    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  10. Assessment of Multibeam Backscatter Texture Analysis for Seafloor Sediment Classification (United States)

    Samsudin, S. A.; Hasan, R. C.


    Recently, there have been many debates to analyse backscatter data from multibeam echosounder system (MBES) for seafloor classifications. Among them, two common methods have been used lately for seafloor classification; (1) signal-based classification method which using Angular Range Analysis (ARA) and Image-based texture classification method which based on derived Grey Level Co-occurrence Matrices (GLCMs). Although ARA method could predict sediment types, its low spatial resolution limits its use with high spatial resolution dataset. Texture layers from GLCM on the other hand does not predict sediment types, but its high spatial resolution can be useful for image analysis. The objectives of this study are; (1) to investigate the correlation between MBES derived backscatter mosaic textures with seafloor sediment type derived from ARA method, and (2) to identify which GLCM texture layers have high similarities with sediment classification map derived from signal-based classification method. The study area was located at Tawau, covers an area of 4.7 km2, situated off the channel in the Celebes Sea between Nunukan Island and Sebatik Island, East Malaysia. First, GLCM layers were derived from backscatter mosaic while sediment types (i.e. sediment map with classes) was also constructed using ARA method. Secondly, Principal Component Analysis (PCA) was used determine which GLCM layers contribute most to the variance (i.e. important layers). Finally, K-Means clustering algorithm was applied to the important GLCM layers and the results were compared with classes from ARA. From the results, PCA has identified that GLCM layers of Correlation, Entropy, Contrast and Mean contributed to the 98.77 % of total variance. Among these layers, GLCM Mean showed a good agreement with sediment classes from ARA sediment map. This study has demonstrated different texture layers have different characterisation factors for sediment classification and proper analysis is needed before

  11. Terrestrial subaqueous seafloor dunes: Possible analogs for Venus (United States)

    Neakrase, Lynn D. V.; Klose, Martina; Titus, Timothy N.


    Dunes on Venus, first discovered with Magellan Synthetic Aperture Radar (SAR) in the early 1990s, have fueled discussions about the viability of Venusian dunes and aeolian grain transport. Confined to two locations on Venus, the existence of the interpreted dunes provides evidence that there could be transportable material being mobilized into aeolian bedforms at the surface. However, because of the high-pressure high-temperature surface conditions, laboratory analog studies are difficult to conduct and results are difficult to extrapolate to full-sized, aeolian bedforms. Field sites of desert dunes, which are well-studied on Earth and Mars, are not analogous to what is observed on Venus because of the differences in the fluid environments. One potentially underexplored possibility in planetary science for Venus-analog dune fields could be subaqueous, seafloor dune fields on Earth. Known to the marine geology communities since the early 1960s, seafloor dunes are rarely cited in planetary aeolian bedform literature, but could provide a necessary thick-atmosphere extension to the classically studied aeolian dune environment literature for thinner atmospheres. Through discussion of the similarity of the two environments, and examples of dunes and ripples cited in marine literature, we provide evidence that subaqueous seafloor dunes could serve as analogs for dunes on Venus. Furthermore, the evidence presented here demonstrates the usefulness of the marine literature for thick-atmosphere planetary environments and potentially for upcoming habitable worlds and oceanic environment research program opportunities. Such useful cross-disciplinary discussion of dune environments is applicable to many planetary environments (Earth, Mars, Venus, Titan, etc.) and potential future missions.

  12. Ocean bottom pressure modeling for detection of seafloor vertical deformation (United States)

    Inazu, D.; Hino, R.; Fujimoto, H.


    Detection of seafloor crustal deformation is a difficult problem in marine geodesy. Horizontal displacement of the ocean bottom has been detected with accuracy of several centimeters per year by the GPS/Acoustic positioning of seafloor reference points (Spiess et al. 1998). Meanwhile, bottom pressure observations can record the vertical deformation of seafloor and there have been many challenges to detect vertical seafloor displacement. However, ocean bottom pressure variations are highly dominated by oceanic signals such as tidal and subinertial motions. The tidal and other oceanic variations in bottom pressure records are mostly equivalent to several tens and several centimeters water height anomalies, respectively. Generally, the ocean tide is efficiently corrected. Non-tidal components are required to be accurately removed from the bottom pressure records so that the vertical displacement of less than ten centimeters, the expected amount of displacement caused by slow slip events often observed in several subduction zones, is detected by continuous bottom pressure monitoring. We examine the bottom pressure estimations derived from the Kalman filter and smoother runs of the ECCO (Estimating the Circulation & Climate of the Ocean) product to compare in-situ bottom pressure records. The assimilated bottom pressure moderately represents the seasonal variation, and hardly represents the variation with periods less than a few months. This high frequency variation is mainly explained by the barotropic phenomena induced by meteorological disturbances. Hirose et al. (2001) and Carrère and Lyard (2003) modeled the barotropic ocean motion with the forcing of atmospheric pressure loading and wind over global oceans for the sake of the correction of satellite observations. This study addresses the accurate bottom pressure modeling, which enables us to detect vertical displacement of several centimeters from the in-situ bottom pressure observations. We develop accurate

  13. Seafloor spreading magnetic anomalies in the southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.; Bhattacharya, G.C; Rao, D.G.

    Geology 128 (1995) 105-l 14 ELSEVIER Seafloor spreading magnetic anomalies in the southeastern Arabian Sea A.K. Chaubey, G.C. Bhattacharya, D. Gopala Rao National Institute of Oceanography, Dona Paula, Goa 403004, India Received 1 November 1994... geome- try just before anomaly 11 and is continuing up to today (Chaubey et al., 1993). A recent study 0025-3227/95/$9.50 0 1995 Elsevier Science B.V. All rights reserved SSDI 0025-3227(95)00089-5 (Bhattacharya et al., 1994a), however, suggests...

  14. Serpentinization and Life: Motivations for Drilling the Atlantis Massif (United States)

    Frueh-Green, G. L.; Lang, S. Q.; Brazelton, W. J.; Schrenk, M. O.


    The Atlantis Massif, located at the intersection of the Atlantis transform fault and the Mid-Atlantic Ridge at 30°N, is one of the best-studied oceanic core complexes (OCCs) and is the target of IODP Expedition 357 late 2015. Drilling will address two exciting discoveries in ridge research: off-axis, serpentinite-hosted hydrothermal activity and carbonate precipitation, exemplified by the Lost City hydrothermal field, and the significance of tectono-magmatic processes in forming heterogeneous and variably serpentinized lithosphere as key components of slow spreading ridges. Serpentinization reactions at moderate- to low-temperatures result in alkaline fluids, characterized by elevated concentrations of abiotic hydrogen, methane and low molecular weight hydrocarbons, and which lead to precipitation of carbonate and brucite upon mixing with seawater. These highly reactive systems have major consequences for lithospheric cooling, global geochemical cycles, carbon sequestration and microbial activity. However, little is known about the nature and distribution of microbial communities in subsurface ultramafic environments and the potential for a hydrogen-based deep biosphere in areas of active serpentinization and fluid circulation. The continuous flux of reduced compounds provides abundant thermodynamic energy to drive chemolithoautotrophy, however, carbon availability may be limited in these high pH environments and represent a challenge for microbial growth. Here we review serpentinization processes as fundamental to understanding the evolution of oceanic lithosphere and discuss open questions related to the impact of serpentinization on the subsurface biosphere. Motivations for drilling the shallow subseafloor of the Atlantis Massif include: (1) exploring the extent and activity of the subsurface biosphere in young ultramafic and mafic seafloor; (2) quantifying the role of serpentinization in driving hydrothermal systems, in sustaining microbiological communities

  15. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)


    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)


    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov


    Full Text Available The problem of drilling waste utilisation is assumed to be resolved through the implementation of the complex of environment protection production engineering measures. This includes, firstly, the usage in the process of well drilling of drilling mud on the basis of water-soluble biodegradable polymers and a four-stage drilling mud refining system. Secondly, the usage of the well site construction with trenching for allocation of expressed bore mud and a temporary ground tank for drilling waste water.

  17. Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context (United States)

    Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul


    -European partners), a multidisciplinary platform for studies ranging from the sub-seafloor into the atmosphere. AURORA BOREALIS was planned for her role in deep-sea drilling in consultation with engineers and technical experts familiar with the program and the operation of these vessels. All techniques currently deployed on IODP expeditions can be implemented onboard the vessel under polar weather and ice conditions, including the full range of re-entry, casing and cementing, and instrumentation options and the entire suite of downhole logging tools. Due to sufficient laboratory space, a full analytical workflow can be easily established comparable to existing permanent platforms, including clean rooms, diverse scanning and logging or incubation facilities. While the vessel is equipped with a dedicated deep-sea drilling rig, other coring and drilling techniques can be employed if needed (e.g. Rockdrill, MEBO, large diameter Kasten cores). AURORA BOREALIS is fitted to operate a CALYPSO Piston Coring System in polar waters. Future mud-return systems under consideration and testing for IODP to provide controlled borehole conditions in difficult facies are compatible with the layout of AURORA BOREALIS. The berthing capacity of 120 personnel total (scientists, technical support and crew) allows to accommodate a sufficient number of science party members offshore. The present scientific implementation documents plan for about one polar scientific drilling expedition per year in a to-be-determined configuration. As the vessel is a multi-dsiciplinary platform, operations for the entire year are not dependant on drilling operations alone. While principal access to the vessel will be based on a competitive proposal review and evaluation system, the allocation of timeslots specifically for drilling would preferably be given over to IODP handling and planning systems in a cooperative mode using the strengths and capacitites of the future program. Depending on interests and needs of the

  18. The 2006 Pingtung Earthquake Doublet Triggered Seafloor Liquefaction: Revisiting the Evidence with Ultra-High-Resolution Seafloor Mapping (United States)

    Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.


    Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is

  19. Site selection for DOE/JIP gas hydrates drilling in the northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R.; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States); Shelander, D.; Dai, J. [Schlumberger, Houston, TX (United States); McConnell, D. [AOA Geophysics Inc., Houston, TX (United States); Shedd, W. [Minerals Management Service, New Orleans, LA (United States); Frye, M. [Minerals Management Service, Herndon, VA (United States); Boswell, R.; Rose, K. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Jones, E.; Latham, T. [Chevron Energy Technology Corp., Houston, TX (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Wood, W. [United States Naval Research Lab, Stennis Space Center, MS (United States)


    As drilling operations in the Gulf of Mexico shift from shallow water to deeper water targets, operators are encountering sediments with pressure-temperature regimes for gas hydrate stability. The Chevron-led Joint Industry Project (JIP) on methane hydrates was formed in 2001 to study the hazards associated with drilling these types of hydrate-bearing sediments and to assess the capacity of geological and geophysical tools to predict gas hydrate distributions and concentrations. Selected reservoirs units with high concentrations of gas hydrate were sampled to obtain physical data on hydrate bearing sediments. The JIP work validates methods devised to estimate gas hydrate distribution and concentrations in order to analyze the resource potential of these hydrate-bearing sediments. This paper described the geologic and geophysical setting of 3 sites in the northern Gulf of Mexico that contain hydrate-bearing reservoir sands. The three sites that will undergo exploratory drilling and a logging campaign in late spring 2008 include the Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system characterized with seafloor fluid expulsion features, structural closure associated with uplifted salt, and seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets sheet sands and associated channel deposits within a small basin. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. 39 refs., 1 tab., 4 figs.

  20. Seafloor erosional processes offshore of the Chandeleur Islands, Louisiana (United States)

    Twichell, David C.; Brock, John C.


    The Chandeleur Islands are a chain of barrier islands that lies along the eastern side of the modern Mississippi River Delta plain. The island chain is located near the seaward edge of the relict St. Bernard Delta, the part of the Mississippi Delta that formed between approximately 4,000 and 2,000 years before present and was later abandoned as sedimentation shifted southward. After abandonment of the St. Bernard Delta, deposits were reworked, and the sandy component was shaped into the Chandeleur Islands. With continued subsidence, the islands became separated from their original delta headland sources and presently are isolated from the mainland by the shallow Chandeleur Sound. Newly acquired geophysical data and vibracores provide an opportunity to better understand the processes that are shaping seafloor morphology (i.e., shape, geometry, and structure of the seafloor) on the inner shelf adjacent to the Chandeleur Islands. The inner shelf offshore of the Chandeleur Islands was mapped in 2006 and 2007 using swath bathymetry, sidescan sonar, and high-resolution seismic-reflection techniques. The detailed results of this study were published in December 2009 (Twichell and others, 2009) as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project. This study addresses questions and concerns related to limited sand resources along the Louisiana shelf and their implications to long-term relative sea-level rise and storm impacts.

  1. Studying seafloor bedforms using autonomous stationary imaging and profiling sonars (United States)

    Montgomery, Ellyn T.; Sherwood, Christopher R.


    The Sediment Transport Group at the U.S. Geological Survey, Woods Hole Coastal and Marine Science Center uses downward looking sonars deployed on seafloor tripods to assess and measure the formation and migration of bedforms. The sonars have been used in three resolution-testing experiments, and deployed autonomously to observe changes in the seafloor for up to two months in seven field experiments since 2002. The sonar data are recorded concurrently with measurements of waves and currents to: a) relate bedform geometry to sediment and flow characteristics; b) assess hydrodynamic drag caused by bedforms; and c) estimate bedform sediment transport rates, all with the goal of evaluating and improving numerical models of these processes. Our hardware, data processing methods, and test and validation procedures have evolved since 2001. We now employ a standard sonar configuration that provides reliable data for correlating flow conditions with bedform morphology. Plans for the future are to sample more rapidly and improve the precision of our tripod orientation measurements.

  2. Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Gabriele Giovanetti


    Full Text Available The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with a different kind of observation system. Stromboli seismic recordings are acquired by means of a single Ocean Bottom Seismometer (OBS. From these data, it was possible to identify two different magma chambers at different depths. At Marsili Seamount, gravimetric and seismic signals are recorded by a battery-powered multi-disciplinary observatory (GEOSTAR. Gravimetric variations and seismic Short Duration Events (SDE confirm the presence of hydrothermal activity. At the Etna observation site, seismic signals, water pressure, magnetic field and acoustic echo intensity are acquired in real-time thanks to a cabled multi-disciplinary observatory (NEMO-SN1 . This observatory is one of the operative nodes of the European Multidisciplinary Seafloor and water-column Observatory (EMSO; research infrastructure. Through a multidisciplinary approach, we speculate about deep Etna sources and follow some significant events, such as volcanic ash diffusion in the seawater.

  3. Sub-seafloor Microbial Colonization of Igneous Minerals and Glasses (United States)

    Smith, A.; Popa, R.; Fisk, M.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.


    Understanding how subsurface microorganisms (MOs) contribute to mineral weathering and global element cycling requires an initial investigation into the differential colonization of minerals by distinct physiological types of MOs. We initiated a sub-seafloor experiment utilizing a variety of igneous minerals and glasses at IODP borehole site 1301A on the eastern flank of the Juan de Fuca Ridge. We selected twelve different igneous minerals and glasses and placed them in flow cell chambers at 278 meters below the seafloor in borehole 1301A. This horizon is approximately 15 meters into 3.5 million year old basalt basement, which underlies 263 meters of sediment. The samples were incubated in the borehole for four years and recovered in summer 2008. We report total colonization of the igneous minerals and glasses measured by cell density after DAPI staining and microscopic counting. To understand the relationship between MOs and mineral surfaces, we analyzed thin sections made from DAPI-treated minerals and glasses included in low- fluorescence resin.

  4. Seafloor Crustal Deformation Close to the Nankai Trough, Japan (United States)

    Tadokoro, K.; Sugimoto, S.; Watanabe, T.; Okuda, T.; Muto, D.; Kimoto, A.; Ando, M.; Sayanagi, K.; Kuno, M.


    \\ \\ \\ The Nankai Trough is one of the active plate boundaries in the world. Major subduction earthquakes, Nankai and Tonankai earthquakes, repeatedly occur with intervals of 100-150 years at the Nankai Trough. The last large earthquakes occurred in 1944 and 1946. Therefore, the 50-years probabilities of next major earthquakes are 80- 90 %. It is necessary to monitor crustal deformation above the source regions for the sake of earthquake prediction and disaster prevention. The source regions of the earthquakes are located beneath the sea bottom, to the south of the Japan Islands. \\ \\ \\ One of the useful tools to monitor seafloor crustal deformation is the observation system composed of the acoustic ranging and kinematic GPS positioning techniques. We have installed seafloor benchmarks for acoustic ranging at the Nankai Trough region. We repeatedly observed at the two sites from 2004. The result of the repeated observation shows that the repeatability of the measurement is +/- 2-3 cm for the horizontal components. Also we detect crustal deformation related to plate convergence using our system. The velocity vectors derived from our repeated observation are (7.0 cm/yr, N78W) and (5.2 cm/yr, N87W), which is consistent to the on-land continuous observations. \\ \\ \\ This study is promoted by Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captains and crews of Research Vessels, "Asama"and "Hokuto."

  5. Long hole waterjet drilling for gas drainage

    Energy Technology Data Exchange (ETDEWEB)

    Matt Stockwell; M. Gledhill; S. Hildebrand; S. Adam; Tim Meyer [CMTE (Australia)


    In-seam drilling for gas drainage is now an essential part of operations at many Australian underground coalmines. The objective of this project is to develop and trial a new drilling method for the accurate and efficient installation of long inseam boreholes (>1000 metres). This involves the integration of pure water-jet drilling technology (i.e. not water-jet assisted rotary drilling) developed by CMTE with conventional directional drilling technology. The system was similar to conventional directional drilling methods, but instead of relying on a down-hole-motor (DHM) rotating a mechanical drill bit for cutting, high pressure water-jets were used. The testing of the system did not achieve the full objectives set down in the project plan. A borehole greater than 1000 metres was not achieved. The first trial site had coal that was weathered, oxidized and dry. These conditions significantly affected the ability of the drilling tool to stay 'in-seam'. Due to the poor conditions at the first trial, many experimental objectives were forwarded to the second field trial. In the second trial drilling difficulties were experienced, this was due to the interaction between the confinement of the borehole and the dimensions of the down hole drilling assembly. This ultimately reduced the productivity of the system and the distance that could be drilled within the specified trial periods. Testing in the first field trial did not show any indication that the system would have this difficulty.

  6. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M


    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  7. Development of Next-Generation Borehole Magnetometer and Its Potential Application in Constraining the Magnetic Declination of Oman Samail Ophiolite at ICDP Drill Sites (United States)

    Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.


    declination may be obtained systematically from the top to the bottom of the holes. The results will help us to fine tune the magnetometer before the actual deployment. It will also be useful in interpreting the obtained results together with resistivity images from conventional wireline logging and post-drilling paleomagnetic lab measurements results.

  8. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu


    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  9. Where The Wild Seafloor Scientists Are: Using Interactive Picture Books To Educate Children About Sub-seafloor Science (United States)

    Kurtz, K.


    Sub-seafloor scientific research has the power to spark the imaginations of elementary age children with its mysterious nature, cutting-edge research, and its connections to kid friendly science topics, such as volcanoes, the extinction of dinosaurs and the search for extraterrestrial life. These factors have been utilized to create two interactive eBooks for elementary students and teachers, integrating high quality science information, highly engaging and age-appropriate illustrations, and rhyming text. One book introduces children to the research and discoveries of the JOIDES Resolution research vessel. The second focuses on the discoveries of microbial life in the sub-seafloor. The eBooks present information as traditional, linear, illustrated children's books, but the eBook format allows the book to be available online for free to anyone and allows teachers to project the book on a classroom screen so all students can easily see the illustrations. The iPad versions also provide an interactive, learner-led educational experience, where cognitively appropriate videos, photos and other forms of information can be accessed with the tap of a finger to answer reader questions and enrich their learning experience. These projects provide an example and model of the products that can result from high level and meaningful partnerships between scientists, educators, artists and writers.

  10. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.


    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  11. NF-11-01-USVI Characterization of Seafloor Habitats of the U.S. Caribbean (EK60) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this project is to collect a multibeam bathymetry dataset with 100% seafloor ensonification, along with multibeam backscatter suitable for seafloor...

  12. NF-12-01-USVI Characterization of Seafloor Habitats of the U.S. Caribbean (EK60) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this project is to collect a multibeam bathymetry dataset with 100% seafloor ensonification, along with multibeam backscatter suitable for seafloor...

  13. Simulation of wireline sonic logging measurements acquired with Borehole-Eccentered tools using a high-order adaptive finite-element method

    KAUST Repository

    Pardo, David


    The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.

  14. Use of wireline logs at Cerro Prieto in identification of the distribution of hydrothermally altered zones and dike locations, and their correlation with reservoir temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Seamount, D.T. Jr.; Elders, W.A.


    Downhole electrical and gamma-gamma density logs from nine wells weere studed and these wireline log parameters with petrologic, temperature, and petrophysical data were correlated. Here, wells M-43, T-366, and M-107 are discussed in detail as typical cases. Log data for shales show good correlation with four zones of hydrothermal alteration previously recognized on the basis of characteristic mineral assemblages and temperatures. These zones are the unaltered montmorillonite zone (< 150/sup 0/C), the illite zone (150/sup 0/C to 230/sup 0/C to 245/sup 0/C), the chlorite zone (235/sup 0/C to 300/sup 0/C, equivalent to the calc-silicate I zone in sands), and the feldspar zone (> 300/sup 0/C, equivalent to the calc-silicate II zone in sands),

  15. Cellular content of biomolecules in sub-seafloor microbial communities

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.


    Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than...... the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density...... content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates...

  16. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.


    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  17. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj


    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  18. Replacement team of mining drilling rigs


    Hamodi, Hussan; Lundberg, Jan


    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  19. An Infrared Drill Borehole Spectrometer for Mars (United States)

    Smythe, W.; Foote, M.; Johnson, E.; Daly, J.; Loges, P.; Puscasu, I.; Gorevan, S.; Chu, P.; Granahan, J.


    The best clues to Mars past may be hidden below the surface of Mars. Long exposure to the sun, high winds and dust storms, large diurnal temperature excursions, and eons of space weathering combine to render a greatly modified surface, in many instances remarkable for its appearance of uniform composition. Drilling can provide access to the layers in the caps, to the permafrost and possibly, to pristine crustal material. The drilling process is complex with high demand on support resources. It is vital to make the drilling process as efficient as possible. A most promising approach is to instrument the drill string itself, thereby avoiding the complexity of sample handling, speeding and simplifying drill operations, and allowing examination of freshly exposed surfaces within the borehole. A solid-state IR spectrometer is being integrated with a blackbody source into a package to fit within an existing Mars drill design. The borehole IR spectrometer is used to monitor facies encountered throughout the drilling process. The spectrometer/IR combination is used in reflectance spectrometer mode to monitor H2O and CO2 content, as well as iron and carbonate mineralogies. Integration required adapting the existing spectrometer to fit within the drill -- including attaching the detectors directly to the spectrometer waveguide, developing the techniques required to seal the micro-thermopile detectors to the waveguide, implementing miniaturized digital conversion electronics, combining the spectrometer with the IR source and coupling them to a suitable window, implementing a suitable sealed package to fit within the drill, integrating and testing the package on a drill, and establishing the proper gain for both stimulus and spectrometer to permit reasonable range of Mars soil analogs. Tests have shown that both sapphire and diamond windows perform well in the drilling environment. Testing of the integrated spectrometer and drill will be completed in the coming year.

  20. Study on the influence of parameters of medical drill on bone drilling temperature (United States)

    XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao


    During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.

  1. Columbia Gas preserves wetlands with directional drilling

    International Nuclear Information System (INIS)

    Luginbuhl, K.K.; Gartman, D.K.


    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future

  2. Vale exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.


    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  3. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.


    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  4. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.


    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  5. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo


    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  6. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris


    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  7. Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise (United States)

    Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A.


    In April and May 2005, cores were acquired and sub-sampled for gases in lease blocks Atwater Valley 13 and 14 and Keathley Canyon 151 during deep subseafloor drilling conducted as part of the JIP study of gas hydrates in the northern Gulf of Mexico. Sample types included sediment headspace gas, free gas derived from sediment gas exsolution, and gas exsolution from controlled degassing of pressurized cores. The gases measured both onboard and in shore-based labs were nitrogen, oxygen, hydrogen sulfide, carbon dioxide, and the hydrocarbons methane through hexane. The presence of seafloor mounds, seismic anomalies, a shallow sulfate-methane interface, and similar gas compositions and isotopic compositions near the seafloor and at depth suggest an upward flux of methane at both sites. Sediment gases at the Atwater Valley sites, where seafloor mounds and adjacent sediments were cored, strongly suggest a microbial source of methane, with very little thermogenic gas input. Sediment gas from all cores contained from about 96 to 99.9% methane, with the balance composed primarily of carbon dioxide. Methane to ethane ratios were greater than 1000, and often over 10,000. Gases from cores at Keathley Canyon were similar to those at Atwater Valley, however, deeper cores from Keathley Canyon contained more ethane, propane, and butane suggesting mixing with minor concentrations thermogenic gas. The isotopic composition of methane, ethane, and carbon dioxide were measured, and ??13C values range from -84.3 to -71.5???, -65.2 to -46.8???, and -23.5 to -3.0???, respectively, all consistent with microbial gas sources, early diagenesis of organic matter and perhaps biodegradation of petroleum. The presence of deep microbial gas at these sites here and elsewhere highlights a potentially significant, predominantly microbial gas source in the northern Gulf of Mexico.

  8. Workshop on Marine Research Drilling (United States)

    Spezzaferri, Silvia


    Cold-Water Carbonate Reservoir Systems in Deep Environments (COCARDE): A Pilot Industry-Academia Partnership in Marine Research Drilling; Fribourg, Switzerland, 21-24 January 2009; Cold-water carbonate mounds supporting cold-water coral ecosystems, often dominated by Lophelia pertusa and Madrepora oculata, are widespread along the Atlantic margins from Norway to Mauritania. During the past 10 years, the scientific community has accumulated new insights on their occurrence and development and identified their potential role in reservoir formation, thus establishing a framework for collaboration with the hydrocarbon industry. A Magellan workshop, sponsored by the European Science Foundation (ESF;, was held in Switzerland in January. The workshop gathered 35 scientists from 10 European and two extra-European countries (Canada and Morocco), representing 20 research teams, including members of two Integrated Ocean Drilling Program (IODP) proposals. Some of the participants were also involved with two ESF European Collaborative Research (EUROCORES) projects [Microbial Diversity and Functionality in Cold-Water Coral Reef Ecosystems (MiCROSYSTEMS) and Mid-Latitude Carbonate Systems: Complete Sequences From Cold-Water Coral Carbonate Mounds in the Northeast Atlantic (CARBONATE)], and the European Union Framework Program 6 integrated project Hotspot Ecosystem Research on the Margins of European Seas (HERMES).

  9. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.


    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  10. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.


    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned


    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson


    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  12. Coiled tubing drilling with supercritical carbon dioxide (United States)

    Kolle , Jack J.


    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  13. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh


    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  14. Neurosurgical robotic arm drilling navigation system. (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai


    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Basic Land Drills for Swimming Stroke Acquisition (United States)

    Zhang, Peng


    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  16. Status Report A Review of Slimhole Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Carroll, Herbert B.


    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  17. 75 FR 877 - Drill Pipe From China (United States)


    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  18. Acidification and Deoxygenation during Hyperthermal Events: Evidence from Seafloor Biota (United States)

    Thomas, E.; Zachos, J. C.; Roehl, U.


    The Paleocene-Eocene Thermal Maximum and other early Eocene hyperthermals were short-lived (104-105 years) episodes of very warm climate, linked to emission of isotopically depleted carbon into the ocean-atmosphere system (~55-50 Ma). During these episodes there was severe dissolution of carbonate on the seafloor, and there is evidence of low oxygen conditions at least in parts of the world’s oceans. Benthic foraminifera suffered severe extinction during the most severe hyperthermal, the PETM. On Walvis Ridge (SE Atlantic), benthic foraminiferal assemblages were studied along a depth transect (1500-3600 m) across the PETM, Eocene Thermal Maximum 2 (ETM-2 or Elmo, ~ 1.8 myr after the PETM) and Eocene Thermal Maximum 3 (ETM-3 or X-event, ~ 3.1 myr after the PETM). During hyperthermals, benthic assemblages at all sites are characterized by low-diversity and dominance of relatively small and thin-walled specimens, and indicate a lower supply of food to the seafloor, possibly because of decreased open-ocean productivity during periods of warming. The severe dissolution associated with the PETM allowed no preservation of carbonate tests along the depth transect, but the dissolution interval reflected less time at the shallower sites. Benthic assemblages from above the dissolution interval indicate that Oxygen Minimum Zones expanded downwards over the shallower sites in the earlier and later stages of the main Carbon Isotope Excursion (CIE) associated with the PETM. Benthic foraminifera were present throughout the CIE associated with ETM-2 at the deepest site, but absent to very rare in a few samples from the shallowest site. Assemblages show a similar to, but less extreme pattern than that during the PETM, with development of low-oxygen conditions during the earliest and latest stages of the event. There is no evidence in the benthic assemblages from ETM-3 that OMZs expanded to the depth transect. It is not yet clear whether the combination of ocean acidification and

  19. Westinghouse GOCO conduct of casualty drills

    International Nuclear Information System (INIS)

    Ames, C.P.


    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility

  20. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits. (United States)

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee


    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  1. Drilling the North Anatolian Fault

    Directory of Open Access Journals (Sweden)

    Mustafa Aktar


    Full Text Available An international workshop entitled “GONAF: A deep Geophysical Observatory at the North Anatolian Fault”, was held 23–27 April 2007 in Istanbul, Turkey. The aim of this workshop was to refine plans for a deep drilling project at the North Anatolian Fault Zone (NAFZ in northwestern Turkey. The current drilling target is located in the Marmara Sea offshore the megacity of Istanbul in the direct vicinity of the main branch of the North Anatolian Fault on the PrinceIslands (Figs. 1 and 2.The NAFZ represents a 1600-km-long plate boundary that slips at an average rate of 20–30 mm·yr-1 (McClusky et al., 2000. It has developed in the framework of the northward moving Arabian plate and the Hellenic subduction zone where the African lithosphere is subducting below the Aegean. Comparison of long-term slip rates with Holocene and GPS-derived slip rates indicate an increasing westwardmovement of the Anatolian plate with respect to stable Eurasia. During the twentieth century, the NAFZ has ruptured over 900 km of its length. A series of large earthquakes starting in 1939 near Erzincan in Eastern Anatolia propagated westward towards the Istanbul-Marmara region in northwestern Turkey that today represents a seismic gap along a ≥100-km-long segment below the Sea of Marmara. This segment did not rupture since 1766 and, if locked, may have accumulated a slip deficit of 4–5 m. It is believed being capable of generating two M≥7.4 earthquakes within the next decades (Hubert-Ferrari et al., 2000; however, it could even rupture in a large single event (Le Pichon et al., 1999.

  2. Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German Bight, southern North Sea (United States)

    Holler, Peter; Markert, Edith; Bartholomä, Alexander; Capperucci, Ruggero; Hass, H. Christian; Kröncke, Ingrid; Mielck, Finn; Reimers, H. Christian


    To determine the spatial resolution of sediment properties and benthic macrofauna communities in acoustic backscatter, the suitability of four acoustic seafloor classification devices (single-beam echosounder with RoxAnn and QTC 5.5 seafloor classification system, sidescan sonar with QTC Swathview seafloor classification, and multi-beam echosounder with QTC Swathview seafloor classification) was compared in a study area of approx. 6 km2 northwest of the island of Helgoland in the German Bight, southern North Sea. This was based on a simple similarity index between simultaneous sidescan sonar, single-beam echosounder and multi-beam echosounder profiling spanning the period 2011-2014. The results show a high similarity between seafloor classifications based on sidescan sonar and RoxAnn single-beam systems, in turn associated with a lower similarity for the multi-beam echosounder system. Analyses of surface sediment samples at 39 locations along four transects (0.1 m2 Van Veen grab) revealed the presence of sandy mud (southern and western parts), coarse sand, gravel and cobbles. Rock outcrops were identified in the north-eastern and eastern parts. A typical Nucula nitidosa- Abra alba community was found in sandy muds to muddy sands in the northern part, whereas the southern part is characterised by widespread occurrence of the ophiuroid brittle star Amphiura filiformis. A transitional N. nitidosa- A. filiformis community was detected in the central part. Moreover, the southern part is characterised by a high abundance of A. filiformis and its commensal bivalve Kurtiella bidentata. The high number of A. filiformis feeding arms (up to ca. 6,800 per m2) can largely explain the gentle change of backscatter intensity along the tracks, because sediment composition and/or seafloor structures showed no significant variability.

  3. Archive of Geosample Data and Information from the Woods Hole Oceanographic Institution (WHOI) Seafloor Samples Laboratory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Woods Hole Oceanographic Institution (WHOI) Seafloor Samples Laboratory is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS) database,...

  4. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization (United States)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin


    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  5. Theoretical Solution and Applications of Ocean Bottom Pressure Induced by Seismic Seafloor Motion (United States)

    An, Chao; Cai, Chen; Zheng, Yong; Meng, Lingsen; Liu, Philip


    Seismic signals captured by ocean bottom pressure sensors, which are designed to record tsunami waves, are largely ignored. In this paper, we derive a simple theoretical solution of the ocean bottom pressure as a function of prescribed seafloor motion. All the assumptions are clearly stated and analyzed. The solution is checked by comparing the seafloor displacement and pressure from three M7+ earthquakes, recorded by ocean bottom seismometers and pressure gauges located off the Japanese coast. We then show two applications. First, using the seafloor displacement data recorded by an ocean bottom seismometer, the pressure amplitude recorded by the associated pressure gauge is corrected, and vice versa. Second, pressure recordings from Deep Ocean Assessment and Reporting of Tsunamis during the 2011 Tohoku earthquake are converted to seafloor displacements, which are then utilized to estimate the earthquake focal mechanism. Thus, we demonstrate that seismic signals recorded by pressure sensors have great potential for fast estimate of earthquake source parameters.

  6. Estimation of mean grain size of seafloor sediments using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    De, C.; Chakraborty, B.

    The feasibility of an artificial neural network based approach is investigated to estimate the values of mean grain size of seafloor sediments using four dominant echo features, extracted from acoustic backscatter data. The acoustic backscatter data...

  7. Response of seafloor ecosystems to abrupt global climate change (United States)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.


    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from 1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  8. Response of seafloor ecosystems to abrupt global climate change. (United States)

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P


    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to 1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  9. Cool seafloor hydrothermal springs reveal global geochemical fluxes (United States)

    Wheat, C. Geoffrey; Fisher, Andrew T.; McManus, James; Hulme, Samuel M.; Orcutt, Beth N.


    We present geochemical data from the first samples of spring fluids from Dorado Outcrop, a basaltic edifice on 23 M.y. old seafloor of the Cocos Plate, eastern Pacific Ocean. These samples were collected from the discharge of a cool hydrothermal system (CHS) on a ridge flank, where typical reaction temperatures in the volcanic crust are low (2-20 °C) and fluid residence times are short. Ridge-flank hydrothermal systems extract 25% of Earth's lithospheric heat, with a global discharge rate equivalent to that of Earth's river discharge to the ocean; CHSs comprise a significant fraction of this global flow. Upper crustal temperatures around Dorado Outcrop are ∼15 °C, the calculated residence time is concentrations in spring fluids are indistinguishable from those of bottom seawater; however, concentrations of Rb, Mo, V, U, Mg, phosphate, Si and Li are different. Applying these observed differences to calculated global CHS fluxes results in chemical fluxes for these ions that are ≥15% of riverine fluxes. Fluxes of K and B also may be significant, but better analytical resolution is required to confirm this result. Spring fluids also have ∼50% less dissolved oxygen (DO) than bottom seawater. Calculations of an analytical model suggest that the loss of DO occurs primarily (>80%) within the upper basaltic crust by biotic and/or abiotic consumption. This calculation demonstrates that permeable pathways within the upper crust can support oxic water-rock interactions for millions of years.

  10. New approaches to subglacial bedrock drilling technology (United States)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail


    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  11. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry


    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  12. Distribution and Characteristics of Seafloor Seepage Features in the Active Margin Offshore of SW Taiwan (United States)

    Chen, T. T.; Hsu, H. H.; Liu, C. S.; Su, C. C.; Paull, C. K.; Chen, Y. H.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.


    In the active margin offshore of southwest (SW) Taiwan, west-vergent imbricated thrusts, folds and dipping strata are the main structural features. This is also the area where gas hydrates are widely distributed beneath the seafloor. Fluids from deep strata may migrate upwards along porous dipping layers or faults and then vent out to form seafloor seepage features in many of the gas hydrate prospects. A joint survey was conducted in May 2017 using MBARI mapping AUV and miniROV to investigate the seafloor seepage features. Numerous comet-shaped depressions (CSD) are mapped along flanks of several anticlinal ridges, and four carbonate mounds around CSD are observed from the ultra-high-resolution (1-m lateral resolution) bathymetry data collected by AUV. Samples of the carbonate mounds were collected by the mini-ROV, and their mineral compositions contain dolomite and ankerite. The AUV collected chirp sonar profiles and previously collected surface ship multichannel seismic reflection profiles across these seafloor features show that potential fluid migration pathways connect free gas trapped below the base of gas hydrate stability zone and the seafloor in the vicinity of these features. Our study suggests that the CSD could be an indicator of seafloor seepage and may be distribution widely in the active margin setting.

  13. Fluctuations in seafloor spreading predicted by tectonic reconstructions and mantle convection models (United States)

    Coltice, Nicolas; Seton, Maria; Rolf, Tobias; Müller, R. Dietmar; Tackley, Paul J.


    The theory of plate tectonics theory has enabled possible the reconstruction of the ancient seafloor and paleogeography. Over 50 years of data collection and kinematic reconstruction efforts, plate models have improved significantly (Seton et al., 2012) although reconstructions of ancient seafloor are naturally limited by the limited preservation of of very old seafloor. It is challenging to reconstruct ancient ocean basins and associated plate boundaries for times earlier than 200 Ma, since seafloor of this age is not preserved. This means we can merely reconstruct only 5% of the history of the planet in this fashion. However, geodynamic models can now help evaluate how seafloor spreading may evolve over longer time periods, since recent developments of numerical models of mantle convection with pseudo-plasticity can generate long-term solutions that simulate a form of seafloor spreading (Moresi and Solomatov, 1998; Tackley, 2000a; Tackley, 2000b). The introduction of models of continental lithosphere further improves the quality of the predictions: the computed distribution of seafloor ages reproduces the consumption of young seafloor as observed on the present-day Earth (Coltice et al., 2012). The time-dependence of the production of new seafloor has long been debated and there is no consensus on how much it has varied in the past 150My, and how it could have fluctuated over longer time-scales. Using plate reconstructions, Parsons (1982) and Rowley (2002) proposed the area vs. age distribution of the seafloor could have experienced limited fluctuations in the past 150My while others suggest stronger variations would fit the observations equally well (Seton et al., 2009. Here we propose to investigate the global dynamics of seafloor spreading using state-of-the-art plate reconstructions and geodynamic models. We focus on the evolution of the distribution of seafloor ages because fundamental geophysical observations like mantle heat flow or sea level provide

  14. Steamboat Hills exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.


    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  15. The Auto-Gopher Deep Drill (United States)

    Badescu, Mircea


    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  16. Hole fluids for deep ice core drilling


    Talalay, P.G.; Gundestrup, N.S.


    This paper is based on the data published in research report of P. G. Talalay and N. S. Gundestrup; Hole fluids for deep ice core drilling : A review. Copenhagen University, Copenhagen, 1999,120p. In the practice of deep ice core drilling only three types of bore-hole fluids have been used : 1) petroleum oil products (fuels or solvents) containing densifier, 2) aqueous ethylene glycol or ethanol solutions, 3) n-butyl acetate. The main parameters of drilling fluids are 1) density and fluid top...

  17. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido


    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  18. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Muramoto, F.S.; Elders, W.A.


    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  19. Lithostratigraphic and sequence stratigraphic architecture of the Winduck Interval, central Darling Basin, Australia, based on integration of wireline logs, cores and cuttings data (United States)

    Khalifa, M. KH.; Jones, B. G.; Mahmud, W. M.


    An integration of lithostratigraphy and general sedimentary facies character for non-marine rocks can be a powerful tool in understanding the sequence stratigraphic architecture of the subsurface latest Silurian to Early Devonian Winduck Interval in the Blantyre and western Neckarboo sub-basins, central Darling Basin. This study integrates wireline logs (gamma ray and resistivity), cores and cuttings data to determine the sequence stratigraphic subdivision of the study area. The lithostratigraphy of the Winduck Interval could be subdivided into three units (A, B and C, in ascending order) in the four available wells (Mount Emu 1, Kewell East 1, Booligal Creek 1 and Booligal Creek 2). Closer study of the sequence stratigraphy in the approximately 850-m-thick Winduck Interval revealed ten parasequences (A-J) in progradational to retrogradational parasequence sets and three main Winduck sequences, WKS1, WKS2 and WKS3. Use of the suggested sequence stratigraphic model of the Winduck Interval has the potential to refine existing lithostratigraphic schemes and, given the higher resolution and more detailed correlation, may significantly improve subsurface stratigraphic reconstructions and aid in prediction of hydrocarbon-bearing reservoirs.

  20. Integration of seafloor point data in usSEABED (United States)

    Reid, Jane A.; Williams, S. Jeffress; Zimmermann, Mark; Jenkins, Chris; Golden, Nadine E.


    Sediments of the beach, nearshore, and continental shelves record a complex interplay of processes including wave energy and direction , currents, beach erosion or accretion, bluff or cliff retreat, fluvial input, sediment longshore and cross-shelf transport processes, contaminant content and transport, sediment sources and sinks, and others. In turn, sediments and rocks modify wave patterns, affect recreation and tourism, and provide habitat for fish, epifauna, and infauna. Character of the surficial seafloor also influences navigation, commercial and recreational fishing and gathering of other food sources, communication, piplines, national defense, and provides geologic resources including sand and gravel aggregates, minerals, and real or potential energy sources. The beaches, nearshore, and continental margins fall under overlapping levels of managerial responsibility between Federal, State, regional, and local government agencies and consortia. In addition, universities and other academic institutions investigate these places for pure or applied scientific reasons. Mapping is usually the first step in understanding any issue and is often comprised of remotely gathered geophysical data such as bathymetry and backscatter imagery, and groundtruthing; that is, the collection of physical and virtual samples to tie the remotely gathered data to reality. The physical samples are described and (or) carefully analyzed for grain-size information -- which records both the site's physical conditions and geologic past -- and commonly, for constituent components such as mineral and rock types (to determine onland sources and in situ chemical processes), carbonate and organic content and microfossils (for biological and oceanographic influences), and structure such as layering and bioturbation (for physical influences). The samples may also be subjected to physical tests such as comp[action analyses, liquefaction or plasticity limits, ans other parameters important when

  1. Cellular content of biomolecules in sub-seafloor microbial communities (United States)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.; Hinrichs, Kai-Uwe; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Lomstein, Bente Aa.


    Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density centrifugation. Amino acids, amino sugars, muramic acid, and intact polar lipids were analyzed in both whole sediment and cell extract, and cell separation was optimized and evaluated in terms of purity, separation efficiency, taxonomic resemblance, and compatibility to high-performance liquid chromatography and mass spectrometry for biomolecule analyses. Because cell extracts from density centrifugation still contained considerable amounts of detrital particles and non-cellular biomolecules, we further purified cells from two samples by fluorescence-activated cell sorting (FACS). Cells from these highly purified cell extracts had an average content of amino acids and lipids of 23-28 fg cell-1 and 2.3 fg cell-1, respectively, with an estimated carbon content of 19-24 fg cell-1. In the sediment, the amount of biomolecules associated with vegetative cells was up to 70-fold lower than the total biomolecule content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates of microbial biomass.

  2. Temperature analysis in CFRP drilling (United States)

    Matsumura, Takashi; Tamura, Shoichi


    The cutting temperature in drilling of carbon fiber reinforced plastics (CFRPs) is simulated numerically in finite difference analysis. The cutting force is predicted to estimate heat generation on the shear plane and the rake face by an energy approach. In the force model, three dimensional chip flow is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined chip flow model. The cutting temperature distribution is simulated with the thermal conductions, the thermal convections and the heat generations in the discrete elements of the tool, the chip and the workpiece. The heat generations on the shear plane and the rake face are given by stress distributions based on the cutting force predicted. The cutting temperature is analyzed on assumption that all mechanical works contribute the heat generation. The temperature of CFRP is compared with that of carbon steel in the numerical simulation. The maximum temperature of CFRP is much lower than carbon steel. The position at the maximum temperature is near the tool tip due to a low thermal conductivity of CFRP.

  3. Final Technical Report for “A Heliportable Sonic Drilling Platform for Microhole Drilling and Exploration”

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, Peter [Resodyn Corporation, Butte, MT (United States)


    Exploration and development of new energy resources in remote and environmentally sensitive areas can benefit greatly from a reduction in the size of drilling equipment and the associated equipment for its operation. In particular, microhole sonic drilling technology can significantly reduce costs for: 1.) drilling equipment size, 2.) well construction, 3.) placement of subterranean instrumentation and 4.) exploratory drilling costs. The ultimate goal of the project is to provide reliable, small footprint, instrumentation deployment systems that can operate at lower costs and in environmentally sensitive areas that are not accessible to conventional drilling systems. Sonic drilling, combined with an advanced control technology, termed ResonantSonic Tracking™ (RST™) is proposed as a method to meet the DOE requirements.

  4. Ecologically pure drilling muds for the drilling of variable purpose wells

    Energy Technology Data Exchange (ETDEWEB)

    Kudaikulova, G.A.; Rakishev, B.R.; Aitugulova, B.A. [K.I. Satpaev Kazak National Technical Univ., (Kazakhstan)


    The volumes of prospecting and geotechnological rock drilling wells have increased considerably in Kazakhstan. Among the number of ores developed in Kazakhstan, the gold-containing, polymetallic and uranium ores are of particular interest. By working out the deposits, the creviced and cavernous zones often appear. Therefore, a high-quality polymer-clay drilling mud is needed to provide a high yield of core, increase mechanical speed of drilling, and increase the technical and economic indicators of drilling. This paper presented data on the development of ecologically pure polymer-clay drilling muds with application of Kazakhstan clays of various deposits and ecologically pure chemical reagents of companies around the world. The paper discussed the theory and experimental results. It was concluded that the newly created ecologically pure polymer-clay drilling muds had a low indicator of filtration, good removal ability and contained a minimum quantity of reagents. 3 refs., 1 tab., 2 figs.


    Energy Technology Data Exchange (ETDEWEB)

    William C. Maurer; Colin Ruan; Greg Deskins


    Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a


    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec


    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  7. Lake Van deep drilling project PALEOVAN (United States)

    Litt, Thomas; Anselmetti, Flavio S.


    A complete succession of the lacustrine sediment sequence deposited during the last ˜600,000 years in Lake Van, Eastern Anatolia (Turkey) was drilled in 2010 supported by the International Continental Scientific Drilling Program (ICDP). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black, Caspian, and Mediterranean seas. This introductory paper provides background information of the deep drilling project and an overview of the studies presented in this special volume by the PALEOVAN science team dealing with chronology, paleomagnetism, paleoenvironmental proxies, geophysical and petrophysical investigations as well as pore-water and fluid transport.

  8. Drill Embedded Nanosensors for Planetary Subsurface Exploration (United States)

    National Aeronautics and Space Administration — We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit...

  9. 75 FR 8113 - Drill Pipe From China (United States)


    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  10. Seafloor geomorphic manifestations of gas venting and shallow subbottom gas hydrate occurrences (United States)

    Paull, C K; Caress, D W; Thomas, Hans; Lundsten, Eve M.; Anderson, Kayce; Gwiazda, Roberto; Riedel, M; McGann, Mary; Herguera, J C


    High-resolution multibeam bathymetry data collected with an autonomous underwater vehicle (AUV) complemented by compressed high-intensity radar pulse (Chirp) profiles and remotely operated vehicle (ROV) observations and sediment sampling reveal a distinctive rough topography associated with seafloor gas venting and/or near-subsurface gas hydrate accumulations. The surveys provide 1 m bathymetric grids of deep-water gas venting sites along the best-known gas venting areas along the Pacific margin of North America, which is an unprecedented level of resolution. Patches of conspicuously rough seafloor that are tens of meters to hundreds of meters across and occur on larger seafloor topographic highs characterize seepage areas. Some patches are composed of multiple depressions that range from 1 to 100 m in diameter and are commonly up to 10 m deeper than the adjacent seafloor. Elevated mounds with relief of >10 m and fractured surfaces suggest that seafloor expansion also occurs. Ground truth observations show that these areas contain broken pavements of methane-derived authigenic carbonates with intervening topographic lows. Patterns seen in Chirp profiles, ROV observations, and core data suggest that the rough topography is produced by a combination of diagenetic alteration, focused erosion, and inflation of the seafloor. This characteristic texture allows previously unknown gas venting areas to be identified within these surveys. A conceptual model for the evolution of these features suggests that these morphologies develop slowly over protracted periods of slow seepage and shows the impact of gas venting and gas hydrate development on the seafloor morphology.

  11. Design of a Data Distribution Core Model for Seafloor Observatories in East China Sea (United States)

    Chen, H.; Qin, R.; Xu, H.


    High loadings of nutrients and pollutants from agriculture, industries and city waste waters are carried by Changjiang (Yangtze) River and transformed into the foodweb in the river freshwater plume. Understanding these transport and transformation processes is essential for the ecosystem protection, fisheries resources management, seafood safety and human health. As Xiaoqushan Seafloor Observatory and Zhujiajian Seafloor Observatory built in East China Sea, it is an opportunity and a new way for the research of Changjiang River plume. Data collected by seafloor observatory should be accessed conveniently by end users in real time or near real time, which can make it play a better role. Therefore, data distribution is one of major issues for seafloor observatory characterized by long term, real time, high resolution and continuous observation. This study describes a Data Distribution core Model for Seafloor Observatories in East China Sea (ESDDM) containing Data Acquisition Module (DAM), Data Interpretation Module (DIM), Data Transmission Module (DTM) and Data Storage Module (DTM), which enables acquiring, interpreting, transmitting and storing various types of data in real time. A Data Distribution Model Makeup Language (DDML) based on XML is designed to enhance the expansibility and flexibility of the system implemented by ESDDM. Network sniffer is used to acquire data by IP address and port number in DAM promising to release the operating pressure of junction boxes. Data interface, core data processing plugins and common libraries consist of DIM helping it interpret data in a hot swapping way. DTM is an external module in ESDDM transmitting designated raw data packets to Secondary Receiver Terminal. The technology of database connection pool used in DSM facilitates the efficiency of large volumes of continuous data storage. Given a successful scenario in Zhujiajian Seafloor Observatory, the protosystem based on ESDDM running up to 1500h provides a reference for

  12. The Newberry Deep Drilling Project (NDDP) (United States)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.


    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  13. A reagent for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, G.A.; Khon-Pak, A.T.; Khon, A.V.; Normatov, L.N.; Telegin, B.V.


    A reagent is proposed for processing drilling muds. It contains an acrylic polymer and potassium permanganate. The reagent is distinguished by the fact that in order to improve the quality of the drilling muds by increasing their salt resistance, the reagent contains hydrolized nitron fiber as the acrylic polymer with the following component relationship (in percent by weight): potassium permanganate, 0.015 to 0.065 and hydrolyzed nitron fiber, the remainder.

  14. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.


    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  15. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)


    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  16. Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply". (United States)

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S


    Tolstoy reports the existence of a characteristic 100 thousand year (ky) period in the bathymetry of fast-spreading seafloor but does not argue that sea level change is a first-order control on seafloor morphology worldwide. Upon evaluating the overlap between tectonic and Milankovitch periodicities across spreading rates, we reemphasize that fast-spreading ridges are the best potential recorders of a sea level signature in seafloor bathymetry. Copyright © 2016, American Association for the Advancement of Science.

  17. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere


    Yamamoto, A.; Yamanaka, Y.; Tajika, E.


    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  18. Aerated drilling cutting transport analysis in geothermal well (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar


    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  19. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani


    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  20. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)


    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  1. Investigating Large Igneous Province Formation and Associated Paleoenvironmental Events: A White Paper for Scientific Drilling

    Directory of Open Access Journals (Sweden)

    Michael R. Rampino


    Full Text Available Earth’s history has been punctuated over at least the last 3.5 billion years by massive volcanism on a scale unknown in the recent geological past. Largely unknown mechanical and dynamic processes, with unclear relationships to seafloor spreading and subduction, generated voluminous, predominately mafic magmas that were emplaced into the Earth’s lithosphere. The resultant large igneous provinces (LIPs; Coffin and Eldholm, 1994; Ernst and Buchan, 2001; Bryan and Ernst, 2008 were at times accompanied by catastrophic environmental changes. The interaction of the LIP-associated mantle processes with the Earth’s crust have produced a variety of surface expressions (Fig. 1a and 1b; the most common present-day examples are oceanic plateaus (e.g., Kerguelen/Broken Ridge, Ontong Java, Manihiki, Hikurangi, Shatsky, ocean basin flood basalts (e.g., Caribbean, Nauru, magma-dominated divergent continental margins (e.g., theNorth Atlantic, and continental flood basalts (e.g., Columbia River, Deccan Traps, Siberian Traps. Environmental effects associated with LIP formation include climate changes, mass and other extinctions, variations in ocean and atmospheric chemistry, and Oceanic Anoxic Events (OAEs. Therefore, the geodynamic processes in the mantle that produce LIPs have potentially profoundly affected the Earth’s environment, particularly the biosphere and climate. The IntegratedOcean Drilling Program (IODP affords unique opportunities to investigate LIPs and associated environmental effects, building upon results from the Ocean Drilling Program (ODP and Deep Sea Drilling Project (DSDP (Coffin et al., 2006. To this end, a workshop on LIPs, sponsored by IODP Management International (IODP-MI and the Consortium for Ocean Leadership, was held at the University of Ulster in Coleraine, Northern Ireland, U.K. on 22–25 July 2007 (Coffinet al., 2007.

  2. Seafloor classification using artificial neural network architecture from central western continental shelf of India (United States)

    Mahale, Vasudev; Chakraborty, Bishwajit; Navelkar, Gajanan S.; Prabhu Desai, R. G.


    Seafloor classification studies are carried out at the central western continental shelf of India employing two frequency normal incidence single beam echo-sounder backscatter data. Echo waveform data from different seafloor sediment areas are utilized for present study. Three artificial neural network (ANN) architectures, e.g., Self-Organization Feature Maps (SOFM), Multi-Layer Perceptron (MLP), and Learning Vector Quantization (LVQ) are applied for seafloor classifications. In case of MLP, features are extracted from the received echo signal, on the basis of which, classification is carried out. In the case of the SOFM, a simple moving average echo waveform pre-processing technique is found to yield excellent classification results. Finally, LVQ, which is known as ANN of hybrid architecture is found to be the efficient seafloor classifier especially from the point of view of the real-time application. The simultaneously acquired sediment sample, multi-beam bathymetry and side scan sonar and echo waveform based seafloor classifications results are indicative of the depositional (inner shelf), non-depositional or erosion (outer shelf) environment and combination of both in the transition zone. [Work supported by DIT.

  3. Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars (United States)

    Lamarche, Geoffroy; Lurton, Xavier


    Multibeam echosounders are becoming widespread for the purposes of seafloor bathymetry mapping, but the acquisition and the use of seafloor backscatter measurements, acquired simultaneously with the bathymetric data, are still insufficiently understood, controlled and standardized. This presents an obstacle to well-accepted, standardized analysis and application by end users. The Marine Geological and Biological Habitat Mapping group ( has long recognized the need for better coherence and common agreement on acquisition, processing and interpretation of seafloor backscatter data, and established the Backscatter Working Group (BSWG) in May 2013. This paper presents an overview of this initiative, the mandate, structure and program of the working group, and a synopsis of the BSWG Guidelines and Recommendations to date. The paper includes (1) an overview of the current status in sensors and techniques available in seafloor backscatter data from multibeam sonars; (2) the presentation of the BSWG structure and results; (3) recommendations to operators, end-users, sonar manufacturers, and software developers using sonar backscatter for seafloor-mapping applications, for best practice methods and approaches for data acquisition and processing; and (4) a discussion on the development needs for future systems and data processing. We propose for the first time a nomenclature of backscatter processing levels that affords a means to accurately and efficiently describe the data processing status, and to facilitate comparisons of final products from various origins.

  4. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean (United States)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.


    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  5. Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity

    International Nuclear Information System (INIS)

    Kriesky, J.; Goldstein, B.D.; Zell, K.; Beach, S.


    The pace of development of shale gas plays varies greatly among US states and globally. Through analysis of telephone survey responses, we explore support for natural gas drilling in residents of Washington County (WC), PA (n=502) vs. residents of Allegheny County (AC), PA (n=799). WC has had intense Marcellus Shale (MS) drilling activity, in comparison to adjacent AC, which has had little drilling activity. WC residents are marginally more supportive of MS drilling than are AC residents (p=0.0768). Residents of WC are more likely to perceive MS as an economic opportunity than are AC residents (p=0.0015); to be in a family that has signed a MS lease (p<0.0001); to follow the MS issue closely (p=0.0003); to get MS information from neighbors, friends, and relatives (p<0.0001); and are marginally less likely to perceive MS as an environmental threat (p=0.1090). WC leaseholders are significantly more supportive of MS drilling than WC non-leaseholders and AC non-leaseholders (p=0.0024). Mediation analyses show that county-based differences in support of MS drilling are due to WC residents seeing more of an economic opportunity in the MS and their greater likelihood of having a family-held lease. - Highlights: • Telephone survey analysis of sources of support for Marcellus Shale drilling. • Perceived positive economic impact of drilling drives support among respondents. • Mineral rights leaseholders are significantly more supportive than non-leaseholders

  6. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing. (United States)

    Wang, Yudan; Wen, Guojun; Chen, Han


    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  7. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.


    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  8. A novel approach to imaging extinct seafloor massive sulphides (eSMS) by using ocean bottom seismometer data from the Blue Mining project (United States)

    Gil, A.; Chidlow, K. L.; Vardy, M. E.; Bialas, J.; Schroeder, H.; Stobbs, I. J.; Gehrmann, R. A. S.; North, L. J.; Minshull, T. A.; Petersen, S.; Murton, B. J.


    Seafloor massive sulphide (SMS) deposits have generated great interest regarding their formation and composition, since their discovery in 1977. SMS deposits form through hydrothermal circulation and are therefore commonly found near hydrothermal vent sites. The high base (Cu, Zn) and precious metal (Au, Ag) content has interested mining companies, due to their potentially high economic value. Currently, the possibility of mining extinct seafloor massive sulphides (eSMS) deposits has opened a debate about their environmentally and economically sustainable exploitation. A major goal is the rapid exploration and assessment of deposit structure and volume. This is challenging due to their small dimensions (100s m diameter) and typically great water depths (> 3000 mbsl). Here we present a novel approach combining seismic reflection/refraction forward modelling to data acquired from the TAG hydrothermal field (26ºN, Mid-Atlantic Ridge, 3500mbsl) to image deep-water eSMS deposits. In May 2016, the RV METEOR shot 30, short (<10km) MSC profiles across the TAG area. The data were recorded on a dense cluster (<75 m apart) of ocean bottom seismometers (OBS) and were able to image the subsurface of several 300m diameter eSMS deposits. The results show that the eSMS deposits present high velocities (5.4-6.6 km/s) to depths 200m below the seafloor where they are hosted in a 500m thick low-velocity (3.0-3.7 km/s) layer of altered basalt. In contrast to active hydrothermal systems, we see no evidence in the eSMS of a low-velocity anhydrite layer. The velocity-depth models obtained from this innovative method have been combined with other methods to study these eSMS deposits, such as electromagnetics, rocks physics and drilling technics, and the results are shown to concur, yielding information about deposit structure at depth. For example, the high-velocity layer extends deeper than the conductive layer, indicating a deep stock work of low-connectivity sulphides beneath a main

  9. Modified method for estimating petroleum source-rock potential using wireline logs, with application to the Kingak Shale, Alaska North Slope (United States)

    Rouse, William A.; Houseknecht, David W.


    In 2012, the U.S. Geological Survey completed an assessment of undiscovered, technically recoverable oil and gas resources in three source rocks of the Alaska North Slope, including the lower part of the Jurassic to Lower Cretaceous Kingak Shale. In order to identify organic shale potential in the absence of a robust geochemical dataset from the lower Kingak Shale, we introduce two quantitative parameters, $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$, estimated from wireline logs from exploration wells and based in part on the commonly used delta-log resistivity ($\\Delta \\text{ }log\\text{ }R$) technique. Calculation of $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ is intended to produce objective parameters that may be proportional to the quality and volume, respectively, of potential source rocks penetrated by a well and can be used as mapping parameters to convey the spatial distribution of source-rock potential. Both the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters show increased source-rock potential from north to south across the North Slope, with the largest values at the toe of clinoforms in the lower Kingak Shale. Because thermal maturity is not considered in the calculation of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$, total organic carbon values for individual wells cannot be calculated on the basis of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$ alone. Therefore, the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters should be viewed as first-step reconnaissance tools for identifying source-rock potential.

  10. Methane fluxes from intense bubbling seep sites: Mapping and Quantification from the seafloor upto the atmosphere (United States)

    Greinert, J.; Pohlman, J.; Ruppel, C. D.; Urban, P.; Roemer, M.


    Despite the ever increasing number of seep sites being discovered in shelf and continental slope areas, sites where dissolved or free gas fluxes at the seafloor fuel a significant sea surface gas flux into the atmosphere are rare. Here, we report on multi-year studies from a very active seep site in the Dutch North Sea that has been revisited several times since 2009, with large-scale surveys including multibeam based bubble mapping, CTD water column sampling, direct ROV observations, sub-seafloor free gas mapping and CRDS-based sea surface flux and atmospheric measurements (2013, 14, 15, 16). More than 800 individual flares in five main clusters were recorded and first approximations yield 280L of CH4 per minute being released from the seafloor in the entire area. These fluxes created sea surface anomalies even in the strongly stratified water column during the summer period. Atmospheric concentrations increased by almost 1ppm above the strongest flare cluster in 42m water depth. Currently ongoing studies that aim at merging singlebeam and multibeam echosounder data on a meter scale will verify if the previously calculated seafloor gas flux estimates are correct, or if even higher fluxes occurred that explain the significant increase in the atmosphere. Spatial bubble dissolution modelling will be applied to calculate if the newly determined fluxes can support the measured sea surface concentrations and if ocean-atmosphere equilibration supports the observed atmospheric increase. In any case, the clear spatial correlation between seafloor gas release, sea surface and atmospheric anomalies prove that the methane emanating from the seafloor is the source of the increased atmospheric CH4 concentration. Optical studies show that massive and constant gas release is needed to have such an effect. This study can be used as an ideal case study for comparison to other high intensity seeps and their potential for having local effects on CH4 budgets.

  11. To drill or not to drill? An econometric analysis of US public opinion

    International Nuclear Information System (INIS)

    Mukherjee, Deep; Rahman, Mohammad Arshad


    Offshore drilling in the United States (US) has been the subject of public and political discourse due to multiple reasons which include economic impact, energy security, and environmental hazard. Consequently, several polls have been conducted over time to gauge public attitude towards offshore drilling. Nevertheless, the economic literature on this issue is sparse. This paper contributes to the literature and analyzes support for offshore drilling based on demographic, economic, social, belief, and shock (e.g. spill) factors. The data is taken from ten nationwide surveys conducted before, during and after the British Petroleum (BP) oil spill and analyzed within the framework of discrete choice model. The results from an ordinal probit model demonstrate that age, annual household income, affiliation to Republican Party, and residence in oil-rich states positively affect the probability of strong support and reduce the probability of strong opposition for offshore drilling. In contrast, the female gender, higher education, association to Democratic Party, and environmental concern affect opinion in opposite direction. Marginal effects show that belief about environmental consequences of drilling has the highest impact on opinion. Binary probit model also yields a similar result and suggests that BP oil disaster resulted in a transient decrease in support for offshore drilling. - Highlights: •US public opinion on offshore drilling is analyzed based on ten national polls. •Ordinal and binary probit models are utilized to identify the underlying factors that shape public opinion. •Belief about environmental cost of drilling and educational attainment have the highest negative impact on opinion. •Age, income, affiliation to Republican party and oil-rich states positively affect support for drilling. •BP oil spill resulted in a transient decrease in support for offshore drilling.

  12. Physical demand of seven closed agility drills. (United States)

    Atkinson, Mark; Rosalie, Simon; Netto, Kevin


    The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.

  13. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill (United States)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang


    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  14. Engineering concepts for the placement of wastes on the abyssal seafloor (United States)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.


    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management

  15. Image analysis of seafloor photographs for estimation of deep-sea minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Jaisankar, S.; Samanta, S.; Sardar, A.A.; Gracias, D.G.

    : Geo-Mar. Lett., vol.30(6); 2010; 617-626 Image analysis of seafloor photographs for estimation of deep-sea minerals Rahul Sharma, S. Jai Sankar, Sudeshna Samanta, A.A. Sardar. D. Gracious R. Sharma (corresponding author) (e-mail: rsharma... in the 1940s (e.g. Ewing 1946) and became an effective tool for observing the seafloor environment, including its benthic organisms and bottom currents (e.g. Shipek 1960; La Fond 1962; Edgerton 1967; Heezen and Hollister 1971; Borowski 2001; Grizzle et al...

  16. Progress in reducing the environmental impacts of offshore drilling wastes

    International Nuclear Information System (INIS)

    Flemming, D; Candler, J.E.


    Full text:Over the past several years, great progress has been made in understanding and reducing the environmental impacts of offshore drilling wastes. Our understanding of sea floor impacts has been helped along by new environmental assessment tools such us computer modeling of sea floor deposition of drilling discharges, sediment profile imaging, and in situ sediment toxicity bioassays. To further reduce environmental impacts, new pollution prevention technologies have been developed that can shrink the environmental footprint of offshore drilling. These technologies reduce the total amount of drilling wastes discharged and include cuttings dryers and centrifuges that can reduce the drilling fluid content of drill cuttings to below 10 percent. In conclusion, the oil and gas industry is adopting more environmentally compatible drilling fluids, new environmental assessment tools and pollution prevention technologies that dramatically reduce the amount of drilling wastes discharged. Together, all of these elements have the potential to reduce environmental impacts of offshore drilling

  17. Seafloor mapping at Olkiluoto western coast of Finland

    International Nuclear Information System (INIS)

    Ilmarinen, K.; Leinikki, J.; Oulasvirta, P.


    The objective of the study was to investigate the seafloor of shallow areas around Olkiluoto island, western Finland. The surveys were carried out by Alleco Ltd. Posiva will use the data for modeling purposes. The investigations included bathymetric surveys, sediment sampling and assessment of benthic macrophytes and macrozoobenthos in the underwater parts of six pre-defined survey transects extending from land to the sea. Sediment sampling and the assessment of benthic organisms were done by SCUBA diving. The study area showed a great variation in environmental conditions. Olkiluoto stands between almost open sea and extremely sheltered river mouth area of Lapinjoki. Two of the transects were more than 7 meters deep and included both hard and soft sand bottom. Whereas rest of the transects were shallow with mostly soft clay, mud and silt bottom. Altogether 27 species of algae including five species of stoneworts (Charophyta), one species of water moss (Bryophyta) and 16 species of vascular plants (Tracheophyta) were found. The most abundant group was vascular plants, between the other groups of macroalgae big differences in the abundance were not seen. Furthermore altogether 43 species of macrozoobenthos (Invertebrata) were found, of which six species were sessile bottom fauna (permanently attached fauna). The most abundant groups in the bottom samples were bivalves (Lamellibranchiata) (996 individuals per m 2 ), snails (Gastropoda) (739 individuals per m 2 ) and polychaetes (Polychaeta) (542 individuals per m 2 ). The total abundance of macrozoobenthos on all transects was 2 899 individuals per m 2 . The biggest groups by biomass were bivalves (fresh weight 87 054 mg per m 2 ) and polychaetes (fresh weight 12 983 mg per m 2 ). Transect 1 was the richest in number of species of the deep and exposed transects 1 and 2. The transect 5 had the highest diversity of all the shallow soft bottom transects 3, 4, 5 and 5a. The high diversity of the transect 1 and 5 may be

  18. Real-time visual mosaicking and navigation on the seafloor (United States)

    Richmond, Kristof

    Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead

  19. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)


    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  20. The LITA Drill and Sample Delivery System (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.


    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  1. Using MPC for Managed Pressure Drilling

    Directory of Open Access Journals (Sweden)

    Johannes Møgster


    Full Text Available As production on the Norwegian shelf enters tail production, drilling wells with vanishing pressure windows become more attractive. This motivates use of automatic control systems for improved control of downhole pressure using Managed Pressure Drilling (MPD techniques. PID SISO control solutions for MPD are by now relatively standard, and well understood. This article explores the potential benefits of using linear Model Predictive Control (MPC for MPD. It is shown that in combination with wired drill pipe, the downhole pressure can be controlled at multiple locations in the open wellbore, by using both pumps and choke in applied backpressure MPD. Also, downhole pressure constraints (pore and fracture pressures fit naturally in MPC. Illustrative simulations are presented from using a high fidelity well simulator called WeMod, and Statoil's MPC software SEPTIC.

  2. Use of Hardware Battery Drill in Orthopedic Surgery. (United States)

    Satish, Bhava R J; Shahdi, Masood; Ramarao, Duddupudi; Ranganadham, Atmakuri V; Kalamegam, Sundaresan


    Among the power drills (Electrical/Pneumatic/Battery) used in Orthopedic surgery, battery drill has got several advantages. Surgeons in low resource settings could not routinely use Orthopedic battery drills (OBD) due to the prohibitive cost of good drills or poor quality of other drills. "Hardware" or Engineering battery drill (HBD) is a viable alternative to OBD. HBD is easy to procure, rugged in nature, easy to maintain, durable, easily serviceable and 70 to 75 times cheaper than the standard high end OBD. We consider HBD as one of the cost effective equipment in Orthopedic operation theatres.

  3. Rheological study of a water based oil well drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, Vikas; Sharma, V.P. [Department of Petroleum Engineering, Indian School of Mines, Dhanbad-826004, Jharkhand (India)


    Organic polymers are commonly used to control the rheology and filtrate loss required for water-based drilling fluids. An ecologically-friendly water-based drilling fluid was developed by studying the rheological behavior of tamarind gum and polyanionic cellulose on bentonite water suspensions. The effect of drilling fluid filtrate on formation damage was also analyzed. The drilling fluid that was developed has better rheological properties and fluid loss control which are required for optimum performance of oil well drilling. In addition, the drilling fluid filtrate exhibits minimum formation damage on sandstone cores.

  4. Experimental evaluation of training accelerators for surgical drilling

    Directory of Open Access Journals (Sweden)

    Gosselin Florian


    Full Text Available In some specific maxillo-facial surgeries, like the Epker, the cortical part of the lower maxilla must be drilled with minimum penetration into the spongy bone to avoid the trigeminal nerve. The result of the surgery is highly dependent on the quality of the drill. Drilling must therefore be mastered by students before acting as surgeon. The study compares the efficiency of two punctual drilling training programs developed on a virtual reality platform with non medical participants. The results show better benefit of training on relevant haptic aspects of the task before introducing multimodal drilling over repeated multimodal simulated drilling exercises.

  5. Drilling supervision procedure for the Exploratory Shaft Facility: Final draft

    International Nuclear Information System (INIS)


    Drilling supervision will be undertaken in the Exploratory Shaft Facility (ESF) for boreholes drilled primarily for the purpose of hydrologic testing, downhole mechanical/thermal testing, sampling for laboratory testing, and for the placement of instrumentation. The primary purpose of this procedure is documentation of drilling activities prescribed by other procedures. Supervision of drilling includes designation of positions of authority, lines of communication, and methodology of supervising, monitoring, and documenting drilling and associated activities. The rationale for the specific applications of core drilling is provided by the test procedures for each activity. 2 figs

  6. Fabrication of Micro Flat Drills by Precision Grinding and Drilling into Duralumin and Stainless Steel with Ultrasonic Vibration (United States)

    Ohnishi, Osamu; Onikura, Hiromichi; Hata, Akira; Yamamoto, Kenichiro

    The present paper deals with the fabrication of micro flat drills by precision grinding and their application to the drilling into duralumin and stainless steel without/with ultrasonic vibration on a vertical grinding/drilling machine. It is found from drill fabrication test that, by choosing grinding procedure of workpieces so that the stiffness may be kept as high as possible, the diameters range from 18 to 21µm for a nominal diameter of 20µm, and that precision measurement of the diameter after grinding of drill periphery and the precision positioning enabled us to fabricate a flat drill of minimum diameter 10.8µm. But, web eccentricity must be improved hereafter. From drill life test it is found that, irrespective of the existence of web taper, the drills without back taper showed longer tool life, and that irrespective of back taper, longer drill life was obtained in case of drills with web taper. This fact suggests that the stiffness at the root of a drill is very important for drill life. In duralumin longer drill life are gained without ultrasonic vibration than with ultrasonic vibration, and in stainless steel vice versa. Burr grows significantly with the increase in number of holes, but roundness of drilled holes is roughly good.

  7. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones. (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun


    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. High Performance Steel for Percussive Drilling


    Fredriksson, Mikael; Åkerlund, Elin; Åberg, Jakob; Österberg, Patrik; Havo, Rebecka


    Atlas Copco Secoroc AB are searching after new bulk materials for drill heads that are used in percussive drilling in order to improve their strength and durability. The aim of this project is to assist Atlas Copco in this search and provide them with further information regarding material properties, alloying elements, suppliers, etc. A literary study was carried out in order to identify materials that had UTS and KIC more than or equal to 1700 MPa and 70 MPa*m^1/2, respectively. Materials t...

  9. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.


    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  10. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz


    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  11. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    International Nuclear Information System (INIS)

    Puglisi, C.V.; Vold, E.L.


    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G's Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC's), 68 semivolatile organic compounds (SVOC's), tritium, lead 210, radium 226 ampersand 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G's disposal units are performing well and no significant liquid phase migration of contaminants has occurred

  12. Ultrasonic/Sonic Rotary-Hammer Drills (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve


    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  13. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)



    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  14. Viral abundance and activity in the deep sub-seafloor biosphere

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Glud, Ronnie N.; Filippini, Manuela


    Subsurface abundance and distribution of viruses and prokaryotes was determined along a depth profile, down to 96 m below seafloor (96 mbsf), at Challenger Mound from the Porcubine Seabight (IODP Expedition 307). Viral and prokaryotic abundance decreased exponentially with sediment depth from 1.0...

  15. Seafloor Litter in the Sinop İnceburun Coast in the Southern Black Sea

    Directory of Open Access Journals (Sweden)

    Ayşah Öztekin


    Full Text Available In this study, abundance, distribution and type of seafloor litter were determined in the Sinop Inceburun coast which is the northeast point of Turkey. Study was carried out in October 2014 and proposed methods by Guidance on Monitoring of Marine Litter in European Seas’ published by European Marine Strategy Framework Directive Technical Subgroup on Marine Litter section of seafloor litter adopted the region. Seafloor litter density was found mean 808.74±215.02 pieces per km-2. The amount of litter was found maximum in 34 m depth. When results were evaluated in terms of the type of material plastic was found 95.35% and encountered litter items were mainly composed of plastic bags. The size groups were found generally small than 50 cm x 50 cm in the classification according to the size groups. The data obtained from the study demonstrate that the seafloor in the region have highly littered compared to the other studies in the Black Sea. Marine litter pollution is a growing problem in the world all of the world’s oceans and also the Black Sea. Necessary measurements must be taken to solve this problem.

  16. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil (United States)

    Schattner, U.; Lazar, M.; Souza, L. A. P.; ten Brink, Uri S.; Mahiques, M. M.


    Pockmarks form by gas/fluid expulsion into the ocean and are preserved under conditions of negligible sedimentation. Ideally, they are circular at the seafloor and symmetrical in profile. Elliptical pockmarks are more enigmatic. They are associated with seafloor currents while asymmetry is connected to sedimentation patterns. This study examines these associations through morphological analysis of new multibeam data collected across the Santos continental slope offshore Brazil in 2011 (353–865 mbsl). Of 984 pockmarks, 78% are both elliptical and asymmetric. Geometric criteria divide the pockmarks into three depth ranges that correlate with a transition between two currents: the Brazil Current transfers Tropical Water and South Atlantic Central Water southwestwards while the Intermediate Western Boundary Current transfers Antarctic Intermediate Water northeastwards. It is suggested that the velocity of seafloor currents and their persistence dictate pockmark ellipticity, orientation and profile asymmetry. Fast currents (>20 cm/s) are capable of maintaining pockmark flank steepness close to the angle of repose. These morphological expressions present direct evidence for an edge effect of the South Atlantic Subtropical Gyre and, in general, provide a correlation between pockmark geometry and seafloor currents that can be applied at other locations worldwide.

  17. Shaded seafloor relief, backscatter strength, and surficial geology; German Bank, Scotian Shelf, offshore Nova Scotia (United States)

    Todd, B.J.; Valentine, Page C.


    This map is part of a three-map series of German Bank, located on the Scotian Shelf off southern Nova Scotia.  This map is the product of a number of surveys (1997-2003) that used a multibeam sonar system to map 5321 km2 of the seafloor.  Other surveys collected geological data for scientific interpretation.  This map sheet shows the seafloor topography of German Bank in shaded-relief view and seafloor depth (coded by colour) at a scale of 1:1000,000.  Topographic contours generated from the multibeam data are shown (in white) on the colour-coded multibeam topography at a depth interval of 20 m.  Bathymetic contours (in blue) outside the multibeam survey area, presented at a depth interval of 10 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1971a, 1971b, 1972). Sheet 2 shows coloured backscatter strength in shaded-relief view.  Sheet 3 shows seafloor topography in shaded-relief view with colour-coded surficial geological units.

  18. Repeated Observation of Seafloor Crustal Deformation at the Nankai Margin, Japan (United States)

    Tadokoro, K.; Ando, M.; Okuda, T.; Sugimoto, S.; Aizawa, Y.; Watanabe, T.; Yasuda, J.; Muto, D.; Kuno, M.


    The Nankai Trough is one of the active plate boundaries where the major subduction earthquakes, Nankai and Tonankai earthquakes, repeatedly occur. The source regions of the earthquakes are located beneath the see bottom, and it is necessary to monitor the crustal activities, such as seismicity and crustal deformation, for the sake of earthquake prediction and disaster prevention. One of the useful tools to monitor seafloor crustal deformation is the observation system composed of the acoustic ranging and kinematic GPS positioning techniques. We install seafloor benchmark composed of three sea bottom transponders for acoustic ranging. We have installed the seafloor benchmarks at three sites close to the Nankai Trough. We repeatedly observed at the two sites among them ten and six times from 2004. The result of the repeated observation shows that the repeatability of the measurement is +/-3 cm for each horizontal component. The coseismic crustal deformation due to M7 class earthquakes was also detected at the sea bottom benchmark. Our next target is continuous monitoring of seafloor crustal deformation associated with plate convergence. This study is promoted by Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural Science and Technology Promotion Center, Japan.

  19. Estimation of seafloor impact from demersal trawls, seines and dredges based on gear design and dimensions

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Breen, Michael

    a different approach using the gear itself (design and dimensions) for understanding and estimation of the physical interactions with the seafloor at the individual fishing operation level. With reference to the métier groupings of EU logbooks, we defined 17 distinct towed gear groups in European waters (11...

  20. Duel frequency echo data acquisition system for sea-floor classification

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Desai, R.G.P.; Chakraborty, B.

    An echo data acquisition system is designed to digitize echo signal from a single beam shipboard echo-sounder for use in sea-floor classification studies using a 12 bit analog to digital (A/D) card with a maximum sampling frequency of 1 MHz. Both 33...

  1. Fore-arc seafloor unconformities and geology: Insight from 3-D seismic geomorphology analysis, Peru (United States)

    Calvès, Gérôme; Auguy, Constance; de Lavaissière, Léopold; Brusset, Stéphane; Calderon, Ysabel; Baby, Patrice


    New 3-D seismic data collected over 4870 km2 in the 3°45'S-12°30'S Peruvian segment of the East Pacific subduction system image seafloor erosional surfaces that can be mapped across the fore-arc basins. Fore-arc basins experience various stresses, from their base where basal tectonic erosion acts to the seafloor which is influenced by aerial, shallow, and deep water currents driven by waves or thermohaline oceanic currents. Previously there has been little interest in stresses on the upper layer and there is a lack of documentation of unconformities and the erosive processes in certain bathymetric domains in fore-arc basins. We address this with the study of examples sourced from 3-D seismic reflection surveys of the seafloor offshore Peru. Unconformities occur in two distinctive bathymetric domains associated with the continental shelf and the upper slope of the margin. Identification and characterization of unconformity surfaces yield estimates of the amount of erosion at the modern seafloor that range from 18 to 100%. Regional physical oceanography allows us to calibrate potential candidates for these two distinctive domains. The first control on erosion is the dynamics of deep to intermediate oceanic currents related to the Humboldt-Peru Chile water masses, while the second is wave action in the shallower erosional surfaces. This study illustrates the unseen landscape of the fore-arc basins of South America and helps to highlight the importance of erosive surficial processes in subduction landscapes.

  2. Low frequency acoustic reverberation from highly porous seafloors under grazing incidence

    NARCIS (Netherlands)

    Cristol, X.; Jespers, S.; Chalindar, B.; Juhel, B.; Dybedal, J.; Eidem, E.J.; Ivansson, S.; Vossen, R. van; Ainslie, M.A.; Andersson, B.L.; Colin, M.E.G.D.; Pihl, J.


    The European Defence Agency project RUMBLE-2 (ref.[1]) offered the opportunity for investigating experimentally acoustic reverberation at about 1.kHz, under grazing incidence (less than about 20°), from very porous clayey seafloors of a continental shelf (mean grain size spanning from about 7 to 10

  3. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.

    and sediment volume roughness parameters. The application of a composite roughness model to a nodule-bearing region (6,600 km2) of the CIOB, to determine seafloor interface roughness parameters from a multi-beam backscatter dataset, shows only four power law...

  4. The role of continental growth on the evolution of seafloor spreading (United States)

    Coltice, Nicolas; Rolf, Tobias; Tackley, Paul J.


    The area vs. seafloor age distribution is fundamental information to build plate reconstructions and evaluate sea level changes and heat flow evolution. Recent models of spherical mantle convection with plate-like behavior (Tackley, 2000a, 2000b) and continental drift (Rolf and Tackley, 2011) propose solutions compatible with the area vs. age distribution of present-day seafloor spreading (Coltice et al., 2012). Area vs. age distributions computed in convection models display fluctuations of the rate of seafloor spreading. The shape of the distribution varies from uniformly distributed to strongly dominated by younger ages over the course of a calculation. Two factors influence the computed area vs. age distribution: the time-dependence of the rate of production of new seafloor and the continental area that constrains the geometry of ocean basins. Heat flow or sea level strongly depend on the shape of this distribution; hence it is essential to investigate how continental growth could have modified the area vs. age distribution. We will evaluate the role of increasing continental area on the computed seafloor spreading histories. We will show that the average production rate of new seafloor does not vary with continental area, contrarily to fluctuations that increase with continental area. We will show continental growth tends to favour the consumption of progressively younger seafloor. Consequences on heat flow and sea level will be presented. References Coltice, N., Rolf, T., Tackley P.J., Labrosse, S., Dynamic causes of the relation between area and age of the ocean floor, Science 336, 335-338 (2012). Rolf, T., and P. J. Tackley, Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics, Geophys. Res. Lett., 38 (2011). Tackley, P.J., Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, part 1: Pseudoplastic yielding, Geoch. Geophys. Geosys. 1 (2000a

  5. Electric motor for laser-mechanical drilling (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.


    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  6. Pregnancy following laparoscopy ovarian drilling for clomiphene

    African Journals Online (AJOL)

    We presented a case of 29 year old nulliparous woman who presented with features of polycystic ovarian syndrome. She had ovulation induction with. Clomiphene citrate for nine consecutive cycles to no avail. She achieved pregnancy following Laparoscopic Ovarian Drilling at the Assisted. Reproductive Technology Unit ...

  7. Impedance-matched drilling telemetry system (United States)

    Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM


    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  8. Dexterity Drills for the Student Violinist (United States)

    Darling, Cynthia


    Practical dexterity exercises are essential for the student violinist. Dimitri Hadjipetkov, the tricampus strings director at the Montclair Kimberley Academy in Montclair, New Jersey, identifies three main benefits resulting from dexterity drills and exercises: (1) strengthening the third and fourth finger in first position; (2) improving…

  9. Red Dragon drill missions to Mars (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris


    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  10. Development of a Piezoelectric Rotary Hammer Drill (United States)

    Domm, Lukas N.


    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  11. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett


    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  12. 30 CFR 250.1605 - Drilling requirements. (United States)


    ... of operations and the structural integrity of the drilling unit. (d) Foundation requirements. When... well and mud logs through the objective interval to determine the presence, quality, and quantity of... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1...



    SUSAC, Florin; TABACARU Valentin; COSTIN Georgiana-Alexandra


    The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  14. High Temperature Venus Drill and Sample Delivery System Project (United States)

    National Aeronautics and Space Administration — We proposed to design, build and test a high temperature Pneumatic Drill and Trencher system for Venus subsurface exploration. The Venus Drill and Trencher will be...

  15. Interval by interval analysis of commercial drilling speed

    Energy Technology Data Exchange (ETDEWEB)

    Dublenich, L.B.; Gor' kov, A.P.


    The results are cited of an interval by interval analysis of the commercial drilling speeds in individual sites of the Carpathian region (Skhodnitsa, Dolina, Duvboshanka) which attest to the presence of reserves for increasing the commercial drilling speeds.

  16. NanoDrill: 1 Actuator Core Acquisition System, Phase I (United States)

    National Aeronautics and Space Administration — We propose to design, build and test a 1 kg, single actuator, sample acquisition drill. The drill uses a novel method of core or powder acquisition. The core...

  17. NanoDrill: 1 Actuator Core Acquisition System, Phase II (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a sample acquisition drill weighing less than 1 kg. The drill uses a novel method of core or powder acquisition, and is...

  18. Emplacement hole drill evaluation and specification study. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)


    This appendix contains pertinent data sheets, drawings, and photographs provided by the drill manufacturers Acker Drill Co, Calweld, Dresser Industries, Gus Pech, Hughes Tool, Ingersoll-Rand, Robbins, and Subterranean Tools.

  19. Drilling fluids engineering to drill extra-heavy oil reservoir on the Orinoco Oil Belt, eastern Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Pino, R.; Gonazalez, W. [Proamsa, Maturin, Monagas (Venezuela)


    Petrocedeno is an exploration and development company operating in Venezuela. As part of a multidisciplinary group, Proamsa has been working with Petrocedeno to drill horizontal wells while minimizing issues related to the handling of drilling fluids. Proamsa is the only 100 per cent Venezuelan Company involved in drilling extra-heavy oil wells. The drilling plan for Petrocedeno was divided into two campaigns. More than 400 horizontal wells were drilled during the first campaign from 1999 to 2003 which represented over 2,500,000 drilled feet into the Oficina Formation (pay zone of the field). From 2006, during the second drilling campaign, and another 154 horizontal wells having been drilled until 2006 utilizing the xantam gum viscoelastic fluid. This paper discussed the field geology of the Orinoco oil belt. Well design was also explained and discussed and drilling fluid design and new fluid formations were presented. The benefits of xantam gum viscoelastic fluid were also discussed. It was concluded that recycling of drilling fluid from well to well minimized volume and reduced costs. In addition, centrifugation of drilling fluids either on intermediate or horizontals sections while the rig was skidding was always a very good practice avoiding mixing additional volumes. It was also demonstrated that the initial idea to provide a drilling fluid service company with a 100 per cent national value was a success, as demonstrated by the high performance shown by Proamsa during the second drilling campaign with external technologic support. 6 refs., 4 tabs., 4 figs.

  20. Monitoring of Seafloor Crustal Deformation Along the Suruga-Nankai Trough, Japan (United States)

    Tadokoro, K.; Watanabe, T.; Nagai, S.; Okuda, T.; Ikuta, R.; Eto, S.; Yasuda, K.; Sakata, T.; Sayanagi, K.


    \\ \\ \\ The Suruga-Nankai Trough is one of the active plate boundaries in the world. The Philippine Sea plate subducts beneath the Amurian (Eurasian) plate along the Suruga-Nankai Trough, causing major subduction earthquakes. The subduction earthquakes, Nankai and Tonankai earthquakes, have repeatedly occurred with intervals of about 100-150 years. Headquarters for Earthquake Research Promotion, Japanese Government [2011] estimates the 30-years probabilities of the next major earthquakes at 60-70 %. It is necessary to monitor crustal deformation above the source regions of the major earthquakes. The source regions are located beneath the seafloor, and we developed a system for monitoring seafloor crustal deformation [Tadokoro et al., 2006, GRL; Ikuta et al., 2008, JGR]. The system is composed of the precise acoustic ranging with ultrasonic waves and kinematic GPS positioning techniques. \\ \\ \\ We monitor seafloor crustal deformation at five sites altogether along the Suruga-Nankai Trough, three in the Kumano region and two in the Suruga region, with the use of this system. We have repeatedly measured the coordinate of seafloor benchmark installed beforehand every about 2-3 months on the average. The monitoring results, the horizontal site velocities with relative to the Amurian Plate, as of 2010 are approximately 3-4 cm/yr in the direction of N70W at the three sites in the Kumano region, and approximately 2-4 cm/yr in the direction of N85-100W at the two sites in the Suruga region. The observed horizontal seafloor crustal deformations are consistent to the plate convergence along the Suruga-Nankai Trough, showing strain accumulation before the next major subduction earthquakes. Acknowledgments: We are grateful to the captain and crews of R/Vs "Hokuto," Tokai University and "Asama," Mie Prefecture Fisheries Research Institute, Japan. This study has been promoted by Ministry of Education, Culture, Sports, Science and Technology, Japanese Government.

  1. Rates of continental breakup magmatism and seafloor spreading in the Norway Basin-Iceland plume interaction (United States)

    Breivik, AsbjøRn Johan; Mjelde, Rolf; Faleide, Jan Inge; Murai, Yoshio


    In year 2000, an ocean bottom seismometer (OBS) profile was acquired across the Møre margin to the Aegir Ridge, an extinct seafloor spreading axis. The margin is an early Eocene volcanic passive margin, located between the Faeroe-Iceland Ridge (FIR) and the East Jan Mayen Fracture Zone (EJMFZ). The P wave data were modeled by ray tracing to give a crustal transect showing a 10-11 km thick igneous crust created by breakup magmatism, tapering off to magma-starved seafloor spreading by C23 time (51.4 Ma). The location of the EJMFZ was reinterpreted from a satellite derived gravity map, and spreading direction in the Norway Basin reevaluated. No other fracture zones were confirmed, and both thin oceanic crust (4-5 km) and lack of fracture zones resemble ultraslow spreading on the Arctic Gakkel Ridge. Magnetic seafloor spreading anomalies were identified from the magnetic track recorded with the OBS profile, and half spreading rates were derived. Early seafloor spreading was slow (15-32 mm yr-1), approaching ultraslow (6-8 mm yr-1) by C20 time (42.7 Ma). A V-shaped pattern seen in the gravity field located only around the northern part of the Aegir Ridge corresponds to increased crustal thickness in the seismic model, recording northeast transport (3-6 mm yr-1) of more melt-fertile asthenosphere zones. The magma-starved character of the Norwegian Basin seen also during slow seafloor spreading may be the result of depletion of the asthenosphere when the Iceland plume constructed the FIR to the south, as the asthenosphere is subsequently transported into the Norway Basin.

  2. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal


    Full Text Available The stable isotopes of nitrogen offer a unique perspective on changes in the nitrogen cycle, past and present. However, the presence of multiple forms of nitrogen in marine sediments can complicate the interpretation of bulk nitrogen isotope measurements. Although the large-scale global patterns of seafloor δ15N have been shown to match process-based expectations, small-scale heterogeneity on the seafloor, or alterations of isotopic signals during translation into the subseafloor record, could obscure the primary signals. Here, a public database of nitrogen isotope measurements is described, including both seafloor and subseafloor sediment samples ranging in age from modern to the Pliocene, and used to assess these uncertainties. In general, good agreement is observed between neighbouring seafloor sites within a 100 km radius, with 85% showing differences of < 1‰. There is also a good correlation between the δ15N of the shallowest (< 5 ka subseafloor sediments and neighbouring seafloor sites within a 100 km radius (R2 = 0.83, which suggests a reliable translation of sediments into the buried sediment record. Meanwhile, gradual δ15N decreases over multiple glacial–interglacial cycles appear to reflect post-depositional alteration in records from the deep sea (below 2000 m. We suggest a simple conceptual model to explain these 100-kyr-timescale changes in well-oxygenated, slowly accumulating sediments, which calls on differential loss rates for pools of organic N with different δ15N. We conclude that bulk sedimentary nitrogen isotope records are reliable monitors of past changes in the marine nitrogen cycle at most locations, and could be further improved with a better understanding of systematic post-depositional alteration. Furthermore, geochemical or environmental criteria should be developed in order to effectively identify problematic locations and to account for

  3. Drilling constraints on bimodal volcanism and subsequent formation of contrasted uppermost crustal compositions at the middle Okinawa Trough (United States)

    Yamasaki, T.; Takaya, Y.; Mukae, N.; Nagase, T.; Tindell, T.; Totsuka, S.; Uno, Y.; Yonezu, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.; Shipboard Scientist, C.


    The Okinawa Trough (OT) is a young and actively spreading back-arc basin, extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. The OT is believed to be in an initial rifting stage (starting from 6-9 Ma), prior to the normal/stable seafloor spreading which constitutes the main stage of back-arc basin formation. Two drilling cruises ‒ the IODP Exp. 331 and SIP CK14-04 D/V Chikyu Cruise (Exp. 907) in 2010 and 2014 ‒ were conducted at the Iheya North Knoll, middle OT. The Iheya North Knoll is a domal volcanic complex consisting of small volcanic bodies. On these cruises, pumiceous gravel and altered rhyolitic rocks, as well as hemi-pelagic sediments, hydrothermal clay and Kuroko-type ores, were recovered from the upper 200 m of the crust. From Feb. 11, 2016 to Mar. 17, 2016, the SIP CK16-01 (Exp. 908) D/V Chikyu cruise was conducted at Iheya North Knoll and the sediment-covered rifting center of the Iheya-Minor Ridge area, middle OT. The Iheya-Minor ridge area is also an active hydrothermal field, located 25 km southeast of the Iheya North Knoll. In this area, basaltic rocks are widely distributed, and drilling has confirmed that the basaltic materials continue to 120 m below the seafloor. From an igneous petrological point of view, the volcanic rocks in the Okinawa Trough are characterized by bimodal basaltic and rhyolitic compositions, with a compositional gap between SiO2 = 56-66 wt%. The origin of the rhyolitic rock has been interpreted as magmatic differentiation of basaltic magma. However, the existence of an active basalt-hosted hydrothermal field in the Iheya-Minor ridge area suggests the presence of hot basaltic rocks at a shallow position in the crust, and reaching recharged seawater at this depth. Furthermore, the composition of felsic rocks just after the compositional gap (SiO2 = 67 wt%) is very similar to that of the minimum melt of a granitic system, and experimental partial melt of hydrous basalt. Therefore

  4. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation (United States)

    Buranský, Ivan; Necpal, Martin; Bračík, Matej


    The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  5. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan


    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  6. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)


    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  7. Improve Performance of Water-based Drilling Fluids


    Ismail, Abdul Razak


    The significant of exploring deep wells is increasing rapidly to fulfill the global oil and gas demand. Deepwater drilling in offshore operations found negative impact on the drilling fluids rheological properties when exposed to high pressure high temperature conditions. Hence, designing drilling fluids for drilling in these type of wells are the major challenges. In this study, the impact of multi-walled carbon nanotube (MWCNT) and nano metal oxides (titanium oxide, aluminum oxide and coppe...

  8. Drilling activity down but not out

    Energy Technology Data Exchange (ETDEWEB)

    McNally, R.


    ''The drilling contractor and his customers are in trouble, but so is all basic industry. Steel production is down to about 50% of capacity, automobile sales are off drastically, and railroads are saying they must have help to continue to exist.'' That is a quote from the July 1958 issue of PETROLEUM ENGINEER International, but substitute ''airlines'' for ''railroads'' and the 25-year-old statement is just as true today as it was back then. There is a tendency today, however, to regard the current drilling slump as the worst ever, even for an industry that has traditionally had its peaks and valleys. Granted, the drop in drilling rig activity during 1982 was the steepest of all time. But it must be remembered that it came at the end of the greatest increase in the history of U.S. rig activity - a phenomenon that created what will go down in oilpatch lore as the Mount Everest of drilling peaks. But the downside should not be remembered as Death Valley because, even at its lowest point, rig activity in the U.S. since the end of 1981 has been higher than it was at any time during the 14-year period from 1962 to 1976. All that, of course, is small consolation for drilling contractors who are desperately trying to remain afloat until the tide turns again. Although they may be buoyed by the fact that history tells us the tide is sure to turn eventually, the bad news is that history does not tell us when.

  9. The rock melting approach to drilling

    Energy Technology Data Exchange (ETDEWEB)

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.


    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock melting approach reduces waste handling, treatment and disposal. Drilling by rock melting has been demonstrated to depths up to 30 m in caliche, clay, alluvium, cobbles, sand, basalt, granite, and other materials. Penetrating large cobbles without debris removal was achieved by thermal stress fracturing and lateral extrusion of portions of the rock melt into the resulting cracks. Both horizontal and vertical holes in a variety of diameters were drilled in these materials using modular, self-contained field units that operate in remote areas. Because the penetrator does not need to rotate, steering by several simple approaches is considered quite feasible. Melting is ideal for obtaining core samples in alluvium and other poorly consolidated soils since the formed-in-place glass liner stabilizes the hole, encapsulates volatile or hazardous material, and recovers an undisturbed core. Because of the relatively low thermal conductivity of rock and soil materials, the heat-affected zone beyond the melt layer is very small, <1 inch thick. Los Alamos has begun to update the technology and this paper will report on the current status of applications and designs for improved drills.

  10. Recent Developments in Geothermal Drilling Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.


    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  11. EIA completes corrections to drilling estimates series

    International Nuclear Information System (INIS)

    Trapmann, W.; Shambaugh, P.


    The Energy Information Administration (EIA) has published monthly and annual estimates of US oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are major reference points for federal and state policymakers. EIA does not itself collect drilling activity data. Instead, it relies on an external source for data on oil, bas, and dry well completions. These data are provided to EIA monthly on an as reported basis. During a recent effort to enhance EIA's well completion data system, the detection of unusual patterns in the well completion data as received led to an expanded examination of these data. Substantial discrepancies between the data as received by EIA and correct record counts since 1987 were identified. For total wells by year, the errors ranged up to more than 2,300 wells, 11% of the 1995 total, and the impact of these errors extended backward in time to at least the early 1980s. When the magnitude and extent of the as reported well completion data problem were confirmed, EIA suspended its publication and distribution of updated drilling data. EIA staff proceeded to acquire replacement files with the as reported records and then revise the statistical portion of its drilling data system to reflect the new information. The replacement files unfortunately also included erroneous data based on the improper allocation of wells between exploration and development. EIA has now resolved the two data problems and generated revised time series estimates for well completions and footage drilled. The paper describes the problems in the data, differences between the series, and maintaining future data quality

  12. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang


    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  13. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique. (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo


    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  14. Robotic System Development for Cooperative Orthopedic Drilling Assistance

    Directory of Open Access Journals (Sweden)

    Vijayabaskar Kasi


    Full Text Available This paper describes a robotic bone drilling and screwing system for applications in orthopedic surgery. The goal is to realize two robot manipulators performing cooperative bone drilling. The proposed cooperative bone drilling system can be divided into hardware and software development. The hardware development section consists of two robot manipulator arms, which perform drilling and gripping of the bone, and operates using two joysticks. The software section assists the surgeon in visual and navigation control of those robot manipulators. Controller used in this system can be included in the hardware and software sections. Disturbance observer based position control was used in the robot manipulator maneuver and reposition controller (cooperative control was used in cooperative drilling operation to maintain the alignment of the drill bit during drilling. A mathematical model for the control system was designed and a real environment mimicking simulation for bone drilling was designed. The result of the simulation shows that the cooperative robot system managed to perform cooperative drilling when misalignment occurs during bone drilling. The bone gripping robot managed to restore the drill bit to its ideal alignment in every event of misalignment in the drilling axis. Therefore this cooperative system has potential application in experimental orthopedic surgery.

  15. Drilling hazards inventory: The key to safer -and cheaper- wells

    NARCIS (Netherlands)

    Hoetz, G.; Jaarsma, B.; Kortekaas, M.


    Safety and cost control are critical success factors in the realm of drilling. Actual well costs frequently exceed planned costs due to unexpected drilling incidents related to potentially avoidable geohazards. It is estimated that - in the Netherlands on average - around 20% of drilling time is

  16. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav


    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...

  17. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav


    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...

  18. 21 CFR 882.4370 - Pneumatic cranial drill motor. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power...

  19. 21 CFR 882.4360 - Electric cranial drill motor. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  20. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  1. development and evaluation of a drill re-grinding fixture

    African Journals Online (AJOL)


    work-piece. There are different drills but the most common drill used is the twist drill. They are provided with double helical flutes called twist. The twist could be .... shear stresses as seen from the geometry of this fixture. The stresses are computed as: The bending stress on the pivot bolt, σ; where centroid of the pivot rod,. =.

  2. Overhead drilling: comparing three bases for aligning a drilling jig to vertical. (United States)

    Rempel, David; Star, Demetra; Barr, Alan; Janowitz, Ira


    Drilling overhead into concrete or metal ceilings is a strenuous task done by construction workers to hang ductwork, piping, and electrical equipment. The task is associated with upper body pain and musculoskeletal disorders. Previously, we described a field usability evaluation of a foot lever and inverted drill press intervention devices that were compared to the usual method for overhead drilling. Both interventions were rated as inferior to the usual method based on poor setup time and mobility. Three new interventions, which differed on the design used for aligning the drilling column to vertical, were compared to the usual method for overhead drilling by commercial construction workers (n=16). The usual method was associated with the highest levels of regional body fatigue and the poorest usability ratings when compared to the three interventions. Overall, the 'Collar Base' intervention design received the best usability ratings. Intervention designs developed for overhead drilling may reduce shoulder fatigue and prevent subsequent musculoskeletal disorders. These designs may also be useful for other overhead work such as lifting and supporting materials (e.g., piping, ducts) that are installed near the ceiling. Workplace health and safety interventions may require multiple rounds of field-testing prior to achieving acceptable usability ratings by the end users. (c) 2010 Elsevier Ltd. All rights reserved.

  3. The disposal of oilfield brine drilling fluids and drill cuttings in the Province of Ontario

    Energy Technology Data Exchange (ETDEWEB)


    This technical report was assembled by the Ontario Petroleum Institute as a source document for the discussion of the environmental issues which now confront the industry. The purpose of the report is to provide technical information to government about the nature of current practice, to inform industry on existing regulations and to promote discussion between government and industry. Oil drilling, production and stimulation are discussed. The material in a drilling pit usually separates into a liquid and a slurry phase. The liquid phase in a drilling pit contains the drilling fluid, formation water, rainfall, crude oil, surfactant, and soluble drilling additives. Drilling slurry contains rock cuttings, cement chips, clay, bentonite. The total volume of solids generated was estimated at 6,500m{sup 3} in 1988. Oilfield brine consists of formation water with minor quantities of soluble chemicals. The total volume of oilfield brine produced in 1988 was estimated at 1.308 million m{sup 3}. The total volume of stimulation fluids generated in 1988 was estimated at 1.264 m{sup 3} (8,000 barrels). It as recommended that operators and contractors take responsibility to avoid the use of material which are likely to become registerable wastes; that industry meet with regulatory authorities to discuss disposal standards, procedures and guidelines and to solve jurisdictional conflicts between regulatory bodies. It was also recommended that landfill operators be kept better informed about the nature and quantity of materials being disposed.

  4. Environmentally Assisted Cracking of Drill Pipes in Deep Drilling Oil and Natural Gas Wells (United States)

    Ziomek-Moroz, M.


    Corrosion fatigue (CF), hydrogen induced cracking (HIC) and sulfide stress cracking (SSC), or environmentally assisted cracking (EAC) have been identified as the most challenging causes of catastrophic brittle fracture of drill pipes during drilling operations of deep oil and natural gas wells. Although corrosion rates can be low and tensile stresses during service can be below the material yield stress, a simultaneous action between the stress and corrosive environment can cause a sudden brittle failure of a drill component. Overall, EAC failure consists of two stages: incubation and propagation. Defects, such as pits, second-phase inclusions, etc., serve as preferential sites for the EAC failure during the incubation stage. Deep oil and gas well environments are rich in chlorides and dissolved hydrogen sulfide, which are extremely detrimental to steels used in drilling operations. This article discusses catastrophic brittle fracture mechanisms due to EAC of drill pipe materials, and the corrosion challenges that need to be overcome for drilling ultra-deep oil and natural gas wells.

  5. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm. (United States)

    Huang, Kuo-Yi


    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  6. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer


    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  7. On-land Exposures of Ocean-Continent Transitions: A Window for Understanding Rifting and Slow Sea-Floor Spreading Processes (United States)

    Müntener, O.; Manatschal, G.


    Direct observations and nearly unlimited sampling in ancient margins and ocean-continent transitions exposed in the Alps combined with drill-hole and geophysical data from the present-day Iberia margin result in new concepts of how magma-poor passive continental margins evolve towards (ultra?-) slow seafloor spreading systems. We review data from both the shallow and deep structure of magma-poor passive margins and propose that three temporal and spacially different fault systems are sufficient to explain the overall evolution from continental extension to early seafloor spreading. (1) During an initial stage of rifting the architecture and rift structures are controlled by inherited heterogeneities in the intermediate and lower crust which lead to a different response of the future distal and proximal margins. Future proximal margins are characterized by frequent normal faulting soling out at approximately 10km, while future distal margins show little evidence for early rift-related normal faults. However, the deep structure underneath the future distal margin is controlled by crustal-scale faults which thinned the crust to about 10km by excising up to 20 km of intermediate to lower crust. Thus we prefer the hypothesis of a 'within crust decoupling' of deformation and suggesting that boudinage of the lower crust is an important process during early rifting. A second important aspect is that after the initial stage of rifting mantle rocks are accessible for serpentinization. (2) Late-stage rifting is controlled by detachment faults. The most compelling evidence are extensional allochthons of upper continental crust emplaced on exhumed mantle rocks and tectono-sedimentary breccias covering detachment faults. Strain is extremely localized and leads to the formation of characteristic black fault gouges which are documented in ocean-continent transitions. Low angle detachment faults cut accross the entire, previously thinned continental crust and provide a mechanism

  8. Estimating Global Seafloor Total Organic Carbon Using a Machine Learning Technique and Its Relevance to Methane Hydrates (United States)

    Lee, T. R.; Wood, W. T.; Dale, J.


    Empirical and theoretical models of sub-seafloor organic matter transformation, degradation and methanogenesis require estimates of initial seafloor total organic carbon (TOC). This subsurface methane, under the appropriate geophysical and geochemical conditions may manifest as methane hydrate deposits. Despite the importance of seafloor TOC, actual observations of TOC in the world's oceans are sparse and large regions of the seafloor yet remain unmeasured. To provide an estimate in areas where observations are limited or non-existent, we have implemented interpolation techniques that rely on existing data sets. Recent geospatial analyses have provided accurate accounts of global geophysical and geochemical properties (e.g. crustal heat flow, seafloor biomass, porosity) through machine learning interpolation techniques. These techniques find correlations between the desired quantity (in this case TOC) and other quantities (predictors, e.g. bathymetry, distance from coast, etc.) that are more widely known. Predictions (with uncertainties) of seafloor TOC in regions lacking direct observations are made based on the correlations. Global distribution of seafloor TOC at 1 x 1 arc-degree resolution was estimated from a dataset of seafloor TOC compiled by Seiter et al. [2004] and a non-parametric (i.e. data-driven) machine learning algorithm, specifically k-nearest neighbors (KNN). Built-in predictor selection and a ten-fold validation technique generated statistically optimal estimates of seafloor TOC and uncertainties. In addition, inexperience was estimated. Inexperience is effectively the distance in parameter space to the single nearest neighbor, and it indicates geographic locations where future data collection would most benefit prediction accuracy. These improved geospatial estimates of TOC in data deficient areas will provide new constraints on methane production and subsequent methane hydrate accumulation.

  9. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm


    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  10. 30 CFR 250.458 - What quantities of drilling fluids are required? (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What quantities of drilling fluids are required... Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are required? (a) You must use, maintain, and replenish quantities of drilling fluid and drilling fluid materials at the drill site as...

  11. 76 FR 11757 - Drill Pipe From the People's Republic of China: Antidumping Duty Order (United States)


    ... are finished drill pipe and drill collars without regard to the specific chemistry of the steel (i.e... included are unfinished drill collars (including all drill collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which are tubes meeting the following description: seamless tubes with an...

  12. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.


    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  13. Using mm-scale seafloor roughness to improve monitoring of macrobenthos by remote sensing (United States)

    Feldens, Peter; Schönke, Mischa; Wilken, Dennis; Papenmeier, Svenja


    In this study, we determine seafloor roughness at mm-scales by laser line-scanning to improve the remote marine habitat monitoring of macrobenthic organisms. Towards this purpose, a new autonomous lander system has been developed. Remote sensing of the seafloor is required to obtain a comprehensive view of the marine environment. It allows for analyzing spatiotemporal dynamics, monitoring of natural seabed variations, and evaluating possible anthropogenic impacts, all being crucial in regard to marine spatial planning as well as the sustainable and economic use of the sea. One aspect of ongoing remote sensing research is the identification of marine life, including both fauna and flora. The monitoring of seafloor fauna - including benthic communities - is mainly done using optical imaging systems and sample retrieval. The identification of new remote sensing indicator variables characteristic for the physical nature of the respective habitat would allow an improved spatial monitoring. A poorly investigated indicator variable is mm-scale seafloor microtopography and -roughness, which can be measured by laser line scanning and in turn strongly affects acoustic scatter. Two field campaigns have been conducted offshore Sylt Island in 2015 and 2016 to measure the microtopography of seafloor covered by sand masons, blue mussels, and oysters and to collect multi-frequency acoustic data. The acoustic data and topography of the blue mussel and oyster fields are currently being analyzed. The mm-scale microtopography of sand mason covered seafloor were transformed into the frequency domain and the average of the magnitude at different spatial wavelengths was used as a measure of roughness. The presence of sand masons causes a measurable difference in roughness magnitude at spatial wavelengths between 0.02 m and 0.0036 m, with the magnitude depending on sand mason abundance. This effect was not detected by commonly used 1D roughness profiles but required consideration of the

  14. Semisubmersible rigs attractive for tender-assisted drilling

    Energy Technology Data Exchange (ETDEWEB)

    Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))


    Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

  15. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited) (United States)

    Buick, R.


    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  16. Casing and liners for drilling and completion

    CERN Document Server

    Byrom, Ted G


    The Gulf Drilling Series is a joint project between Gulf Publishing Company and the International Association of Drilling Contractors. The first text in this Series presents casing design and mechanics in a concise, two-part format. The first part focuses on basic casing design and instructs engineers and engineering students how to design a safe casing string. The second part covers more advanced material and special problems in casing design in a user-friendly format. Learn how to select sizes and setting depths to achieve well objectives, determine casing loads for design purposes, design casing properties to meet burst, collapse and tensile strength requirements and conduct casing running operations safely and successfully.

  17. Arctic deepwater development drilling design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinis, Theodore; Brinkmann, Carl R.; Ding, John; Fenz, Daniel M. [ExxonMobil Upstream Research Company, Houston, Texas (United States)], email:, email:, email:, email:


    In the world, important amounts of oil and gas reserves are north of the Arctic Circle and a large part of it is located offshore in water depths over 100 meters. Accessing those deepwater areas presents important challenges due to the harsh environment and current methods are not viable, year round operations would be required to drill a large number of wells. The aim of this paper is to determine the design requirements for economic development of Arctic deepwater reservoirs and to highlight the new technologies needed to do so. This paper showed that overall system design should integrate a rapid disconnection capacity and a caisson shaped hull with a breaking cone at the waterline. In addition, developing the disconnection, ice management and re-supply systems were found to be the key technical challenges and the development of topsides drilling equipment and of a method of estimation of the ice loads were determined among the technology development required.


    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J


    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  19. Borehole survey method and apparatus for drilling substantially horizontal boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Trowsdale, L.S.


    A borehole survey method and apparatus are claimed for use in drilling substantially horizontal boreholes through a mineral deposit wherein a dip accelerometer, a roll accelerometer assembly and a fluxgate are disposed near the drill bit, which is mounted on a bent sub, and connected to a surface computation and display unit by a cable which extends through the drill string. The dip angle of the borehole near the drill bit, the azimuth of the borehole near the drill bit and the roll angle or orientation of the bent sub are measured and selectively displayed at the surface while the drill string is in the borehole for utilization in guiding the drill bit through the mineral deposit along a predetermined path.

  20. Geothermal down-well instrumentation (during drilling). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kent, W.H.; Mitchell, P.G.; Row, R.V.


    The object of the work was to investigate acoustic and electromagnetic telemetry methods which could be used as a basis for geothermal MWD systems. The emphasis has been on methods which employ the drill string and/or the formation surrounding the borehole as a signalling media. The investigations have been confined to the transmission characteristics of these media and have excluded the area of downwell measurements. Work performed includes: laboratory measurement of acoustic attenuation in drill pipe; field measurement of acoustic attenuation in drill pipe; measurements of drill string vibrations (drilling noise) during drilling; evaluation of drill string vibration dampers; modeling of electromagnetic propagation in the borehole region; and field measurements of attenuation of a downwell electromagnetic signal source. (MHR)

  1. Automatic identification of otologic drilling faults: a preliminary report. (United States)

    Shen, Peng; Feng, Guodong; Cao, Tianyang; Gao, Zhiqiang; Li, Xisheng


    A preliminary study was carried out to identify parameters to characterize drilling faults when using an otologic drill under various operating conditions. An otologic drill was modified by the addition of four sensors. Under consistent conditions, the drill was used to simulate three important types of drilling faults and the captured data were analysed to extract characteristic signals. A multisensor information fusion system was designed to fuse the signals and automatically identify the faults. When identifying drilling faults, there was a high degree of repeatability and regularity, with an average recognition rate of >70%. This study shows that the variables measured change in a fashion that allows the identification of particular drilling faults, and that it is feasible to use these data to provide rapid feedback for a control system. Further experiments are being undertaken to implement such a system.

  2. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission


    non-riser and riser drilling, geophysical site surveys and the development of new technology including the construction of a +4000 m riser. Initial expeditions would use existing drilling capabilities to sample shallow and deep targets in increasingly hostile conditions in ocean crust formed at both fast and slow spreading rates, allowing us to deliver major short-term science returns while we develop the equipment, technology and experience to tackle a full crustal penetration. The first, short-term milestone is to return in IODP Hole 1256D, into intact crust formed during a period of superfast spreading (> 200 mm/yr) on the East Pacific rise 15 million years ago, and drill as deeply as possible with non-riser technology. The first gabbroic rocks below the sheeted dikes were encountered at the end of IODP expedition 312 at 1407 meters below seafloor. They mark the interface between the axial melt lens and the base of the hydrothermal system. Future deepening to a minimum of a few hundred meters should recover cumulate gabbros that will further constraint accretion mechanisms of the lower, igneous crust.


    Directory of Open Access Journals (Sweden)

    SUSAC, Florin


    Full Text Available The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  4. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  5. New Proposed Drilling at Surtsey Volcano, Iceland (United States)

    Jackson, Marie D.


    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  6. Slim hole drilling and testing strategies (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin


    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  7. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)


    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.


    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE


    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  9. Deepwater drilling; Jakten paa de store dyp

    Energy Technology Data Exchange (ETDEWEB)



    Recent technological development has made it possible to drill for oil and gas at the impressive depth of 3000 metres. An increasing part of the world's oil and gas discoveries are made in deep or ultra deep waters. Ultra deep waters are those exceeding 1500 metres. Since drilling at more than 500 metres started at the end of the 1970s, 32 discoveries of about 500 million barrels of extractable oil or gas have been made. These finds amount to almost 60 thousand millions barrels of oil equivalents. Most of the effort has been made in the coasts between Brazil, West Africa and the Gulf of Mexico. Deepwater projects have been a field of priority for Norwegian oil companies in their search for international commissions. It is frequently time-consuming, expensive and technologically challenging to drill at great depths. The article describes the Atlantis concept, which may reduce the complexities and costs of deepwater activities. This involves making an artificial sea bottom, which in the form of an air-filled buoy is anchored at a depth of 200 - 300 metres. Production wells or exploration wells and risers are extended from the real bottom to the artificial one.

  10. Drilling history core hole DC-8

    International Nuclear Information System (INIS)


    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  11. Deep drilling for geothermal energy in Finland (United States)

    Kukkonen, Ilmo


    There is a societal request to find renewable CO2-free energy resources. One of the biggest such resources is provided by geothermal energy. In addition to shallow ground heat already extensively used in Finland, deep geothermal energy provides an alternative so far not exploited. Temperatures are high at depth, but the challenge is, how to mine the heat? In this presentation, the geological and geophysical conditions for deep geothermal energy production in Finland are discussed as well as challenges for drilling and conditions at depth for geothermal energy production. Finland is located on ancient bedrock with much lower temperatures than geologically younger volcanically and tectonically active areas. In order to reach sufficiently high temperatures drilling to depths of several kilometres are needed. Further, mining of the heat with, e.g., the principle of Enhanced Geothermal System (EGS) requires high hydraulic conductivity for efficient circulation of fluid in natural or artificial fractures of the rock. There are many issues that must be solved and/or improved: Drilling technology, the EGS concept, rock stress and hydraulic fracturing, scale formation, induced seismicity and ground movements, possible microbial activity, etc. An industry-funded pilot project currently in progress in southern Finland is shortly introduced.

  12. Development of mining technology and equipment for seafloor massive sulfide deposits (United States)

    Liu, Shaojun; Hu, Jianhua; Zhang, Ruiqiang; Dai, Yu; Yang, Hengling


    Seafloor massive sulfide(SMS) deposits which consist of Au, Ag, Cu, and other metal elements, have been a target of commercial mining in recent decades. The demand for established and reliable commercial mining system for SMS deposits is increasing within the marine mining industry. The current status and progress of mining technology and equipment for SMS deposits are introduced. First, the mining technology and other recent developments of SMS deposits are comprehensively explained and analyzed. The seafloor production tools manufactured by Nautilus Minerals and similar mining tools from Japan for SMS deposits are compared and discussed in turn. Second, SMS deposit mining technology research being conducted in China is described, and a new SMS deposits mining tool is designed according to the environmental requirement. Finally, some new trends of mining technology of SMS deposits are summarized and analyzed. All of these conclusions and results have reference value and guiding significance for the research of SMS deposit mining in China.

  13. Estimation of seafloor impact from demersal trawls, seines and dredges based on gear design and dimensions

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Breen, Michael

    a different approach using the gear itself (design and dimensions) for understanding and estimation of the physical interactions with the seafloor at the individual fishing operation level. With reference to the métier groupings of EU logbooks, we defined 17 distinct towed gear groups in European waters (11...... otter trawl groups, 3 beam trawl groups, 2 demersal seine groups, and 1 dredge group), for which we established seafloor “footprints”. The footprint of a gear was defined as the relative contribution from individual larger gear components, such as the trawl doors, sweeps and ground gear, to the total...... types based on a review of the scientific literature. For each defined gear group a vessel-size (kW or total length) – gear size (total gear width or circumference) relationship was estimated to enable the prediction of gear footprint area and sediment penetration from vessel size. The implications...

  14. Anomalous K-Pg-aged seafloor attributed to impact-induced mid-ocean ridge magmatism. (United States)

    Byrnes, Joseph S; Karlstrom, Leif


    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~10 5 to 10 6 km 3 . Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time.

  15. More losers than winners in a century of future Southern Ocean seafloor warming (United States)

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.


    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  16. Environmental security of the coastal seafloor in the sea ports and waterways of the Mediterranean region (United States)

    Obhodas, Jasmina; Valkovic, Vladivoj; Sudac, Davorin; Matika, Dario; Pavic, Ivica; Kollar, Robert


    The Mediterranean coastal seafloor is littered with man-made objects and materials, including a variety of ammunition in many areas. In addition, sediments in ports, harbors and marinas are contaminated with elevated concentrations of chemicals used as biocides in antifouling paints. In order to reach a satisfactory level of environmental security of the coastal sea areas, fast neutron activation analysis with detection of associated alpha particles and energy dispersive X-ray fluorescence, both in laboratory and inside an autonomous underwater vehicle for in-situ measurements, has been used for the characterization of the objects on the seafloor. Measurements have shown that gamma ray spectra are able to distinguish threat material from the surrounding material. Analysis of more than 700 coastal sea sediment samples has resulted in concentration distribution maps indicating the locations of "hot spots", which might interfere with threat material identification.

  17. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi


    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  18. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP) (United States)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.


    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  19. Seafloor Backscatter Image of North of Santa Rosa Island, Channel Islands National Marine Sanctuary (8m resolution tif) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents an 8 meter resolution backscatter of the seafloor south of Santa Rosa Island in Channel Islands National Marine Sanctuary. It was acquired...

  20. Seafloor classification of the mound and channel provinces of the Porcupine Seabight: An application of the multibeam angular backscatter data

    Digital Repository Service at National Institute of Oceanography (India)

    Beyer, A.; Chakraborty, B.; Schenke, H.W.

    provinces like: carbonate mounds, buried mounds, seafloor channels, and inter-channel areas. A detailed methodology is developed to produce a map of angle-invariant (normalized) backscatter data by correcting the local angular backscatter values. The present...

  1. Seafloor roughness estimation employing bathymetric systems: An appraisal of the classification and characterization of high-frequency acoustic data

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Haris, K.

    , seafloor photographic and geological samplings are well established. Among these, the high-frequency single beam echo-sounding system (SBES) and multi-beam echo-sounding system (MBES) became more familiar due to their rapid data acquisition advantages...

  2. Integrated hard and soft bottom seafloor substrate maps at select islands in American Samoa and the Mariana Archipelago (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seafloor substrate (i.e., hard vs. soft bottom) from 0 to 50 m depths around islands in American Samoa and Mariana Archipelago produced by the NOAA Coral Reef...

  3. Semi-Automated Classification of Seafloor Data Collected on the Delmarva Inner Shelf (United States)

    Sweeney, E. M.; Pendleton, E. A.; Brothers, L. L.; Mahmud, A.; Thieler, E. R.


    We tested automated classification methods on acoustic bathymetry and backscatter data collected by the U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) on the Delmarva inner continental shelf to efficiently and objectively identify sediment texture and geomorphology. Automated classification techniques are generally less subjective and take significantly less time than manual classification methods. We used a semi-automated process combining unsupervised and supervised classification techniques to characterize seafloor based on bathymetric slope and relative backscatter intensity. Statistical comparison of our automated classification results with those of a manual classification conducted on a subset of the acoustic imagery indicates that our automated method was highly accurate (95% total accuracy and 93% Kappa). Our methods resolve sediment ridges, zones of flat seafloor and areas of high and low backscatter. We compared our classification scheme with mean grain size statistics of samples collected in the study area and found that strong correlations between backscatter intensity and sediment texture exist. High backscatter zones are associated with the presence of gravel and shells mixed with sand, and low backscatter areas are primarily clean sand or sand mixed with mud. Slope classes further elucidate textural and geomorphologic differences in the seafloor, such that steep slopes (>0.35°) with high backscatter are most often associated with the updrift side of sand ridges and bedforms, whereas low slope with high backscatter correspond to coarse lag or shell deposits. Low backscatter and high slopes are most often found on the downdrift side of ridges and bedforms, and low backscatter and low slopes identify swale areas and sand sheets. We found that poor acoustic data quality was the most significant cause of inaccurate classification results, which required additional user input to mitigate. Our method worked well

  4. Seafloor spreading in the eastern Gulf of Mexico: New evidence for marine magnetic anomalies (United States)

    Eskamani, Philip K.

    Possible sea-floor spreading anomalies are indentified in marine magnetic surveys conducted in the eastern Gulf of Mexico. A symmetric pattern of lineated anomalies can be correlated with the geomagnetic time scale using previously proposed opening histories for the Gulf of Mexico basin. Lineated magnetic anomalies are characterized by amplitudes of up to 30 nT and wavelengths of 45-55 km, and are correlatable across 12 different ship tracks spanning a combined distance of 6,712 km. The magnetic lineations are orientated in a NW-SE direction with 3 distinct positive lineations on either side of the inferred spreading ridge anomalies. The magnetic anomalies were forward modeled with a 2 km thick magnetic crust composed of vertically bounded blocks of normal and reverse polarity at a model source depth of 10 km. Remnant magnetization intensity and inclination are 1.6 A m-1 and 0.2° respectively, chosen to best fit the magnetic observed amplitudes and, for inclination, in accord with the nearly equatorial position of the Gulf of Mexico during Jurassic seafloor spreading. The current magnetic field is modeled with declination and inclination of and 0.65° and 20° respectively. Using a full seafloor spreading rate of 1.7 cm/yr, the anomalies correlate with magnetic chrons M21 to M10. The inferred spreading direction is consistent with previous suggestions of a North-East to South-West direction of sea-floor spreading off the west coast of Florida beginning 149 Ma (M21) and ending 134 Ma (M10). The opening direction is also consistent with the counter-clockwise rotation of Yucatan proposed in past models.

  5. Divergence of seafloor elevation and sea level rise in coral reef ecosystems (United States)

    Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger


    Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from -0.09 to -0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.

  6. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Littmann, Sten


    small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates...... of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass....

  7. Divergence of seafloor elevation and sea level rise in coral reef ecosystems (United States)

    Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger


    Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from −0.09 to −0.8 m, corresponding to net volume losses ranging from 3.4  ×  106 to 80.5  ×  106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.

  8. Gondwana subduction-modified mantle domain prevents magmatic seafloor generation in the Central Indian Ridge (United States)

    Morishita, T.; Nakamura, K.; Senda, R.; Suzuki, K.; Kumagai, H.; Sato, H.; Sato, T.; Shibuya, T.; Minoguchi, K.; Okino, K.


    The creation of oceanic crust at mid-ocean ridges is essential to understanding the genesis of oceanic plate and the evolution of the Earth. Detailed bathymetric measurements coupled with dense sample recovery at mid-ocean ridge revealed a wide range of variations in the ridge and seafloor morphologies, which cannot be simply explained by a spreading rate, but also by ridge geometry, mantle compositions and thermal structure (Dick et al., 2003 Nature; Cannat et al. 2006 Geology). It is now widely accepted that very limited magmatic activity with tectonic stretching generates oceanic core complex and/or smooth seafloor surface in the slow to ultraslow-spreading ridges, where serpentinized peridotite and gabbros are expected to be exposed associated with detachment faults (Cann et al., 1997 Nature; Cannat et al., 2006), although magmatism might be an essential role for the formation of oceanic core complexes (Buck et al., 2005 Nature; Tucholke et al 2008 JGR). A rising question is why magmatic activity is sometimes prevented during the oceanic plate formation. Ancient melting domain, that are too refractory to melt even in adiabatically upwelling to the shallow upper mantle, might cause the amagmatic spreading ridges (Harvey et al., 2006 EPSL, Liu et al.,2008 Nature). Its origin and effect on seafloor generations are, however, not well understood yet. We report an oceanic hill as an example of an ancient subduction-modified mantle domain, probably formed at continental margin of the Gondwanaland~Pangea supercontinent, existing beneath the Central Indian Ridge. This domain is the most likely to have prevented magmatic seafloor generation, resulting in creation of very deep oceanic valley and serpentine diaper (now the studied oceanic hill) at the present Central Indian ridge.

  9. Preference of echo features for classification of seafloor sediments using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    De, C.; Chakraborty, B.

    :2722- 2725. Chakraborty, B., V. Kodagali, and J. Baracho. 2003. Sea-floor classification using multibeam echo-sounding angular backscatter data: A real-time approach emplying hybrid neural network architecture. IEEE Journal of Oceanic Enggineering 28... echo-waveforms: A method employing hybrid neural network architecture. IEEE Geoscience and Remote Sensing Letters 1: 196-200. Chakraborty, B., V. Mahale, G. Navelkar, B. R. Rao, R. G. Prabhudesai, B. Ingole, and G. Janakiraman. 2007. Acoustic...

  10. The Effects of Dense Shelf-Water Cascading in the World Ocean Seafloor (United States)

    Amblas, D.; Dowdeswell, J. A.; Canals, M.; Micallef, A.


    Dense shelf-water cascading (DSWC) is a seasonal phenomenon that occurs in marine regions around the globe. DSWC starts when surface waters over the continental shelf become denser than surrounding waters (by cooling, evaporation or sea-ice formation with brine rejection) and sink, generating near-bottom gravity flows that move downslope along the seabed, often using submarine canyons as preferential conduits. This process contributes to deep-ocean ventilation, plays a role in the global thermohaline circulation (and hence global climate), and involves large-scale transfer of energy and matter (including sedimentary particles, organic carbon, chemical pollutants and light litter) from shallow to deep waters. The large volumes involved in DSWC flows can result in appreciable sediment erosion and downslope transport. However, very few field studies discuss DSWC as an effective seafloor-sculpting agent, and none of them at a global scale. Here we present a new project that investigates the seafloor imprint of DSWC on modern continental shelves and slopes. This study represents a timely updated inventory of global DSWC occurrences and, in selected areas, provides a geomorphologic and geomorphometric analysis focused on identifying the seafloor drainage signature of DSWC. The study should provide a better characterization of the distribution, hydrodynamics and sculpting capacity of dense shelf-water currents, as well as their morphological evolution through time under the influence of dynamic processes. This will allow us to make predictions about the future trends (intensification vs. lessening, and geographic shifts) and role of DSWC on seafloor dynamics under a changing climate on different continental margins worldwide.

  11. ATUCHA I NPP - Emergency drill practice

    International Nuclear Information System (INIS)

    Sanda, Alejandro; Rosales, Gabriel


    Full text: Atucha I NPP performs an Emergency Drill Practice once a year. Its main goals are: -) Fulfill the requirements of the Argentine Nuclear Regulatory Authority (ARN) regarding Atucha I NPP's Operating License; -) Fulfill the commitment with the community regarding the safe and reliable operation Atucha I NPP; -) Verify the response of the Civil Organizations, Security Forces, and Armed Forces, as well as the correct application of the Emergency Plan; -) Perform the 'General Alarm Drill' periodic control; -) Perform a re-training of the members of the Security Advisor Internal Committee (CIAS) on the Internal and External Aspects of the Emergency Plan and on the related procedures; -) Test the Emergency Communications System. New goals are added every year, considering the Drill's scope. This drill comprises two different kinds of practices: Internal practices (practices in the station, with our personnel) and external practices (practices outside the station with governmental organizations). Internal practices comprise: -) Internal and external communications practices; -) Acoustic alarms; -) Personnel gathering in the Meeting Points; -) Safety of selected Meeting Points; -) Personnel count, selective evacuation; -) Iodide Potassium pills distribution; -) CICE (Internal Group for Emergency Control) Coordination. External practices comprise: -) Nuclear Regulatory Authority; -) Argentine Navy, Comando Area Naval Fluvial, Base Naval Zarate; -) Lima firemen; -) Zarate firemen; -) Municipal Civil Defense (Zarate and Lima); -) National Guard, Escuadron Atucha; -) Zarate Regional Hospital; -) Lima Police Department; -) Zarate Police Department; -) Argentine Coast Guard, Zarate; -) Local radios: Radio FM Libre, FM El Sitio; -) First Aid clinic. The following activities are performed together with the aforementioned organizations: -) Formation of an 'Operative committee'; -) Evacuation of citizens in a 3 km radio; -) Control of every access to Lima; -) Control of

  12. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data (United States)

    Riedel, M.; Collett, T. S.


    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  13. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data (United States)

    Riedel, Michael; Collett, Timothy S.


    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  14. Effect of thermal non-equilibrium, seafloor topography and fluid advection on BSR-derived geothermal gradient

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, R.; Dewangan, P.; Ramprasad, T.; Kumar, B.J.P.; Vishwanath, K.

    -waters hydrocarbon exploration (Nimblett et al., 2005). In seismic sections, gas hydrate is identified by an anomalous reflector known as Bottom Simulating Reflector (BSR) which mimics with the seafloor, crosscuts geological layers and its polarity is reversed... of Oceanography, Goa – India 403004 2Directorate General of Hydrocarbons, Noida, U.P – India 201 301 *corresponding author: Abstract The seafloor and bottom simulating reflectors (BSRs) are interpreted from the 3D seismic data...

  15. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle (United States)

    Skarke, A. D.


    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  16. Understanding seafloor morphology using remote high frequency acoustic methods: An appraisal to modern techniques and its effectiveness

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    to submarine volcanism. Generally, two basic processes which shape the seafloor are known as endogenic and exogenic. The large seafloor features (seamount, ridge crest, valley etc) related to the plate tectonics are due to the Endogenic processes i....e., those deriving their energy from the earth interiors. Small scale features (ripple / abyssal plain etc.) due to erosion as well as deposition of the sediment sediments are attributed due to the Endogenic processes i.e. those driven by the Sun...

  17. Direct observation of the evolution of a seafloor 'black smoker' from vapor to brine (United States)

    Von Damm, Karen L.; Buttermore, L.G.; Oosting, S.E.; Bray, A.M.; Fornari, D.J.; Lilley, M.D.; Shanks, Wayne C.


    A single hydrothermal vent, 'F' vent, occurring on very young crust at 9??16.8???N, East Pacific Rise, was sampled in 1991 and 1994. In 1991, at the measured temperature of 388??C and seafloor pressure of 258 bar, the fluids from this vent were on the two-phase curve for seawater. These fluids were very low in chlorinity and other dissolved species, and high in gases compared to seawater and most sampled seafloor hydrothermal vent fluids. In 1994, when this vent was next sampled, it had cooled to 351??C and was venting fluids ???1.5 times seawater chlorinity. This is the first reported example of a single seafloor hydrothermal vent evolving from vapor to brine. The 1991 and 1994 fluids sampled from this vent are compositionally conjugate pairs to one another. These results support the hypothesis that vapor-phase fluids vent in the early period following a volcanic eruption, and that the liquid-phase brines are stored within the oceanic crust, and vent at a later time, in this case 3 years. These results demonstrate that the venting of brines can occur in the same location, in fact from the same sulfide edifice, where the vapor-phase fluids vented previously.

  18. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. (United States)

    Humphris, Susan E; Klein, Frieder


    Over the last four decades, more than 500 sites of seafloor hydrothermal venting have been identified in a range of tectonic environments. These vents represent the seafloor manifestation of hydrothermal convection of seawater through the permeable oceanic basement that is driven by a subsurface heat source. Hydrothermal circulation has fundamental effects on the transfer of heat and mass from the lithosphere to the hydrosphere, the composition of seawater, the physical and chemical properties of the oceanic basement, and vent ecosystems at and below the seafloor. In this review, we compare and contrast the vent fluid chemistry from hydrothermal fields in a range of tectonic settings to assess the relative roles of fluid-mineral equilibria, phase separation, magmatic input, seawater entrainment, and sediment cover in producing the observed range of fluid compositions. We focus particularly on hydrothermal activity in those tectonic environments (e.g., mid-ocean ridge detachment faults, back-arc basins, and island arc volcanoes) where significant progress has been made in the last decade in documenting the variations in vent fluid composition.

  19. Sea-floor morphology and sedimentary environments in southern Narragansett Bay, Rhode Island (United States)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Blackwood, Dann S.; Nardi, Matthew J.; Andring, Matthew A.


    Multibeam echosounder data collected by the National Oceanic and Atmospheric Administration along with sediment samples and still and video photography of the sea floor collected by the U.S. Geological Survey were used to interpret sea-floor features and sedimentary environments in southern Narragansett Bay, Rhode Island, as part of a long-term effort to map the sea floor along the northeastern coast of the United States. Sea-floor features include rocky areas and scour depressions in high-energy environments characterized by erosion or nondeposition, and sand waves and megaripples in environments characterized by coarse-grained bedload transport. Two shipwrecks are also located in the study area. Much of the sea floor is relatively featureless within the resolution of the multibeam data; sedimentary environments in these areas are characterized by processes associated with sorting and reworking. This report releases bathymetric data from the multibeam echosounder, grain-size analyses of sediment samples, and photographs of the sea floor and interpretations of the sea-floor features and sedimentary environments. It provides base maps that can be used for resource management and studies of topics such as benthic ecology, contaminant inventories, and sediment transport.

  20. Seafloor expression and shallow structure of a fold-and-thrust system, Isfjorden, west Spitsbergen

    Directory of Open Access Journals (Sweden)

    Maria Blinova


    Full Text Available A detailed map of the structure of the west Spitsbergen fold-and-thrust belt in the Isfjorden area, Spitsbergen, is presented. The map was constructed from a dense grid of two-dimensional multichannel reflection seismic and bathymetric data. Joint interpretation of two data sets allowed a comparison of tectonic structures detected along the uppermost parts of the seismic sections and those reflected in the morphology of the seafloor. Three major, predominantly north-west–south-east striking faults were identified. The westernmost fault (T1 is a hinterland-directed (most likely out of sequence thrust, while the central and easternmost faults (T2 and T3 are foreland-directed (in-sequence thrusts. The thrusts divide Isfjorden into three subareas. Subarea 1 is bounded by thrust faults T1 and T2 and comprises Tertiary rocks surrounded by Jurassic–Cretaceous strata. The structural signature of Subarea 1 is that of a system of hinterland- and foreland-directed thrust faults, resulting in a seafloor relief characterized by parallel ridges and troughs. Subarea 2 is limited by thrust faults T2 and T3 and shows Jurassic–Cretaceous outcrops on the seafloor. Subarea 3 is situated east of the main thrust fault T3 and mainly involves outcrops of Triassic–Jurassic rocks. Together, Subareas 2 and 3 are dominated by foreland-directed, north-west–south-east and NNW–SSE-striking thrusts that are hardly detectable in bathymetric data.

  1. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)


    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  2. Preliminary Research on Possibilities of Drilling Process Robotization (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw


    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  3. Insights into Magmatic-Hydrothermal Processes in the Newly-Discovered Seafloor Massive Sulfide Deposits of the New Hebrides Arc-Backarc System, SW Pacific (United States)

    Anderson, M. O.; Hannington, M. D.; Haase, K. M.; Schwarz-Schampera, U.; McConachy, T.


    Magmatic processes leading to hydrothermal venting and the controls on the distribution of vents at two locations along the New Hebrides arc-backarc system are being revealed by new bathymetric data and geological maps interpreted from remotely operated vehicle dive videos. The Nifonea volcanic complex spans the width of the Vate Trough, a nascent backarc basin located ~50 km to the east of the New Hebrides arc. Hydrothermal activity occurs in the caldera at the summit of Nifonea at a water depth of ~1875 m. A NW-trending eruptive fissure cuts through the center of the caldera near the area of active venting. This fissure is associated with isolated pillow mounds and collapse features along its length, and is the source of extensive jumbled sheet flows that cover the caldera floor. Low-temperature, diffuse venting is widespread; active black smoker chimneys are localized on and around the pillow mounds, in clusters of ~20 x 20 m and growing directly on the flows. The impression is that the hydrothermal venting is young and not yet "organized," in large part because of the eruptive style dominated by collapsed sheet flows. The Tinakula seafloor massive sulfide (SMS) deposit is located in a much shallower (~1150 m), extended arc-backarc setting at the northern end of the New Hebrides arc, ~25 km from the arc front. Chimney fields occur along two corridors, and are associated with volcanic mounds and calderas. The eastern field occupies an area of ~1200 x 200 m, and the western sulfide field is ~500 x 100 m in size. The density of chimneys appears to be largely controlled by permeability of the volcanic facies, which are dominated by autoclastic and hyaloclastic breccias. Tinakula has been commercially drilled, offering insight into the third dimension of the system. This is one of the first studies of SMS deposits in the New Hebrides arc and fills a 'knowledge gap' in the occurrence of seafloor hydrothermal systems in arc-related settings of the Melanesian

  4. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign (United States)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe


    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the

  5. Interannual changes in seafloor surficial geology at an artificial reef site on the inner continental shelf (United States)

    Raineault, Nicole A.; Trembanis, Arthur C.; Miller, Douglas C.; Capone, Vince


    The influence of reef structures on seafloor surface sediments has implications for marine spatial planning and coastal development, including use of the coastal zone for offshore wind energy. We present results of interannual changes in seafloor surficial geology at the Redbird artificial reef site, located on the continental shelf offshore of Delaware Bay. The Redbird reef is composed of NYC subway cars, barges, tugboats, and other sunken objects. Since objects were added sporadically between 1996 and 2009, the survey area acts as a natural laboratory to study the evolution of the surrounding seafloor at a structural reef habitat through time. Annual side-scan surveys from 2008 through 2011, and one bathymetric survey in 2010 provide information about surface geology and morphology. Local wave and current data for this time period were analyzed to determine the main morphological agents. Automated backscatter segmentation show that three bottom types dominate and that these large-scale (>10 m) surface sediment patterns persist from year to year. Grab samples reveal that the bottom types are silty sand with clay and sandy gravel. Clear sediment and biological patterns emerged revealing the influence of the objects on the seafloor. Comet-shaped moats of sandy gravel surround single objects and grow to form large-scale coalesced patches around groups of objects. Alignment of sediment patches suggests the periodic hydrodynamic influence of seasonal storms. The abundance and diversity of organisms increases with decreasing clay/silt content. Evidence of scour includes the removal of fine sediments, the formation of moats 1-30 m in diameter and 0.5-1 m deep around the reef objects, and the >1 m settling of objects into the seafloor. Data suggest subway cars reached equilibrium with the environment in 6-7 years, but that larger objects or clusters of objects take a longer time to equilibrate and have farther-reaching effects. Knowledge of local wave and current climate

  6. Feasibility of Ocean Acoustic Waveguide Remote Sensing (OAWRS of Atlantic Cod with Seafloor Scattering Limitations

    Directory of Open Access Journals (Sweden)

    Ankita D. Jain


    Full Text Available Recently reported declines in the population of Atlantic cod have led to calls for additional survey methods for stock assessments. In combination with conventional line-transect methods that may have ambiguities in sampling fish populations, Ocean Acoustic Waveguide Remote Sensing (OAWRS has been shown to have a potential for providing accurate stock assessments (Makris N.C., et al. Science 2009, 323, 1,734–1,737; 54th Northeast Regional Stock Assessment Workshop (54th SAW US Department of Commerce, Northeast Fisheries Science Center, 2012. The use of OAWRS technology enables instantaneous wide-area sensing of fish aggregations over thousands of square kilometers. The ratio of the intensity of scattered returns from fish versus the seafloor in any resolution cell typically determines the maximum fish detection range of OAWRS, which then is a function of fish population density, scattering amplitude and depth distribution, as well as the level of seafloor scattering. With the knowledge of oceanographic parameters, such as bathymetry, sound speed structure and attenuation, we find that a Rayleigh–Born volume scattering approach can be used to efficiently and accurately estimate seafloor scattering over wide areas. From hundreds of OAWRS measurements of seafloor scattering, we determine the Rayleigh–Born scattering amplitude of the seafloor, which we find has a ƒ2,4 frequency dependence below roughly 2 kHz in typical continental shelf environments along the US northeast coast. We then find that it is possible to robustly detect cod aggregations across frequencies at and near swim bladder resonance for observed spawningconfigurations along the U.S. northeast coast, roughly the two octave range 150–600 Hzfor water depths up to roughly 100 m. This frequency range is also optimal for long-rangeocean acoustic waveguide propagation, because it enables multimodal acoustic waveguidepropagation with minimal acoustic absorption and forward

  7. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs). (United States)

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone


    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  8. Axel rover NanoDrill and PowderDrill: Acquisition of cores, regolith and powder from steep walls (United States)

    Zacny, K.; Paulsen, G.; Chu, P.; Hedlund, M.; Spring, J.; Osborne, L.; Matthews, J.; Zarzhitsky, D.; Nesnas, I. A.; Szwarc, T.; Indyk, S.

    This paper describes development and testing of low-mass, low-power drills for the Axel rover. Axel is a two-wheeled tethered rover designed for the robotic exploration of steep cliff walls, crater walls and deep holes on earth and other planetary bodies. The Axel rover has a capability to deploy scientific instruments and/or samplers in the areas of interest to scientists currently inaccessible by conventional robotic systems. To enable sample recovery, we developed two drills: NanoDrill for acquisition of 25 mm long and 7 mm diameter cores and PowderDrill for acquisition of either in situ regolith/soil or drilled cuttings from depths of up to 15 mm. Both drills have been successfully tested in laboratory in limestone and sandstone rocks and on-board the Axel rover in the Mars Yard at NASA JPL. The drills managed to acquire limestone and sandstone cores and powder, with an average power of less than 5 Watts. The penetration rate of the NanoDrill was ~2 mm/min and of the PowderDrill it was ~9 mm/min. After sample acquisition, both drills successfully ejected of the acquired samples (cores and powder).

  9. The ground stone components of drills in the ancient Near East: Sockets, flywheels, cobble weights, and drill bits

    Directory of Open Access Journals (Sweden)

    David Ilan


    Full Text Available Three types of drills are known from antiquity: the bow drill, the pump drill and the crank drill. Each type often included ground stone components - sockets, weights and flywheels. However, these components are inconspicuous; on their own they are almost never associated with drills. The result is that the drill is nearly invisible in many assemblages, particularly those of the proto-historic and historic periods, from the Chalcolithic through to late antiquity. In this article I focus on the identification of the possible ground stone components of each of these drill types. The means by which these components were attached or applied to the drill shaft is examined and the way that they related to the rotary motion of drills is laid out. I briefly discuss the historical development of each type, referencing more detailed studies, where available. This study should be seen as a prelude to a more comprehensive study that will test hypotheses by means of experiment and catalogue more completely and precisely the ground stone components of drills that have been unidentified or misidentified in archaeological contexts.

  10. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie


    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  11. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.


    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  12. Automatic identification of otological drilling faults: an intelligent recognition algorithm. (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng


    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  13. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.


    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  14. Study on the ocean drilling program

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Ho; Han, Hyun Chul; Chin, Jae Wha; Lee, Sung Rok; Park, Kwan Soon; Lee, Young Joo; Park, Young Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)


    Geoscience research trend of the world nations is focusing on the study of climate changes and preventing people from the natural hazards such as earthquakes and volcanic activities. For this study, it is necessary for scientists to interpret ancient climate changes preserved in ocean sediments, and to observe plate motions. Thus, geological and geophysical studies should be proceeded for the core samples recovered from the deep sea sediments and basement. It is essential to join the ODP(Ocean Drilling Program) that drills ocean basins and crusts using the drilling vessel with the ability of deploying almost 9 km of drilling string. The first year (1995) was focused on the analyzing the appropriateness Korea to join the ODP. The second year (1996) has been stressed on being an ODP member country based on results of the first year study, and planning the future activities as a member. The scope of study is joining the ODP as a Canada-Australia Consortium member and to set up the Korean ODP organization and future activities. The results and suggestions are as follows. 1) Necessities of Korea joining the ODP: If Korea becomes a member of the ODP, the benefits could be obtained based on the activities of other ODP members through academic, social and economic sectors. 2) Korean membership of ODP: Korea becomes a member of the Australia-Canada Consortium for ODP. AGSO (Austrian Geological Survey Organization), GSC (Geological Survey of Canada), and KIGAM (Korea Institute of Geology, Mining and Materials) on behalf of their own countries will each pay a share of the full member financial contribution to the ODP. AGSO and GSC will pay one third of the full member financial contribution, and KIGAM will pay one twelfth. 3) Korean ODP structure and future activities: To enhance the efficiency of initial activities after joining the ODP, it has been decided to have a relatively simple organization. The primary governing arm of the Korean ODP organizations is the Korean ODP

  15. An Improved Triangular Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars; Grønne, Mikael


    A new plane element with rotational degrees in the corner nodes is presented. The element has 12 degrees of freedom and the only difference from the well-known Linear Strain Triangular (LST) element is that the displacements perpendicular to the element sides in the mid-side nodes are replaced...... by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST-element...

  16. Hovercraft drill probes Saraji tailings dam

    Energy Technology Data Exchange (ETDEWEB)


    In early operations at BHP-Utah's Saraji Mine in central Queensland, quantities of coking coal were pumped into the tailings dam because the preparation plant's flotation circuit was unable to handle ultra-fines. A reverse circulating drilling rig mounted on a hovercraft was used to recover 22 samples (representing 9 metres of tailings from 11 x 8 x 0.09 metre cores) in an investigation into whether the tailings can now be treated economically. 1 fig.

  17. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel


    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  18. Mist characterization in drilling 1018 steel (United States)

    Cole, Ian

    Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.

  19. Fifteen years of the Chinese Continental Scientific Drilling Program (United States)

    Xu, Zhiqin; Yang, Jingsui; Wang, Chengshan; An, Zhisheng; Li, Haibing; Wang, Qin; Su, Dechen


    Continental scientific drilling can be regarded as a telescope into the Earth's interior because it provides process insight and uncompromised samples of rocks, fluids, and even sampled from the deep biosphere from the Earth's surface to great depths. As one of the three founding members of the International Continental Scientific Drilling Program (ICDP), ICDP China has made great achievements in many scientific drilling-related research fields. Based on the ICDP participation it attracted global attention of scientists and set up not only the Chinese Continental Scientific Drilling (CCSD) Program in 2001 but also a growing number of ambitious drilling projects in the country. The 5158 m deep borehole of the CCSD project at Donghai County in the Sulu ultrahigh-pressure metamorphic terrain demonstrates that large amounts of crustal rocks of the South China Block have been subducted to at least 120 km, followed by rapid uplift. After successful completion of drilling at Donghai, several continental scientific drilling projects were conducted with funding of the Chinese government and partially with support of ICDP, resulting in a total drilling depth of more than 35 000 m. These projects encompass the Continental Environmental Scientific Drilling Program of China, the Scientific Drilling Project of Wenchuan Earthquake Fault Zone, the Continental Scientific Drilling Project of Cretaceous Songliao Basin, and the Program of Selected Continental Scientific Drilling and Experiments. On the occasion of the 20th anniversary of the ICDP and the 15th anniversary of the CCSD Program, this paper reviews the history and major progress of the CCSD Program.

  20. Reaching 1 m deep on Mars: the Icebreaker drill. (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J


    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.