WorldWideScience

Sample records for wireless sensor-actuator networks

  1. A Vehicular Guidance Wireless Sensor/Actuator Network

    KAUST Repository

    Boudellioua, Imene

    2012-07-01

    Sensor networks have been heralded as one of 21 most important technologies for the 21st century by Business Week [1]. Wireless sensor/actuator networks (WSANs)are emerging as a new generation of sensor networks with the potential for enhancing the versatility and effectiveness of sensor networks. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. In this thesis, we design a WSAN for a vehicular guidance system targeting environmental disaster management applications. In this system, actuators provide mobility to all sensor nodes in the observed area whenever needed. Moreover, nodes form clusters and their movement is controlled by a master node that is selected dynamically. We also discuss the factors affecting our network performance in real-life and propose a framework which accounts for real-time requirement and reliable actuation. We finally perform some experimental studies on our system to measure its performance in an indoor environment.

  2. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.

    Science.gov (United States)

    Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei

    2017-01-13

    WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.

  3. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  4. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    Directory of Open Access Journals (Sweden)

    Youxian Sung

    2007-10-01

    Full Text Available Wireless sensor/actuator networks (WSANs are emerging as a new generationof sensor networks. Serving as the backbone of control applications, WSANs will enablean unprecedented degree of distributed and mobile control. However, the unreliability ofwireless communications and the real-time requirements of control applications raise greatchallenges for WSAN design. With emphasis on the reliability issue, this paper presents anapplication-level design methodology for WSANs in mobile control applications. Thesolution is generic in that it is independent of the underlying platforms, environment,control system models, and controller design. To capture the link quality characteristics interms of packet loss rate, experiments are conducted on a real WSAN system. From theexperimental observations, a simple yet efficient method is proposed to deal withunpredictable packet loss on actuator nodes. Trace-based simulations give promisingresults, which demonstrate the effectiveness of the proposed approach.

  5. Coordination Protocols for a Reliable Sensor, Actuator, and Device Network (SADN

    Directory of Open Access Journals (Sweden)

    Keiji Ozaki

    2008-01-01

    Full Text Available A sensor, actuator, and device network (SADN is composed of three types of nodes, which are sensor, actuator, and actuation device nodes. Sensor nodes and actuator nodes are interconnected in wireless networks as discussed in wireless sensor and actuator networks (WSANs. Actuator nodes and device nodes are interconnected in types of networks, i.e. wireless and wired network. Sensor nodes sense an physical event and send sensed values of the event to actuator nodes. An actuator node makes a decision on proper actions on receipt of sensed values and then issue the action requests to the device nodes. A device node really acts to the physical world. For example, moves a robot arms by performing the action on receipt of the action request. Messages may be lost and nodes may be faulty. Especially, messages are lost due to noise and collision in a wireless network. We propose a fully redundant model for an SADN where each of sensor, actuator, and device functions is replicated in multiple nodes and each of sensor-actuator and actuator-device communication is realized in many-to-many type of communication protocols. Even if some number of nodes are faulty, the other nodes can perform requested tasks. Here, each sensor node sends sensed values to multiple actuator nodes and each actuator node receives sensed values from multiple sensor nodes. While multiple actuator nodes communicate with multiple replica nodes of a device. Even if messages are lost and some number of nodes are faulty, device nodes can surely receive action requests required for sensed values and the actions are performed. In this paper, we discuss a type of semi-passive coordination (SPC protocol of multiple actuator nodes for multiple sensor nodes. We discuss a type of active coordination protocol for multiple actuator nodes and multiple actuation device nodes. We evaluate the SPC protocol for the sensor-actuator coordination in terms of the number of messages exchanged among

  6. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    NARCIS (Netherlands)

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; van Hoesel, L.F.W.; Marron, Pedro J.; Lepley, Jason; de Andres, Eduardo

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  7. Energy Efficient Wireless Vehicular-Guided Actuator Network

    KAUST Repository

    Boudellioua, Imene

    2013-06-09

    In this paper, we present an energy-efficient vehicular guided system for environmental disaster management using wireless sensor/actuator networks. Sensor nodes within clusters are controlled by a master node that is dynamically selected. Actuators support mobility for every sensor node in the area of interest. The system maintains energy efficiency using statistical, correlation, and confidence for determining actuator actions and implements an adaptive energy scheme to prolong the system lifespan. Experimental results show that the system is capable of saving up to 2.7Watt for every 28KByte of data exchanged. We also show that actuator actions are correct with a 90% confidence.

  8. A Uniform Energy Consumption Algorithm for Wireless Sensor and Actuator Networks Based on Dynamic Polling Point Selection

    Science.gov (United States)

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2014-01-01

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455

  9. Autonomous Vehicle Coordination with Wireless Sensor and Actuator Networks

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Bosch, S.; Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    2010-01-01

    A coordinated team of mobile wireless sensor and actuator nodes can bring numerous benefits for various applications in the field of cooperative surveillance, mapping unknown areas, disaster management, automated highway and space exploration. This article explores the idea of mobile nodes using

  10. Independent motion control of a tower crane through wireless sensor and actuator networks.

    Science.gov (United States)

    Koumboulis, Fotis N; Kouvakas, Nikolaos D; Giannaris, George L; Vouyioukas, Demosthenes

    2016-01-01

    The problem of independent control of the performance variables of a tower crane through a wireless sensor and actuator network is investigated. The complete nonlinear mathematical model of the tower crane is developed. Based on appropriate data driven norms an accurate linear approximant of the system, including an upper bound of the communication delays, is derived. Using this linear approximant, a dynamic measurable output multi delay controller for independent control of the performance outputs of the system is proposed. The controller performs satisfactory despite the nonlinearities of the model and the communication delays of the wireless network. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Towards a model-based development approach for wireless sensor-actuator network protocols

    DEFF Research Database (Denmark)

    Kumar S., A. Ajith; Simonsen, Kent Inge

    2014-01-01

    Model-Driven Software Engineering (MDSE) is a promising approach for the development of applications, and has been well adopted in the embedded applications domain in recent years. Wireless Sensor Actuator Networks consisting of resource constrained hardware and platformspecific operating system...... induced due to manual translations. With the use of formal semantics in the modeling approach, we can further ensure the correctness of the source model by means of verification. Also, with the use of network simulators and formal modeling tools, we obtain a verified and validated model to be used...

  12. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    Science.gov (United States)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real

  13. Ubiquitous Wireless Sensor Networks and future “Internet of Things""

    OpenAIRE

    Vermesan, Ovidiu

    2009-01-01

    Overview of heterogeneous networks of embedded devices that can range from RFID, to smart identifiable systems with sensing and actuating capabilitie. Presentation of wireless sensor networks protocols and Internet of Things future technology. Bridging the real, virtual and digital worlds by using wireless connectivity. Application examples in automotive, aeronautics, healthcare, building, oil and gas industries. Ubiquitous Wireless Sensor Networks and future “Internet ...

  14. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Directory of Open Access Journals (Sweden)

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  15. Service and device discovery of nodes in a wireless sensor network

    NARCIS (Netherlands)

    Östmark, Å.; Lindgren, P.; van Halteren, Aart; Meppelink, L.

    2006-01-01

    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device

  16. Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

    International Nuclear Information System (INIS)

    Jiang Zheng-Xian; Cui Bao-Tong; Lou Xu-Yang; Zhuang Bo

    2017-01-01

    In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. (paper)

  17. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  18. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  19. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  20. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey.

    Science.gov (United States)

    Ndiaye, Musa; Hancke, Gerhard P; Abu-Mahfouz, Adnan M

    2017-05-04

    Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  1. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey

    Directory of Open Access Journals (Sweden)

    Musa Ndiaye

    2017-05-01

    Full Text Available Wireless sensor networks (WSNs are becoming increasingly popular with the advent of the Internet of things (IoT. Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  2. Security For Wireless Sensor Network

    OpenAIRE

    Saurabh Singh,; Dr. Harsh Kumar Verma

    2011-01-01

    Wireless sensor network is highly vulnerable to attacks because it consists of various resourceconstrained devices with their low battery power, less memory, and associated low energy. Sensor nodescommunicate among themselves via wireless links. However, there are still a lot of unresolved issues in wireless sensor networks of which security is one of the hottest research issues. Sensor networks aredeployed in hostile environments. Environmental conditions along with resource-constraints give...

  3. Decentralized Enterprise Systems: A Multi-platform Wireless Sensor Networks Approach

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Meratnia, Nirvana; Havinga, Paul J.M.; Moreira Sá de Souza, L.; Müller, J.; Spiess, P.; Haller, S.; Riedel, T.; Decker, C.; Stromberg, G.

    2007-01-01

    Massively deployed wireless sensor and actuator networks, co-existing with RFID technology, can bring clear benefits to large-scale enterprise systems, by delegating parts of the business functionality closer to the point of action. However, a major impediment in the integration process is

  4. Wireless sensor communications and internet connectivity for sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, M. [Crossbow Technology, Inc., San Jose, CA (United States)

    2001-07-01

    A wireless sensor network architecture is an integrated hardware/software solution that has the potential to change the way sensors are used in a virtually unlimited range of industries and applications. By leveraging Bluetooth wireless technology for low-cost, short-range radio links, wireless sensor networks such as CrossNet{sup TM} enable users to create wireless sensor networks. These wireless networks can link dozens or hundreds of sensors of disparate types and brands with data acquisition/analysis systems, such as handheld devices, internet-enabled laptop or desktop PCs. The overwhelming majority of sensor applications are hard-wired at present, and since wiring is often the most time-consuming, tedious, trouble-prone and expensive aspect of sensor applications, users in many fields will find compelling reasons to adopt the wireless sensor network solution. (orig.)

  5. Decentralized Enterprise Systems: A Multi-platform Wireless Sensor Networks Approach

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Meratnia, Nirvana; Havinga, Paul J.M.; Moreira Sá de Souza, L.; Müller, J.; Spiess, P.; Haller, S.; Riedel, T.; Decker, C.; Stromberg, G.

    2007-01-01

    Massively deployed wireless sensor and actuator networks (WSAN), co-existing with RFID technology, can bring clear benefits to large-scale enterprise systems, by delegating parts of the business functionality closer to the point of action. However, a major impediment in the integration process is

  6. Power supply for wireless sensor or actuator systems

    International Nuclear Information System (INIS)

    Reindl, L. M.

    2011-01-01

    Portable wireless sensor or actuator systems, like portable phones, remote control, or ID cards play an ever growing role in our industrialized environment. Those systems and many more were enabled due to the steady decreasing power consumption of high integrated ICs. Most such systems are powered by batteries or inductive coupling. In this presentation several concepts for an alternative power supply of wireless sensor or actuator systems are discussed in detail. Batteries, although today mostly used, suffer from a limited storage capacity, which induce a labour and sometimes cost-intensive periodic maintenance, and a problematic ecological impact. The operating range of inductive coupling systems is due to the near ?eld limited to the aperture of the coupling coil. UHF systems operate in the far field and reach higher distances. Their operating range is limited by the distance where the voltage at the feeding point of the antenna becomes too low to drive the rectifier circuit. Larger read out ranges become feasible by omitting the rectifier stage. In this case we need either a passive frequency modulating device to shift the read out signal to a side band, or a resonator with a high quality factor, like a SAW or BAW device, to store the energy until all environmental echoes are feed away. For many applications, both indoor and outdoor, energy harvesting system become feasible which convert ambient power densities like light, RF fields, special or temporal thermal gradients, or mechanical vibrations into electrical supply power of the wireless system. All those systems strongly suffer from a lack of energy. Thus new concepts for low-ering the power consumption of a wireless sensor or actuator system by keeping their features remain extreme important. Herby, a new wake up receiver is presented which operates on a current requirement as low as 3 micro A.

  7. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  8. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  9. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  10. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  11. Application of Wireless Sensor and Actuator Networks to Achieve Intelligent Microgrids: A Promising Approach towards a Global Smart Grid Deployment

    Directory of Open Access Journals (Sweden)

    Alvaro Llaria

    2016-02-01

    Full Text Available Smart Grids (SGs constitute the evolution of the traditional electrical grid towards a new paradigm, which should increase the reliability, the security and, at the same time, reduce the costs of energy generation, distribution and consumption. Electrical microgrids (MGs can be considered the first stage of this evolution of the grid, because of the intelligent management techniques that must be applied to assure their correct operation. To accomplish this task, sensors and actuators will be necessary, along with wireless communication technologies to transmit the measured data and the command messages. Wireless Sensor and Actuator Networks (WSANs are therefore a promising solution to achieve an intelligent management of MGs and, by extension, the SG. In this frame, this paper surveys several aspects concerning the application of WSANs to manage MGs and the electrical grid, as well as the communication protocols that could be applied. The main concerns regarding the SG deployment are also presented, including future scenarios where the interoperability of different generation technologies must be assured.

  12. Smart Sensors and Actuators: A Question of Discipline

    Directory of Open Access Journals (Sweden)

    Hoel IRIS

    2013-01-01

    Full Text Available Low power consumption and reliability are two important properties in the wireless sensor network area. The approach presented here to improve these aspects is to use a rule-based middleware enforcing a coordination protocol on top of the communication protocols imposed by the different wireless sensor networks. In addition, we move the callee side of this protocol from the gateway to the sensors/actuators in order to make them able to directly respond to this protocol. Then, it is possible to control from the application side the control (sleep/awake of the sensors and the transactional processing of operations involving a group of sensors/actuators. This has a positive impact both on the consumption and the reliability. Examples illustrating our approach are presented.

  13. Sinkhole Avoidance Routing in Wireless Sensor Networks

    Science.gov (United States)

    2011-05-09

    COVERED (From- To) 09-05-2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Sinkhole Avoidance Routing in Wireless Sensor Networks 5b . GRANT NUMBER . 5c...reliability of wireless sensor networks. 15. SUBJECT TERMS wireless sensor networks, sinkhole attack, routing protocol 16. SECURITY CLASSIFICATION...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std . Z39.18 1 Sinkhole Avoidance Routing in Wireless Sensor Networks MIDN 1/C

  14. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  15. Security Threats on Wireless Sensor Network Protocols

    OpenAIRE

    H. Gorine; M. Ramadan Elmezughi

    2016-01-01

    In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issue...

  16. Power Aware Simulation Framework for Wireless Sensor Networks and Nodes

    Directory of Open Access Journals (Sweden)

    Daniel Weber

    2008-07-01

    Full Text Available The constrained resources of sensor nodes limit analytical techniques and cost-time factors limit test beds to study wireless sensor networks (WSNs. Consequently, simulation becomes an essential tool to evaluate such systems.We present the power aware wireless sensors (PAWiS simulation framework that supports design and simulation of wireless sensor networks and nodes. The framework emphasizes power consumption capturing and hence the identification of inefficiencies in various hardware and software modules of the systems. These modules include all layers of the communication system, the targeted class of application itself, the power supply and energy management, the central processing unit (CPU, and the sensor-actuator interface. The modular design makes it possible to simulate heterogeneous systems. PAWiS is an OMNeT++ based discrete event simulator written in C++. It captures the node internals (modules as well as the node surroundings (network, environment and provides specific features critical to WSNs like capturing power consumption at various levels of granularity, support for mobility, and environmental dynamics as well as the simulation of timing effects. A module library with standardized interfaces and a power analysis tool have been developed to support the design and analysis of simulation models. The performance of the PAWiS simulator is comparable with other simulation environments.

  17. How Wireless Sensor Networks Can Benefit from Brain Emotional Learning Based Intelligent Controller (BELBIC)

    NARCIS (Netherlands)

    Kalayci, Tahir Emre; Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2011-01-01

    Wireless sensor networks (WSNs) are composed of small sensing and actuating devices that collaboratively monitor a phenomena, process and reason about sensor measurements, and provide adequate feedback or take actions. One of WSNs tasks is event detection, in which occurrence of events of interest

  18. Analyzing Multimode Wireless Sensor Networks Using the Network Calculus

    Directory of Open Access Journals (Sweden)

    Xi Jin

    2015-01-01

    Full Text Available The network calculus is a powerful tool to analyze the performance of wireless sensor networks. But the original network calculus can only model the single-mode wireless sensor network. In this paper, we combine the original network calculus with the multimode model to analyze the maximum delay bound of the flow of interest in the multimode wireless sensor network. There are two combined methods A-MM and N-MM. The method A-MM models the whole network as a multimode component, and the method N-MM models each node as a multimode component. We prove that the maximum delay bound computed by the method A-MM is tighter than or equal to that computed by the method N-MM. Experiments show that our proposed methods can significantly decrease the analytical delay bound comparing with the separate flow analysis method. For the large-scale wireless sensor network with 32 thousands of sensor nodes, our proposed methods can decrease about 70% of the analytical delay bound.

  19. Wireless Sensor Network –A Survey

    OpenAIRE

    Nirvika Chouhan; P.D.Vyavahare; Rekha Jain

    2013-01-01

    Wireless sensor networks are the networks consisting of large number of small and tiny sensor nodes. The nodes are supplied with limited power, memory and other resources and perform in-network processing. In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network. In Wireless sensor network, nodes should consume less power, memoryand so data aggregation should be performed. Security is another aspect which should be pres...

  20. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  1. Resource aware sensor nodes in wireless sensor networks

    International Nuclear Information System (INIS)

    Merrett, G V; Al-Hashimi, B M; White, N M; Harris, N R

    2005-01-01

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  2. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  3. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  4. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  5. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  6. Availability Issues in Wireless Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  7. Wireless Sensor Networks Database: Data Management and Implementation

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2014-04-01

    Full Text Available As the core application of wireless sensor network technology, Data management and processing have become the research hotspot in the new database. This article studied mainly data management in wireless sensor networks, in connection with the characteristics of the data in wireless sensor networks, discussed wireless sensor network data query, integrating technology in-depth, proposed a mobile database structure based on wireless sensor network and carried out overall design and implementation for the data management system. In order to achieve the communication rules of above routing trees, network manager uses a simple maintenance algorithm of routing trees. Design ordinary node end, server end in mobile database at gathering nodes and mobile client end that can implement the system, focus on designing query manager, storage modules and synchronous module at server end in mobile database at gathering nodes.

  8. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  9. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  10. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  11. Wireless Sensor Network for Forest Fire Detection 2

    OpenAIRE

    João Gilberto Fernandes Gonçalves Teixeira

    2017-01-01

    The main purpose for this project is the development of a semi-autonomous wireless sensor network for fire detection in remote territory. Making use of the IEEE 802.15.4 standard, a wireless standard for low-power, low-rate wireless sensor networks, a real sensor network and web application will be developed and deployed with the ability to monitor sensor data, detect a fire occurrence and generate early fire alerts.

  12. The benefits of soft sensor and multi-rate control for the implementation of Wireless Networked Control Systems.

    Science.gov (United States)

    Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V

    2014-12-18

    Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.

  13. Consistent sensor, relay, and link selection in wireless sensor networks

    NARCIS (Netherlands)

    Arroyo Valles, M.D.R.; Simonetto, A.; Leus, G.J.T.

    2017-01-01

    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need

  14. Traffic Profiling in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Kirykos, Georgios

    2006-01-01

    .... Wireless sensor networks pose unique challenges and limitations to the traditional schemes, which are used in the other wireless networks for security protection, and are due mainly to the increased...

  15. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  16. The Benefits of Soft Sensor and Multi-Rate Control for the Implementation of Wireless Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Raul K. Mansano

    2014-12-01

    Full Text Available Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.

  17. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... peripherals need to by duty-cycled and the low-power wireless radios are severely influenced by the environmental effects causing bursty and unreliable wireless channels. This dissertation presents a communication stack providing services for low-power communication, secure communication, data collection......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  18. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....... without any needs for battery recharge or replacement. However, energy harvesting introduces a change to the fundamental principles based on which WSNs are designed and realized. In this poster we sketch some of the key research challenges as well as our ongoing work in designing and realizing Wireless...

  19. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

    International Nuclear Information System (INIS)

    Malik, A.S.; Qureshi, A.

    2010-01-01

    Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

  20. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  1. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  2. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  3. Wireless sensor network for sodium leak detection

    International Nuclear Information System (INIS)

    Satya Murty, S.A.V.; Raj, Baldev; Sivalingam, Krishna M.; Ebenezer, Jemimah; Chandran, T.; Shanmugavel, M.; Rajan, K.K.

    2012-01-01

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  4. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  5. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  6. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  7. Open-WiSe: a solar powered wireless sensor network platform.

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  8. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  9. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2007-06-01

    Full Text Available Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM, which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons and computational complexity (i.e., time and space complexity. In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

  10. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  11. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  12. Wireless Integrated Network Sensors Next Generation

    National Research Council Canada - National Science Library

    Merrill, William

    2004-01-01

    ..., autonomous networking, and distributed operations for wireless networked sensor systems. Multiple types of sensor systems were developed and provided including capabilities for acoustic, seismic, passive infrared detection, and visual imaging...

  13. Secure Wireless Sensor Networks: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2003-08-01

    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  14. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Directory of Open Access Journals (Sweden)

    Arthur Edwards

    2012-06-01

    Full Text Available Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe. The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  15. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  16. Multipath routing in wireless sensor networks: survey and research challenges.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  17. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  18. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    Science.gov (United States)

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  19. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weijian Tu

    2017-07-01

    Full Text Available Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  20. A survey on the wireless sensor network technology

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Jun, Hyeong Seop; Lee, Jae Cheol; Choi, Yoo Rak

    2007-12-01

    Wireless sensor technology is required in the safety inspection for safety-critical unit of nuclear power plant. This report describes wireless sensor technology related with the project named 'Development of a remote care system of NPP components based on the network and safety database'. This report includes contents of methodology and status of sensor network construction, status of zigbee sensor network, problem of security and sensor battery. Energy harvesting technology will be mentioned on the next report

  1. Key Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ismail Mansour

    2015-09-01

    Full Text Available Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take control over particular nodes. In this context, it is important to revoke and renew keys that might be learned by malicious nodes. We propose several secure protocols for key revocation and key renewal based on symmetric encryption and elliptic curve cryptography. All protocols are secure, but have different security levels. Each proposed protocol is formally proven and analyzed using Scyther, an automatic verification tool for cryptographic protocols. For efficiency comparison sake, we implemented all protocols on real testbeds using TelosB motes and discussed their performances.

  2. Decentralized coverage control problems for mobile robotic sensor and actuator networks

    CERN Document Server

    Savkin, A; Xi, Z; Javed, F; Matveev, A; Nguyen, H

    2015-01-01

    This book introduces various coverage control problems for mobile sensor networks including barrier, sweep and blanket. Unlike many existing algorithms, all of the robotic sensor and actuator motion algorithms developed in the book are fully decentralized or distributed, computationally efficient, easily implementable in engineering practice and based only on information on the closest neighbours of each mobile sensor and actuator and local information about the environment. Moreover, the mobile robotic sensors have no prior information about the environment in which they operation. These various types of coverage problems have never been covered before by a single book in a systematic way. Another topic of this book is the study of mobile robotic sensor and actuator networks. Many modern engineering applications include the use of sensor and actuator networks to provide efficient and effective monitoring and control of industrial and environmental processes. Such mobile sensor and actuator networks are abl...

  3. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  4. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chen Chin-Ling

    2008-01-01

    Full Text Available Abstract Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  5. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cheng-Ta Li

    2008-09-01

    Full Text Available Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting m keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  6. A Vehicular Guidance Wireless Sensor/Actuator Network

    KAUST Repository

    Boudellioua, Imene

    2012-01-01

    that is selected dynamically. We also discuss the factors affecting our network performance in real-life and propose a framework which accounts for real-time requirement and reliable actuation. We finally perform some experimental studies on our system to measure

  7. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  8. Miniaturized wireless sensor network

    OpenAIRE

    Lecointre , Aubin; Dragomirescu , Daniela; Dubuc , David; Grenier , Katia; Pons , Patrick; Aubert , Hervé; Müller , A.; Berthou , Pascal; Gayraud , Thierry; Plana , Robert

    2006-01-01

    This paper addresses an overview of the wireless sensor networks. It is shown that MEMS/NEMS technologies and SIP concept are well suited for advanced architectures. It is also shown analog architectures have to be compatible with digital signal techniques to develop smart network of microsystem.

  9. Topology Optimisation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thike Aye Min

    2016-01-01

    Full Text Available Wireless sensor networks are widely used in a variety of fields including industrial environments. In case of a clustered network the location of cluster head affects the reliability of the network operation. Finding of the optimum location of the cluster head, therefore, is critical for the design of a network. This paper discusses the optimisation approach, based on the brute force algorithm, in the context of topology optimisation of a cluster structure centralised wireless sensor network. Two examples are given to verify the approach that demonstrate the implementation of the brute force algorithm to find an optimum location of the cluster head.

  10. Wireless sensor network topology control

    OpenAIRE

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg

    2010-01-01

    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  11. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  12. Collaborative Algortihms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  13. Collaborative Algorithms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

    2003-01-01

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  14. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  15. 7th China Conference on Wireless Sensor Networks

    CERN Document Server

    Cui, Li; Guo, Zhongwen

    2014-01-01

    Advanced Technologies in Ad Hoc and Sensor Networks collects selected papers from the 7th China Conference on Wireless Sensor Networks (CWSN2013) held in Qingdao, October 17-19, 2013. The book features state-of-the-art studies on Sensor Networks in China with the theme of “Advances in wireless sensor networks of China”. The selected works can help promote development of sensor network technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of sensor networks can benefit from the book. Xue Wang is a professor at Tsinghua University; Li Cui is a professor at Institute of Computing Technology, Chinese Academy of Sciences; Zhongwen Guo is a professor at Ocean University of China.

  16. Wireless sensor network for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  17. Wireless Sensor Networks for Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Raúl Aquino-Santos

    2013-11-01

    Full Text Available This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study.

  18. COMPARATIVE ANALYSIS OF LEACH AND HEEMPCP PROTOCOLS FOR WIRELESS SENSOR NETWORKS SYSTEM

    OpenAIRE

    Richa Asstt. Pro.Misha Thakur

    2018-01-01

    In this paper author aims at describing a wireless sensor network. wireless sensor network consisting of spatially distributed autonomous devices using sensor to monitor physical or environmental conditions. Wireless sensor network can be used in wide range of applications including environmental monitoring, habitat monitoring, various military applications, smart home technologiesand agriculture. Wireless sensor networks constitute one of promising application areas of the recently developed...

  19. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  20. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  1. Data aggregation in wireless sensor networks using the SOAP protocol

    International Nuclear Information System (INIS)

    Al-Yasiri, A; Sunley, A

    2007-01-01

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks

  2. Data aggregation in wireless sensor networks using the SOAP protocol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yasiri, A; Sunley, A [School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT (United Kingdom)

    2007-07-15

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  3. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  4. X-raying neighbour discovery in a wireless sensor network ...

    African Journals Online (AJOL)

    In most wireless sensor networks, the nodes are often assumed to be stationary. However, network connectivity is subject to changes arising from interference in wireless communication, changes in transmission power or loss of synchronization among neighbouring network nodes. Hence, even after a sensor node is aware ...

  5. Probabilistic Bandwidth Assignment in Wireless Sensor Networks

    OpenAIRE

    Khan , Dawood; Nefzi , Bilel; Santinelli , Luca; Song , Ye-Qiong

    2012-01-01

    International audience; With this paper we offer an insight in designing and analyzing wireless sensor networks in a versatile manner. Our framework applies probabilistic and component-based design principles for the wireless sensor network modeling and consequently analysis; while maintaining flexibility and accuracy. In particular, we address the problem of allocating and reconfiguring the available bandwidth. The framework has been successfully implemented in IEEE 802.15.4 using an Admissi...

  6. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  7. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  8. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  9. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    Science.gov (United States)

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  10. Wireless sensor network and monitoring for environment

    OpenAIRE

    Han, Liang

    2011-01-01

    In recent years, wireless sensor network technology is developing at a surprisingly high speed. More and more fields have started to use the wireless sensor network technology and find the advantages of WSN, such as military applications, environmental observing and forecasting system, medical care, smart home, structure monitoring. The world Environmental Summit in Copenhagen on 2010 has just concluded that environment has become the world’s main concern. But regrettably the summit did no...

  11. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jiang, Jin; Bari, Ataul; Chen, Dongyi; Hashemian, Hash M.

    2014-01-01

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs

  12. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jin; Bari, Ataul [University of Western Ontario, Ontario (Canada); Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Hashemian, Hash M. [AMS Technology Center, Knoxville (United States)

    2014-08-15

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs.

  13. Priority image transmission in wireless sensor networks

    International Nuclear Information System (INIS)

    Nasri, M.; Helali, A.; Sghaier, H.; Maaref, H.

    2011-01-01

    The emerging technology during the last years allowed the development of new sensors equipped with wireless communication which can be organized into a cooperative autonomous network. Some application areas for wireless sensor networks (WSNs) are home automations, health care services, military domain, and environment monitoring. The required constraints are limited capacity of processing, limited storage capability, and especially these nodes are limited in energy. In addition, such networks are tiny battery powered which their lifetime is very limited. During image processing and transmission to the destination, the lifetime of sensor network is decreased quickly due to battery and processing power constraints. Therefore, digital image transmissions are a significant challenge for image sensor based Wireless Sensor Networks (WSNs). Based on a wavelet image compression, we propose a novel, robust and energy-efficient scheme, called Priority Image Transmission (PIT) in WSN by providing various priority levels during image transmissions. Different priorities in the compressed image are considered. The information for the significant wavelet coeffcients are transmitted with higher quality assurance, whereas relatively less important coefficients are transmitted with lower overhead. Simulation results show that the proposed scheme prolongs the system lifetime and achieves higher energy efficiency in WSN with an acceptable compromise on the image quality.

  14. Multi-Channel Wireless Sensor Networks: Protocols, Design and Evaluation

    OpenAIRE

    Durmaz, O.

    2009-01-01

    Pervasive systems, which are described as networked embedded systems integrated with everyday environments, are considered to have the potential to change our daily lives by creating smart surroundings and by their ubiquity, just as the Internet. In the last decade, “Wireless Sensor Networks��? have appeared as one of the real-world examples of pervasive systems by combining automated sensing, embedded computing and wireless networking into tiny embedded devices. A wireless sensor network typ...

  15. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran

    2010-01-01

    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.

  16. Energy- Efficient Routing Protocols For Wireless Sensor Network A Review

    Directory of Open Access Journals (Sweden)

    Pardeep Kaur

    2017-12-01

    Full Text Available There has been plenty of interest in building and deploying sensor networks. Wireless sensor network is a collection of a large number of small nodes which acts as routers also. These nodes carry very limited power source which is non-rechargeable and non-replaceable which makes energy consumption an significant issue. Energy conservation is a very important issue for prolonging the lifetime of the network. As the sensor nodes act like routers as well the determination of routing technique plays a key role in controlling the consumption of energy. This paper describes the framework of wireless sensor network and the analysis and study of various research work related to Energy Efficient Routing in Wireless Sensor Networks.

  17. A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    Directory of Open Access Journals (Sweden)

    Subhajit Pal

    2010-11-01

    Full Text Available Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs. Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  18. ASE-BAN, a Wireless Body Area Network Testbed

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Karstoft, Henrik; Toftegaard, Thomas Skjødeberg

    2010-01-01

    /actuators attached to the body and a host server application. The gateway uses the BlackFin BF533 processor from Analog Devices, and uses Bluetooth for wireless communication. Two types of sensors are attached to the network: an electro-cardio-gram sensor and an oximeter sensor. The testbed has been successfully...

  19. One Kind of Routing Algorithm Modified in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei Ni Ni

    2016-01-01

    Full Text Available The wireless sensor networks are the emerging next generation sensor networks, Routing technology is the wireless sensor network communication layer of the core technology. To build reliable paths in wireless sensor networks, we can consider two ways: providing multiple paths utilizing the redundancy to assure the communication reliability or constructing transmission reliability mechanism to assure the reliability of every hop. Braid multipath algorithm and ReInforM routing algorithm are the realizations of these two mechanisms. After the analysis of these two algorithms, this paper proposes a ReInforM routing algorithm based braid multipath routing algorithm.

  20. Energy-efficient Organization of Wireless Sensor Networks with Adaptive Forecasting

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2008-04-01

    Full Text Available Due to the wide potential applications of wireless sensor networks, this topic has attracted great attention. The strict energy constraints of sensor nodes result in great challenges for energy efficiency. This paper proposes an energy-efficient organization method. The organization of wireless sensor networks is formulated for target tracking. Target localization is achieved by collaborative sensing with multi-sensor fusion. The historical localization results are utilized for adaptive target trajectory forecasting. Combining autoregressive moving average (ARMA model and radial basis function networks (RBFNs, robust target position forecasting is performed. Moreover, an energyefficient organization method is presented to enhance the energy efficiency of wireless sensor networks. The sensor nodes implement sensing tasks are awakened in a distributed manner. When the sensor nodes transfer their observations to achieve data fusion, the routing scheme is obtained by ant colony optimization. Thus, both the operation and communication energy consumption can be minimized. Experimental results verify that the combination of ARMA model and RBFN can estimate the target position efficiently and energy saving is achieved by the proposed organization method in wireless sensor networks.

  1. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  2. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  3. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  4. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  5. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  6. Classifying Sensors Depending on their IDs to Reduce Power Consumption in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ayman Mohammd Brisha

    2010-05-01

    Full Text Available Wireless sensor networks produce a large amount of data that needs to be processed, delivered, and assessed according to the application objectives. Cluster-based is an effective architecture for data-gathering in wireless sensor networks. Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, in order to distribute the energy consumption among nodes in each cluster and extend the network lifetime. Clustering sensors are divided into groups, so that sensors will communicate information only to cluster heads and then the cluster heads will communicate the aggregated information to the processing center, and this may save energy. In this paper we show Two Relay Sensor Algorithm (TRSA, which divide wireless Sensor Network (WSN into unequaled clusters, showing that it can effectively save power for maximizing the life time of the network. Simulation results show that the proposed unequal clustering mechanism (TRSA balances the energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.

  7. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Science.gov (United States)

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  8. A feedback-based secure path approach for wireless sensor network data collection.

    Science.gov (United States)

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  9. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Directory of Open Access Journals (Sweden)

    Guiyi Wei

    2010-10-01

    Full Text Available The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  10. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  11. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  12. Wireless sensor networks for active vibration control in automobile structures

    International Nuclear Information System (INIS)

    Mieyeville, Fabien; Navarro, David; Du, Wan; Ichchou, Mohamed; Scorletti, Gérard

    2012-01-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)

  13. Wireless sensor networks distributed consensus estimation

    CERN Document Server

    Chen, Cailian; Guan, Xinping

    2014-01-01

    This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investiga

  14. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  15. Wireless multimedia sensor networks on reconfigurable hardware information reduction techniques

    CERN Document Server

    Ang, Li-minn; Chew, Li Wern; Yeong, Lee Seng; Chia, Wai Chong

    2013-01-01

    Traditional wireless sensor networks (WSNs) capture scalar data such as temperature, vibration, pressure, or humidity. Motivated by the success of WSNs and also with the emergence of new technology in the form of low-cost image sensors, researchers have proposed combining image and audio sensors with WSNs to form wireless multimedia sensor networks (WMSNs).

  16. Collective intelligent wireless sensor networks

    NARCIS (Netherlands)

    Mihaylov, M.; Nowe, A.; Tuyls, K.P.; Nijholt, A.; Pantic, M.

    2008-01-01

    In this paper we apply the COllective INtelligence (COIN) framework ofWolpert et al. toWireless Sensor Networks (WSNs) with the aim to increase the autonomous lifetime of the network in a decentralized manner. COIN describes how selfish agents can learn to optimize their own performance, so that the

  17. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  18. Towards a distributed control system for software defined wireless sensor networks

    CSIR Research Space (South Africa)

    Kobo, Hlabishi I

    2017-10-01

    Full Text Available on the network device. The coupling stifles innovation and evolution because the network often becomes rigid. Software Defined Wireless Sensor Networks (SDWSN) is also an emerging network paradigm that infuses the SDN model into Wireless Sensor Networks (WSNs...

  19. Wireless Sensor Network Handles Image Data

    Science.gov (United States)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  20. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  1. Developing a Framework for E-Manufacturing Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xu Xi

    2013-06-01

    Full Text Available This paper analyzes the current situation of business environment and business intelligence systems integration at first. With emerging applications of internet and wireless communication technologies, e-manufacturing is focused on the use of internet, monitoring and communications technologies to make things happen collaboratively on a global basis. A wireless sensor network based data acquisition system gives enormous benefits such as ease and flexibility of deployment in addition to low maintenance and deployment costs. This paper reviews wireless sensor network and its application for e-manufacturing. To provide a dependable, non-intrusive, secure, real-time automated health monitoring, a distributed reconfigurable sensor network is introduced which consists of real and virtual sensor nodes over a communication wireless sensor network using Mica2 motes.

  2. A SAT-Based Analysis of a Calculus for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Wu, Xi; Nielson, Hanne Riis; Zhu, Huibiao

    2015-01-01

    In viewing the common unreliability problem in wireless communications, the CWQ calculus (a Calculus for Wireless sensor networks from Quality perspective) was recently proposed for modeling and reasoning about WSNs(Wireless Sensor Networks) and their applications from a quality perspective...

  3. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  4. Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qihua Wang

    2017-11-01

    Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.

  5. Wireless sensor network

    Science.gov (United States)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  6. Wireless coexistence and interference test method for low-power wireless sensor networks

    NARCIS (Netherlands)

    Serra, R.; Nabi, Majid

    2015-01-01

    Wireless sensor networks (WSNs) are being increasingly introduced for critical applications such as safety, security and health. One the main characteristic requirements of such networks are that they should function with relative low power. Therefore the wireless links are more vulnerable.

  7. Design and Optimisation Problems in Wireless Sensor Networks

    Indian Academy of Sciences (India)

    Premkumar Karumbu,1.05 ECE,,+91-9448227167

    2010-11-14

    Nov 14, 2010 ... Wireless Networks of Multifunction Smart Sensors (WSNs). A smart sensor ... Energy and environment management networks in large buildings. Emerging ISA ... Monitoring mobile patients in hospitals and homes. Locating ...

  8. Wireless Sensor Networks for Detection of IED Emplacement

    Science.gov (United States)

    2009-06-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but

  9. Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a

  10. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  11. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks.

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-11-15

    An important criterion of wireless sensor network is the energy efficiency inspecified applications. In this wireless multimedia sensor network, the observations arederived from acoustic sensors. Focused on the energy problem of target tracking, this paperproposes a robust forecasting method to enhance the energy efficiency of wirelessmultimedia sensor networks. Target motion information is acquired by acoustic sensornodes while a distributed network with honeycomb configuration is constructed. Thereby,target localization is performed by multiple sensor nodes collaboratively through acousticsignal processing. A novel method, combining autoregressive moving average (ARMA)model and radial basis function networks (RBFNs), is exploited to perform robust targetposition forecasting during target tracking. Then sensor nodes around the target areawakened according to the forecasted target position. With committee decision of sensornodes, target localization is performed in a distributed manner and the uncertainty ofdetection is reduced. Moreover, a sensor-to-observer routing approach of the honeycombmesh network is investigated to solve the data reporting considering the residual energy ofsensor nodes. Target localization and forecasting are implemented in experiments.Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimentalresults verify that energy efficiency of wireless multimedia sensor network is enhanced bythe proposed target tracking method.

  12. Localisation system in wireless sensor networks using ns-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-04-01

    Full Text Available -1 /************************************************************************** ********** * * File: readme.asn * * Author: Adnan Abu-Mahfouz * * Date: March 2012 * * Description: Localisation system in wireless sensor networks using ns-2... *************************************************************************** *********/ /************************************************************************** *************************************************************************** *****/ 1. Introduction: ns-2 contains several flexible features that encourage researchers to use ns-2 to investigate the characteristics of wireless sensor networks (WSNs). However, to implement and evaluate localisation algorithms, the current ns- 2...

  13. Coverage and Connectivity Issue in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rachit Trivedi

    2013-04-01

    Full Text Available Wireless sensor networks (WSNs are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks.

  14. A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    OpenAIRE

    Subhajit Pal; Debnath Bhattacharyya; Tai-hoon Kim

    2010-01-01

    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and comp...

  15. Advanced Communication for Wireless Sensor Networks

    Science.gov (United States)

    2016-08-22

    strategies that could be used to increase the single-hop transmission range of a wireless sensor network, increase energy efficiency (improve battery...substance placed within the reach of the network. Sensor measurements were quantized to save energy and bandwidth during transmission of the...the problem of assigning transmission powers to every node in order to maintain connectivity while minimizing the energy consumption of the whole

  16. Implementation Of The Precision Agriculture Using LEACH Protocol Of Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Than Htike Aung

    2015-08-01

    Full Text Available The evolution of wireless sensor network technology leads to develop advanced systems for real-time monitoring. Wireless sensor network WSN is a major technology that drives the development of precision agriculture.By forming wireless sensor networkagricultural practicescan be made good monitoring systems.Various agricultural parameters like soil moisture temperature and humidity are monitored by monitoring units.The paper explains about how to utilize thesensors in agricultural practices and explains about routing protocols of wireless sensor network. In this paper agricultural parameter of temperature will monitor with the use of LEACH protocol.

  17. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    Science.gov (United States)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  18. Energy-aware scheduling of surveillance in wireless multimedia sensor networks.

    Science.gov (United States)

    Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao

    2010-01-01

    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.

  19. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-05-01

    Full Text Available This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  20. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  1. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  2. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    Science.gov (United States)

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  3. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sabrina Boubiche

    2016-04-01

    Full Text Available Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  4. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  5. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  6. Virtual View Image over Wireless Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Gamantyo Hendrantoro

    2011-12-01

    Full Text Available In general, visual sensors are applied to build virtual view images. When number of visual sensors increases then quantity and quality of the information improves. However, the view images generation is a challenging task in Wireless Visual Sensor Network environment due to energy restriction, computation complexity, and bandwidth limitation. Hence this paper presents a new method of virtual view images generation from selected cameras on Wireless Visual Sensor Network. The aim of the paper is to meet bandwidth and energy limitations without reducing information quality. The experiment results showed that this method could minimize number of transmitted imageries with sufficient information.

  7. HARDWARE IMPLEMENTATION OF SECURE AODV FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    S. Sharmila

    2010-12-01

    Full Text Available Wireless Sensor Networks are extremely vulnerable to any kind of routing attacks due to several factors such as wireless transmission and resource-constrained nodes. In this respect, securing the packets is of great importance when designing the infrastructure and protocols of sensor networks. This paper describes the hardware architecture of secure routing for wireless sensor networks. The routing path is selected using Ad-hoc on demand distance vector routing protocol (AODV. The data packets are converted into digest using hash functions. The functionality of the proposed method is modeled using Verilog HDL in MODELSIM simulator and the performance is compared with various target devices. The results show that the data packets are secured and defend against the routing attacks with minimum energy consumption.

  8. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  9. Secure Geographic Routing in Ad Hoc and Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zahariadis Theodore

    2010-01-01

    Full Text Available Security in sensor networks is one of the most relevant research topics in resource constrained wireless devices and networks. Several attacks can be suffered in ad hoc and wireless sensor networks (WSN, which are highly susceptible to attacks, due to the limited resources of the nodes. In this paper, we propose innovative and lightweight localization techniques that allow for intrusion identification and isolation schemes and provide accurate location information. This information is used by our routing protocol which additionally incorporates a distributed trust model to prevent several routing attacks to the network. We finally evaluate our algorithms for accurate localization and for secure routing which have been implemented and tested in real ad hoc and wireless sensor networks.

  10. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  11. Energy Aware Cluster Based Routing Scheme For Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Roy Sohini

    2015-09-01

    Full Text Available Wireless Sensor Network (WSN has emerged as an important supplement to the modern wireless communication systems due to its wide range of applications. The recent researches are facing the various challenges of the sensor network more gracefully. However, energy efficiency has still remained a matter of concern for the researches. Meeting the countless security needs, timely data delivery and taking a quick action, efficient route selection and multi-path routing etc. can only be achieved at the cost of energy. Hierarchical routing is more useful in this regard. The proposed algorithm Energy Aware Cluster Based Routing Scheme (EACBRS aims at conserving energy with the help of hierarchical routing by calculating the optimum number of cluster heads for the network, selecting energy-efficient route to the sink and by offering congestion control. Simulation results prove that EACBRS performs better than existing hierarchical routing algorithms like Distributed Energy-Efficient Clustering (DEEC algorithm for heterogeneous wireless sensor networks and Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network (EEHC.

  12. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  13. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  14. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    Science.gov (United States)

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  15. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  16. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-11-01

    Full Text Available Wireless sensor networks (WSNs have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs. However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  17. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  18. Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2014-01-01

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702

  19. Bio-mimic optimization strategies in wireless sensor networks: a survey.

    Science.gov (United States)

    Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2013-12-24

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.

  20. ZigBee wireless sensor network for environmental monitoring system

    Science.gov (United States)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  1. Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    OpenAIRE

    Al-Azzawi, Waleed

    2013-01-01

    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefo...

  2. Why General Outlier Detection Techniques Do Not Suffice For Wireless Sensor Networks?

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Raw data collected in wireless sensor networks are often unreliable and inaccurate due to noise, faulty sensors and harsh environmental effects. Sensor data that significantly deviate from normal pattern of sensed data are often called outliers. Outlier detection in wireless sensor networks aims at

  3. Dynamic Aggregation Protocol for Wireless Sensor Networks

    OpenAIRE

    Mounir Said , Adel; William Ibrahim , Ashraf; Soua , Ahmed; Afifi , Hossam

    2013-01-01

    International audience; Sensor networks suffer from limited capabilities such as bandwidth, low processing power, and memory size. There is therefore a need for protocols that deliver sensor data in an energy-efficient way to the sink. One of those techniques, it gathers sensors' data in a small size packet suitable for transmission. In this paper, we propose a new Effective Data Aggregation Protocol (DAP) to reduce the energy consumption in Wireless Sensor Networks (WSNs), which prolongs the...

  4. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  5. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  6. Trust framework for a secured routing in wireless sensor network

    Directory of Open Access Journals (Sweden)

    Ouassila Hoceini

    2015-11-01

    Full Text Available Traditional techniques to eliminate insider attacks developed for wired and wireless ad hoc networks are not well suited for wireless sensors networks due to their resource constraints nature. In order to protect WSNs against malicious and selfish behavior, some trust-based systems have recently been modeled. The resource efficiency and dependability of a trust system are the most fundamental requirements for any wireless sensor network (WSN. In this paper, we propose a Trust Framework for a Secured Routing in Wireless Sensor Network (TSR scheme, which works with clustered networks. This approach can effectively reduce the cost of trust evaluation and guarantee a better selection of safest paths that lead to the base station. Theoretical as well as simulation results show that our scheme requires less communication overheads and consumes less energy as compared to the current typical trust systems for WSNs. Moreover, it detects selfish and defective nodes and prevents us of insider attacks

  7. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  8. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  9. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  10. Simultaneity Analysis In A Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Malović Miodrag

    2015-06-01

    Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.

  11. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    Science.gov (United States)

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948

  12. A wireless sensor network for vineyard monitoring that uses image processing.

    Science.gov (United States)

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis.

  13. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    Science.gov (United States)

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Khalid

    2017-01-01

    Full Text Available Underwater wireless sensor networks are a newly emerging wireless technology in which small size sensors with limited energy and limited memory and bandwidth are deployed in deep sea water and various monitoring operations like tactical surveillance, environmental monitoring, and data collection are performed through these tiny sensors. Underwater wireless sensor networks are used for the exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance systems, and unmanned underwater vehicles. Sensor nodes consist of a small memory, a central processing unit, and an antenna. Underwater networks are much different from terrestrial sensor networks as radio waves cannot be used in underwater wireless sensor networks. Acoustic channels are used for communication in deep sea water. Acoustic signals have many limitations, such as limited bandwidth, higher end-to-end delay, network path loss, higher propagation delay, and dynamic topology. Usually, these limitations result in higher energy consumption with a smaller number of packets delivered. The main aim nowadays is to operate sensor nodes having a smaller battery for a longer time in the network. This survey has discussed the state-of-the-art localization based and localization-free routing protocols. Routing associated issues in the area of underwater wireless sensor networks have also been discussed.

  15. Active node determination for correlated data gathering in wireless sensor networks

    OpenAIRE

    Karasabun, Efe

    2009-01-01

    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2009. Thesis (Master's) -- Bilkent University, 2009. Includes bibliographical references leaves 53-55. In wireless sensor network applications where data gathered by different sensor nodes is correlated, not all sensor nodes need to be active for the wireless sensor network to be functional. However, the sensor nodes that are selected as active should form a co...

  16. Recent development in wireless sensor and ad-hoc networks

    CERN Document Server

    Li, Xiaolong; Yang, Yeon-Mo

    2015-01-01

    Wireless Sensor Network (WSN) consists of numerous physically distributed autonomous devices used for sensing and monitoring the physical and/or environmental conditions. A WSN uses a gateway that provides wireless connectivity to the wired world as well as distributed networks. There are many open problems related to Ad-Hoc networks and its applications. Looking at the expansion of the cellular infrastructure, Ad-Hoc network may be acting as the basis of the 4th generation wireless technology with the new paradigm of ‘anytime, anywhere communications’. To realize this, the real challenge would be the security, authorization and management issues of the large scale WSNs. This book is an edited volume in the broad area of WSNs. The book covers various chapters like Multi-Channel Wireless Sensor Networks, its Coverage, Connectivity as well as Deployment. It covers comparison of various communication protocols and algorithms such as MANNET, ODMRP and ADMR Protocols for Ad hoc Multicasting, Location Based C...

  17. Network performance of a wireless sensor network for temperature monitoring in vineyards

    DEFF Research Database (Denmark)

    Liscano, Ramiro; Jacoub, John Khalil; Dersingh, Anand

    2011-01-01

    Wireless sensor networks (WSNs) are an emerging technology which can be used for outdoor environmental monitoring. This paper presents challenges that arose from the development and deployment of a WSN for environmental monitoring as well as network performance analysis of this network. Different...... components in our sensor network architecture are presented like the physical nodes, the sensor node code, and two messaging protocols; one for collecting sensor and network values and the other for sensor node commands. An information model for sensor nodes to support plug-and-play capabilities in sensor...... networks is also presented....

  18. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  19. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  20. Distributed sensor and actuator reconfiguration for fault-tolerant networked control systems

    NARCIS (Netherlands)

    Herdeiro Teixeira, A.M.; Araujo, Jose; Sandberg, Henrik; Johansson, Karl H.

    2017-01-01

    In this paper, we address the problem of distributed reconfiguration of networked control systems upon the removal of misbehaving sensors and actuators. In particular, we consider systems with redundant sensors and actuators cooperating to recover from faults. Reconfiguration is performed while

  1. Extending lifetime of wireless sensor networks using multi-sensor ...

    Indian Academy of Sciences (India)

    SOUMITRA DAS

    In this paper a multi-sensor data fusion approach for wireless sensor network based on bayesian methods and ant colony ... niques for efficiently routing the data from source to the BS ... Literature review ... efficient scheduling and lot more to increase the lifetime of ... Nature-inspired algorithms such as ACO algorithms have.

  2. Design of a Child Localization System on RFID and Wireless Sensor Networks

    OpenAIRE

    Chen, Chao

    2010-01-01

    Radio Frequency Identification (RFID) and wireless sensor networks are wireless technologies that rapidly emerge and show great potential. Combining RFID and wireless sensor networks provides a cost-efficient way to expand the RFID system's range and to enable an RFID system in areas without a network infrastructure. These two technologies are employed to build a wireless localization system in a children's theme park. The main purpose of this child localization system is to track and locate ...

  3. Low power radio communication platform for wireless sensor network

    NARCIS (Netherlands)

    Dutta, R.; Bentum, Marinus Jan; van der Zee, Ronan A.R.; Kokkeler, Andre B.J.

    2009-01-01

    Wireless sensor networks are predicted to be the most versatile, popular and useful technology in the near future. A large number of applications are targeted which will hugely benefit from a network of tiny computers with few sensors, radio communication platform, intelligent networking and

  4. Track classification within wireless sensor network

    Science.gov (United States)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  5. Implementation Of The Precision Agriculture Using LEACH Protocol Of Wireless Sensor Network

    OpenAIRE

    Than Htike Aung; Su Su Yi Mon; Chaw Myat Nwe; Zaw Min Naing; HLa Myo Tun

    2015-01-01

    The evolution of wireless sensor network technology leads to develop advanced systems for real-time monitoring. Wireless sensor network WSN is a major technology that drives the development of precision agriculture.By forming wireless sensor networkagricultural practicescan be made good monitoring systems.Various agricultural parameters like soil moisture temperature and humidity are monitored by monitoring units.The paper explains about how to utilize thesensors in agricultural practices and...

  6. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  7. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  8. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qingguo Zhang

    2017-01-01

    Full Text Available Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches.

  9. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    ISLAM, M. R.

    2009-02-01

    Full Text Available An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs are used to form a Multiple Input Single Output (MISO structure wirelessly connected with a Network Capable Application Processor (NCAP. Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for evaluating derived parameters. The results show that the selected MISO structure outperforms the unselected MISO structure and it shows energy efficient performance than SISO structure after a certain distance.

  10. A Review of Various Security Protocols in Wireless Sensor Network

    OpenAIRE

    Anupma Sangwan; Deepti Sindhu; Kulbir Singh

    2011-01-01

    Sensor networks are highly distributed networks of small, lightweight wireless sensor nodes, deployed in large numbers to monitor the environment or system by the measurement of physical parameters such as temperature, pressure, or relative humidity, sound, vibration, motion or pollutants, at different locations. A WSN [1] is composed of a large number of low-cost sensor nodes (SNs) and one or several base stations (BS) or destination nodes. SNs are typically small wireless devices with limit...

  11. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  12. Design issues and applications of wireless sensor networks ...

    African Journals Online (AJOL)

    ... using tiny wireless sensor motes known as “smart dusts”, which have been made possible by advances in micro-electromechanical systems (MEMS) technology, wireless communications and digital electronics. Design considerations for the hardware and the topology necessary to realize these networks were evaluated.

  13. Collaborative communication protocols for wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; van Hoesel, L.F.W.; Nieberg, T.; Havinga, Paul J.M.

    In this document, the design of communication within a wireless sensor network is discussed. The resource limitations of such a network, especially in terms of energy, require an integrated approach for all (traditional) layers of communication. We present such an integrated, collaborative approach

  14. Power control in wireless sensor networks with variable interference

    NARCIS (Netherlands)

    Chincoli, M.; Syed, A.A.; Exarchakos, G.; Liotta, A.

    2016-01-01

    Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counterproductive

  15. Reliable and Efficient Communications in Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.

    2014-01-01

    Wireless sensor network (WSN) is a key technology for a wide range of military and civilian applications. Limited by the energy resources and processing capabilities of the sensor nodes, reliable and efficient communications in wireless sensor networks are challenging, especially when the sensors are deployed in hostile environments. This research aims to improve the reliability and efficiency of time-critical communications in WSNs, under both benign and hostile environments. We start with wireless sensor network with mobile access points (SENMA), where the mobile access points traverse the network to collect information from individual sensors. Due to its routing simplicity and energy efficiency, SENMA has attracted lots of attention from the research community. Here, we study reliable distributed detection in SENMA under Byzantine attacks, where some authenticated sensors are compromised to report fictitious information. The q-out-of-m rule is considered. It is popular in distributed detection and can achieve a good trade-off between the miss detection probability and the false alarm rate. However, a major limitation with this rule is that the optimal scheme parameters can only be obtained through exhaustive search. By exploiting the linear relationship between the scheme parameters and the network size, we propose simple but effective sub-optimal linear approaches. Then, for better flexibility and scalability, we derive a near-optimal closed-form solution based on the central limit theorem. It is proved that the false alarm rate of the q-out-of-m scheme diminishes exponentially as the network size increases, even if the percentage of malicious nodes remains fixed. This implies that large-scale sensor networks are more reliable under malicious attacks. To further improve the performance under time varying attacks, we propose an effective malicious node detection scheme for adaptive data fusion; the proposed scheme is analyzed using the entropy-based trust model

  16. Researches on the Security of Cluster-based Communication Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanhong Sun

    2014-08-01

    Full Text Available Along with the in-depth application of sensor networks, the security issues have gradually become the bottleneck of wireless sensor applications. To provide a solution for security scheme is a common concern not only of researchers but also of providers, integrators and users of wireless sensor networks. Based on this demand, this paper focuses on the research of strengthening the security of cluster-based wireless sensor networks. Based on the systematic analysis of the clustering protocol and its security enhancement scheme, the paper introduces the broadcast authentication scheme, and proposes an SA-LEACH network security enhancement protocol. The performance analysis and simulation experiments prove that the protocol consumes less energy with the same security requirements, and when the base station is comparatively far from the network deployment area, it is more advantageous in terms of energy consumption and t more suitable for wireless sensor networks.

  17. Audio coding in wireless acoustic sensor networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt

    2015-01-01

    In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  18. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...

  19. Wireless ad hoc and sensor networks management, performance, and applications

    CERN Document Server

    He, Jing

    2013-01-01

    Although wireless sensor networks (WSNs) have been employed across a wide range of applications, there are very few books that emphasize the algorithm description, performance analysis, and applications of network management techniques in WSNs. Filling this need, Wireless Ad Hoc and Sensor Networks: Management, Performance, and Applications summarizes not only traditional and classical network management techniques, but also state-of-the-art techniques in this area. The articles presented are expository, but scholarly in nature, including the appropriate history background, a review of current

  20. Self organization of wireless sensor networks using ultra-wideband radios

    Science.gov (United States)

    Dowla, Farid U [Castro Valley, CA; Nekoogar, Franak [San Ramon, CA; Spiridon, Alex [Palo Alto, CA

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  1. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  2. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open...

  3. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  4. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  5. Optimized and Executive Survey of Physical Node Capture Attack in Wireless Sensor Network

    OpenAIRE

    Bhavana Butani; Piyush Kumar Shukla; Sanjay Silakari

    2014-01-01

    Wireless sensor networks (WSNs) are novel large-scale wireless networks that consist of distributed, self organizing, low-power, low-cost, tiny sensor devices to cooperatively collect information through infrastructure less wireless networks. These networks are envisioned to play a crucial role in variety of applications like critical military surveillance applications, forest fire monitoring, commercial applications such as building security monitoring, traffic surveillance, habitat monitori...

  6. Cooperative Jamming for Physical Layer Security in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    Interference is generally considered as the redundant and unwanted occurrence in wireless communication. This work proposes a novel cooperative jamming mechanism for scalable networks like Wireless Sensor Networks (WSNs) which makes use of friendly interference to confuse the eavesdropper...

  7. 5th International Workshop on Real-World Wireless Sensor Networks

    CERN Document Server

    Hu, Wen; Ferrari, Federico; Zimmerling, Marco; Mottola, Luca

    2014-01-01

    This edited book presents the results of the 5th Workshop on Real-world Wireless Sensor Networks (REALWSN). The purpose of this workshop  was to bring together researchers and practitioners working in the area of sensor networks, with focus on real-world experiments or deployments of wireless sensor networks. Included were, nonetheless, emerging forms of sensing such as those that leverage smart phones, Internet of Things, RFIDs, and robots. Indeed, when working with real-world experiments or deployments, many new or unforeseen issues may arise: the network environment may be composed of a variety of different technologies, leading to very heterogeneous network structures; software development for large scale networks poses new types of problems; the performance of prototype networks may differ significantly from the deployed system; whereas actual sensor network deployments may need a complex combination of autonomous and manual configuration. Furthermore, results obtained through simulation are typically n...

  8. A Real-Time Smooth Weighted Data Fusion Algorithm for Greenhouse Sensing Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2017-11-01

    Full Text Available Wireless sensor networks are widely used to acquire environmental parameters to support agricultural production. However, data variation and noise caused by actuators often produce complex measurement conditions. These factors can lead to nonconformity in reporting samples from different nodes and cause errors when making a final decision. Data fusion is well suited to reduce the influence of actuator-based noise and improve automation accuracy. A key step is to identify the sensor nodes disturbed by actuator noise and reduce their degree of participation in the data fusion results. A smoothing value is introduced and a searching method based on Prim’s algorithm is designed to help obtain stable sensing data. A voting mechanism with dynamic weights is then proposed to obtain the data fusion result. The dynamic weighting process can sharply reduce the influence of actuator noise in data fusion and gradually condition the data to normal levels over time. To shorten the data fusion time in large networks, an acceleration method with prediction is also presented to reduce the data collection time. A real-time system is implemented on STMicroelectronics STM32F103 and NORDIC nRF24L01 platforms and the experimental results verify the improvement provided by these new algorithms.

  9. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    Science.gov (United States)

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  10. Low-power cryptographic coprocessor for autonomous wireless sensor networks

    Science.gov (United States)

    Olszyna, Jakub; Winiecki, Wiesław

    2013-10-01

    The concept of autonomous wireless sensor networks involves energy harvesting, as well as effective management of system resources. Public-key cryptography (PKC) offers the advantage of elegant key agreement schemes with which a secret key can be securely established over unsecure channels. In addition to solving the key management problem, the other major application of PKC is digital signatures, with which non-repudiation of messages exchanges can be achieved. The motivation for studying low-power and area efficient modular arithmetic algorithms comes from enabling public-key security for low-power devices that can perform under constrained environment like autonomous wireless sensor networks. This paper presents a cryptographic coprocessor tailored to the autonomous wireless sensor networks constraints. Such hardware circuit is aimed to support the implementation of different public-key cryptosystems based on modular arithmetic in GF(p) and GF(2m). Key components of the coprocessor are described as GEZEL models and can be easily transformed to VHDL and implemented in hardware.

  11. Energy-Efficient Querying of Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Mann, Christopher R

    2007-01-01

    Due to the distributed nature of information collection in wireless sensor networks and the inherent limitations of the component devices, the ability to store, locate, and retrieve data and services...

  12. TCPL: A Defense against wormhole attacks in wireless sensor networks

    International Nuclear Information System (INIS)

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-01-01

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  13. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  14. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  15. Energy Harvesting Wireless Sensor Networks: From Characterization to Duty Cycle Dimensioning

    OpenAIRE

    Oueis , Jad; Stanica , Razvan; Valois , Fabrice

    2016-01-01

    International audience; Energy harvesting capabilities are challenging our understanding of wireless sensor networks by adding recharging capacity to sensor nodes. This has a significant impact on the communication paradigm, as networking mechanisms can benefit from these potentially infinite renewable energy sources. In this work, we study the consequences of implementing photovoltaic energy harvesting on the duty cycle of a wireless sensor node, in both outdoor and indoor scenarios. We show...

  16. A Vehicle-mounted Crop Detector with Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhenjiang ZHONG

    2014-03-01

    Full Text Available In order to detect crop chlorophyll content in real-time, a new vehicle-mounted detector for measuring crop canopy spectral characteristics was developed. It was designed to work as a wireless sensor network with several optical sensor nodes and one control unit. All the optical sensor nodes were mounted on an on-board mechanical structure so that they could collect the canopy spectral data while in mobile condition. Each optical sensor node was designed to contain four optical channels, which allowed it work at the wavebands of 550, 650, 766 and 850 nm. The control unit included a PDA (Personal Digital Assistant device with a ZigBee wireless network coordinator and a GPRS module. It was used to receive, display, store all the data sent from optical sensor nodes and send data to the server through GPRS module. The calibration tests verified the stability of the wireless network and the measurement precision of the sensors. Both stationary and moving field experiments were also conducted in a winter wheat experimental field. Results showed that the correlation between chlorophyll content and vegetation index had high significance with the highest R2 of 0.6824. Those results showed the potential of the detector for field application.

  17. A Data Gathering Scheme in Wireless Sensor Networks Based on Synchronization of Chaotic Spiking Oscillator Networks

    International Nuclear Information System (INIS)

    Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao

    2011-01-01

    This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.

  18. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    Science.gov (United States)

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  19. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  20. Problem solving for wireless sensor networks

    CERN Document Server

    Garcia-Hernando, Ana-Belen; Lopez-Navarro, Juan-Manuel; Prayati, Aggeliki; Redondo-Lopez, Luis

    2008-01-01

    Wireless Sensor Networks (WSN) is an area of huge research interest, attracting substantial attention from industry and academia for its enormous potential and its inherent challenges. This reader-friendly text delivers a comprehensive review of the developments related to the important technological issues in WSN.

  1. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  2. Increased Efficiency of Face Recognition System using Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Rajani Muraleedharan

    2006-02-01

    Full Text Available This research was inspired by the need of a flexible and cost effective biometric security system. The flexibility of the wireless sensor network makes it a natural choice for data transmission. Swarm intelligence (SI is used to optimize routing in distributed time varying network. In this paper, SI maintains the required bit error rate (BER for varied channel conditions while consuming minimal energy. A specific biometric, the face recognition system, is discussed as an example. Simulation shows that the wireless sensor network is efficient in energy consumption while keeping the transmission accuracy, and the wireless face recognition system is competitive to the traditional wired face recognition system in classification accuracy.

  3. KALwEN+: Practical Key Management Schemes for Gossip-Based Wireless Medical Sensor Networks

    NARCIS (Netherlands)

    Gong, Zheng; Tang, Qiang; Law, Y.W.; Chen, Hongyang; Lai, X.; Yung, M.

    2010-01-01

    The constrained resources of sensors restrict the design of a key management scheme for wireless sensor networks (WSNs). In this work, we first formalize the security model of ALwEN, which is a gossip-based wireless medical sensor network (WMSN) for ambient assisted living. Our security model

  4. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  5. A key design to prolong lifetime of wireless sensor network

    International Nuclear Information System (INIS)

    Qiu, Bo; Chen, XiQiu; Wu, Qi

    2016-01-01

    In order to solve the contradiction between the connectivity of the wireless sensor network and the key storage consumption, under the premise of reducing network storage consumption, the key pre-distribution management scheme with higher connectivity rate is proposed using the hexagonal network deployment information, which adopts the idea of the matrix space for the square deployment information strategy to reduce the burden of the network storage. Ability against the capture attack is improved obviously. The results show that contradiction between the network connectivity rate and the energy consumption has a better solution, and the proposed algorithm is suitable for the wireless sensor networks of energy limited.

  6. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  7. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    Science.gov (United States)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  8. Characteristics of Key Update Strategies for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    Wireless sensor networks offer the advantages of simple and low-resource communication. Challenged by this simplicity and low-resources, security is of particular importance in many cases such as transmission of sensitive data or strict requirements of tamper-resistance. Updating the security keys...... is one of the essential points in security, which restrict the amount of data that may be exposed when a key is compromised. In this paper, we investigate key update methods that may be used in wireless sensor networks, and benefiting from stochastic model checking we derive characteristics...

  9. Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Ouyang

    2010-02-01

    Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.

  10. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-06-27

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.

  11. Overview of DOS attacks on wireless sensor networks and experimental results for simulation of interference attacks

    Directory of Open Access Journals (Sweden)

    Željko Gavrić

    2018-01-01

    Full Text Available Wireless sensor networks are now used in various fields. The information transmitted in the wireless sensor networks is very sensitive, so the security issue is very important. DOS (denial of service attacks are a fundamental threat to the functioning of wireless sensor networks. This paper describes some of the most common DOS attacks and potential methods of protection against them. The case study shows one of the most frequent attacks on wireless sensor networks – the interference attack. In the introduction of this paper authors assume that the attack interference can cause significant obstruction of wireless sensor networks. This assumption has been proved in the case study through simulation scenario and simulation results.

  12. Lifetime Maximizing Adaptive Power Control in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Sun, Fangting; Shayman, Mark

    2006-01-01

    ...: adaptive power control. They focus on the sensor networks that consist of a sink and a set of homogeneous wireless sensor nodes, which are randomly deployed according to a uniform distribution...

  13. Application of Wireless Sensor Networks to Automobiles

    Science.gov (United States)

    Tavares, Jorge; Velez, Fernando J.; Ferro, João M.

    2008-01-01

    Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.

  14. IP communication optimization for 6LoWPAN-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li MA

    2014-07-01

    Full Text Available The emergence of 6LoWPAN makes it possible that Wireless Sensor Networks access to the Internet. However, the cost of IP communication between 6LoWPAN wireless sensor node and external internet node is still relatively high. This paper proposed a new addressing configuration and compression scheme in 6LoWPAN network called IPHC-NAT, which largely reduced the proportion of the IP header in 6LoWPAN packet, designed and constructed a bidirectional data transmission gateway to connect 6LoWPAN wireless sensor node with IPv6 client. The experimental results show the feasibility of the design of IPHC-NAT and the data transmission efficiency has significantly been improved compared to the original 6LoWPAN network.

  15. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  16. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be

  17. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  18. Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan-Mariano de Goyeneche

    2009-05-01

    Full Text Available Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios.

  19. Research on trust calculation of wireless sensor networks based on time segmentation

    Science.gov (United States)

    Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin

    2017-05-01

    Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network

  20. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tran Dinh Hieu

    2016-05-01

    Full Text Available A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio.

  1. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    Science.gov (United States)

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  2. SOUNET: Self-Organized Underwater Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hee-won Kim

    2017-02-01

    Full Text Available In this paper, we propose an underwater wireless sensor network (UWSN named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR, and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  3. SOUNET: Self-Organized Underwater Wireless Sensor Network.

    Science.gov (United States)

    Kim, Hee-Won; Cho, Ho-Shin

    2017-02-02

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  4. Evaluation of svr: a wireless sensor network routing protocol

    International Nuclear Information System (INIS)

    Baloch, J.; Khanzada, T.J.S.

    2014-01-01

    The advancement in technology has made it possible to create small in size, low cost sensor nodes. However, the small size and low cost of such nodes comesat at price that is, reduced processing power, low memory and significantly small battery energy storage. WSNs (Wireless Sensor Networks) are inherently ad hoc in nature and are assumed to work in the toughest terrain. The network lifetime plays a pivotal role in a wireless sensor network. A long network lifetime, could be achieved by either making significant changes in these low cost devices, which is not a feasible solution or by improving the means of communication throughout the network. The communication in such networks could be improved by employing energy efficient routing protocols, to route the data throughout the network. In this paper the SVR (Spatial Vector Routing) protocol is compared against the most common WSN routing protocols, and from the results it could be inferred that the SVR protocol out performs its counterparts. The protocol provides an energy efficient means of communication in the network. (author)

  5. The application of self-validation to wireless sensor networks

    International Nuclear Information System (INIS)

    Collett, Michael A; Cox, Maurice G; Esward, Trevor J; Harris, Peter M; Duta, Mihaela; Henry, Manus P

    2008-01-01

    Self-validation is a valuable tool for extending the operating range of sensing systems and making them more robust. Wireless sensor networks suffer many limitations meaning that their efficacy could be greatly improved by self-validation techniques. We present two independently developed data analysis techniques and demonstrate that they can be applied to a wireless sensor network. Using an acoustic ranging application we demonstrate an improvement of more than ten-fold in the uncertainty of a single measurement where multiple sensor readings are appropriately combined. We also demonstrate that of the two methods for determining a largest consistent subset one is more rigorous in dealing with correlation, and the other more suited to time-series data

  6. Towards Self-Powered Wireless Sensor Networks

    OpenAIRE

    SPENZA, DORA

    2013-01-01

    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that co...

  7. Low-Power Wireless Sensor Networks Protocols, Services and Applications

    CERN Document Server

    Suhonen, Jukka; Kaseva, Ville; Hämäläinen, Timo D; Hännikäinen, Marko

    2012-01-01

    Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data m...

  8. Analysis and Classification of Traffic in Wireless Sensor Network

    National Research Council Canada - National Science Library

    Beng, Wang W

    2007-01-01

    .... Specifically, this thesis studied the traffic generated by wireless sensor networks by setting up two different commonly used network topologies, namely a direct connection to the base and a daisy...

  9. Dynamics in small worlds of tree topologies of wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Baihai; Fan, Zhun

    2012-01-01

    Tree topologies, which construct spatial graphs with large characteristic path lengths and small clustering coefficients, are ubiquitous in deployments of wireless sensor networks. Small worlds are investigated in tree-based networks. Due to link additions, characteristic path lengths reduce...... rapidly and clustering coefficients increase greatly. A tree abstract, Cayley tree, is considered for the study of the navigation algorithm, which runs automatically in the small worlds of tree-based networks. In the further study, epidemics in the small worlds of tree-based wireless sensor networks...

  10. Monitoring Animals and Herd Behavioral Parameters Using a Wireless Sensor Network

    DEFF Research Database (Denmark)

    Sharak Nadimi, Esmaeil; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    The length of time that a herd of cows spent in an area covered by new grass that was provided for them has been measured using wireless sensor networks and calculated based on Bayesian probability functions. This time was also recorded by a camera. The results that were obtained by employing...... wireless sensor networks have been confirmed by the data registered by the camera....

  11. Spatial reuse of wireless medium in multi-hop wireless sensor networks

    NARCIS (Netherlands)

    Geerlings, J.; Geerlings, J.; van Hoesel, L.F.W.; Hoeksema, F.W.; Slump, Cornelis H.; Havinga, Paul J.M.

    2007-01-01

    The idea of multi-hop communication originates from the 1990’s and is eagerly incorporated in the wireless sensor network research field, since a tremendous amount of energy can be saved by letting —often battery powered– nodes in the network assist each other in forwarding packets. In such systems

  12. Interference mitigation through adaptive power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, M.; Bacchiani, C.; Syed, Aly; Exarchakos, G.; Liotta, A.

    2016-01-01

    Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counter-productive

  13. On securing wireless sensor network--novel authentication scheme against DOS attacks.

    Science.gov (United States)

    Raja, K Nirmal; Beno, M Marsaline

    2014-10-01

    Wireless sensor networks are generally deployed for collecting data from various environments. Several applications specific sensor network cryptography algorithms have been proposed in research. However WSN's has many constrictions, including low computation capability, less memory, limited energy resources, vulnerability to physical capture, which enforce unique security challenges needs to make a lot of improvements. This paper presents a novel security mechanism and algorithm for wireless sensor network security and also an application of this algorithm. The proposed scheme is given to strong authentication against Denial of Service Attacks (DOS). The scheme is simulated using network simulator2 (NS2). Then this scheme is analyzed based on the network packet delivery ratio and found that throughput has improved.

  14. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  15. Software Updating in Wireless Sensor Networks: A Survey and Lacunae

    Directory of Open Access Journals (Sweden)

    Cormac J. Sreenan

    2013-11-01

    Full Text Available Wireless Sensor Networks are moving out of the laboratory and into the field. For a number of reasons there is often a need to update sensor node software, or node configuration, after deployment. The need for over-the-air updates is driven both by the scale of deployments, and by the remoteness and inaccessibility of sensor nodes. This need has been recognized since the early days of sensor networks, and research results from the related areas of mobile networking and distributed systems have been applied to this area. In order to avoid any manual intervention, the update process needs to be autonomous. This paper presents a comprehensive survey of software updating in Wireless Sensor Networks, and analyses the features required to make these updates autonomous. A new taxonomy of software update features and a new model for fault detection and recovery are presented. The paper concludes by identifying the lacunae relating to autonomous software updates, providing direction for future research.

  16. Hole Detection for Quantifying Connectivity in Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Pearl Antil

    2014-01-01

    Full Text Available Owing to random deployment, environmental factors, dynamic topology, and external attacks, emergence of holes in wireless sensor networks is inescapable. Hole is an area in sensor network around which sensors cease to sense or communicate due to drainage of battery or any fault, either temporary or permanent. Holes impair sensing and communication functions of network; thus their identification is a major concern. This paper discusses different types of holes and significance of hole detection in wireless sensor networks. Coverage hole detection schemes have been classified into three categories based on the type of information used by algorithms, computation model, and network dynamics for better understanding. Then, relative strengths and shortcomings of some of the existing coverage hole detection algorithms are discussed. The paper is concluded by highlighting various future research directions.

  17. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    Science.gov (United States)

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree

  18. Software defined wireless sensor networks application opportunities for efficient network management: a survey

    CSIR Research Space (South Africa)

    Modieginyane, KM

    2017-03-01

    Full Text Available Wireless Sensor Networks (WSNs) are commonly used information technologies of modern networking and computing platforms. Today's network computing applications are faced with a high demand of powerful network functionalities. Functional network...

  19. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    Directory of Open Access Journals (Sweden)

    Zhijun Xie

    2014-10-01

    Full Text Available Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT. In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  20. An efficient architecture for the integration of sensor and actuator networks into the future internet

    Science.gov (United States)

    Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.

    2011-08-01

    In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.

  1. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    C. Vimalarani

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  2. An ad hoc wireless sensor network for tele medicine applications

    International Nuclear Information System (INIS)

    Sheltami, Tarek R.; Mahmoud, Ashraf S.; Abu-Amara, Marwan H.

    2007-01-01

    Recent advances in embedded computing systems have led to the emergence of wireless sensor networks (SNETs), consisting of small, battery-powered motes with limited computation and radio communication capabilities. SNETs permit data gathering and computation to be deeply embedded in the physical environment. Large scale ad hoc sensor networks (ASNET), when deployed among mobile patients, can provide dynamic data query architecture to allow medical specialists to monitor patients at any place via the web or cellular network. In case of an emergency, doctors and/or nurses will be contacted automatically through their handheld personal digital assistants (PDAs) or cellular phones. In specific, the proposed network consists of sensor nodes at the first layer whose responsibility is to measure, collect and communicate, via wired or wireless interface, readings to a microcontroller presenting the second layer of architecture. Deployed microcontrollers process incoming readings and report to a central system via a wireless interface. The implemented network distinguishes between periodic sensor readings and critical or event driven readings where higher priorities is given for the latter. In this paper we implement 3 special cases for tracking and monitoring patients and doctors using SNETs. In addition, the performance of a large scale of our implementation has been tested by means of mathematical analysis. (author)

  3. Reliability Improved Cooperative Communication over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-10-01

    Full Text Available With the development of smart devices and connection technologies, Wireless Sensor Networks (WSNs are becoming increasingly intelligent. New or special functions can be obtained by receiving new versions of program codes to upgrade their software systems, forming the so-called smart Internet of Things (IoT. Due to the lossy property of wireless channels, data collection in WSNs still suffers from a long delay, high energy consumption, and many retransmissions. Thanks to wireless software-defined networks (WSDNs, software in sensors can now be updated to help them transmit data cooperatively, thereby achieving more reliable communication. In this paper, a Reliability Improved Cooperative Communication (RICC data collection scheme is proposed to improve the reliability of random-network-coding-based cooperative communications in multi-hop relay WSNs without reducing the network lifetime. In WSNs, sensors in different positions can have different numbers of packets to handle, resulting in the unbalanced energy consumption of the network. In particular, nodes in non-hotspot areas have up to 90% of their original energy remaining when the network dies. To efficiently use the residual energy, in RICC, high data transmission power is adopted in non-hotspot areas to achieve a higher reliability at the cost of large energy consumption, and relatively low transmission power is adopted in hotspot areas to maintain the long network lifetime. Therefore, high reliability and a long network lifetime can be obtained simultaneously. The simulation results show that compared with other scheme, RICC can reduce the end-to-end Message Fail delivering Ratio (MFR by 59.4%–62.8% under the same lifetime with a more balanced energy utilization.

  4. Wireless Sensor Networks for Developmental and Flight Instrumentation

    Science.gov (United States)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  5. Predictive power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, M.; Syed, Aly; Mocanu, D.C.; Liotta, A.

    2016-01-01

    Communications in Wireless Sensor Networks (WSNs) are affected by dynamic environments, variable signal fluctuations and interference. Thus, prompt actions are necessary to achieve dependable communications and meet quality of service requirements. To this end, the reactive algorithms used in

  6. TinyOS-based quality of service management in wireless sensor networks

    Science.gov (United States)

    Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.

    2009-01-01

    Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.

  7. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  8. Less is more : data reduction in wireless sensor networks

    NARCIS (Netherlands)

    Masoum, Alireza

    2018-01-01

    Wireless sensor networks are monitoring systems consisting of many small, low-cost and low-power devices called sensor nodes. A large number of sensor nodes are deployed in an environment to monitor a physical phenomenon, execute light processes on collected data, and send either raw data or

  9. The wireless sensor network monitoring system for regional environmental nuclear radiation

    International Nuclear Information System (INIS)

    Liu Chong; Liu Dao; Wang Yaojun; Xie Yuxi; Song Lingling

    2012-01-01

    The wireless sensor network (WSN) technology has been utilized to design a new regional environmental radiation monitoring system based on the wireless sensor networks to meet the special requirements of monitoring the nuclear radiation in certain regions, and realize the wireless transmission of measurement data, information processing and integrated measurement of the nuclear radiation and the corresponding environmental parameters in real time. The system can be applied to the wireless monitoring of nuclear radiation dose in the nuclear radiation environment. The measured data and the distribution of radiation dose can be vividly displayed on the graphical interface in the host computer. The system has functioned with the wireless transmission and control, the data storage, the historical data inquiry, the node remote control. The experimental results show that the system has the advantages of low power consumption, stable performance, network flexibility, range of measurement and so on. (authors)

  10. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  11. Energy-Aware Routing Protocol for Ad Hoc Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mann Raminder P

    2005-01-01

    Full Text Available Wireless ad hoc sensor networks differ from wireless ad hoc networks from the following perspectives: low energy, lightweight routing protocols, and adaptive communication patterns. This paper proposes an energy-aware routing protocol (EARP suitable for ad hoc wireless sensor networks and presents an analysis for its energy consumption in various phases of route discovery and maintenance. Based on the energy consumption associated with route request processing, EARP advocates the minimization of route requests by allocating dynamic route expiry times. This paper introduces a unique mechanism for estimation of route expiry time based on the probability of route validity, which is a function of time, number of hops, and mobility parameters. In contrast to AODV, EARP reduces the repeated flooding of route requests by maintaining valid routes for longer durations.

  12. Redundancy reduction in wireless sensor networks via centrality metrics

    NARCIS (Netherlands)

    Mocanu, D.C.; Torres Vega, M.; Liotta, A.; Cui, P.; Aggarwal, C.; Zhou, Z.-H.; Tuzhilin, A.; Xiong, H.; Wu, X.

    2015-01-01

    The advances in wireless communications, together with the need of sensing and controlling various nature or human made systems in a large number of points (e.g. smart traffic control, environmental monitoring), lead to the emergence of Wireless Sensor Networks (WSN) as a powerful tool to fulfill

  13. Wireless sensor network performance metrics for building applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, W.S. (Department of Civil Engineering Yeungnam University 214-1 Dae-Dong, Gyeongsan-Si Gyeongsangbuk-Do 712-749 South Korea); Healy, W.M. [Building and Fire Research Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899-8632 (United States)

    2010-06-15

    Metrics are investigated to help assess the performance of wireless sensors in buildings. Wireless sensor networks present tremendous opportunities for energy savings and improvement in occupant comfort in buildings by making data about conditions and equipment more readily available. A key barrier to their adoption, however, is the uncertainty among users regarding the reliability of the wireless links through building construction. Tests were carried out that examined three performance metrics as a function of transmitter-receiver separation distance, transmitter power level, and obstruction type. These tests demonstrated, via the packet delivery rate, a clear transition from reliable to unreliable communications at different separation distances. While the packet delivery rate is difficult to measure in actual applications, the received signal strength indication correlated well with the drop in packet delivery rate in the relatively noise-free environment used in these tests. The concept of an equivalent distance was introduced to translate the range of reliability in open field operation to that seen in a typical building, thereby providing wireless system designers a rough estimate of the necessary spacing between sensor nodes in building applications. It is anticipated that the availability of straightforward metrics on the range of wireless sensors in buildings will enable more widespread sensing in buildings for improved control and fault detection. (author)

  14. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  15. Optimal task scheduling policy in energy harvesting wireless sensor networks

    NARCIS (Netherlands)

    Rao, Vijay S.; Prasad, R. Venkatesha; Niemegeers, Ignas G M M

    2015-01-01

    Ambient energy harvesting for Wireless Sensor Networks (WSNs) is being pitched as a promising solution for long-lasting deployments in various WSN applications. However, the sensor nodes most often do not have enough energy to handle application, network and house-keeping tasks because amount of

  16. An Ultraviolet Optical Wireless Sensor Network in Multi-scattering Channels

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-10-01

    Networks of wirelessly communicating sensors are a promising technology for future data-gathering systems in both civilian and military applications including medical and environmental monitoring and surveillance, home security and industry. Optical wireless communication is a potential solution for the links, particularly thanks to the small and lightweight hardware and low power consumption. A noteworthy feature of optical wireless communication at ultraviolet wavelengths is that scattering of radiation by atmospheric particles is significant, so that the backscattering of light by these particles can function as a vehicle of communication as if numerous tiny reflecting mirrors were placed in the atmosphere. Also, almost no solar radiation penetrates the atmosphere in this spectral band, which is hence called the solar blind ultraviolet spectrum, so that very large field-of-view receivers can be used. In this paper we present a model of a non-line-of-sight (NLOS) optical wireless sensor network operating in the solar blind ultraviolet spectrum. The system feasibility is evaluated and found to facilitate miniature operational sensor networks. The problem of multi-access interference is addressed and the possibility of overcoming it using WDM diversity methods is investigated.

  17. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  18. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  19. A NEW PREDICTIVE MODEL FOR CONGESTION CONTROL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    NAJME TANZADE PANAH

    2017-06-01

    Full Text Available With the increase of various applications in the domain of wireless sensor networks, the tendency to use wireless sensors has gradually increased in different applications. On the other hand, diverse traffic with different priorities generated by these sensors requires providing adaptive quality of services based on users` needs. In this paper, a congestion control predictor model is proposed for wireless sensor networks, which considers parameters like network energy consumption, packet loss rate and percentage of delivered high and medium priority packets to the destination. This method consists of congestion prevention, congestion control, and energy control plans using shortest path selection algorithm. In the congestion prevention plan, congestion is prevented by investigating the queues length. In the congestion control plan, the congestion is controlled by reducing the transmission rate. Finally, the energy control plan aims to partially balance the energy of nodes to prevent network failures due to node energy outage. Simulation results indicated that the proposed method has a higher efficiency regarding the aforementioned parameters. In addition, comparisons with other well-known methods showed the effectiveness of the proposed method.

  20. Node clustering for wireless sensor networks

    International Nuclear Information System (INIS)

    Bhatti, S.; Qureshi, I.A.; Memon, S.

    2012-01-01

    Recent years have witnessed considerable growth in the development and deployment of clustering methods which are not only used to maintain network resources but also increases the reliability of the WSNs (Wireless Sensor Network) and the facts manifest by the wide range of clustering solutions. Node clustering by selecting key parameters to tackle the dynamic behaviour of resource constraint WSN is a challenging issue. This paper highlights the recent progress which has been carried out pertaining to the development of clustering solutions for the WSNs. The paper presents classification of node clustering methods and their comparison based on the objectives, clustering criteria and methodology. In addition, the potential open issues which need to be considered for future work are high lighted. Keywords: Clustering, Sensor Network, Static, Dynamic

  1. Accessing data transfer reliability for duty cycled mobile wireless sensor network

    International Nuclear Information System (INIS)

    Shaikh, F.K.

    2014-01-01

    Mobility in WSNs (Wireless Sensor Networks) introduces significant challenges which do not arise in static WSNs. Reliable data transport is an important aspect of attaining consistency and QoS (Quality of Service) in several applications of MWSNs (Mobile Wireless Sensor Networks). It is important to understand how each of the wireless sensor networking characteristics such as duty cycling, collisions, contention and mobility affects the reliability of data transfer. If reliability is not managed well, the MWSN can suffer from overheads which reduce its applicability in the real world. In this paper, reliability assessment is being studied by deploying MWSN in different indoor and outdoor scenarios with various duty cycles of the motes and speeds of the mobile mote. Results show that the reliability is greatly affected by the duty cycled motes and the mobility using inherent broadcast mechanisms. (author)

  2. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  3. Transmission Power Control for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2017-02-01

    Full Text Available Wireless sensor networks can be widely applied for a security system or a smart home system. Since some of the wireless remote sensor nodes may be powered by energy storage devices such as batteries, it is a very important issue to transmit signals at lower power with the consideration of the communication effectiveness. In this paper, we will provide a fuzzy controller with two inputs and one output for received signal strength indicator (RSSI and link quality indicator (LQI to adjust transmission power suitably in order to maintaining a certain communication level with a reduced energy consumption. And we will divide the sampling period of a sensor node into four intervals so that the sensor node radio device does not in receiving or transmission status all the time. Hence the sensor node can adjust transmission power automatically and reduce sensor node power consumption. Experimental results show that the battery life can be extended to about 10 times for the designed sensor node comparing to a normal node.

  4. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  5. Sleep scheduling with expected common coverage in wireless sensor networks

    OpenAIRE

    Bulut, Eyuphan; Korpeoglu, Ibrahim

    2011-01-01

    Sleep scheduling, which is putting some sensor nodes into sleep mode without harming network functionality, is a common method to reduce energy consumption in dense wireless sensor networks. This paper proposes a distributed and energy efficient sleep scheduling and routing scheme that can be used to extend the lifetime of a sensor network while maintaining a user defined coverage and connectivity. The scheme can activate and deactivate the three basic units of a sensor node (sensing, proces...

  6. A SMART MONITORING SYSTEM FOR CAMPUS USING ZIGBEE WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Alaa Azmi Allahham

    2018-02-01

    Full Text Available The wireless sensor networks are autonomous sensors that are distributed to monitor environmental and physical conditions and pass them across the network to other areas, which is considered one of the key elements that are used in the applications of smart cities. Therefore, this paper aims to provide a design to add more smart applications to the sanctuary and other compounds based on wireless sensor networks using ZigBee technology. The transition from reliance on the style of surveillance and controlled manually by staff to apply the principles of smart applications through wireless sensor network which provides the ability to getting all the necessary information and capabilities of controlling and monitoring are required to automatically and thus saving the time, effort, and money. The system proposed in this paper to design a smart monitoring system at the campus to control the opening and closing of the doors of many halls and the possibility of including lighting systems and appliances. The results obtained from OPNET program show that the network topology, which used within a ZigBee network vary in terms of performance, thus giving options for designers to build their network and choose technologies that suit their project.

  7. The Use of Wireless Sensor Network for Increasing Airport Safety

    Directory of Open Access Journals (Sweden)

    Jakub Kraus

    2013-09-01

    Full Text Available This article deals with the use of wireless sensor networks for increasing safety at airports, respectively for replacing the current monitoring system to ensure safety. The article describes sensor networks and their applications to the identified processes and consideration of financial and safety benefits.

  8. Application of Wireless Sensor Networks for Indoor Temperature Regulation

    DEFF Research Database (Denmark)

    Stojkoska, Biljana Risteska; Popovska Avramova, Andrijana; Chatzimisios, Periklis

    2014-01-01

    Wireless sensor networks take a major part in our everyday lives by enhancing systems for home automation, healthcare, temperature control, energy consumption monitoring, and so forth. In this paper we focus on a system used for temperature regulation for residential, educational, industrial...... energy savings by reducing the amount of data transmissions through the network. Furthermore, the framework explores techniques for localization, such that the location of the nodes can be used by algorithms that regulate temperature settings......., and commercial premises, and so forth. We propose a framework for indoor temperature regulation and optimization using wireless sensor networks based on ZigBee platform. This paper considers architectural design of the system, as well as implementation guidelines. The proposed system favors methods that provide...

  9. Cluster-based Dynamic Energy Management for Collaborative Target Tracking in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-07-01

    Full Text Available A primary criterion of wireless sensor network is energy efficiency. Focused onthe energy problem of target tracking in wireless sensor networks, this paper proposes acluster-based dynamic energy management mechanism. Target tracking problem isformulated by the multi-sensor detection model as well as energy consumption model. Adistributed adaptive clustering approach is investigated to form a reasonable routingframework which has uniform cluster head distribution. Dijkstra’s algorithm is utilized toobtain optimal intra-cluster routing. Target position is predicted by particle filter. Thepredicted target position is adopted to estimate the idle interval of sensor nodes. Hence,dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that theoperation energy consumption of wireless sensor network can be reduced. The sensornodes around the target wake up on time and act as sensing candidates. With the candidatesensor nodes and predicted target position, the optimal sensor node selection is considered.Binary particle swarm optimization is proposed to minimize the total energy consumptionduring collaborative sensing and data reporting. Experimental results verify that theproposed clustering approach establishes a low-energy communication structure while theenergy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energymanagement.

  10. Simulation Of Wireless Networked Control System Using TRUETIME And MATLAB

    Directory of Open Access Journals (Sweden)

    Nyan Phyo Aung

    2015-08-01

    Full Text Available Wireless networked control systems WNCS are attracting an increasing research interests in the past decade. Wireless networked control system WNCS is composed of a group of distributed sensors and actuators that communicate through wireless link which achieves distributed sensing and executing tasks. This is particularly relevant for the areas of communication control and computing where successful design of WNCS brings about new challenges to the researchers. The primary motivation of this survey paper is to examine the design issues and to provide directions for successful simulation and implementation of WNCS. The paper also as well reviews some simulation tools for such systems.

  11. On the Relevance of Using OpenWireless Sensor Networks in Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Antoine B. Bagula

    2009-06-01

    Full Text Available This paper revisits the problem of the readiness for field deployments of wireless- sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that finetunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  12. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  13. A Comparative Field Monitoring of Column Shortenings in Tall Buildings Using Wireless and Wired Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Sungho Lee

    2016-01-01

    Full Text Available A comparative field measurement for column shortening of tall buildings is presented in this study, with a focus on the reliability and stability of a wireless sensor network. A wireless sensor network was used for monitoring the column shortenings of a 58-story building under construction. The wireless sensor network, which was composed of sensor and master nodes, employed the ultra-high-frequency band and CDMA communication methods. To evaluate the reliability and stability of the wireless sensor network system, the column shortenings were also measured using a conventional wired monitoring system. Two vibration wire gauges were installed in each of the selected 7 columns and 3 walls. Measurements for selected columns and walls were collected for 270 days after casting of the concrete. The results measured by the wireless sensor network were compared with the results of the conventional method. The strains and column shortenings measured using both methods showed good agreement for all members. It was verified that the column shortenings of tall buildings could be monitored using the wireless sensor network system with its reliability and stability.

  14. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  15. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  16. Adaptive and Reactive Security for Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Stankovic, John A

    2007-01-01

    .... WSNs are also susceptible to malicious, non-random security attacks. For example, a wireless sensor network deployed in remote regions to detect and classify targets could be rendered inoperative by various security attacks...

  17. Clustering algorithm in initialization of multi-hop wireless sensor networks

    NARCIS (Netherlands)

    Guo, Peng; Tao, Jiang; Zhang, Kui; Chen, Hsiao-Hwa

    2009-01-01

    In most application scenarios of wireless sensor networks (WSN), sensor nodes are usually deployed randomly and do not have any knowledge about the network environment or even their ID's at the initial stage of their operations. In this paper, we address the clustering problems with a newly deployed

  18. Airborne Wireless Sensor Networks for Airplane Monitoring System

    Directory of Open Access Journals (Sweden)

    Shang Gao

    2018-01-01

    Full Text Available In traditional airplane monitoring system (AMS, data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM for AMS in future.

  19. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...

  20. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    I-Hsien Lin

    2010-08-01

    Full Text Available Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.

  1. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  2. An energy-efficient data gathering protocol in large wireless sensor network

    Science.gov (United States)

    Wang, Yamin; Zhang, Ruihua; Tao, Shizhong

    2006-11-01

    Wireless sensor network consisting of a large number of small sensors with low-power transceiver can be an effective tool for gathering data in a variety of environment. The collected data must be transmitted to the base station for further processing. Since a network consists of sensors with limited battery energy, the method for data gathering and routing must be energy efficient in order to prolong the lifetime of the network. In this paper, we presented an energy-efficient data gathering protocol in wireless sensor network. The new protocol used data fusion technology clusters nodes into groups and builds a chain among the cluster heads according to a hybrid of the residual energy and distance to the base station. Results in stochastic geometry are used to derive the optimum parameter of our algorithm that minimizes the total energy spent in the network. Simulation results show performance superiority of the new protocol.

  3. Performance analysis of data retrieval in wireless sensor networks

    NARCIS (Netherlands)

    Mitici, M.A.

    2015-01-01

    Wireless sensor networks are currently revolutionizing the way we live, work, and interact with the surrounding environment. Due to their ease of deployment, cost effectiveness and versatile functionality, sensors are employed in a wide range of areas such as environmental monitoring, surveillance

  4. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  5. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  6. Reliability of Wireless Sensor Networks

    Science.gov (United States)

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  7. Optimal UAS Assignments and Trajectories for Persistent Surveillance and Data Collection from a Wireless Sensor Network

    Science.gov (United States)

    2015-12-24

    Optimal UAS Assignments and Trajectories for Persistent Surveillance and Data Collection from a Wireless Sensor Network DISSERTATION Nidal M. Jodeh...ASSIGNMENTS AND TRAJECTORIES FOR PERSISTENT SURVEILLANCE AND DATA COLLECTION FROM A WIRELESS SENSOR NETWORK DISSERTATION Presented to the Faculty...COLLECTION FROM A WIRELESS SENSOR NETWORK Nidal M. Jodeh, B.S., M.A.S., M.S. Lieutenant Colonel, USAF Committee Membership: Richard G. Cobb, PhD Chairman

  8. Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    OpenAIRE

    Hoon-Jae Lee; Pardeep Kumar

    2011-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are ...

  9. Wireless Sensor Networks Framework for Indoor Temperature Regulation

    DEFF Research Database (Denmark)

    Stojkoska, Biljana; Popovska Avramova, Andrijana

    2013-01-01

    Wireless Sensor Networks take a major part in our everyday lives by enhancing systems for home automation, health-care, temperature control, energy consumption monitoring etc. In this paper we focus on a system used for temperature regulation for homes, educational, industrial, commercial premises...... etc. We propose a framework for indoor regulation and optimization of temperature using wireless sensor networks based on ZigBee. Methods for optimal temperature regulation are suggested and discussed. The framework is based on methods that provide energy savings by reducing the amount of data...... transmissions through prediction methods. Additionally the framework explores techniques for localization, such that the location of the nodes is used for optimization of the temperature settings. Information on node location is used to provide the most optimal tradeo between the time it takes to reach...

  10. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  11. Mobility-based Time References for Wireless Sensor Networks

    CERN Document Server

    Sebastiano, Fabio; Makinwa, Kofi A A

    2013-01-01

     This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks.  The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process. Provides system analysis to understand requirements for time/frequency accuracy in wireless sensor networks; Describes system optimization for time references i...

  12. A Framework for a Distributed and Adaptive Query Processing Engine for Wireless Sensor Networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; Honda, S; Iwaoka, H; van Hoesel, L.F.W.; Havinga, Paul J.M.

    Wireless sensor networks (WSNs) are formed of tiny, highly energy-constrained sensor nodes that are equipped with wireless transceivers and can be used primarily in environmental monitoring applications. The nodes communicate with one another by autonomously creating ad-hoc multihop networks which

  13. SensorScheme: Supply Chain Management Automation using Wireless Sensor Networks

    NARCIS (Netherlands)

    Evers, L.; Havinga, Paul J.M.; Kuper, Jan; Lijding, M.E.M.; Meratnia, Nirvana

    2007-01-01

    The supply chain management business can benefit greatly from automation, as recent developments with RFID technology shows. The use of Wireless Sensor Network technology promises to bring the next leap in efficiency and quality of service. However, current WSN system software does not yet provide

  14. SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY

    Directory of Open Access Journals (Sweden)

    J. Jaslin Deva Gifty

    2016-03-01

    Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.

  15. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.; Al-Naffouri, Tareq Y.; Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality

  16. Benchmarking Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    2004-01-01

    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. We have identified the candidates of block ciphers suitable for

  17. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    Science.gov (United States)

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  18. Development of a wireless radioactive material sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, Dimosthenis, E-mail: katsisdc@ieee.org [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States); Burns, David; Henriquez, Stanley; Howell, Steve; Litz, Marc [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States)

    2011-10-01

    Our team at the United States Army Research Laboratory (ARL) has designed and developed a low-power, compact, wireless-networked gamma sensor (WGS) array. The WGS system provides high sensitivity gamma photon detection and remote warning for a broad range of radioactive materials. This sensor identifies the presence of a 1 {mu}Ci Cs137 source at a distance of 1.5 m. The networked array of sensors presently operates as a facility and laboratory sensor for the movement of radioactive check sources. Our goal has been to apply this architecture for field security applications by incorporating low-power design with compact packaging. The performance of this radiation measurement network is demonstrated for both detection and location of radioactive material.

  19. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kalil A. Bispo

    2015-10-01

    Full Text Available Wireless sensor networks (WSNs are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks, which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS.

  20. Benchmarking Block Ciphers for Wireless Sensor Networks (Extended Abstract)

    NARCIS (Netherlands)

    Law, Yee Wei; Doumen, Jeroen; Hartel, Pieter H.

    The energy efficiency requirement of wireless sensor networks (WSNs) is especially high because the sensor nodes are meant to operate without human intervention for a long period of time with little energy supply. Besides, available storage is scarce due to their small physical size. Therefore

  1. Multiple Distributed Smart Microgrids with a Self-Autonomous, Energy Harvesting Wireless Sensor Network

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Kheng Tan, Yen

    2012-01-01

    The chapter covers the smart wireless sensors for microgrids, as well as the energy harvesting technology used to sustain the operations of these sensors. Last, a case study on the multiple distributed smart microgrids with a self-autonomous, energy harvesting wireless sensor network is presented....

  2. A Survey on Virtualization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ga-Won Lee

    2012-02-01

    Full Text Available Wireless Sensor Networks (WSNs are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  3. A Survey on Virtualization of Wireless Sensor Networks

    Science.gov (United States)

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  4. A survey on virtualization of Wireless Sensor Networks.

    Science.gov (United States)

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  5. Reliability and Availability Evaluation of Wireless Sensor Networks for Industrial Applications

    Science.gov (United States)

    Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco

    2012-01-01

    Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements. PMID:22368497

  6. Energy efficient medium access protocol for wireless medical body area sensor networks.

    Science.gov (United States)

    Omeni, O; Wong, A; Burdett, A J; Toumazou, C

    2008-12-01

    This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.

  7. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    OpenAIRE

    Chih-Yu Wen; Ying-Chih Chen

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show t...

  8. Performance evaluation of spatial vector routing protocol for wireless sensor networks

    International Nuclear Information System (INIS)

    Baloch, J.; Jokhio, I.

    2012-01-01

    WSNs (Wireless Sensor Networks) is an emerging area of research. Researchers worldwide are working on the issues faced by sensor nodes. Communication has been a major issue in wireless networks and the problem is manifolds in WSN s because of the limited resources. The routing protocol in such networks plays a pivotal role, as an effective routing protocol could significantly reduce the energy consumed in transmitting and receiving data packets throughout a network. In this paper the performance of SVR (Spatial Vector Routing) an energy efficient, location aware routing protocol is compared with the existing location aware protocols. The results from the simulation trials show the performance of SVR. (author)

  9. Performance Evaluation of Spatial Vector Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-10-01

    Full Text Available WSNs (Wireless Sensor Networks is an emerging area of research. Researchers worldwide are working on the issues faced by sensor nodes. Communication has been a major issue in wireless networks and the problem is manifolds in WSNs because of the limited resources. The routing protocol in such networks plays a pivotal role, as an effective routing protocol could significantly reduce the energy consumed in transmitting and receiving data packets throughout a network. In this paper the performance of SVR (Spatial Vector Routing an energy efficient, location aware routing protocol is compared with the existing location aware protocols. The results from the simulation trials show the performance of SVR.

  10. GPS-Free Localization Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2010-06-01

    Full Text Available Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time.

  11. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    Science.gov (United States)

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students…

  12. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin

    2017-09-15

    Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller's direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20-40% while ensuring feasible data delay.

  13. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yunkai Wei

    2017-09-01

    Full Text Available Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs are an inexorable trend for Wireless Sensor Networks (WSNs, including Wireless Rechargeable Sensor Network (WRSNs. However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN controller’s direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20–40% while ensuring feasible data delay.

  14. On the Effect of Security and Communication Factors in the Reliability of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Damian Rusinek

    2014-03-01

    Full Text Available The ensuring reliability of wireless sensor networks (WSN is one of most important problems to be solved. In this article, the influence of the security and communication factors in the reliability of Wireless Sensor Networks was analyzed. Balancing security against performance in WSN is another issue to be solved. These factors should be considered during security analysis of quality of protection of realized protocol. In the article, we analyze wireless sensor network where hierarchical topologies is implemented with high performance routing sensors that forward big amount of data. We present the experiment results which were performed by high-performance Imote2 sensor platform and TinyOS operating system.

  15. Distributed estimation based on observations prediction in wireless sensor networks

    KAUST Repository

    Bouchoucha, Taha; Ahmed, Mohammed F A; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    We consider wireless sensor networks (WSNs) used for distributed estimation of unknown parameters. Due to the limited bandwidth, sensor nodes quantize their noisy observations before transmission to a fusion center (FC) for the estimation process

  16. Real-time synchronization of wireless sensor network by 1-PPS signal

    Science.gov (United States)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  17. How to secure a wireless sensor network

    NARCIS (Netherlands)

    Law, Y.W.; Havinga, Paul J.M.

    2005-01-01

    The security of wireless sensor networks (WSNs) is a complex issue. While security research of WSNs is progressing at a tremendous pace, and many security techniques have been proposed, no comprehensive framework has so far emerged that attempts to tie the bits and pieces together to ease the

  18. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  19. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  20. Reactive and adaptive monitoring to secure aggregation in wireless sensor networks

    NARCIS (Netherlands)

    Labraoui, Nabila; Gueroui, Mourad; Aliouat, Makhlouf; Petit, Jonathan

    Data aggregation is considered as one of the fundamental distributed data processing procedures for saving the energy and minimizing the medium access layer contention in wireless sensor networks. However, sensor networks are likely to be deployed in an untrusted environment, which make them

  1. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.; Shihada, Basem; Jamshaid, K.

    2013-01-01

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance

  2. Reconfiguration of sustainable thermoelectric generation using wireless sensor network

    DEFF Research Database (Denmark)

    Chen, Min

    2014-01-01

    wireless sensor networks (WSNs), where remotely deployed temperature and voltage sensors as well as latching relays can be organized as a whole to intelligently identify and execute the optimal interconnection of TEM strings. A reconfigurable TEM array with a WSN controller and a maximum power point...

  3. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...

  4. Positioning system in wireless sensor networks using NS-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-10-01

    Full Text Available The practical difficulties of setting up a wireless sensor network (WSN) and analysing its performance have made simulation essential for the study of WSNs. The ns-2 network simulator is one of the most widely used tools by researchers...

  5. Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are

  6. Minimum Interference Planar Geometric Topology in Wireless Sensor Networks

    Science.gov (United States)

    Nguyen, Trac N.; Huynh, Dung T.

    The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of several researchers. There are at least two definitions of interference in the literature. In a wireless sensor network the interference at a node may be caused by an edge that is transmitting data [15], or it occurs because the node itself is within the transmission range of another [3], [1], [6]. In this paper we show that the problem of assigning power to nodes in the plane to yield a planar geometric graph whose nodes have bounded interference is NP-complete under both interference definitions. Our results provide a rigorous proof for a theorem in [15] whose proof is unconvincing. They also address one of the open issues raised in [6] where Halldórsson and Tokuyama were concerned with the receiver model of node interference, and derived an O(sqrt {Δ}) upper bound for the maximum node interference of a wireless ad hoc network in the plane (Δ is the maximum interference of the so-called uniform radius network). The question as to whether this problem is NP-complete in the 2-dimensional case was left open.

  7. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method.

    Science.gov (United States)

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.

  8. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method

    Directory of Open Access Journals (Sweden)

    Udaya Suriya Raj Kumar Dhamodharan

    2015-01-01

    Full Text Available Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method with MAP (message authentication and passing for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.

  9. Lessons learned on solar powered wireless sensor network deployments in urban, desert environments

    KAUST Repository

    Dehwah, Ahmad H.

    2015-05-01

    The successful deployment of a large scale solar powered wireless sensor network in an urban, desert environment is a very complex task. Specific cities of such environments cause a variety of operational problems, ranging from hardware faults to operational challenges, for instance due to the high variability of solar energy availability. Even a seemingly functional sensor network created in the lab does not guarantee reliable long term operation, which is absolutely necessary given the cost and difficulty of accessing sensor nodes in urban environments. As part of a larger traffic flow wireless sensor network project, we conducted several deployments in the last two years to evaluate the long-term performance of solar-powered urban wireless sensor networks in a desert area. In this article, we share our experiences in all domains of sensor network operations, from the conception of hardware to post-deployment analysis, including operational constraints that directly impact the software that can be run. We illustrate these experiences using numerous experimental results, and present multiple unexpected operational problems as well as some possible solutions to address them. We also show that current technology is far from meeting all operational constraints for these demanding applications, in which sensor networks are to operate for years to become economically appealing.

  10. Autonomous distributed self-organization for mobile wireless sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Tang, Hung-Kai

    2009-01-01

    This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  11. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.

    Science.gov (United States)

    Najeeb, Najeeb W; Detweiler, Carrick

    2017-07-17

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  12. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Science.gov (United States)

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  13. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2009-01-01

    Full Text Available Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  14. Wireless sensors and sensor networks for homeland security applications.

    Science.gov (United States)

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  15. An analytic Study of the Key Factors In uencing the Design and Routing Techniques of a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Yogita Bahuguna

    2017-03-01

    Full Text Available A wireless sensor network contains various nodes having certain sensing, processing and communication capabilities. Actually they are multifunctional battery operated nodes called motes. These motes are small in size and battery constrained. They are operated by a power source. A wireless sensor network consists of a huge number of tiny sensor nodes which are deployed either randomly or according to some predefined distribution. The sensors nodes in a sensor network are cooperative among themselves having self-organizing ability. This ensures that a wireless network serves a wide variety of applications. Few of them are weather monitoring, health, security and military etc. As their applications are wide, this requires that sensors in a sensor network must play their role very efficiently. But, as discussed above, the sensor nodes have energy limitation. This limitation leads failure of nodes after certain round of communication. So, a sensor network suffers with sensors having energy limitations. Beside this, sensor nodes in a sensor network must fulfill connectivity and coverage requirements. In this paper, we have discussed various issues affecting the design of a wireless sensor network. This provides the readers various research issues in designing a wireless sensor network.

  16. Research on Artificial Spider Web Model for Farmland Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2018-01-01

    Full Text Available Through systematic analysis of the structural characteristics and invulnerability of spider web, this paper explores the possibility of combining the advantages of spider web such as network robustness and invulnerability with farmland wireless sensor network. A universally applicable definition and mathematical model of artificial spider web structure are established. The comparison between artificial spider web and traditional networks is discussed in detail. The simulation result shows that the networking structure of artificial spider web is better than that of traditional networks in terms of improving the overall reliability and invulnerability of communication system. A comprehensive study on the advantage characteristics of spider web has important theoretical and practical significance for promoting the invulnerability research of farmland wireless sensor network.

  17. The Efficacy of Epidemic Algorithms on Detecting Node Replicas in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Narasimha Shashidhar

    2015-12-01

    Full Text Available A node replication attack against a wireless sensor network involves surreptitious efforts by an adversary to insert duplicate sensor nodes into the network while avoiding detection. Due to the lack of tamper-resistant hardware and the low cost of sensor nodes, launching replication attacks takes little effort to carry out. Naturally, detecting these replica nodes is a very important task and has been studied extensively. In this paper, we propose a novel distributed, randomized sensor duplicate detection algorithm called Discard to detect node replicas in group-deployed wireless sensor networks. Our protocol is an epidemic, self-organizing duplicate detection scheme, which exhibits emergent properties. Epidemic schemes have found diverse applications in distributed computing: load balancing, topology management, audio and video streaming, computing aggregate functions, failure detection, network and resource monitoring, to name a few. To the best of our knowledge, our algorithm is the first attempt at exploring the potential of this paradigm to detect replicas in a wireless sensor network. Through analysis and simulation, we show that our scheme achieves robust replica detection with substantially lower communication, computational and storage requirements than prior schemes in the literature.

  18. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  19. Deployment of wireless sensor network in pyrochemical processing of metallic fuels

    International Nuclear Information System (INIS)

    Baghyalakshmi, D.; Shrikrishnan, T.S.; Ebenezer, Jemimah; Madhusoodanan, K.; Satya Murty, S.A.V.; Vannia Perumal, S.; Venkatesh, P.; Prabhakara Reddy, B.

    2016-01-01

    With the advent of wireless sensor networking technology, industries started adapting the wireless monitoring systems in phases to measure and control various process parameters. To test the feasibility for implementing Wireless Sensor Network to measure the potentials of an electrochemical cell and the temperatures of actinide drawdown process at Pyrochemical process studies laboratory, at Chemistry Group, IGCAR, Kalpakkam, experiments have been carried out. An experimental setup with two Wireless Sensor Networking nodes has been deployed inside argon atmosphere glove boxes. The Electrorefining studies on U and U based alloys and the studies on actinide recovery from the electrolyte salt in actinide drawdown process are carried out in the glove box. The WSN measuring system was tested and validated by measuring the potentials of an electrochemical cell and the temperatures of actinide drawdown process. The WSN system is proposed to be installed in the hot cells of the Chemistry Group where irradiated U-Zr fuel is reprocessed. This paper briefs the need for remote measuring in pyrochemical reprocessing and validation of the remote signals by measuring the potentials of an electrochemical cell and the temperatures of the actinide draw down process. (author)

  20. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  1. A Probabilistic Model of the LMAC Protocol for Concurrent Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Esparza, Luz Judith R; Zeng, Kebin; Nielsen, Bo Friis

    2011-01-01

    We present a probabilistic model for the network setup phase of the Lightweight Medium Access Protocol (LMAC) for concurrent Wireless Sensor Networks. In the network setup phase, time slots are allocated to the individual sensors through resolution of successive collisions. The setup phase...

  2. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  3. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  4. A Lightweight Authentication and Key Management Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Danyang Qin

    2016-01-01

    Full Text Available Security problem is one of the most popular research fields in wireless sensor networks for both the application requirement and the resource-constrained essence. An effective and lightweight Authentication and Key Management Scheme (AKMS is proposed in this paper to solve the problem of malicious nodes occurring in the process of networking and to offer a high level of security with low cost. For the condition that the mobile sensor nodes need to be authenticated, the keys in AKMS will be dynamically generated and adopted for security protection. Even when the keys are being compromised or captured, the attackers can neither use the previous keys nor misuse the authenticated nodes to cheat. Simulation results show that the proposed scheme provides more efficient security with less energy consumption for wireless sensor networks especially with mobile sensors.

  5. A wireless smart sensor network for automated monitoring of cable tension

    International Nuclear Information System (INIS)

    Sim, Sung-Han; Cho, Soojin; Li, Jian; Jo, Hongki; Park, Jong-Woong; Jung, Hyung-Jo; Spencer Jr, Billie F

    2014-01-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea. (paper)

  6. A wireless smart sensor network for automated monitoring of cable tension

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  7. Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender

    methods and techniques in different areas and brings them together to create an efficient verification system. The overall ambition is to provide a wide range of powerful techniques for analyzing models with quantitative and qualitative security information. We stated a new approach that first verifies...... applications, home automation, and traffic control. The challenges for research in this area are due to the unique features of wireless sensor devices such as low processing power and associated low energy. On top of this, wireless sensor networks need secure communication as they operate in open fields...... low level security protocol s in a qualitative manner and guarantees absolute security, and then takes these verified protocols as actions of scenarios to be verified in a quantitative manner. Working on the emerging ZigBee wireless sensor networks, we used probabilistic verification that can return...

  8. Energy-Efficient Broadcasting Scheme for Smart Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-01-01

    Full Text Available In smart Industrial Wireless Sensor Networks (IWSNs, sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN. However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.

  9. The MAGCLOUD wireless sensor network

    OpenAIRE

    Cuartero Moya, Narciso; Quintana Alcaraz, Sergio

    2011-01-01

    Initially, the aim of this project consisted in manufacturing some nodes for a wireless sensor network by hand. If this document concludes that they can be properly produced in the EETAC lab, the cost of a future large deployment using raw components would be much lower than in the case of acquiring the genuine factory assembled hardware. Also, the future students involved in the process could learn many useful advanced techniques along the way. The project ended sowing a future WSN con...

  10. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  11. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  12. a survey of security vulnerabilities in wireless sensor networks

    African Journals Online (AJOL)

    user

    which primarily are their stringent energy constraints to which sensing nodes typify and security vulnerabilities. Security concerns ... Keywords: Sensors, Wireless, Network, Vulnerabilities, Security. 1. .... If the node detects a transmission.

  13. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Florence G. H. Yap

    2014-02-01

    Full Text Available Wireless Visual Sensor Networks (WVSNs where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs that can only transmit scalar information (e.g., temperature, the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  14. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Localisation or position determination is one of the most important applications for the wireless sensor networks. Numerous current techniques for localisation of sensor nodes use the Received Signal Strength Indicator (RSSI) from sensor nodes...

  15. GRAdient Cost Establishment (GRACE for an Energy-Aware Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Noor M. Khan

    2009-01-01

    Full Text Available In Wireless Sensor Network (WSN, the nodes have limitations in terms of energy-constraint, unreliable links, and frequent topology change. In this paper we propose an energy-aware routing protocol, that outperforms the existing ones with an enhanced network lifetime and more reliable data delivery. Major issues in the design of a routing strategy in wireless sensor networks are to make efficient use of energy and to increase reliability in data delivery. The proposed approach reduces both energy consumption and communication-bandwidth requirements and prolongs the lifetime of the wireless sensor network. Using both analysis and extensive simulations, we show that the proposed dynamic routing helps achieve the desired system performance under dynamically changing network conditions. The proposed algorithm is compared with one of the best existing routing algorithms, GRAB. Moreover, a modification in GRAB is proposed which not only improves its performance but also prolongs its lifetime.

  16. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    Science.gov (United States)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  17. Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    The energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network...

  18. Using Internet of Things technologies for wireless sensor networks

    Science.gov (United States)

    Martinez, K.; Hart, J. K.; Basford, P. J.; Bragg, G. M.; Ward, T.

    2013-12-01

    Numerous authors have envisioned the future internet where anything will be connected: the Internet of Things (IoT). The idea is an extrapolation of the spread of networked devices such as phones, tablets etc. Each device is expected to have its own Internet address and thus be easy to access. The key building blocks of any IoT system are networking, hardware platforms and node software - so they are similar to wireless sensor network requirements. Most existing IoT demonstrators and applications have been gadget-style objects where power and connectivity problems are not too restricting. Environmental sensor networks can benefit from using some of the technologies involved in IoT development. However it is expected that tuning the networking and power management will be necessary to make them as efficient as state of the art wireless sensor networks. Some IoT assumptions such as always-connected nodes and full IP capability need to be considered. This paper will illustrate the advantages and disadvantages of IoT techniques for environment sensing drawing on a range of employment scenarios. We also describe a glacial 'Internet of things' project, which aims to monitor glacial processes. In particular we describe the IoT developments in a deployment in Iceland to examine glacier seismicity, velocity and provide camera images.

  19. Modeling a cold-air drainage event with a wireless sensor network

    OpenAIRE

    Brian R. Zutta; Eric A. Graham; Philip W. Rundel

    2005-01-01

    A wireless network of sensors was used to characterize a cold-air drainage event in the canyon surrounding the James Reserve. The flow of cold air at night and the first hours of sunrise have major ecological consequences by limiting the vegetation types to those tolerant of freeze and thaw cycles. A network of wireless sensors provides the opportunity to track this event in real time and fully characterize the cold air flow down the canyon, which may last 1.5 hours, and the pooling of cold a...

  20. Influence of Mobility Models in Precision Spray Aided by Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Gonçalves, L B L; Neves, L A; Zafalon, G F D; Costa, F G; Ueyama, J; Montez, C; Pinto, A S R

    2015-01-01

    Precision Spray is a technique to increase performance of Precision Agriculture. This spray technique may be aided by a Wireless Sensor Network, however, for such approach, the communication between the agricultural input applicator vehicle and network is critical due to its proper functioning. Thus, this work analyzes how the number of nodes in a wireless sensor network, its type of distribution and different areas of scenario affects the performance of communication. We performed simulations to observe system's behavior changing to find the most fitted non-controlled mobility model to the system

  1. A Survey of Routing Protocols in Wireless Body Sensor Networks

    Science.gov (United States)

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-01

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses. PMID:24419163

  2. Lossy Data Aggregation with Network Coding in Stand-Alone Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova

    2011-01-01

    in chemical plants, etc. Given resource constrained operation of a sensor network where the nodes are battery powered and buffer sizes are limited, efficient methods for in-network data storage abd it subsequent fast and reliable transmission to a gateway is desirable. To save scarse resources and to prolong......This work focuses on a special type of wireless sensor networks (WSNs) that we refer to as a stand alone network. These netwoks operate in harsh and extreme environments where data collection is done only occasionally. Typical examples include habitat monitoring systems, monitoring systems...

  3. Quality-of-service provisioning for dynamic heterogeneous wireless sensor networks

    NARCIS (Netherlands)

    Steine, M.

    2013-01-01

    A Wireless Sensor Network (WSN) consists of a large collection of spatially dis- tributed autonomous devices with sensors to monitor physical or environmental conditions, such as air-pollution, temperature and traffic flow. By cooperatively processing and communicating information to central

  4. Autonomous Distributed Self-Organization for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-11-01

    Full Text Available This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently. A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  5. A new scheme for maximizing the lifetime of heterogeneous wireless sensor networks

    OpenAIRE

    Aldaihani, Reem; AboElFotoh, Hosam

    2016-01-01

    Heterogeneous wireless sensor network consists of wireless sensor nodes with different abilities, such as different computing power and different initial energy. We present in this paper a new scheme for maximizing heterogeneous WSN lifetime. The proposed scheme employs two types of sensor nodes that are named (consistent with IEEE 802.15.4 standard) Full Function Device (FFD) and Reduced Function Device (RFD). The FFDs are the expensive sensor nodes with high power and computational capabili...

  6. Design of verification platform for wireless vision sensor networks

    Science.gov (United States)

    Ye, Juanjuan; Shang, Fei; Yu, Chuang

    2017-08-01

    At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.

  7. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2012-09-01

    Full Text Available Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  8. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Science.gov (United States)

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734

  9. Efficient security mechanisms for mHealth applications using wireless body sensor networks.

    Science.gov (United States)

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  10. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    Science.gov (United States)

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  11. An Inter-Networking Mechanism with Stepwise Synchronization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Masayuki Murata

    2011-08-01

    Full Text Available To realize the ambient information society, multiple wireless networks deployed in the region and devices carried by users are required to cooperate with each other. Since duty cycles and operational frequencies are different among networks, we need a mechanism to allow networks to efficiently exchange messages. For this purpose, we propose a novel inter-networking mechanism where two networks are synchronized with each other in a moderate manner, which we call stepwise synchronization. With our proposal, to bridge the gap between intrinsic operational frequencies, nodes near the border of networks adjust their operational frequencies in a stepwise fashion based on the pulse-coupled oscillator model as a fundamental theory of synchronization. Through simulation experiments, we show that the communication delay and the energy consumption of border nodes are reduced, which enables wireless sensor networks to communicate longer with each other.

  12. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  13. Self-learning power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, Michele; Liotta, Antonio

    2018-01-01

    Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and

  14. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...

  15. Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks

    Science.gov (United States)

    Avci, Onur; Abdeljaber, Osama; Kiranyaz, Serkan; Hussein, Mohammed; Inman, Daniel J.

    2018-06-01

    Being an alternative to conventional wired sensors, wireless sensor networks (WSNs) are extensively used in Structural Health Monitoring (SHM) applications. Most of the Structural Damage Detection (SDD) approaches available in the SHM literature are centralized as they require transferring data from all sensors within the network to a single processing unit to evaluate the structural condition. These methods are found predominantly feasible for wired SHM systems; however, transmission and synchronization of huge data sets in WSNs has been found to be arduous. As such, the application of centralized methods with WSNs has been a challenge for engineers. In this paper, the authors are presenting a novel application of 1D Convolutional Neural Networks (1D CNNs) on WSNs for SDD purposes. The SDD is successfully performed completely wireless and real-time under ambient conditions. As a result of this, a decentralized damage detection method suitable for wireless SHM systems is proposed. The proposed method is based on 1D CNNs and it involves training an individual 1D CNN for each wireless sensor in the network in a format where each CNN is assigned to process the locally-available data only, eliminating the need for data transmission and synchronization. The proposed damage detection method operates directly on the raw ambient vibration condition signals without any filtering or preprocessing. Moreover, the proposed approach requires minimal computational time and power since 1D CNNs merge both feature extraction and classification tasks into a single learning block. This ability is prevailingly cost-effective and evidently practical in WSNs considering the hardware systems have been occasionally reported to suffer from limited power supply in these networks. To display the capability and verify the success of the proposed method, large-scale experiments conducted on a laboratory structure equipped with a state-of-the-art WSN are reported.

  16. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert; Jamshaid, Kamran; Shihada, Basem; Ho, Pin-Han

    2012-01-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can

  17. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.

    Science.gov (United States)

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-15

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.

  18. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  19. Immunizations on small worlds of tree-based wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Bai-Hai; Cui, Ling-Guo

    2012-01-01

    , are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world......The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization...

  20. Trade-offs in the distribution of neural networks in a wireless sensor network

    NARCIS (Netherlands)

    Holenderski, M.J.; Lukkien, J.J.; Tham, C.K.

    2005-01-01

    This article investigates the tradeoff between communication and memory usage in different methods of distributing neural networks in a Wireless Sensor Network. A structural approach is presented, categorized in two dimensions: horizontal and vertical decomposition. Horizontal decomposition turns

  1. Hole Detection for Quantifying Connectivity in Wireless Sensor Networks: A Survey

    OpenAIRE

    Pearl Antil; Amita Malik

    2014-01-01

    Owing to random deployment, environmental factors, dynamic topology, and external attacks, emergence of holes in wireless sensor networks is inescapable. Hole is an area in sensor network around which sensors cease to sense or communicate due to drainage of battery or any fault, either temporary or permanent. Holes impair sensing and communication functions of network; thus their identification is a major concern. This paper discusses different types of holes and significance of hole detectio...

  2. Packets distribution in a tree-based topology wireless sensor networks

    CSIR Research Space (South Africa)

    Akpakwu, GA

    2016-07-01

    Full Text Available The concept of data distribution within cluster of sensor nodes to the source sink has resulted to intense research in Wireless Sensor Networks (WSNs). In this paper, in order to determine the scheduling length of packet distribution, a tree...

  3. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  4. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  5. Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Wang, Jiong; Zhang, Hua

    2017-09-01

    In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.

  6. Metadata Modelling of the IPv6 Wireless Sensor Network in the Heihe River Watershed

    Directory of Open Access Journals (Sweden)

    Wanming Luo

    2013-03-01

    Full Text Available Environmental monitoring in ecological and hydrological watershed-scale research is an important and promising area of application for wireless sensor networks. This paper presents the system design of the IPv6 wireless sensor network (IPv6WSN in the Heihe River watershed in the Gansu province of China to assist ecological and hydrological scientists collecting field scientific data in an extremely harsh environment. To solve the challenging problems they face, this paper focuses on the key technologies adopted in our project, metadata modeling for the IPv6WSN. The system design introduced in this paper provides a solid foundation for effective use of a self-developed IPv6 wireless sensor network by ecological and hydrological scientists.

  7. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  8. Security in Wireless Sensor Networks Employing MACGSP6

    Science.gov (United States)

    Nitipaichit, Yuttasart

    2010-01-01

    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…

  9. Deployment of Wireless Sensor Networks in Crop Storages

    DEFF Research Database (Denmark)

    Juul, Jakob Pilegaard; Green, Ole; Jacobsen, Rune Hylsberg

    2015-01-01

    of a wireless sensor network based system that provides continuous, automatic, and up-to-date information on a crop storage, while presenting the data in an easily accessible manner, is also described. The design decisions, challenges, and practical experiences from real-world large scale deployment...

  10. New Heterogeneous Clustering Protocol for Prolonging Wireless Sensor Networks Lifetime

    Directory of Open Access Journals (Sweden)

    Md. Golam Rashed

    2014-06-01

    Full Text Available Clustering in wireless sensor networks is one of the crucial methods for increasing of network lifetime. The network characteristics of existing classical clustering protocols for wireless sensor network are homogeneous. Clustering protocols fail to maintain the stability of the system, especially when nodes are heterogeneous. We have seen that the behavior of Heterogeneous-Hierarchical Energy Aware Routing Protocol (H-HEARP becomes very unstable once the first node dies, especially in the presence of node heterogeneity. In this paper we assume a new clustering protocol whose network characteristics is heterogeneous for prolonging of network lifetime. The computer simulation results demonstrate that the proposed clustering algorithm outperforms than other clustering algorithms in terms of the time interval before the death of the first node (we refer to as stability period. The simulation results also show the high performance of the proposed clustering algorithm for higher values of extra energy brought by more powerful nodes.

  11. Energy and round time estimation method for mobile wireless sensor networks

    International Nuclear Information System (INIS)

    Ismat, M.; Qureshi, R.; Imam, M.U.

    2018-01-01

    Clustered WSN (Wireless Sensor Networks) is a hierarchical network structure that conserves energy by distributing the task of sensing and data transfer to destination among the non-CH (Cluster-Head) and CH (Cluster Head) node in a cluster. In clustered MWSN (Mobile Wireless Sensor Network), cluster maintenance to increase at a reception at the destination during communication operation is difficult due to the movement of CHs and non-CH nodes in and out of the cluster. To conserve energy and increased data transfer to the destination, it is necessary to find the duration after which sensor node’s role should be changed from CH to non-CH and vice-versa. In this paper, we have proposed an energy independent round time scheme to identify the duration after which re-clustering procedure should be invoked for changing roles of sensor nodes as CHs and associated nodes to conserve energy and increased data delivery. This depends on the dissemination interval of the sensor nodes rather than sensor node’s energy. We have also provided a complete analytical estimate of network energy consumption with energy consumed in every phase of a around. (author)

  12. Decentralized vs. centralized scheduling in wireless sensor networks for data fusion

    NARCIS (Netherlands)

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2014-01-01

    We consider the problem of data estimation in a sensor wireless network where sensors transmit their observations according to decentralized and centralized transmission schedules. A data collector is interested in achieving a data estimation using several sensor observations such that the variance

  13. Decentralized vs. centralized scheduling in wireless sensor networks for data fusion

    NARCIS (Netherlands)

    Mitici, Mihaela; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2013-01-01

    We consider the problem of data estimation in a sensor wireless network where sensors transmit their observations according to decentralized and centralized transmission schedules. A data collector is interested in achieving a data estimation using several sensor observations such that the variance

  14. Software Defined Networks in Wireless Sensor Architectures

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-03-01

    Full Text Available Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller and data plane (switches in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

  15. Data Driven Performance Evaluation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Antonio A. F. Loureiro

    2010-03-01

    Full Text Available Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i signal granularity, (ii spatial distribution of sensors, (iii sensors clustering, and (iv signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed.

  16. MASY: Management of secret keys in federated wireless sensor networks

    OpenAIRE

    Maerien, Jef; Michiels, Sam; Huygens, Christophe; Joosen, Wouter

    2010-01-01

    Wireless Sensor Networks are becoming federated and mobile environments. These new capabilities pose a lot of new possibilities and challenges. One of these challenges is to create a secure environment to allow multiple trusted companies to share and merge their sensor network infrastructure. The most basic need for a secure environment is the deployment of key material. However, most current day research assumes pre-shared secrets between the sensor nodes of most, if not all, companies in a ...

  17. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Science.gov (United States)

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510

  18. The Application of RPL Routing Protocol in Low Power Wireless Sensor and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Xun Yang

    2014-05-01

    Full Text Available With the continuous development of computer information technology, wireless sensor has been successfully changed the mode of human life, at the same time, as one of the technologies continues to improve the future life, how to better integration with the RPL routing protocols together become one of research focuses in the current climate. This paper start from the wireless sensor network, briefly discusses the concept, followed by systematic exposition of RPL routing protocol developed background, relevant standards, working principle, topology and related terms, and finally explore the RPL routing protocol in wireless sensor low power lossy network applications.

  19. Maximization of Energy Efficiency in Wireless ad hoc and Sensor Networks With SERENA

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2009-01-01

    Full Text Available In wireless ad hoc and sensor networks, an analysis of the node energy consumption distribution shows that the largest part is due to the time spent in the idle state. This result is at the origin of SERENA, an algorithm to SchEdule RoutEr Nodes Activity. SERENA allows router nodes to sleep, while ensuring end-to-end communication in the wireless network. It is a localized and decentralized algorithm assigning time slots to nodes. Any node stays awake only during its slot and the slots assigned to its neighbors, it sleeps the remaining time. Simulation results show that SERENA enables us to maximize network lifetime while increasing the number of user messages delivered. SERENA is based on a two-hop coloring algorithm, whose complexity in terms of colors and rounds is evaluated. We then quantify the slot reuse. Finally, we show how SERENA improves the node energy consumption distribution and maximizes the energy efficiency of wireless ad hoc and sensor networks. We compare SERENA with classical TDMA and optimized variants such as USAP in wireless ad hoc and sensor networks.

  20. Jamming Attack in Wireless Sensor Network: From Time to Space

    Science.gov (United States)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  1. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  2. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  3. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marjan Radi

    2014-01-01

    Full Text Available Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  4. Configuring heterogeneous wireless sensor networks under quality-of-service constraints

    NARCIS (Netherlands)

    Hoes, R.J.H.

    2009-01-01

    Wireless sensor networks (WSNs) are useful for a diversity of applications, such as structural monitoring of buildings, farming, assistance in rescue operations, in-home entertainment systems or to monitor people's health. A WSN is a large collection of small sensor devices that provide a detailed

  5. EHRA: Specification and Analysis of Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Dung, Phan Anh; Hansen, Michael Reichhardt; Madsen, Jan

    2014-01-01

    Although energy consumption of wireless sensor network has been studied extensively, we are far behind in understanding the dynamics of the power consumption along with energy production using harvesters. We introduce Energy Harvesting Routing Analysis (EHRA) as a formal modelling framework...... to study wireless sensor networks (WSN) with energy-harvesting capabilities. The purpose of the framework is to analyze WSNs at a high level of abstraction, that is, before the protocols are implemented and before the WSN is deployed. The conceptual basis of EHRA comprises the environment, the medium...... is developed as a simulator implemented using the functional programming language F#. This simulator is used to analyze global properties of WSNs such as network fragmentation,routing trends, and energy profiles for the nodes. Three routing protocols, with a progression in the energy-harvesting awareness...

  6. A Novel Re-keying Function Protocol (NRFP For Wireless Sensor Network Security

    Directory of Open Access Journals (Sweden)

    Naif Alsharabi

    2008-12-01

    Full Text Available This paper describes a novel re-keying function protocol (NRFP for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs, covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  7. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.

    Science.gov (United States)

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-12-04

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  8. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  9. light-weight digital signature algorithm for wireless sensor networks

    Indian Academy of Sciences (India)

    M LAVANYA

    2017-09-14

    Sep 14, 2017 ... WSN applications do not even consider the security aspects because of the heavy ...... security scheme in wireless sensor networks with mobile sinks. IEEE Trans. ... security protocols. PhD Thesis, Eindhoven University of.

  10. Software defined networking for improved wireless sensor network management: a survey

    CSIR Research Space (South Africa)

    Ndiaye, M

    2017-05-01

    Full Text Available Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment...

  11. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    Science.gov (United States)

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  12. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    OpenAIRE

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers ...

  13. Delay-Tolerant, Low-Power Protocols for Large Security-Critical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Claudio S. Malavenda

    2012-01-01

    Full Text Available This paper reports the analysis, implementation, and experimental testing of a delay-tolerant and energy-aware protocol for a wireless sensor node, oriented to security applications. The solution proposed takes advantages from different domains considering as a guideline the low power consumption and facing the problems of seamless and lossy connectivity offered by the wireless medium along with very limited resources offered by a wireless network node. The paper is organized as follows: first we give an overview on delay-tolerant wireless sensor networking (DTN; then we perform a simulation-based comparative analysis of state-of-the-art DTN approaches and illustrate the improvement offered by the proposed protocol; finally we present experimental data gathered from the implementation of the proposed protocol on a proprietary hardware node.

  14. RF energy harvesting and transport for wireless autonomous sensor network applications

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.

    2013-01-01

    "RF Energy Harvesting and Transport for Wireless Autonomous Sensor Network Applications: Principles and Requirements" - For wireless energy transfer over longer distances, the far-field transfer of RF energy may be used. We make a distinction between harvesting RF energy from signals present in the

  15. The Design of Wireless Sensor Network System Based on ZigBee Technology for Greenhouse

    International Nuclear Information System (INIS)

    Zhu, Y W; Zhong, X X; Shi, J F

    2006-01-01

    Wireless sensor network is a new research field. It can be used in some special situation for signal collection, processing and transmitting. Zigbee is a new Wireless sensor network technology characteristic of less distance and low speed. It is a new wireless network protocol stack of IEEE 802.15.4. Lately traditional system to collects parameters for Greenhouse is widely used in agriculture. The traditional system adopts wired way wiring, which makes the system complex and expensive. Generally modern Greenhouse has hundreds of square meters and they may plant variety of plants depending on different seasons. So we need to adjust the sensors which collect parameters for Greenhouse to a better place to work more efficient. Adopting wireless way wiring is convenient and economical. This paper developed a wireless sensor network system based on ZigBee technology for greenhouse. It offers flexibility and mobility to save cost and energy spent on wiring. The framework hardware and software structure, related programming are also discussed in this paper. Comparing the system which uses ZigBee technology with traditional wired network system for greenhouse, it has advantage of low cost..low power and wider coverage. Additionally it complies with IEEE802.15.4 protocol, which makes it convenient to communicate with other products that comply with the protocol too

  16. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks.

    Science.gov (United States)

    Rajeswari, S Raja; Seenivasagam, V

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.

  17. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks

    Science.gov (United States)

    Rajeswari, S. Raja; Seenivasagam, V.

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  18. An energy-efficient adaptive sampling scheme for wireless sensor networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Havinga, Paul J.M.

    2013-01-01

    Wireless sensor networks are new monitoring platforms. To cope with their resource constraints, in terms of energy and bandwidth, spatial and temporal correlation in sensor data can be exploited to find an optimal sampling strategy to reduce number of sampling nodes and/or sampling frequencies while

  19. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  20. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    Nowadays, due to wide applicability of Wireless Sensor Network (WSN) added by the low cost sensor devices, its popularity among the researchers and industrialists are very much visible. A substantial amount of works can be seen in the literature on WSN which are mainly focused on application...

  1. Bandwidth efficient cluster-based data aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    A fundamental challenge in the design of Wireless Sensor Network (WSNs) is the proper utilization of resources that are scarce. The critical challenge is to maximize the bandwidth utilization in data gathering and forwarding from sensor nodes to the sink. The main design objective is to utilize...

  2. Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Dragoni, Nicola

    2015-01-01

    Energy Harvesting - Wireless Sensor Networks (EH-WSNs) constitute systems of networked sensing nodes that are capable of extracting energy from the environment and that use the harvested energy to operate in a sustainable state. Sustainability, seen as design goal, has a significant impact...

  3. Performance of a wireless sensor network for crop monitoring and irrigation control

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  4. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  5. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    Science.gov (United States)

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  6. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  7. A Forest Early Fire Detection Algorithm Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    CHENG Qiang

    2014-03-01

    Full Text Available Wireless Sensor Networks (WSN adopt GHz as their communication carrier, and it has been found that GHz carrier attenuation model in transmission path is associated with vegetation water content. In this paper, based on RSSI mechanism of WSN nodes we formed vegetation dehydration sensors. Through relationships between vegetation water content and carrier attenuation, we perceived forest vegetation water content variations and early fire gestation process, and established algorithms of early forest fires detection. Experiments confirm that wireless sensor networks can accurately perceive vegetation dehydration events and forest fire events. Simulation results show that, WSN dehydration perception channel (P2P representing 75 % amounts of carrier channel or more, it can meet the detection requirements, which presented a new algorithm of early forest fire detection.

  8. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Directory of Open Access Journals (Sweden)

    Tai-hoon Kim

    2010-12-01

    Full Text Available Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained.

  9. Fault Tolerance in ZigBee Wireless Sensor Networks

    Science.gov (United States)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  10. Performance Analysis of Cluster Formation in Wireless Sensor Networks.

    Science.gov (United States)

    Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

    2017-12-13

    Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

  11. Performance Analysis of Cluster Formation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Edgar Romo Montiel

    2017-12-01

    Full Text Available Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

  12. Probability Grid: A Location Estimation Scheme for Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Stoleru, Radu; Stankovic, John A

    2004-01-01

    Location information is of paramount importance for Wireless Sensor Networks (WSN). The accuracy of collected data can significantly be affected by an imprecise positioning of the event of interest...

  13. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhongwei Si

    2015-06-01

    Full Text Available Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  14. A source-initiated on-demand routing algorithm based on the Thorup-Zwick theory for mobile wireless sensor networks.

    Science.gov (United States)

    Mao, Yuxin; Zhu, Ping

    2013-01-01

    The unreliability and dynamics of mobile wireless sensor networks make it hard to perform end-to-end communications. This paper presents a novel source-initiated on-demand routing mechanism for efficient data transmission in mobile wireless sensor networks. It explores the Thorup-Zwick theory to achieve source-initiated on-demand routing with time efficiency. It is able to find out shortest routing path between source and target in a network and transfer data in linear time. The algorithm is easy to be implemented and performed in resource-constrained mobile wireless sensor networks. We also evaluate the approach by analyzing its cost in detail. It can be seen that the approach is efficient to support data transmission in mobile wireless sensor networks.

  15. An electroactive polymer energy harvester for wireless sensor networks

    International Nuclear Information System (INIS)

    McKay, T G; Rosset, S; Shea, H; Anderson, I A

    2013-01-01

    This paper reports the design, fabrication, and testing of a soft electroactive polymer power generator that has a volume of 1cm 3 . The generator provides an opportunity to harvest energy from environmental sources to power wireless sensor networks because it can harvest from low frequency motions, is compact, and lightweight. Electroactive polymers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged electroactive polymer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. Although electroactive polymers have impressively displayed energy densities as high as 550 mJ/g, they have been based on films with thicknesses of tens to hundreds of micrometers, thus a generator covering a large area would be required to provide useful power. Energy harvesters covering large areas are inconvenient to deploy in a wireless sensor network with a large number of nodes, so a generator that is compact in all three dimensions is required. In this work we fabricated a generator that can fit within a 11×11×9 mm envelope by stacking 42, 11mm diameter generator films on top of each other. When compressed cyclically at a rate of 0.5 Hz our generator produced 300 uW of power which is a sufficient amount of power for a low power wireless sensor node. The combination of our generator's small form factor and ability to harvest useful energy from low frequency motions provides an opportunity to deploy large numbers of wireless sensor nodes without the need for periodic, costly battery replacement

  16. Selection application for platforms and security protocols suitable for wireless sensor networks

    International Nuclear Information System (INIS)

    Moeller, S; Newe, T; Lochmann, S

    2009-01-01

    There is a great number of platforms and security protocols which can be used for wireless sensor networks (WSN). All these platforms and protocols have different properties with certain advantages and disadvantages. For a good choice of platform and an associated protocol, these advantages and disadvantages should be compared and the best for the appropriate WSN chosen. To select a Security protocol and a wireless platform suitable for a specific application a software tool will be developed. That tool will enable wireless network deployment engineers to easily select a suitable wireless platform for their application based on their network needs and application security requirements.

  17. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  18. Mobility and Heterogeneity Aware Cluster-Based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    Internet of things (IoT) is the modern era, which offers a variety of novel applications for mobile targets and opens the new domains for the distributed data aggregations using Wireless Sensor Networks (WSNs). However, low cost tiny sensors used for network formation generate the large amount...

  19. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification

    Science.gov (United States)

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533

  20. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification

    Directory of Open Access Journals (Sweden)

    Sandra Sendra

    2009-10-01

    Full Text Available Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.

  1. Link-quality measurement and reporting in wireless sensor networks.

    Science.gov (United States)

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-03-04

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.

  2. Link-Quality Measurement and Reporting in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Byoungjo Choi

    2013-03-01

    Full Text Available Wireless Sensor networks (WSNs are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.

  3. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  4. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  5. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    Science.gov (United States)

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963

  6. Energy-efficient data collection in wireless sensor networks with time constraints

    NARCIS (Netherlands)

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    We consider the problem of retrieving a reliable estimate of an attribute from a wireless sensor network within a fixed time window and with minimum energy consumption for the sensors. The sensors are located in the plane according to some random spatial process. They perform energy harvesting and

  7. Data Collection using Miniature Aerial Vehicles in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2016-01-01

    Energy constraints of sensor nodes in wireless sensor networks (WSNs) is a major challenge and minimising the overall data transmitted across a network using data aggregation, distributed source coding, and compressive sensing have been proposed as mechanisms for energy saving. Similarly, use...... of mobile nodes capable of relocating within the network has been widely explored for energy saving. In this paper, we propose a novel method for using miniature aerial vehicles (MAVs) for data collection instead of actively sensing from a deployed network. The proposed mechanism is referred as Data...

  8. RELIABLE DYNAMIC SOURCE ROUTING PROTOCOL (RDSRP FOR ENERGY HARVESTING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    B. Narasimhan

    2015-03-01

    Full Text Available Wireless sensor networks (WSNs carry noteworthy pros over traditional communication. Though, unkind and composite environments fake great challenges in the reliability of WSN communications. It is more vital to develop a reliable unipath dynamic source routing protocol (RDSRPl for WSN to provide better quality of service (QoS in energy harvesting wireless sensor networks (EH-WSN. This paper proposes a dynamic source routing approach for attaining the most reliable route in EH-WSNs. Performance evaluation is carried out using NS-2 and throughput and packet delivery ratio are chosen as the metrics.

  9. Online vehicle and atmospheric pollution monitoring using GIS and wireless sensor networks

    International Nuclear Information System (INIS)

    Cordova-Lopez, L E; Mason, A; Cullen, J D; Shaw, A; Al-Shamma'a, A I

    2007-01-01

    A Geographical Information System (GIS) is a computer system designed to integrate, store, edit, analyse, share and display geographically referenced data. A wireless sensor network (WSN) is a wireless network of spatially distributed autonomous devices using sensors to monitor physical or environmental conditions. This paper presents the integration of these two technologies to create a system able to detect measure and transmit information regarding the presence and quantities of internal combustion derived pollution and the geographical location in real time with the aim of creating pollution maps in urban environments

  10. Secure energy efficient routing protocol for wireless sensor network

    Directory of Open Access Journals (Sweden)

    Das Ayan Kumar

    2016-03-01

    Full Text Available The ease of deployment of economic sensor networks has always been a boon to disaster management applications. However, their vulnerability to a number of security threats makes communication a challenging task. This paper proposes a new routing technique to prevent from both external threats and internal threats like hello flooding, eavesdropping and wormhole attack. In this approach one way hash chain is used to reduce the energy drainage. Level based event driven clustering also helps to save energy. The simulation results show that the proposed scheme extends network lifetime even when the cluster based wireless sensor network is under attack.

  11. The Application of Wireless Sensor Networks in Management of Orchard

    Science.gov (United States)

    Zhu, Guizhi

    A monitoring system based on wireless sensor network is established, aiming at the difficulty of information acquisition in the orchard on the hill at present. The temperature and humidity sensors are deployed around fruit trees to gather the real-time environmental parameters, and the wireless communication modules with self-organized form, which transmit the data to a remote central server, can realize the function of monitoring. By setting the parameters of data intelligent analysis judgment, the information on remote diagnosis and decision support can be timely and effectively feed back to users.

  12. DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN) USING PASCAL GRAPH

    OpenAIRE

    Deepali Panwar; Subhrendu Guha Neogi

    2013-01-01

    Development of energy efficient Wireless Sensor Network (WSN) routing protocol is nowadays main area of interest amongst researchers. This research is an effort in designing energy efficient Wireless Sensor Network (WSN) routing protocol under certain parameters consideration. Research report discusses various existing WSN routing protocols and propose a new WSN energy efficient routing protocol. Results show a significant improvement in life cycle of the nodes and enhancement ...

  13. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Nasir Saeed

    2017-12-01

    Full Text Available Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB is derived for localization accuracy of the proposed technique.

  14. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    Science.gov (United States)

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  15. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  16. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  17. Overview of wireless underground sensor networks for agriculture ...

    African Journals Online (AJOL)

    In recent years, many applications have been proposed for wireless sensor networks (WSN). One of these is agriculture, where WSN can play an important role in the handling and management of water resources for agricultural irrigation and so on. The WSN suffer from intensive human involvement and delay of ...

  18. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  19. Developing a new wireless sensor network platform and its application in precision agriculture.

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.

  20. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.